Quinta-feira, Março 24 2011 20: 03

Segurança de radiação

Classifique este artigo
(4 votos)

Este artigo descreve aspectos dos programas de segurança contra radiação. O objetivo da segurança contra radiação é eliminar ou minimizar os efeitos nocivos da radiação ionizante e do material radioativo sobre os trabalhadores, o público e o meio ambiente, ao mesmo tempo em que permite seu uso benéfico.

A maioria dos programas de segurança contra radiação não terá que implementar todos os elementos descritos abaixo. O projeto de um programa de segurança contra radiação depende dos tipos de fontes de radiação ionizante envolvidas e como elas são usadas.

Princípios de segurança contra radiação

A Comissão Internacional de Proteção Radiológica (ICRP) propôs que os seguintes princípios deveriam orientar o uso de radiação ionizante e a aplicação de padrões de segurança contra radiação:

  1. Nenhuma prática que envolva exposições à radiação deve ser adotada a menos que produza benefício suficiente para os indivíduos expostos ou para a sociedade para compensar os danos da radiação que ela causa (o justificação de uma prática).
  2. Em relação a qualquer fonte específica dentro de uma prática, a magnitude das doses individuais, o número de pessoas expostas e a probabilidade de incorrer em exposições onde não há certeza de que serão recebidas devem ser mantidas tão baixas quanto razoavelmente possível (ALARA), economia e fatores sociais sendo levados em conta. Este procedimento deve ser constrangido por restrições nas doses para os indivíduos (restrições de dose), de modo a limitar a desigualdade susceptível de resultar dos julgamentos económicos e sociais inerentes (o otimização de proteção).
  3. A exposição de indivíduos resultante da combinação de todas as práticas relevantes deve estar sujeita a limites de dose, ou a algum controle de risco no caso de exposições potenciais. Estes visam garantir que nenhum indivíduo seja exposto a riscos de radiação considerados inaceitáveis ​​nessas práticas em quaisquer circunstâncias normais. Nem todas as fontes são suscetíveis de controle por ação na fonte e é necessário especificar as fontes a serem incluídas como relevantes antes de selecionar um limite de dose (dose individual e limites de risco).

 

Padrões de segurança contra radiação

Existem padrões para exposição à radiação de trabalhadores e do público em geral e para limites anuais de ingestão (ALI) de radionuclídeos. Padrões para concentrações de radionuclídeos no ar e na água podem ser derivados dos ALIs.

O ICRP publicou extensas tabulações de ALIs e concentrações derivadas de ar e água. Um resumo de seus limites de dose recomendados está na tabela 1.

Tabela 1. Limites de dose recomendados pela Comissão Internacional de Proteção Radiológica1

Aplicação

Limite de dose

 
 

Profissional

Público

Dose efetiva

20 mSv por ano em média
períodos definidos de 5 anos2

1 mSv em um ano3

Dose equivalente anual em:

Lente do olho

150 msv

15 msv

Pele4

500 msv

50 msv

Mãos e pés

500 msv

-

1 Os limites aplicam-se à soma das doses relevantes de exposição externa no período especificado e a dose comprometida de 50 anos (até 70 anos de idade para crianças) de ingestões no mesmo período.

2 Com a cláusula adicional de que a dose efetiva não deve exceder 50 mSv em um único ano. Restrições adicionais se aplicam à exposição ocupacional de mulheres grávidas.

3 Em circunstâncias especiais, um valor maior de dose efetiva pode ser permitido em um único ano, desde que a média de 5 anos não exceda 1 mSv por ano.

4 A limitação da dose efetiva fornece proteção suficiente para a pele contra efeitos estocásticos. Um limite adicional é necessário para exposições localizadas, a fim de evitar efeitos determinísticos.

Dosimetria

A dosimetria é usada para indicar equivalentes de dose que os trabalhadores recebem de externo campos de radiação a que possam estar expostos. Os dosímetros são caracterizados pelo tipo de aparelho, o tipo de radiação que medem e a porção do corpo para a qual a dose absorvida deve ser indicada.

Três tipos principais de dosímetros são mais comumente empregados. São dosímetros termoluminescentes, dosímetros de filme e câmaras de ionização. Outros tipos de dosímetros (não discutidos aqui) incluem folhas de fissão, dispositivos de gravação de trilha e dosímetros de “bolha” de plástico.

Os dosímetros termoluminescentes são o tipo de dosímetro pessoal mais comumente usado. Eles aproveitam o princípio de que quando alguns materiais absorvem energia de radiação ionizante, eles a armazenam de forma que depois ela pode ser recuperada na forma de luz quando os materiais são aquecidos. Em alto grau, a quantidade de luz liberada é diretamente proporcional à energia absorvida da radiação ionizante e, portanto, à dose absorvida pelo material recebido. Essa proporcionalidade é válida em uma faixa muito ampla de energia de radiação ionizante e taxas de dose absorvida.

Equipamentos especiais são necessários para processar dosímetros termoluminescentes com precisão. A leitura do dosímetro termoluminescente destrói as informações de dose nele contidas. No entanto, após o processamento adequado, os dosímetros termoluminescentes são reutilizáveis.

O material utilizado para dosímetros termoluminescentes deve ser transparente à luz que emite. Os materiais mais comuns usados ​​para dosímetros termoluminescentes são fluoreto de lítio (LiF) e fluoreto de cálcio (CaF2). Os materiais podem ser dopados com outros materiais ou feitos com uma composição isotópica específica para fins especializados, como dosimetria de nêutrons.

Muitos dosímetros contêm vários chips termoluminescentes com diferentes filtros na frente deles para permitir a discriminação entre energias e tipos de radiação.

O filme era o material mais popular para dosimetria pessoal antes da dosimetria termoluminescente se tornar comum. O grau de escurecimento do filme depende da energia absorvida da radiação ionizante, mas a relação não é linear. A dependência da resposta do filme na dose total absorvida, taxa de dose absorvida e energia de radiação é maior do que para dosímetros termoluminescentes e pode limitar a faixa de aplicabilidade do filme. No entanto, o filme tem a vantagem de fornecer um registro permanente da dose absorvida à qual foi exposto.

Várias formulações de filmes e arranjos de filtros podem ser usados ​​para fins especiais, como dosimetria de nêutrons. Assim como os dosímetros termoluminescentes, é necessário um equipamento especial para uma análise adequada.

O filme geralmente é muito mais sensível à umidade e temperatura ambiente do que os materiais termoluminescentes e pode fornecer leituras falsamente altas sob condições adversas. Por outro lado, os equivalentes de dose indicados por dosímetros termoluminescentes podem ser afetados pelo choque de quedas em uma superfície dura.

