Terça-feira, 15 Março 2011 15: 26

Campos de Radiofrequência e Microondas

Classifique este artigo
(Voto 1)

A energia eletromagnética de radiofrequência (RF) e a radiação de micro-ondas são usadas em uma variedade de aplicações na indústria, comércio, medicina e pesquisa, bem como em casa. Na faixa de frequência de 3 a 3 x 108 kHz (ou seja, 300 GHz), reconhecemos prontamente aplicações como transmissão de rádio e televisão, comunicações (telefone de longa distância, telefone celular, comunicação de rádio), radar, aquecedores dielétricos, aquecedores de indução, fontes de alimentação comutadas e monitores de computador.

A radiação de RF de alta potência é uma fonte de energia térmica que carrega todas as implicações conhecidas do aquecimento para sistemas biológicos, incluindo queimaduras, mudanças temporárias e permanentes na reprodução, catarata e morte. Para a ampla gama de radiofrequências, a percepção cutânea de calor e dor térmica não é confiável para detecção, porque os receptores térmicos estão localizados na pele e não detectam prontamente o aquecimento profundo do corpo causado por esses campos. Limites de exposição são necessários para proteger contra esses efeitos adversos à saúde da exposição a campos de radiofrequência.

Exposição profissional

Aquecimento por indução

Aplicando um intenso campo magnético alternado, um material condutor pode ser aquecido por indução. correntes de Foucault. Esse aquecimento é usado para forjamento, recozimento, brasagem e soldagem. As frequências de operação variam de 50/60 a vários milhões de Hz. Como as dimensões das bobinas que produzem os campos magnéticos costumam ser pequenas, o risco de exposição de alto nível de todo o corpo é pequeno; no entanto, a exposição das mãos pode ser alta.

Aquecimento dielétrico

A energia de radiofrequência de 3 a 50 MHz (principalmente nas frequências de 13.56, 27.12 e 40.68 MHz) é usada na indústria para uma variedade de processos de aquecimento. As aplicações incluem vedação e relevo de plástico, secagem de cola, processamento de tecidos e têxteis, marcenaria e fabricação de diversos produtos como lonas, piscinas, forros de colchão d'água, sapatos, pastas de cheques de viagem e assim por diante.

As medições relatadas na literatura (Hansson Mild 1980; IEEE COMAR 1990a, 1990b, 1991) mostram que, em muitos casos, as forças elétricas e magnéticas campos de vazamento são muito altos perto desses dispositivos de RF. Muitas vezes, os operadores são mulheres em idade reprodutiva (ou seja, 18 a 40 anos). Os campos de vazamento costumam ser extensos em algumas situações ocupacionais, resultando na exposição de todo o corpo dos operadores. Para muitos dispositivos, os níveis de exposição a campos elétricos e magnéticos excedem todas as diretrizes de segurança de RF existentes.

Uma vez que estes dispositivos podem dar origem a uma absorção muito elevada de energia de RF, é de interesse controlar os campos de fuga que emanam deles. Assim, o monitoramento periódico de RF torna-se essencial para determinar se existe um problema de exposição.

Sistemas de comunicação

Trabalhadores nas áreas de comunicação e radar estão expostos apenas a intensidades de campo de baixo nível na maioria das situações. No entanto, a exposição dos trabalhadores que devem escalar torres de FM/TV pode ser intensa e precauções de segurança são necessárias. A exposição também pode ser substancial perto de gabinetes de transmissores com seus intertravamentos desativados e portas abertas.

exposição médica

Uma das primeiras aplicações da energia de RF foi a diatermia de ondas curtas. Eletrodos não blindados são geralmente usados ​​para isso, levando possivelmente a altos campos dispersos.

Recentemente, campos de RF têm sido usados ​​em conjunto com campos magnéticos estáticos em imagem de ressonância magnética (RM). Como a energia de RF usada é baixa e o campo está quase totalmente contido no gabinete do paciente, a exposição dos operadores é insignificante.

