Domingo, março 13 2011 16: 03

Métodos de mineração de superfície

Classifique este artigo
(20 votos)

Desenvolvimento de mina

Planejamento e layout do poço

O objetivo econômico geral na mineração de superfície é remover a menor quantidade de material e, ao mesmo tempo, obter o maior retorno sobre o investimento, processando o produto mineral mais comercializável. Quanto maior o teor do depósito mineral, maior o valor. Para minimizar o investimento de capital ao acessar o material de maior valor dentro de um depósito mineral, é desenvolvido um plano de mina que detalha com precisão a maneira pela qual o corpo de minério será extraído e processado. Como muitos depósitos de minério não têm uma forma uniforme, o plano da mina é precedido por extensas perfurações exploratórias para perfilar a geologia e a posição do corpo de minério. O tamanho do depósito mineral determina o tamanho e o layout da mina. O layout de uma mina de superfície é ditado pela mineralogia e geologia da área. A forma da maioria das minas a céu aberto se aproxima de um cone, mas sempre reflete a forma do depósito mineral que está sendo desenvolvido. As minas a céu aberto são construídas a partir de uma série de saliências ou bancos concêntricos que são cortados ao meio pelo acesso à mina e estradas de transporte que descem da borda do poço até o fundo em uma orientação em espiral ou em zigue-zague. Independentemente do tamanho, o plano da mina inclui provisões para o desenvolvimento da mina, infraestrutura (por exemplo, armazenamento, escritórios e manutenção), transporte, equipamentos, índices e taxas de mineração. As taxas e proporções de mineração influenciam a vida útil da mina, que é definida pelo esgotamento do corpo de minério ou pela realização de um limite econômico.

As minas contemporâneas a céu aberto variam em escala, desde pequenas empresas privadas que processam algumas centenas de toneladas de minério por dia até complexos industriais expandidos operados por governos e corporações multinacionais que extraem mais de um milhão de toneladas de material por dia. As maiores operações podem envolver muitos quilômetros quadrados de área.

Sobrecarga de remoção

O estéril é um estéril que consiste em material consolidado e não consolidado que deve ser removido para expor o corpo de minério subjacente. É desejável remover o mínimo possível de estéril para acessar o minério de interesse, mas um volume maior de estéril é escavado quando o depósito mineral é profundo. A maioria das técnicas de remoção é cíclica com interrupção nas fases de extração (perfuração, detonação e carregamento) e remoção (transporte). Isso é particularmente verdadeiro para o estéril de rocha dura, que deve ser perfurado e detonado primeiro. Uma exceção a esse efeito cíclico são as dragas usadas na mineração hidráulica de superfície e alguns tipos de mineração de material solto com escavadeiras de roda de caçamba. A fração de estéril para minério escavado é definida como a taxa de decapagem. Taxas de decapagem de 2:1 até 4:1 não são incomuns em grandes operações de mineração. Proporções acima de 6:1 tendem a ser menos viáveis ​​economicamente, dependendo da commodity. Uma vez removido, o estéril pode ser usado para construção de estradas e rejeitos ou pode ter valor comercial não mineiro como terra de aterro.

Seleção de equipamentos de mineração

A seleção do equipamento de mineração é uma função do plano da mina. Alguns dos fatores considerados na seleção do equipamento de mineração incluem a topografia da cava e área circundante, a quantidade de minério a ser lavrado, a velocidade e a distância que o minério deve ser transportado para processamento e a vida útil estimada da mina, entre outros. Em geral, a maioria das operações contemporâneas de mineração de superfície dependem de plataformas de perfuração móveis, pás hidráulicas, carregadores frontais, raspadores e caminhões de transporte para extrair o minério e iniciar o processamento do minério. Quanto maior a operação da mina, maior a capacidade dos equipamentos necessários para manter o plano da mina.