Apenas as maiores organizações operam seus próprios serviços de dosimetria. A maioria obtém esses serviços de empresas especializadas em fornecê-los. É importante que tais empresas sejam licenciadas ou credenciadas por autoridades independentes apropriadas para que resultados de dosimetria precisos sejam garantidos.

Pequenas câmaras de ionização de autoleitura, também chamadas de câmaras de bolso, são usados ​​para obter informações de dosimetria imediatas. Seu uso geralmente é necessário quando o pessoal precisa entrar em áreas de alta ou muito alta radiação, onde o pessoal pode receber uma grande dose absorvida em um curto período de tempo. As câmaras de bolso geralmente são calibradas localmente e são muito sensíveis a choques. Consequentemente, devem sempre ser complementados por dosímetros termoluminescentes ou de filme, que são mais precisos e confiáveis, mas não fornecem resultados imediatos.

A dosimetria é necessária para um trabalhador quando ele ou ela tem uma probabilidade razoável de acumular uma certa porcentagem, geralmente 5 ou 10%, da dose máxima permitida equivalente para todo o corpo ou certas partes do corpo.

Um dosímetro de corpo inteiro deve ser usado em algum lugar entre os ombros e a cintura, em um ponto onde a maior exposição é esperada. Quando as condições de exposição justificarem, outros dosímetros podem ser usados ​​nos dedos ou pulsos, no abdômen, em uma faixa ou chapéu na testa, ou em um colarinho, para avaliar a exposição localizada a extremidades, feto ou embrião, tireóide ou lentes dos olhos. Consulte as diretrizes regulamentares apropriadas sobre se os dosímetros devem ser usados ​​dentro ou fora de roupas de proteção, como aventais de chumbo, luvas e colarinhos.

Os dosímetros pessoais indicam apenas a radiação à qual o dosímetro foi exposto. Atribuir a dose do dosímetro equivalente à pessoa ou órgãos da pessoa é aceitável para doses pequenas e triviais, mas grandes doses de dosímetro, especialmente aquelas que excedem muito os padrões regulamentares, devem ser analisadas cuidadosamente com relação ao posicionamento do dosímetro e aos campos de radiação reais aos quais o trabalhador foi exposto ao estimar a dose que o trabalhador efetivamente recebido. Uma declaração deve ser obtida do trabalhador como parte da investigação e incluída no registro. No entanto, muito mais frequentemente do que não, doses muito grandes do dosímetro são o resultado da exposição deliberada à radiação do dosímetro enquanto não estava sendo usado.

Bioensaio

Bioensaio (também chamado radiobioensaio) significa a determinação de tipos, quantidades ou concentrações e, em alguns casos, as localizações de material radioativo no corpo humano, seja por medição direta (in vivo contagem) ou por análise e avaliação de materiais excretados ou removidos do corpo humano.

O bioensaio é geralmente usado para avaliar a dose equivalente do trabalhador devido ao material radioativo levado para o corpo. Também pode fornecer uma indicação da eficácia das medidas ativas tomadas para prevenir tal ingestão. Mais raramente, pode ser usado para estimar a dose que um trabalhador recebeu de uma exposição maciça à radiação externa (por exemplo, contando glóbulos brancos ou defeitos cromossômicos).

O bioensaio deve ser realizado quando existe uma possibilidade razoável de que um trabalhador possa ingerir ou tenha ingerido em seu corpo mais do que uma certa porcentagem (geralmente 5 ou 10%) do ALI para um radionuclídeo. A forma química e física do radionuclídeo procurado no corpo determina o tipo de bioensaio necessário para detectá-lo.

O bioensaio pode consistir na análise de amostras retiradas do corpo (por exemplo, urina, fezes, sangue ou cabelo) para isótopos radioativos. Nesse caso, a quantidade de radioatividade na amostra pode estar relacionada à radioatividade no corpo da pessoa e, posteriormente, à dose de radiação que o corpo da pessoa ou certos órgãos receberam ou estão comprometidos a receber. O bioensaio de urina para trítio é um exemplo desse tipo de bioensaio.

A varredura total ou parcial do corpo pode ser usada para detectar radionuclídeos que emitem raios x ou gama de energia razoavelmente detectável fora do corpo. Bioensaio da tireoide para iodo-131 (131I) é um exemplo desse tipo de bioensaio.

O bioensaio pode ser realizado internamente ou amostras ou pessoal podem ser enviados para uma instalação ou organização especializada no bioensaio a ser realizado. Em ambos os casos, a calibração adequada do equipamento e a acreditação dos procedimentos laboratoriais são essenciais para garantir resultados de bioensaio exatos, precisos e defensáveis.

Roupa de proteção

Roupas de proteção são fornecidas pelo empregador ao trabalhador para reduzir a possibilidade de contaminação radioativa do trabalhador ou de suas roupas ou para proteger parcialmente o trabalhador da radiação beta, x ou gama. Exemplos do primeiro são roupas anti-contaminação, luvas, capuzes e botas. Exemplos destes últimos são aventais, luvas e óculos com chumbo.

Proteção respiratória

Um dispositivo de proteção respiratória é um aparelho, como um respirador, usado para reduzir a ingestão de materiais radioativos transportados pelo ar por um trabalhador.

Os empregadores devem usar, na medida do possível, processos ou outros controles de engenharia (por exemplo, contenção ou ventilação) para limitar as concentrações de materiais radioativos no ar. Quando isso não for possível para controlar as concentrações de material radioativo no ar para valores abaixo daqueles que definem uma área de radioatividade no ar, o empregador, de acordo com a manutenção do equivalente de dose efetiva total ALARA, deve aumentar o monitoramento e limitar as ingestões em um ou mais dos seguintes meios:

  • controle de acesso
  • limitação dos tempos de exposição
  • uso de equipamentos de proteção respiratória
  • outros controles.

 

Os equipamentos de proteção respiratória fornecidos aos trabalhadores devem estar em conformidade com os padrões nacionais aplicáveis ​​a tais equipamentos.

O empregador deve implementar e manter um programa de proteção respiratória que inclua:

  • amostragem de ar suficiente para identificar o perigo potencial, permitir a seleção adequada do equipamento e estimar as exposições
  • pesquisas e bioensaios, conforme apropriado, para avaliar a ingestão real
  • teste de respiradores para operacionalidade imediatamente antes de cada uso
  • procedimentos escritos relativos à seleção, ajuste, emissão, manutenção e teste de respiradores, incluindo testes de operabilidade imediatamente antes de cada uso; supervisão e treinamento de pessoal; monitoramento, incluindo amostragem de ar e bioensaios; e manutenção de registros
  • determinação por um médico antes da adaptação inicial dos respiradores, e periodicamente com uma frequência determinada por um médico, de que o usuário individual está clinicamente apto para usar o equipamento de proteção respiratória.