Efeitos Biológicos

A taxa de absorção específica (SAR, medida em watts por quilograma) é amplamente utilizada como uma quantidade dosimétrica, e os limites de exposição podem ser derivados de SARs. A SAR de um corpo biológico depende de parâmetros de exposição como frequência da radiação, intensidade, polarização, configuração da fonte de radiação e do corpo, superfícies de reflexão e tamanho do corpo, forma e propriedades elétricas. Além disso, a distribuição espacial SAR dentro do corpo é altamente não uniforme. A deposição de energia não uniforme resulta em aquecimento corporal não uniforme e pode produzir gradientes de temperatura interna. Em frequências acima de 10 GHz, a energia é depositada próximo à superfície do corpo. O SAR máximo ocorre em cerca de 70 MHz para o sujeito padrão e em cerca de 30 MHz quando a pessoa está em contato com o solo de RF. Em condições extremas de temperatura e umidade, espera-se que SARs de corpo inteiro de 1 a 4 W/kg a 70 MHz causem um aumento da temperatura central de cerca de 2 ºC em seres humanos saudáveis ​​em uma hora.

O aquecimento por RF é um mecanismo de interação que tem sido estudado extensivamente. Efeitos térmicos foram observados em menos de 1 W/kg, mas os limiares de temperatura geralmente não foram determinados para esses efeitos. O perfil de tempo-temperatura deve ser considerado na avaliação dos efeitos biológicos.

Efeitos biológicos também ocorrem quando o aquecimento por RF não é um mecanismo adequado nem possível. Esses efeitos geralmente envolvem campos de RF modulados e comprimentos de onda milimétricos. Várias hipóteses foram propostas, mas ainda não produziram informações úteis para derivar os limites de exposição humana. Existe a necessidade de entender os mecanismos fundamentais de interação, uma vez que não é prático explorar cada campo de RF por suas interações biofísicas e biológicas características.

Estudos em humanos e animais indicam que os campos de RF podem causar efeitos biológicos prejudiciais devido ao aquecimento excessivo dos tecidos internos. Os sensores de calor do corpo estão localizados na pele e não detectam prontamente o aquecimento profundo dentro do corpo. Os trabalhadores podem, portanto, absorver quantidades significativas de energia de RF sem estarem imediatamente cientes da presença de campos de vazamento. Há relatos de que pessoas expostas a campos de RF de equipamentos de radar, aquecedores e seladores de RF e torres de rádio-TV experimentaram uma sensação de aquecimento algum tempo após a exposição.

Há pouca evidência de que a radiação de RF possa iniciar o câncer em humanos. No entanto, um estudo sugeriu que pode atuar como um promotor de câncer em animais (Szmigielski et al. 1988). Estudos epidemiológicos de pessoas expostas a campos de RF são poucos e geralmente têm escopo limitado (Silverman 1990; NCRP 1986; WHO 1981). Vários levantamentos de trabalhadores expostos ocupacionalmente foram conduzidos na antiga União Soviética e em países da Europa Oriental (Roberts e Michaelson, 1985). No entanto, esses estudos não são conclusivos com relação aos efeitos na saúde.

Avaliação humana e estudos epidemiológicos sobre operadores de seladores de RF na Europa (Kolmodin-Hedman et al. 1988; Bini et al. 1986) relatam que os seguintes problemas específicos podem surgir:

  • Queimaduras de RF ou queimaduras por contato com superfícies termicamente quentes
  • dormência (ou seja, parestesia) nas mãos e dedos; sensibilidade tátil perturbada ou alterada
  • irritação ocular (possivelmente devido a vapores de material contendo vinil)
  • aquecimento significativo e desconforto nas pernas dos operadores (talvez devido ao fluxo de corrente através das pernas para o chão).