 

O empregador deve informar a cada usuário do respirador que o usuário pode deixar a área de trabalho a qualquer momento para alívio do uso do respirador em caso de mau funcionamento do equipamento, sofrimento físico ou psicológico, falha de procedimento ou comunicação, deterioração significativa das condições operacionais ou quaisquer outras condições que pode exigir tal alívio.

Mesmo que as circunstâncias possam não exigir o uso rotineiro de respiradores, condições de emergência confiáveis ​​podem exigir sua disponibilidade. Nesses casos, os respiradores também devem ser certificados para tal uso por uma organização de credenciamento apropriada e mantidos em condições de uso.

Vigilância em Saúde Ocupacional

Os trabalhadores expostos à radiação ionizante devem receber serviços de saúde ocupacional da mesma forma que os trabalhadores expostos a outros riscos ocupacionais.

Os exames gerais de pré-colocação avaliam a saúde geral do funcionário em potencial e estabelecem dados básicos. O histórico médico e de exposição anterior sempre deve ser obtido. Exames especializados, como contagem do cristalino do olho e contagem de células sanguíneas, podem ser necessários dependendo da natureza da exposição à radiação esperada. Isso deve ser deixado a critério do médico assistente.

Pesquisas de Contaminação

Um levantamento de contaminação é uma avaliação das condições radiológicas incidentes à produção, uso, liberação, descarte ou presença de materiais radioativos ou outras fontes de radiação. Quando apropriado, tal avaliação inclui um levantamento físico da localização do material radioativo e medições ou cálculos dos níveis de radiação, ou concentrações ou quantidades de material radioativo presente.

As pesquisas de contaminação são realizadas para demonstrar a conformidade com os regulamentos nacionais e para avaliar a extensão dos níveis de radiação, concentrações ou quantidades de material radioativo e os perigos radiológicos potenciais que podem estar presentes.

A frequência das pesquisas de contaminação é determinada pelo grau de perigo potencial presente. Pesquisas semanais devem ser realizadas em áreas de armazenamento de resíduos radioativos e em laboratórios e clínicas onde quantidades relativamente grandes de fontes radioativas não seladas são usadas. Levantamentos mensais são suficientes para laboratórios que trabalham com pequenas quantidades de fontes radioativas, como laboratórios que realizam in vitro testes usando isótopos como trítio, carbono-14 (14C) e iodo-125 (125I) com atividades menores que alguns kBq.

Equipamentos de segurança contra radiação e medidores de pesquisa devem ser apropriados para os tipos de material radioativo e radiações envolvidos e devem ser devidamente calibrados.

As pesquisas de contaminação consistem em medições dos níveis de radiação ambiente com um contador Geiger-Mueller (GM), câmara de ionização ou contador de cintilação; medições de possível contaminação de superfície α ou βγ com contadores de cintilação GM de janela fina ou sulfeto de zinco (ZnS) apropriados; e testes de limpeza de superfícies a serem posteriormente contadas em um contador de poço de cintilação (iodeto de sódio (NaI)), um contador de germânio (Ge) ou um contador de cintilação líquida, conforme apropriado.

Níveis de ação apropriados devem ser estabelecidos para resultados de medições de contaminação e radiação ambiente. Quando um nível de ação é excedido, medidas devem ser tomadas imediatamente para mitigar os níveis detectados, restabelecê-los em condições aceitáveis ​​e evitar a exposição desnecessária do pessoal à radiação e a absorção e disseminação de material radioativo.

Monitoramento Ambiental

O monitoramento ambiental refere-se à coleta e medição de amostras ambientais para materiais radioativos e monitoramento de áreas fora dos arredores do local de trabalho quanto aos níveis de radiação. Os propósitos do monitoramento ambiental incluem estimar as consequências para os seres humanos resultantes da liberação de radionuclídeos na biosfera, detectar liberações de material radioativo no meio ambiente antes que se tornem graves e demonstrar conformidade com os regulamentos.

Uma descrição completa das técnicas de monitoramento ambiental está além do escopo deste artigo. No entanto, os princípios gerais serão discutidos.

Amostras ambientais devem ser coletadas para monitorar o caminho mais provável para os radionuclídeos do ambiente para o homem. Por exemplo, amostras de solo, água, grama e leite em regiões agrícolas ao redor de uma usina nuclear devem ser coletadas rotineiramente e analisadas quanto ao iodo-131 (131I) e estrôncio-90 (90Sr) conteúdo.

O monitoramento ambiental pode incluir a coleta de amostras de ar, águas subterrâneas, águas superficiais, solo, folhagem, peixes, leite, animais de caça e assim por diante. As escolhas de quais amostras coletar e com que frequência devem ser baseadas nos propósitos do monitoramento, embora um pequeno número de amostras aleatórias às vezes possa identificar um problema previamente desconhecido.

O primeiro passo na elaboração de um programa de monitoramento ambiental é caracterizar os radionuclídeos que estão sendo liberados ou com potencial para serem liberados acidentalmente, com relação ao tipo e quantidade e forma física e química.

A possibilidade de transporte destes radionuclídeos através do ar, águas subterrâneas e águas superficiais é a próxima consideração. O objetivo é prever as concentrações de radionuclídeos que atingem os seres humanos diretamente através do ar e da água ou indiretamente através dos alimentos.

A bioacumulação de radionuclídeos resultantes da deposição em ambientes aquáticos e terrestres é o próximo item de preocupação. O objetivo é prever a concentração de radionuclídeos assim que eles entram na cadeia alimentar.

Por fim, examina-se a taxa de consumo humano desses alimentos potencialmente contaminados e como esse consumo contribui para a dose de radiação humana e o consequente risco à saúde. Os resultados dessa análise são usados ​​para determinar a melhor abordagem para amostragem ambiental e para garantir que as metas do programa de monitoramento ambiental sejam atendidas.

Testes de Vazamento de Fontes Seladas

Uma fonte selada significa material radioativo que está envolto em uma cápsula projetada para evitar vazamento ou escape do material. Essas fontes devem ser testadas periodicamente para verificar se a fonte não está vazando material radioativo.

Cada fonte selada deve ser testada quanto a vazamentos antes de seu primeiro uso, a menos que o fornecedor tenha fornecido um certificado indicando que a fonte foi testada dentro de seis meses (três meses para emissores α) antes da transferência para o atual proprietário. Cada fonte selada deve ser testada quanto a vazamentos pelo menos uma vez a cada seis meses (três meses para emissores α) ou em um intervalo especificado pela autoridade reguladora.