 

Telemoveis

O uso de radiotelefones pessoais está aumentando rapidamente e isso levou a um aumento no número de estações base. Estes são frequentemente localizados em áreas públicas. No entanto, a exposição ao público dessas estações é baixa. Os sistemas geralmente operam em frequências próximas a 900 MHz ou 1.8 GHz, usando tecnologia analógica ou digital. Os monofones são transmissores de rádio pequenos e de baixa potência mantidos próximos à cabeça quando em uso. Parte da potência irradiada da antena é absorvida pela cabeça. Cálculos numéricos e medições em cabeças fantasmas mostram que os valores de SAR podem ser da ordem de alguns W/kg (ver declaração adicional do ICNIRP, 1996). A preocupação pública sobre o perigo à saúde dos campos eletromagnéticos aumentou e vários programas de pesquisa estão sendo dedicados a esta questão (McKinley et al., relatório não publicado). Vários estudos epidemiológicos estão em andamento com relação ao uso de telefones celulares e câncer cerebral. Até agora, apenas um estudo animal (Repacoli et al. 1997) com camundongos transgênicos expostos 1 h por dia durante 18 meses a um sinal semelhante ao usado em comunicação móvel digital foi publicado. Ao final dos experimentos, 43 de 101 animais expostos tinham linfomas, em comparação com 22 de 100 no grupo de exposição simulada. O aumento foi estatisticamente significativo (p > 0.001). Esses resultados não podem ser facilmente interpretados com relevância para a saúde humana e mais pesquisas sobre isso são necessárias.

Padrões e Diretrizes

Várias organizações e governos emitiram padrões e diretrizes para proteção contra exposição excessiva a campos de RF. Uma revisão dos padrões mundiais de segurança foi feita por Grandolfo e Hansson Mild (1989); a discussão aqui refere-se apenas às diretrizes emitidas pela IRPA (1988) e padrão IEEE C 95.1 1991.

A justificativa completa para os limites de exposição à RF é apresentada em IRPA (1988). Em resumo, as diretrizes da IRPA adotaram um valor limite básico de SAR de 4 W/kg, acima do qual é considerado uma probabilidade crescente de que consequências adversas à saúde possam ocorrer como resultado da absorção de energia de RF. Nenhum efeito adverso à saúde foi observado devido a exposições agudas abaixo deste nível. Incorporando um fator de segurança de dez para permitir possíveis consequências da exposição a longo prazo, 0.4 W/kg é usado como o limite básico para derivar os limites de exposição para exposição ocupacional. Um outro fator de segurança de cinco é incorporado para derivar os limites para o público em geral.

Limites de exposição derivados para a força do campo elétrico (E), a força do campo magnético (H) e a densidade de potência especificada em V/m, A/m e W/m2 respectivamente, são mostrados na figura 1. Os quadrados do E e a H os campos são calculados em média durante seis minutos e é recomendado que a exposição instantânea não exceda os valores médios de tempo em mais de um fator de 100. Além disso, a corrente corpo-terra não deve exceder 200 mA.

Figura 1. Limites de exposição IRPA (1988) para intensidade de campo elétrico E, intensidade de campo magnético H e densidade de potência

ELF060F1

O padrão C 95.1, definido em 1991, pelo IEEE fornece valores limite para exposição ocupacional (ambiente controlado) de 0.4 W/kg para a SAR média em todo o corpo de uma pessoa e 8 W/kg para o pico de SAR entregue a qualquer grama de tecido por 6 minutos ou mais. Os valores correspondentes para a exposição do público em geral (ambiente não controlado) são 0.08 W/kg para SAR de corpo inteiro e 1.6 W/kg para SAR de pico. A corrente corpo-terra não deve exceder 100 mA em um ambiente controlado e 45 mA em um ambiente não controlado. (Consulte IEEE 1991 para obter mais detalhes.) Os limites derivados são mostrados na figura 2.

Figura 2. Limites de exposição IEEE (1991) para intensidade de campo elétrico E, intensidade de campo magnético H e densidade de potência

ELF060F2

Mais informações sobre campos de radiofrequência e micro-ondas podem ser encontradas, por exemplo, em Elder et al. 1989, Greene 1992 e Polk e Postow 1986.

 

Voltar

Leia 8205 vezes Última modificação em quarta-feira, 17 de agosto de 2011 18:36

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Radiação: Referências não ionizantes

Allen, SG. 1991. Medições de campo de radiofrequência e avaliação de riscos. J Radiol Protect 11:49-62.