Geralmente, testes de vazamento nas seguintes fontes não são necessários:

  • fontes contendo apenas material radioativo com meia-vida inferior a 30 dias
  • fontes contendo apenas material radioativo como um gás
  • fontes contendo 4 MBq ou menos de material emissor de βγ ou 0.4 MBq ou menos de material emissor de α
  • fontes armazenadas e não utilizadas; no entanto, cada uma dessas fontes deve ser testada quanto a vazamentos antes de qualquer uso ou transferência, a menos que tenha sido testada quanto a vazamentos dentro de seis meses antes da data de uso ou transferência
  • sementes de irídio-192 (192Ir) envolto em fita de nylon.

 

Um teste de vazamento é realizado retirando uma amostra de limpeza da fonte selada ou das superfícies do dispositivo em que a fonte selada está montada ou armazenada nas quais a contaminação radioativa pode se acumular ou lavando a fonte em um pequeno volume de detergente solução e tratando todo o volume como a amostra.

A amostra deve ser medida de modo que o teste de vazamento possa detectar a presença de pelo menos 200 Bq de material radioativo na amostra.

Fontes de rádio seladas requerem procedimentos especiais de teste de vazamento para detectar vazamento de gás radônio (Rn). Por exemplo, um procedimento envolve manter a fonte selada em um frasco com fibras de algodão por pelo menos 24 horas. No final do período, as fibras de algodão são analisadas quanto à presença de descendentes de Rn.

Uma fonte selada com vazamento acima dos limites permitidos deve ser retirada de serviço. Se a fonte não for reparável, ela deve ser tratada como lixo radioativo. A autoridade reguladora pode exigir que as fontes de vazamento sejam relatadas caso o vazamento seja resultado de um defeito de fabricação que mereça uma investigação mais aprofundada.

Estoque

O pessoal de segurança contra radiação deve manter um inventário atualizado de todos os materiais radioativos e outras fontes de radiação ionizante pelas quais o empregador é responsável. Os procedimentos da organização devem garantir que o pessoal de segurança contra radiação esteja ciente do recebimento, uso, transferência e descarte de todos esses materiais e fontes para que o inventário possa ser mantido atualizado. Um inventário físico de todas as fontes seladas deve ser feito pelo menos uma vez a cada três meses. O inventário completo das fontes de radiação ionizante deve ser verificado durante a auditoria anual do programa de segurança contra radiação.

Afixação de Áreas

A Figura 1 mostra o símbolo de radiação padrão internacional. Isso deve aparecer de forma proeminente em todos os sinais que indicam áreas controladas para fins de segurança contra radiação e nos rótulos dos recipientes que indicam a presença de materiais radioativos.

Figura 1. Símbolo de radiação

ION050F1

As áreas controladas para fins de segurança contra radiação são frequentemente designadas em termos de aumento dos níveis de taxa de dose. Essas áreas devem ser sinalizadas de forma visível com um sinal ou sinais com o símbolo de radiação e as palavras “CUIDADO, ÁREA DE RADIAÇÃO”, “CUIDADO (or PERIGO), ÁREA DE ALTA RADIAÇÃO” ou “GRAVE PERIGO, ÁREA DE RADIAÇÃO MUITO ELEVADA”, conforme apropriado.

  1. Uma área de radiação é uma área acessível ao pessoal, na qual os níveis de radiação podem resultar em um indivíduo recebendo uma dose equivalente superior a 0.05 mSv em 1 h a 30 cm da fonte de radiação ou de qualquer superfície que a radiação penetre.
  2. Uma área de alta radiação é uma área acessível ao pessoal, na qual os níveis de radiação podem resultar em um indivíduo recebendo uma dose equivalente em excesso de 1 mSv em 1 h a 30 cm da fonte de radiação ou de qualquer superfície que a radiação penetre.
  3. Uma área de radiação muito alta é uma área acessível ao pessoal, na qual os níveis de radiação podem resultar em um indivíduo recebendo uma dose absorvida superior a 5 Gy em 1 h a 1 m de uma fonte de radiação ou de qualquer superfície que a radiação penetre.

Se uma área ou sala contiver uma quantidade significativa de material radioativo (conforme definido pela autoridade reguladora), a entrada dessa área ou sala deve ser afixada de forma visível com um sinal com o símbolo de radiação e as palavras “CUIDADO (or PERIGO), MATERIAIS RADIOATIVOS”.

Uma área de radioatividade aérea é uma sala ou área na qual a radioatividade aérea excede certos níveis definidos pela autoridade reguladora. Cada área de radioatividade aerotransportada deve ser afixada com um sinal visível ou sinais com o símbolo de radiação e as palavras “CUIDADO, ÁREA DE RADIOATIVIDADE AÉREA” ou “PERIGO, ÁREA DE RADIOATIVIDADE AÉREA”.

Exceções a esses requisitos de postagem podem ser concedidas para quartos de pacientes em hospitais onde esses quartos estejam sob controle adequado. Áreas ou salas nas quais as fontes de radiação devem estar localizadas por períodos de oito horas ou menos e são constantemente atendidas sob controle adequado por pessoal qualificado não precisam ser sinalizadas.

Controle de acesso

O grau em que o acesso a uma área deve ser controlado é determinado pelo grau de risco potencial de radiação na área.

Controle de acesso a áreas de alta radiação

Cada entrada ou ponto de acesso a uma área de alta radiação deve ter um ou mais dos seguintes recursos:

  • um dispositivo de controle que, ao entrar na área, faz com que o nível de radiação seja reduzido abaixo daquele nível em que um indivíduo pode receber uma dose de 1 mSv em 1 h a 30 cm da fonte de radiação ou de qualquer superfície que a radiação penetra
  • um dispositivo de controle que energiza um sinal de alarme visível ou audível visível para que o indivíduo que entra na área de alta radiação e o supervisor da atividade sejam informados da entrada
  • entradas bloqueadas, exceto nos períodos em que o acesso à área é necessário, com controle positivo sobre cada entrada individual.

 

No lugar dos controles necessários para uma área de alta radiação, pode ser substituída por vigilância direta ou eletrônica contínua capaz de impedir a entrada não autorizada.

Os controles devem ser estabelecidos de forma a não impedir que indivíduos saiam da área de alta radiação.

Controle de acesso a áreas de radiação muito alta

Além dos requisitos para uma área de alta radiação, medidas adicionais devem ser instituídas para garantir que um indivíduo não seja capaz de obter acesso não autorizado ou inadvertido a áreas nas quais os níveis de radiação podem ser encontrados em 5 Gy ou mais em 1 h a 1 m de uma fonte de radiação ou qualquer superfície através da qual a radiação penetra.