Conferência Americana de Higienistas Industriais Governamentais (ACGIH). 1992. Documentação para os Valores Limite Limiares. Cincinnati, Ohio: ACGIH.

—. 1993. Valores Limite para Substâncias Químicas e Agentes Físicos e Índices de Exposição Biológica. Cincinnati, Ohio: ACGIH.

—. 1994a. Relatório Anual do Comitê de Valores Limite de Agentes Físicos da ACGIH. Cincinnati, Ohio: ACGIH.

—. 1994b. TLV's, valores-limite e índices de exposição biológica para 1994-1995. Cincinnati, Ohio: ACGIH.

—. 1995. 1995-1996 Valores Limite para Substâncias Químicas e Agentes Físicos e Índices Biológicos de Exposição. Cincinnati, Ohio: ACGIH.

—. 1996. TLVs© e BEIs©. Valores Limite de Limite para Substâncias Químicas e Agentes Físicos; Índices de Exposição Biológica. Cincinnati, Ohio: ACGIH.

Instituto Nacional de Padrões Americano (ANSI). 1993. Uso Seguro de Lasers. Padrão nº Z-136.1. Nova York: ANSI.

Aniolczyk, R. 1981. Medições de avaliação higiênica de campos eletromagnéticos no ambiente de diatermia, soldadores e aquecedores de indução. Medicina Pracy 32:119-128.

Bassett, CAL, SN Mitchell e SR Gaston. 1982. Tratamento de campo eletromagnético pulsante em fraturas não unidas e artrodeses malsucedidas. J Am Med Assoc 247:623-628.

Bassett, CAL, RJ Pawluk e AA Pilla. 1974. Aumento da reparação óssea por campos eletromagnéticos acoplados indutivamente. Science 184:575-577.

Berger, D, F Urbach e RE Davies. 1968. O espectro de ação do eritema induzido pela radiação ultravioleta. No Relatório Preliminar XIII. Congressus Internationalis Dermatologiae, Munchen, editado por W Jadassohn e CG Schirren. Nova York: Springer-Verlag.

Bernhardt, JH. 1988a. O estabelecimento de limites dependentes da frequência para campos elétricos e magnéticos e avaliação de efeitos indiretos. Rad Envir Biophys 27:1.

Bernhardt, JH e R Matthes. 1992. Fontes eletromagnéticas ELF e RF. Em Non-Ionizing Radiation Protection, editado por MW Greene. Vancôver: UBC Press.

Bini, M, A Checcucci, A Ignesti, L Millanta, R Olmi, N Rubino e R Vanni. 1986. Exposição de trabalhadores a intensos campos elétricos de RF que vazam de selantes plásticos. J Poder do Microondas 21:33-40.

Buhr, E, E Sutter e Conselho de Saúde Holandês. 1989. Filtros dinâmicos para dispositivos de proteção. Em Dosimetry of Laser Radiation in Medicine and Biology, editado por GJ Mueller e DH Sliney. Bellingham, Washington: SPIE.

Bureau de Saúde Radiológica. 1981. Uma Avaliação da Emissão de Radiação de Terminais de Exibição de Vídeo. Rockville, MD: Departamento de Saúde Radiológica.

CLEUET, A e A. Mayer. 1980. Risques liés à l'utilisation industrielle des lasers. In Institut National de Recherche et de Sécurité, Cahiers de Notes Documentaires, No. 99 Paris: Institut National de Recherche et de Sécurité.

Coblentz, WR, R Stair e JM Hogue. 1931. A relação eritêmica espectral da pele com a radiação ultravioleta. Em Proceedings of the National Academy of Sciences of the United States of America Washington, DC: National Academy of Sciences.

Cole, CA, DF Forbes e PD Davies. 1986. Um espectro de ação para fotocarcinogênese UV. Photochem Photobiol 43(3):275-284.

Commission Internationale de L'Eclairage (CIE). 1987. Vocabulário Internacional de Iluminação. Viena: CIE.