Marcações em Contêineres e Equipamentos

Cada recipiente de material radioativo acima de uma quantidade determinada pela autoridade reguladora deve ostentar uma etiqueta durável e claramente visível com o símbolo de radiação e as palavras “CUIDADO, MATERIAL RADIOATIVO” ou “PERIGO, MATERIAL RADIOATIVO”. O rótulo também deve fornecer informações suficientes - como o(s) radionuclídeo(s) presente(s), uma estimativa da quantidade de radioatividade, a data para a qual a atividade é estimada, níveis de radiação, tipos de materiais e enriquecimento em massa - para permitir que indivíduos manuseiem ou usem os recipientes, ou trabalhando nas proximidades dos recipientes, para tomar precauções para evitar ou minimizar as exposições.

Antes da remoção ou descarte de recipientes vazios não contaminados em áreas irrestritas, a etiqueta do material radioativo deve ser removida ou desfigurada, ou deve ser claramente indicado que o recipiente não contém mais materiais radioativos.

Os recipientes não precisam ser rotulados se:

  1. os recipientes são atendidos por um indivíduo que toma as precauções necessárias para evitar a exposição de indivíduos acima dos limites regulamentares
  2. os contêineres, quando estão em transporte, são embalados e rotulados de acordo com os regulamentos de transporte apropriados
  3. os contêineres são acessíveis apenas a indivíduos autorizados a manuseá-los ou usá-los, ou a trabalhar nas proximidades dos contêineres, se o conteúdo for identificado a esses indivíduos por um registro escrito prontamente disponível (exemplos de contêineres desse tipo são contêineres em locais como canais cheios de água, cofres de armazenamento ou células quentes); o registro deve ser mantido enquanto os contêineres estiverem em uso para a finalidade indicada no registro; ou
  4. os contêineres são instalados em equipamentos de fabricação ou processo, como componentes de reatores, tubulações e tanques.

 

Dispositivos de Alerta e Alarmes

Áreas de alta radiação e áreas de radiação muito alta devem ser equipadas com dispositivos de alerta e alarmes conforme discutido acima. Esses dispositivos e alarmes podem ser visíveis, audíveis ou ambos. Dispositivos e alarmes para sistemas como aceleradores de partículas devem ser energizados automaticamente como parte do procedimento de inicialização para que o pessoal tenha tempo de desocupar a área ou desligar o sistema com um botão “scram” antes que a radiação seja produzida. Os botões “Scram” (botões na área controlada que, quando pressionados, fazem com que os níveis de radiação caiam imediatamente para níveis seguros) devem ser facilmente acessíveis e marcados e exibidos com destaque.

Dispositivos de monitoramento, como monitores de ar contínuo (CAMs), podem ser predefinidos para emitir alarmes sonoros e visíveis ou para desligar um sistema quando determinados níveis de ação são excedidos.

Instrumentação

O empregador deve disponibilizar instrumentação adequada ao grau e tipos de radiação e material radioativo presentes no local de trabalho. Esta instrumentação pode ser usada para detectar, monitorar ou medir os níveis de radiação ou radioatividade.

A instrumentação deve ser calibrada em intervalos apropriados usando métodos acreditados e fontes de calibração. As fontes de calibração devem ser o mais parecidas possível com as fontes a serem detectadas ou medidas.

Os tipos de instrumentação incluem instrumentos de pesquisa portáteis, monitores de ar contínuo, monitores de portal de mãos e pés, contadores de cintilação líquida, detectores contendo cristais Ge ou NaI e assim por diante.

Transporte de Material Radioativo

A Agência Internacional de Energia Atômica (IAEA) estabeleceu regulamentos para o transporte de material radioativo. A maioria dos países adotou regulamentos compatíveis com os regulamentos de remessa radioativa da IAEA.

Figura 2. Categoria I - etiqueta BRANCA

ION050F2

A Figura 2, a Figura 3 e a Figura 4 são exemplos de etiquetas de remessa que os regulamentos da IAEA exigem no exterior de embalagens apresentadas para remessa que contenham materiais radioativos. O índice de transporte nas etiquetas mostradas na figura 3 e na figura 4 referem-se à taxa de dose efetiva mais alta a 1 m de qualquer superfície da embalagem em mSv/h multiplicado por 100, depois arredondado para o décimo mais próximo. (Por exemplo, se a taxa de dose efetiva mais alta a 1 m de qualquer superfície de uma embalagem for 0.0233 mSv/h, então o índice de transporte é 2.4.)

Figura 3. Categoria II - etiqueta AMARELA

ION050F3
Figura 4. Categoria III - etiqueta AMARELA
ION050F4

 

A Figura 5 mostra um exemplo de placa que os veículos terrestres devem exibir com destaque ao transportar pacotes contendo materiais radioativos acima de determinadas quantidades.

Figura 5. Placa do veículo

ION050F5

As embalagens destinadas ao transporte de materiais radioativos devem atender a rigorosos requisitos de teste e documentação. O tipo e a quantidade de material radioativo enviado determinam quais especificações a embalagem deve atender.

Os regulamentos de transporte de material radioativo são complicados. As pessoas que não enviam materiais radioativos rotineiramente devem sempre consultar especialistas com experiência em tais remessas.

Resíduos radioativos

Vários métodos de eliminação de resíduos radioativos estão disponíveis, mas todos são controlados por autoridades reguladoras. Portanto, uma organização deve sempre consultar sua autoridade reguladora para garantir que um método de descarte seja permitido. Os métodos de descarte de resíduos radioativos incluem a retenção do material para decaimento radioativo e posterior descarte sem considerar a radioatividade, incineração, descarte no sistema de esgoto sanitário, enterro em terra e enterro no mar. O enterro no mar muitas vezes não é permitido pela política nacional ou tratado internacional e não será mais discutido.

Resíduos radioativos de núcleos de reatores (resíduos altamente radioativos) apresentam problemas especiais com relação ao descarte. O manuseio e o descarte desses resíduos são controlados por autoridades regulatórias nacionais e internacionais.

Freqüentemente, os resíduos radioativos podem ter uma propriedade diferente da radioatividade que, por si só, tornaria os resíduos perigosos. Esses resíduos são chamados resíduos misturados. Exemplos incluem lixo radioativo que também é um risco biológico ou é tóxico. Resíduos mistos requerem tratamento especial. Consulte as autoridades reguladoras para o descarte adequado de tais resíduos.