Cullen, AP, BR Chou, MG Hall e SE Jany. 1984. Ultravioleta-B danifica o endotélio da córnea. Am J Optom Phys Opt 61(7):473-478.

Duchene, A, J Lakey e M Repacholi. 1991. Diretrizes da IRPA sobre proteção contra radiação não ionizante. Nova York: Pergamon.

Elder, JA, PA Czerki, K Stuchly, K Hansson Mild e AR Sheppard. 1989. Radiação de radiofrequência. Em Nonionizing Radiation Protection, editado por MJ Suess e DA Benwell-Morison. Genebra: OMS.

Eriksen, P. 1985. Espectros ópticos resolvidos no tempo da ignição de arco de soldagem MIG. Am Ind Hyg Assoc J 46:101-104.

Everett, MA, RL Olsen e RM Sayer. 1965. Eritema ultravioleta. Arch Dermatol 92:713-719.

Fitzpatrick, TB, MA Pathak, LC Harber, M Seiji e A Kukita. 1974. Sunlight and Man, Normal and Abnormal Photobiologic Responses. Tóquio: Univ. da Tokyo Press.

Forbes, PD e PD Davies. 1982. Fatores que influenciam a fotocarcinogênese. Indivíduo. 7 em Photoimmunology, editado por JAM Parrish, L Kripke e WL Morison. Nova York: Pleno.

Freeman, RS, DW Owens, JM Knox e HT Hudson. 1966. Requisitos relativos de energia para uma resposta eritemal da pele a comprimentos de onda monocromáticos de ultravioleta presentes no espectro solar. J Invest Dermatol 47:586-592.

Grandolfo, M e K Hansson Mild. 1989. Radiofrequência ocupacional e pública mundial e proteção contra micro-ondas. Em Biointeração Eletromagnética. Mecanismos, Normas de Segurança, Guias de Proteção, editado por G Franceschetti, OP Gandhi e M Grandolfo. Nova York: Pleno.

Verde, MW. 1992. Radiação não ionizante. 2º Workshop Internacional de Radiação Não Ionizante, 10-14 de maio, Vancouver.

Ham, WTJ. 1989. A fotopatologia e a natureza da lesão retiniana de luz azul e quase ultravioleta produzida por lasers e outras fontes ópticas. Em Laser Applications in Medicine and Biology, editado por ML Wolbarsht. Nova York: Pleno.

Ham, WT, HA Mueller, JJ Ruffolo, D Guerry III e RK Guerry. 1982. Espectro de ação para lesões na retina causadas por radiação quase ultravioleta no macaco afácico. Am J Ophthalmol 93(3):299-306.

Hansson Mild, K. 1980. Exposição ocupacional a campos eletromagnéticos de radiofrequência. Proc IEEE 68:12-17.

Hausser, KW. 1928. Influência do comprimento de onda na biologia da radiação. Strahlentherapie 28:25-44.

Instituto de Engenheiros Elétricos e Eletrônicos (IEEE). 1990a. IEEE COMAR Posição de RF e Microondas. Nova York: IEEE.

—. 1990b. Declaração de posição do IEEE COMAR sobre os aspectos de saúde da exposição a campos elétricos e magnéticos de seladores de RF e aquecedores dielétricos. Nova York: IEEE.

—. 1991. Padrão IEEE para níveis de segurança com relação à exposição humana a campos eletromagnéticos de radiofrequência de 3 KHz a 300 GHz. Nova York: IEEE.

Comissão Internacional de Proteção contra Radiação Não Ionizante (ICNIRP). 1994. Diretrizes sobre limites de exposição a campos magnéticos estáticos. Saúde Física 66:100-106.

—. 1995. Diretrizes para Limites de Exposição Humana à Radiação Laser.

Declaração do ICNIRP. 1996. Problemas de saúde relacionados ao uso de radiotelefones portáteis e transmissores de base. Health Physics, 70:587-593.

Comissão Eletrotécnica Internacional (IEC). 1993. Padrão IEC No. 825-1. Genebra: CEI.