Esperando por decaimento radioativo

Se a meia-vida do material radioativo for curta (geralmente menos de 65 dias) e se a organização tiver espaço de armazenamento suficiente, o rejeito radioativo pode ser mantido para decaimento com descarte subsequente, independentemente de sua radioatividade. Um período de retenção de pelo menos dez meias-vidas geralmente é suficiente para tornar os níveis de radiação indistinguíveis do fundo.

Os resíduos devem ser examinados antes de serem descartados. A pesquisa deve empregar instrumentação apropriada para a radiação a ser detectada e demonstrar que os níveis de radiação são indistinguíveis do fundo.

Iincineração

Se a autoridade reguladora permitir a incineração, geralmente deve ser demonstrado que tal incineração não faz com que a concentração de radionuclídeos no ar exceda os níveis permitidos. As cinzas devem ser examinadas periodicamente para verificar se não são radioativas. Em algumas circunstâncias, pode ser necessário monitorar a chaminé para garantir que as concentrações de ar permitidas não sejam excedidas.

Descarte na rede de esgoto sanitário

Se a autoridade reguladora permitir tal descarte, geralmente deve ser demonstrado que tal descarte não faz com que a concentração de radionuclídeos na água exceda os níveis permitidos. O material a ser descartado deve ser solúvel ou facilmente dispersável em água. Muitas vezes, a autoridade reguladora estabelece limites anuais específicos para esse descarte por radionuclídeo.

Enterro terrestre

Os resíduos radioativos não descartáveis ​​por qualquer outro meio serão descartados por enterramento em locais licenciados por autoridades reguladoras nacionais ou locais. As autoridades reguladoras controlam rigorosamente esse descarte. Os geradores de resíduos geralmente não têm permissão para descartar resíduos radioativos em suas próprias terras. Os custos associados ao enterro incluem despesas de embalagem, transporte e armazenamento. Esses custos são adicionais ao custo do próprio espaço de sepultura e muitas vezes podem ser reduzidos compactando os resíduos. Os custos de enterro de terra para descarte de resíduos radioativos estão aumentando rapidamente.

Auditorias do programa

Os programas de segurança radiológica devem ser auditados periodicamente quanto à eficácia, integridade e conformidade com a autoridade reguladora. A auditoria deve ser feita pelo menos uma vez por ano e ser abrangente. Auto-auditorias são geralmente permitidas, mas auditorias por agências externas independentes são desejáveis. As auditorias de agências externas tendem a ser mais objetivas e têm um ponto de vista mais global do que as auditorias locais. Uma agência de auditoria não associada às operações do dia-a-dia de um programa de segurança contra radiação geralmente pode identificar problemas não vistos pelos operadores locais, que podem ter se acostumado a ignorá-los.

Training

Os empregadores devem fornecer treinamento de segurança contra radiação a todos os trabalhadores expostos ou potencialmente expostos a radiação ionizante ou materiais radioativos. Eles devem fornecer treinamento inicial antes de um trabalhador começar a trabalhar e treinamento anual de atualização. Além disso, cada trabalhadora em idade reprodutiva deve receber treinamento especial e informações sobre os efeitos da radiação ionizante no feto e sobre as precauções apropriadas que ela deve tomar. Este treinamento especial deve ser dado quando ela for contratada pela primeira vez, no treinamento anual de atualização e se ela notificar seu empregador que está grávida.

Todos os indivíduos que trabalham ou frequentam qualquer parte de uma área de acesso restrito para fins de segurança contra radiação:

  • deve ser informado sobre o armazenamento, transferência ou uso de materiais radioativos ou de radiação em tais partes da área restrita
  • deve ser instruído sobre os problemas de proteção à saúde associados à exposição a tais materiais radioativos ou radiação, sobre as precauções ou procedimentos para minimizar a exposição e sobre os propósitos e funções dos dispositivos de proteção empregados
  • deve ser instruído e instruído a observar, na medida do controle do trabalhador, as disposições aplicáveis ​​dos regulamentos nacionais e do empregador para a proteção do pessoal contra exposições à radiação ou materiais radioativos que ocorrem nessas áreas
  • devem ser instruídos sobre sua responsabilidade de relatar imediatamente ao empregador qualquer condição que possa levar ou causar uma violação dos regulamentos nacionais ou do empregador ou exposição desnecessária à radiação ou a material radioativo
  • deve ser instruído na resposta apropriada aos avisos feitos no caso de qualquer ocorrência incomum ou mau funcionamento que possa envolver exposição a radiação ou material radioativo
  • devem ser informados sobre os relatórios de exposição à radiação que os trabalhadores podem solicitar.

 

A extensão das instruções de segurança contra radiação deve ser compatível com os problemas potenciais de proteção à saúde radiológica na área controlada. As instruções devem ser estendidas conforme apropriado ao pessoal auxiliar, como enfermeiras que atendem pacientes radioativos em hospitais e bombeiros e policiais que podem responder a emergências.

Qualificações do Trabalhador

Os empregadores devem garantir que os trabalhadores que usam radiação ionizante sejam qualificados para realizar o trabalho para o qual foram contratados. Os trabalhadores devem ter formação e experiência para desempenhar suas funções com segurança, principalmente no que se refere à exposição e uso de radiações ionizantes e materiais radioativos.

O pessoal de segurança contra radiação deve ter o conhecimento e as qualificações apropriados para implementar e operar um bom programa de segurança contra radiação. Seus conhecimentos e qualificações devem ser pelo menos compatíveis com os problemas potenciais de proteção à saúde radiológica que eles e os trabalhadores provavelmente enfrentarão.

Planejamento de Emergência

Todas as operações, exceto as menores, que usam radiação ionizante ou materiais radioativos, devem ter planos de emergência em vigor. Esses planos devem ser mantidos atualizados e exercitados periodicamente.

Os planos de emergência devem abordar todas as situações de emergência credíveis. Os planos para uma grande usina nuclear serão muito mais extensos e envolverão uma área e número de pessoas muito maiores do que os planos para um pequeno laboratório de radioisótopos.

Todos os hospitais, especialmente nas grandes áreas metropolitanas, devem ter planos para receber e cuidar de pacientes contaminados radioativamente. A polícia e as organizações de combate a incêndio devem ter planos para lidar com acidentes de transporte envolvendo material radioativo.

Manutenção de Registros

As atividades de segurança contra radiação de uma organização devem ser totalmente documentadas e adequadamente mantidas. Esses registros são essenciais se surgir a necessidade de exposições anteriores à radiação ou liberações de radioatividade e para demonstrar conformidade com os requisitos da autoridade reguladora. A manutenção consistente, precisa e abrangente de registros deve receber alta prioridade.

Considerações organizacionais

O cargo de principal responsável pela segurança radiológica deve ser colocado na organização de forma que ele tenha acesso imediato a todos os escalões de trabalhadores e de gestão. Ele ou ela deve ter livre acesso a áreas cujo acesso é restrito para fins de segurança radiológica e autoridade para interromper imediatamente práticas inseguras ou ilegais.

 

Voltar

Leia 5648 vezes Última modificação em quinta-feira, 13 de outubro de 2011 21:30

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Radiação: Referências Ionizantes

Instituto Nacional de Padrões Americano (ANSI). 1977. Segurança de radiação para equipamentos de análise de raios-X, difração e fluorescência. vol. 43.2. Nova York: ANSI.

Sociedade Nuclear Americana. 1961. Relatório especial sobre o acidente SL-1. Notícias Nucleares.

Bethe, HA. 1950. Revs. Mod. Física, 22, 213.

Brill, AB e EH Forgotson. 1964. Radiação e malformações congênitas. Am J Obstet Gynecol 90:1149-1168.

Brown, P. 1933. American Martyrs to Science through the Roentgen Rays. Springfield, Illinois: Charles C. Thomas.

Bryant, PM. 1969. Avaliações de dados sobre liberações controladas e acidentais de I-131 e Cs-137 para a atmosfera. Saúde Física 17(1).

Doll, R, NJ Evans e SC Darby. 1994. Exposição paterna sem culpa. Nature 367:678-680.

Friedenwald, JS e S Sigelmen. 1953. A influência da radiação ionizante na atividade mitótica no epitélio da córnea do rato. Exp Cell Res 4:1-31.

Gardner, MJ, A Hall, MP Snee, S Downes, CA Powell e JD Terell. 1990. Resultados do estudo de caso-controle de leucemia e linfoma entre jovens perto da usina nuclear de Sellafield em West Cumbria. Brit Med J 300:423-429.

Boa cabeça, DJ. 1988. Distribuição espacial e temporal de energia. Saúde Física 55:231-240.

Salão, EJ. 1994. Radiobiologia para o Radiologista. Filadélfia: JB Lippincott.

Haynie, JS e RH Olsher. 1981. Um resumo dos acidentes de exposição à máquina de raios-x no Los Alamos National Laboratory. LAUP.

Colina, C e A Laplanche. 1990. Mortalidade geral e mortalidade por câncer em torno de instalações nucleares francesas. Nature 347:755-757.

Agência Internacional de Pesquisa sobre o Câncer (IARC). 1994. Grupo de estudo da IARC sobre risco de câncer entre trabalhadores da indústria nuclear, novas estimativas de risco de câncer devido a baixas doses de radiação ionizante: um estudo internacional. Lancet 344:1039-1043.

Agência Internacional de Energia Atômica (AIEA). 1969. Simpósio sobre o Tratamento de Acidentes de Radiação. Viena: AIEA.

—. 1973. Procedimento de proteção contra radiação. Série de Segurança da Agência Internacional de Energia Atômica, No. 38. Viena: AIEA.

—. 1977. Simpósio sobre o Tratamento de Acidentes de Radiação. Viena: AIEA.

—. 1986. Dosimetria Biológica: Análise de Aberração Cromossômica para Avaliação de Dose. Relatório técnico nº 260. Viena: IAEA.

Comissão Internacional de Proteção Radiológica (ICRP). 1984. Efeitos não estocásticos da radiação ionizante. Ann ICRP 14(3):1-33.

—. 1991. Recomendações da Comissão Internacional de Proteção Radiológica. Ann ICRP 21:1-3.

Jablon, S, Z Hrubec e JDJ Boice. 1991. Câncer em populações que vivem perto de instalações nucleares. Um levantamento de mortalidade em todo o país e incidência em duas áreas. JAMA 265:1403-1408.

Jensen, RH, RG Langlois e WL Bigbee. 1995. Frequência elevada de mutações da glicoforina A em eritrócitos de vítimas do acidente de Chernobyl. Rad Res 141:129-135.

Revista de Medicina Ocupacional (JOM). 1961. Suplemento Especial. J Occup Med 3(3).

Kasakov, VS, EP Demidchik e LN Astakhova. 1992. Câncer de tireóide após Chernobyl. Natureza 359:21.

Kerber, RA, JE Till, SL Simon, JL Lyon, DC Thomas, S Preston-Martin, ML Rallison, RD Lloyd e WS Stevens. 1993. Um estudo de coorte de doenças da tireóide em relação às consequências de testes de armas nucleares. JAMA 270:2076-2082.

Kinlen, LJ. 1988. Evidência de uma causa infecciosa de leucemia infantil: comparação de uma cidade nova escocesa com locais de reprocessamento nuclear na Grã-Bretanha. Lancet II:1323-1327.

Kinlen, LJ, K Clarke e A Balkwill. 1993. Exposição paterna à radiação pré-concepcional na indústria nuclear e leucemia e linfoma não-Hodgkin em jovens na Escócia. Brit Med J 306:1153-1158.

Lindell, B. 1968. Riscos ocupacionais no trabalho analítico de raios-x. Saúde Física 15:481-486.

Little, MP, MW Charles e R Wakeford. 1995. Uma revisão dos riscos de leucemia em relação à exposição pré-concepção dos pais à radiação. Saúde Física 68:299-310.

Lloyd, DC e RJ Purrott. 1981. Análise de aberração cromossômica em dosimetria de proteção radiológica. Rad Prot Dosimetria 1:19-28.

Lubenau, JO, J Davis, D McDonald e T Gerusky. 1967. Perigos Analíticos de Raios-X: Um Problema Contínuo. Trabalho apresentado no 12º encontro anual da Health Physics Society. Washington, DC: Health Physics Society.

Lubin, JH, JDJ Boice e C Edling. 1994. Risco de Radônio e Câncer de Pulmão: Uma Análise Conjunta de 11 Estudos de Mineiros Subterrâneos. Publicação NIH No. 94-3644. Rockville, Maryland: Institutos Nacionais de Saúde (NIH).

Lushbaugh, CC, SA Fry e RC Ricks. 1987. Acidentes em reatores nucleares: Preparação e consequências. Brit J Radiol 60:1159-1183.

McLaughlin, JR, EA Clarke, D Bishri e TW Anderson. 1993. Leucemia infantil nas proximidades de instalações nucleares canadenses. Causas e Controle do Câncer 4:51-58.

Mettler, FA e AC Upton. 1995. Efeitos médicos da radiação ionizante. Nova York: Grune & Stratton.