Organização Internacional do Trabalho (OIT). 1993a. Proteção contra campos elétricos e magnéticos de frequência de energia. Série de Segurança e Saúde Ocupacional, No. 69. Genebra: ILO.

Associação Internacional de Proteção contra Radiação (IRPA). 1985. Diretrizes para limites de exposição humana à radiação laser. Saúde Física 48(2):341-359.

—. 1988a. Alteração: Recomendações para pequenas atualizações das diretrizes IRPA 1985 sobre os limites de exposição à radiação laser. Health Phys 54(5):573-573.

—. 1988b. Diretrizes sobre limites de exposição a campos eletromagnéticos de radiofrequência na faixa de frequência de 100 kHz a 300 GHz. Saúde Física 54:115-123.

—. 1989. Proposta de mudança para os limites de exposição à radiação ultravioleta da IRPA 1985. Health Phys 56(6):971-972.

Associação Internacional de Proteção contra Radiação (IRPA) e Comitê Internacional de Radiação Não Ionizante. 1990. Diretrizes provisórias sobre limites de exposição a campos elétricos e magnéticos de 50/60 Hz. Saúde Física 58(1):113-122.

Kolmodin-Hedman, B, K Hansson Mild, E Jönsson, MC Anderson e A Eriksson. 1988. Problemas de saúde entre operações de máquinas de solda de plástico e exposição a campos eletromagnéticos de radiofrequência. Int Arch Occup Environ Health 60:243-247.

Krause, N. 1986. Exposição de pessoas a campos magnéticos estáticos e variáveis ​​no tempo em tecnologia, medicina, pesquisa e vida pública: Aspectos dosimétricos. Em Biological Effects of Static and ELF-Magnetic Fields, editado por JH Bernhardt. Munique: MMV Medizin Verlag.

Lövsund, P e KH Mild. 1978. Campo eletromagnético de baixa frequência perto de alguns aquecedores de indução. Estocolmo: Conselho de Saúde e Segurança Ocupacional de Estocolmo.

Lövsund, P, PA Oberg e SEG Nilsson. 1982. Campos magnéticos ELF em eletroaço e indústrias de soldagem. Radio Sci 17(5S):355-385.

Luckiesh, ML, L Holladay e AH Taylor. 1930. Reação da pele humana não curtida à radiação ultravioleta. J Optic Soc Am 20:423-432.

McKinlay, AF e B Diffey. 1987. Um espectro de ação de referência para eritema induzido por ultravioleta na pele humana. Em Human Exposure to Ultraviolet Radiation: Risks and Regulations, editado por WF Passchier e BFM Bosnjakovic. Nova York: Excerpta medica Division, Elsevier Science Publishers.

McKinlay, A, JB Andersen, JH Bernhardt, M Grandolfo, KA Hossmann, FE van Leeuwen, K Hansson Mild, AJ Swerdlow, L Verschaeve e B Veyret. Proposta de um programa de investigação por um Grupo de Peritos da Comissão Europeia. Possíveis efeitos na saúde relacionados ao uso de radiotelefones. Reportagem não publicada.

Mitbriet, IM e VD Manyachin. 1984. Influência dos campos magnéticos na reparação do osso. Moscou, Nauka, 292-296.

Conselho Nacional de Proteção e Medições de Radiação (NCRP). 1981. Campos eletromagnéticos de radiofrequência. Propriedades, Quantidades e Unidades, Interação Biofísica e Medidas. Bethesda, MD: NCRP.

—. 1986. Efeitos Biológicos e Critérios de Exposição para Campos Eletromagnéticos de Radiofrequência. Relatório nº 86. Bethesda, MD: NCRP.

Conselho Nacional de Proteção Radiológica (NRPB). 1992. Campos eletromagnéticos e o risco de câncer. vol. 3(1). Chilton, Reino Unido: NRPB.

—. 1993. Restrições à exposição humana a campos e radiações eletromagnéticos estáticos e variáveis ​​no tempo. Didcot, Reino Unido: NRPB.

Conselho Nacional de Pesquisa (NRC). 1996. Possíveis efeitos na saúde da exposição a campos elétricos e magnéticos residenciais. Washington: NAS Press. 314.

Olsen, EG e A Ringvold. 1982. Endotélio da córnea humana e radiação ultravioleta. Acta Ophthalmol 60:54-56.

Parrish, JA, KF Jaenicke e RR Anderson. 1982. Eritema e melanogênese: Espectros de ação da pele humana normal. Photochem Photobiol 36(2):187-191.

Passchier, WF e BFM Bosnjakovic. 1987. Exposição Humana à Radiação Ultravioleta: Riscos e Regulamentações. Nova York: Excerpta Medica Division, Elsevier Science Publishers.

Pitts, DG. 1974. O espectro humano de ação ultravioleta. Am J Optom Phys Opt 51(12):946-960.

Pitts, DG e TJ Tredici. 1971. Os efeitos do ultravioleta no olho. Am Ind Hyg Assoc J 32(4):235-246.

Pitts, DG, AP Cullen e PD Hacker. 1977a. Efeitos oculares da radiação ultravioleta de 295 a 365nm. Invest Ophthalmol Vis Sci 16(10):932-939.

—. 1977b. Efeitos Ultravioleta de 295 a 400nm no Olho do Coelho. Cincinnati, Ohio: Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH).

Polk, C e E Postow. 1986. CRC Handbook of Biological Effects of Electromagnetic Fields. Boca Ratón: CRC Press.

Repacholi, MH. 1985. Terminais de exibição de vídeo - os operadores devem se preocupar? Austalas Phys Eng Sci Med 8(2):51-61.

—. 1990. Câncer da exposição a campos elétricos e magnéticos de 50760 Hz: um grande debate científico. Austalas Phys Eng Sci Med 13(1):4-17.

Repacholi, M, A Basten, V Gebski, D Noonan, J Finnic e AW Harris. 1997. Linfomas em camundongos transgênicos E-Pim1 expostos a campos eletromagnéticos pulsados ​​de 900 MHz. Pesquisa de radiação, 147:631-640.

Riley, MV, S Susan, MI Peters e CA Schwartz. 1987. Os efeitos da irradiação UVB no endotélio da córnea. Curr Eye Res 6(8):1021-1033.

Ringvold, A. 1980a. Córnea e radiação ultravioleta. Acta Oftalmol 58:63-68.

—. 1980b. Humor aquoso e radiação ultravioleta. Acta Ophthalmol 58:69-82.

—. 1983. Dano do epitélio da córnea causado pela radiação ultravioleta. Acta Ophthalmol 61:898-907.

Ringvold, A e M. Davanger. 1985. Alterações no estroma da córnea de coelho causadas pela radiação UV. Acta Ophthalmol 63:601-606.

Ringvold, A, M Davanger e EG Olsen. 1982. Alterações do endotélio da córnea após radiação ultravioleta. Acta Oftalmol 60:41-53.

Roberts, NJ e SM Michaelson. 1985. Estudos epidemiológicos da exposição humana à radiação de radiofrequência: uma revisão crítica. Int Arch Occup Environ Health 56:169-178.

Roy, CR, KH Joyner, HP Gies e MJ Bangay. 1984. Medição de radiação eletromagnética emitida por terminais de exibição visual (VDTs). Rad Prot Austral 2(1):26-30.

Scotto, J, TR Fears e GB Gori. 1980. Medições de radiação ultravioleta nos Estados Unidos e comparações com dados de câncer de pele. Washington, DC: US ​​Government Printing Office.

Sienkiewicz, ZJ, RD Saunder e CI Kowalczuk. 1991. Efeitos biológicos da exposição a campos eletromagnéticos não ionizantes e radiação. 11 Campos elétricos e magnéticos de frequência extremamente baixa. Didcot, Reino Unido: National Radiation Protection Board.

Silverman, C. 1990. Estudos epidemiológicos de câncer e campos eletromagnéticos. No Cap. 17 em Efeitos Biológicos e Aplicações Médicas da Energia Eletromagnética, editado por OP Gandhi. Engelwood Cliffs, NJ: Prentice Hall.