Mettler, FA, MR Williamson e HD Royal. 1992. Nódulos de tireóide na população que vive em torno de Chernobyl. JAMA 268:616-619.

Academia Nacional de Ciências (NAS) e Conselho Nacional de Pesquisa (NRC). 1990. Efeitos na Saúde da Exposição a Baixos Níveis de Radiação Ionizante. Washington, DC: National Academy Press.

—. 1994. Efeitos na Saúde da Exposição ao Radônio. Tempo para reavaliação? Washington, DC: National Academy Press.

Conselho Nacional de Proteção e Medições de Radiação (NCRP). 1987. Exposição à radiação da população dos EUA de produtos de consumo e fontes diversas. Relatório nº 95, Bethesda, Md: NCRP.

Institutos Nacionais de Saúde (NIH). 1985. Relatório do Grupo de Trabalho Ad Hoc dos Institutos Nacionais de Saúde para Desenvolver Tabelas Radioepidemiológicas. Publicação NIH No. 85-2748. Washington, DC: US ​​Government Printing Office.

Neel, JV, W Schull e Awa. 1990. Os filhos de pais expostos a bombas atômicas: Estimativas da duplicação genética da dose de radiação para humanos. Am J Hum Genet 46:1053-1072.

Comissão Reguladora Nuclear (NUREG). 1980. Critérios para Preparação e Avaliação de Planos de Resposta a Emergências Radiológicas e Preparação em Apoio a Usinas Nucleares. Documento nº NUREG 0654/FEMA-REP-1, Rev. 1. Washington, DC: NUREG.

Otake, M, H Yoshimaru e WJ Schull. 1987. Retardo mental grave entre os sobreviventes expostos ao pré-natal do bombardeio atômico de Hiroshima e Nagasaki: uma comparação dos sistemas de dosimetria antigos e novos. No Relatório Técnico RERF. Hiroshima: Fundação de Pesquisa de Efeitos de Radiação.

Prisyazhiuk, A, OA Pjatak e VA Buzanov. 1991. Câncer na Ucrânia, pós-Chernobyl. Lancet 338:1334-1335.

Robbins, J e W Adams. 1989. Efeitos da radiação nas Ilhas Marshall. Em Radiation and the Thyroid, editado por S Nagataki. Tóquio: Excerpta Medica.

Rubin, P, e GW Casarett. 1972. Uma direção para patologia de radiação clínica: a dose de tolerância. Em Frontiers of Radiation Therapy and Oncology, editado por JM Vaeth. Basel: Karger e Baltimore: Univ. Imprensa Parque.

Schaeffer, NM. 1973. Blindagem de reator para engenheiros nucleares. Relatório nº TID-25951. Springfield, Virgínia: Serviços Nacionais de Informações Técnicas.

Shapiro, J. 1972. Proteção contra radiação: Um guia para cientistas e médicos. Cambridge, Mass: Harvard Univ. Imprensa.

Stannard, JN. 1988. Radioatividade e Saúde: Uma História. Relatório do Departamento de Energia dos EUA, DOE/RL/01830-T59. Washington, DC: National Technical Information Services, EUA. Departamento de Energia.

Stevens, W, JE Till, L Lyon et al. 1990. Leucemia em Utah e precipitação radioativa do local de teste de Nevada. JAMA. 264: 585–591.

Pedra, RS. 1959. Padrões máximos de exposição permitidos. Em Protection in Diagnostic Radiology, editado por BP Sonnenblick. New Brunswick: Rutgers Univ. Imprensa.

Comitê Científico das Nações Unidas sobre os Efeitos da Radiação Atômica (UNSCEAR). 1982. Radiação Ionizante: Fontes e Efeitos Biológicos. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1986. Efeitos Genéticos e Somáticos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1988. Fontes, Efeitos e Riscos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1993. Fontes e Efeitos da Radiação Ionizante. Relatório à Assembleia Geral, com Anexos. Nova York: Nações Unidas.

—. 1994. Fontes e Efeitos da Radiação Ionizante. Relatório à Assembleia Geral, com anexos. Nova York: Nações Unidas.

Upton, CA. 1986. Perspectivas históricas sobre carcinogênese por radiação. Em Radiation Carcinogenesis, editado por AC Upton, RE Albert, FJ Burns e RE Shore. Nova york. Elsevier.

Upton, CA. 1996 Ciências Radiológicas. Em The Oxford Textbook of Public Health, editado por R Detels, W Holland, J McEwen e GS Omenn. Nova york. Imprensa da Universidade de Oxford.

Comissão de Energia Atômica dos Estados Unidos (AEC). 1957. O incidente do reator Windscale. No Boletim de Informações sobre Acidentes No. 73. Washington, DC: AEC.

—. 1961. Relatório do Conselho de Investigação sobre o Acidente Sl-1. Washington, DC: US ​​NRC.

Código de Regulamentos Federais dos EUA (USCFR). 1990. Licenças para Radiografia e Requisitos de Segurança de Radiação para Operações Radiográficas. Washington, DC: Governo dos Estados Unidos.

Departamento de Energia dos EUA (USDOE). 1987. Saúde e Consequências Ambientais do Acidente da Usina Nuclear de Chernobyl. DOE/ER-0332.Washington, DC: USDOE.

Comissão Reguladora Nuclear dos EUA (NRC). 1983. Instrumentação para usinas nucleares resfriadas a água leve para avaliar as condições da usina e dos arredores durante e após um acidente. No NRC Regulatory Guide 1.97. Rev. 3. Washington, DC: NRC.

Wakeford, R, EJ Tawn, DM McElvenny, LE Scott, K Binks, L Parker, H Dickinson, H e J Smith. 1994a. As estatísticas descritivas e as implicações para a saúde das doses de radiação ocupacional recebidas pelos homens na instalação nuclear de Sellafield antes da concepção de seus filhos. J. Radiol. Proteger. 14: 3–16.

Wakeford, R., EJ Tawn, DM McElvenny, K Binks, LE Scott e L Parker. 1994b. Os casos de leucemia infantil Seascale - as taxas de mutação implícitas nas doses de radiação pré-concepcionais paternas. J. Radiol. Proteger. 14: 17–24.

Ward, JF. 1988. Danos no DNA produzidos por radiação ionizante em células de mamíferos: identidades, mecanismos de formação e reparabilidade. Prog. Res. de Ácido Nucleico. Mol. Biol. 35: 96–128.

Yoshimoto, Y, JV Neel, WJ Schull, H Kato, M Soda, R Eto e K Mabuchi. 1990. Tumores malignos durante as duas primeiras décadas de vida em descendentes de sobreviventes da bomba atômica. Sou. J. Hum. Genet. 46: 1041–1052.