Sliney, DH. 1972. Os méritos de um espectro de ação de envelope para critérios de exposição à radiação ultravioleta. Am Ind Hyg Assoc J 33:644-653.

—. 1986. Fatores físicos na cataratogênese: radiação ultravioleta ambiente e temperatura. Invest Ophthalmol Vis Sci 27(5):781-790.

—. 1987. Estimando a exposição solar à radiação ultravioleta para um implante de lente intra-ocular. J Cataract Refract Surg 13(5):296-301.

—. 1992. Um guia do gerente de segurança para os novos filtros de soldagem. Soldagem J 71(9):45-47.
Sliney, DH e ML Wolbarsht. 1980. Segurança com lasers e outras fontes ópticas. Nova York: Pleno.

Stenson, S. 1982. Achados oculares em xeroderma pigmentoso: Relato de dois casos. Ann Ophthalmol 14(6):580-585.

Sterenborg, HJCM e JC van der Leun. 1987. Espectros de ação para tumorigênese por radiação ultravioleta. Em Human Exposure to Ultraviolet Radiation: Risks and Regulations, editado por WF Passchier e BFM Bosnjakovic. Nova York: Excerpta Medica Division, Elsevier Science Publishers.

Stutchly, MA. 1986. Exposição humana a campos magnéticos estáticos e variáveis ​​no tempo. Saúde Física 51(2):215-225.

Stuchly, MA e DW Lecuyer. 1985. Aquecimento por indução e exposição do operador a campos eletromagnéticos. Saúde Phys 49:693-700.

—. 1989. Exposição a campos eletromagnéticos em soldagem a arco. Saúde Física 56:297-302.

Szmigielski, S, M Bielec, S Lipski e G Sokolska. 1988. Aspectos imunológicos e relacionados ao câncer da exposição a campos de microondas e radiofrequência de baixo nível. In Modern Bioelectricity, editado por AA Mario. Nova York: Marcel Dekker.

Taylor, HR, SK West, FS Rosenthal, B Munoz, HS Newland, H Abbey e EA Emmett. 1988. Efeito da radiação ultravioleta na formação de catarata. New Engl J Med 319:1429-1433.

Diga, RA. 1983. Instrumentação para medição de campos eletromagnéticos: Equipamentos, calibrações e aplicações selecionadas. In Biological Effects and Dosimetry of Nonionizing Radiation, Radiofrequency and Microwave Energies, editado por M Grandolfo, SM Michaelson e A Rindi. Nova York: Pleno.

Urbach, F. 1969. Os efeitos biológicos da radiação ultravioleta. Nova York: Pergamon.

Organização Mundial da Saúde (OMS). 1981. Radiofrequência e microondas. Critério de Saúde Ambiental, No.16. Genebra: OMS.

—. 1982. Lasers e Radiação Óptica. Critérios de Saúde Ambiental, No. 23. Genebra: OMS.

—. 1987. Campos Magnéticos. Critério de Saúde Ambiental, No.69. Genebra: OMS.

—. 1989. Proteção contra radiação não ionizante. Copenhague: Escritório Regional da OMS para a Europa.

—. 1993. Campos eletromagnéticos de 300 Hz a 300 GHz. Critérios de Saúde Ambiental, No. 137. Genebra: OMS.

—. 1994. Radiação ultravioleta. Critérios de Saúde Ambiental, No. 160. Genebra: OMS.

Organização Mundial da Saúde (OMS), Programa Ambiental das Nações Unidas (PNUMA) e Associação Internacional de Proteção contra Radiação (IRPA). 1984. Frequência Extremamente Baixa (ELF). Critérios de Saúde Ambiental, No. 35. Genebra: OMS.

Zaffanella, LE e DW DeNo. 1978. Efeitos eletrostáticos e eletromagnéticos de linhas de transmissão de ultra-alta tensão. Palo Alto, Califórnia: Electric Power Research Institute.

Zuclich, JA e JS Connolly. 1976. Danos oculares induzidos por radiação laser quase ultravioleta. Invest Ophthalmol Vis Sci 15(9):760-764.