O equipamento é geralmente o maior disponível para combinar a economia de escala das minas de superfície com consideração para combinar as capacidades do equipamento. Por exemplo, uma pequena carregadeira frontal pode encher um grande caminhão de transporte, mas a correspondência não é eficiente. Da mesma forma, uma escavadeira grande pode carregar caminhões menores, mas exige que os caminhões diminuam seus tempos de ciclo e não otimiza a utilização da escavadeira, pois uma caçamba de escavadeira pode conter minério suficiente para mais de um caminhão. A segurança pode ser comprometida ao tentar carregar apenas metade de uma caçamba ou se um caminhão estiver sobrecarregado. Além disso, a escala do equipamento selecionado deve corresponder às instalações de manutenção disponíveis. Equipamentos de grande porte são frequentemente mantidos onde apresentam mau funcionamento devido às dificuldades logísticas associadas ao transporte para instalações de manutenção estabelecidas. Quando possível, as instalações de manutenção da mina são projetadas para acomodar a escala e a quantidade do equipamento da mina. Portanto, à medida que novos equipamentos maiores são introduzidos no plano da mina, a infraestrutura de suporte, incluindo o tamanho e a qualidade das estradas de transporte, ferramentas e instalações de manutenção, também deve ser abordada.

Métodos Convencionais de Mineração de Superfície

Mineração a céu aberto e mineração a céu aberto são as duas principais categorias de mineração de superfície que respondem por mais de 90% da produção mundial de mineração de superfície. As principais diferenças entre esses métodos de mineração são a localização do corpo de minério e o modo de extração mecânica. Para mineração de rocha solta, o processo é essencialmente contínuo com as etapas de extração e transporte em série. A mineração de rocha sólida requer um processo descontínuo de perfuração e detonação antes das etapas de carregamento e transporte. Mineração a céu aberto (ou mineração a céu aberto) estão relacionadas à extração de corpos de minério que estão próximos à superfície e são relativamente planos ou tabulares por natureza e veios minerais. Ele usa uma variedade de diferentes tipos de equipamentos, incluindo pás, caminhões, linhas de arrasto, escavadeiras de roda de caçamba e raspadores. A maioria das minas a céu aberto processa depósitos de rocha não dura. O carvão é a mercadoria mais comum extraída de jazidas superficiais. Em contraste, Mineração a ceu aberto é empregado para remover minério de rocha dura que está disseminado e/ou localizado em veios profundos e normalmente é limitado à extração por escavadeira e equipamento de caminhão. Muitos metais são extraídos pela técnica a céu aberto: ouro, prata e cobre, para citar alguns.

Pedreiras é um termo usado para descrever uma técnica especializada de mineração a céu aberto em que rocha sólida com alto grau de consolidação e densidade é extraída de depósitos localizados. Os materiais extraídos são triturados e quebrados para produzir agregados ou pedras de construção, como dolomita e calcário, ou combinados com outros produtos químicos para produzir cimento e cal. Os materiais de construção são produzidos a partir de pedreiras localizadas próximas ao local de uso do material para reduzir os custos de transporte. Pedras ornamentais como laje, granito, calcário, mármore, arenito e ardósia representam uma segunda classe de materiais extraídos. As pedreiras de rochas ornamentais são encontradas em áreas com as características minerais desejadas, que podem ou não ser geograficamente remotas e requerem transporte para os mercados usuários.

Muitos corpos de minério são muito difusos e irregulares, ou muito pequenos ou profundos para serem extraídos por métodos de mineração a céu aberto e devem ser extraídos pela abordagem mais cirúrgica da mineração subterrânea. Para determinar quando a mineração a céu aberto é aplicável, vários fatores devem ser considerados, incluindo o terreno e a elevação do local e da região, seu afastamento, clima, infraestrutura como estradas, abastecimento de energia e água, requisitos regulatórios e ambientais, declive estabilidade, disposição de estéril e transporte de produtos, entre outros.

Terreno e elevação: A topografia e a elevação também desempenham um papel importante na definição da viabilidade e do escopo de um projeto de mineração. Em geral, quanto maior a elevação e mais acidentado o terreno, mais difícil será o desenvolvimento e a produção da mina. Um mineral de maior teor em um local montanhoso inacessível pode ser extraído com menos eficiência do que um minério de menor teor em um local plano. As minas localizadas em altitudes mais baixas geralmente experimentam menos problemas relacionados ao clima inclemente para exploração, desenvolvimento e produção de minas. Como tal, a topografia e a localização afetam o método de mineração, bem como a viabilidade econômica.

A decisão de desenvolver uma mina ocorre após a exploração caracterizar o depósito de minério e os estudos de viabilidade definirem as opções de extração e processamento mineral. As informações necessárias para estabelecer um plano de desenvolvimento podem incluir a forma, tamanho e teor de minerais no corpo de minério, o volume total ou tonelagem de material, incluindo estéril e outros fatores, como hidrologia e acesso a uma fonte de água de processo, disponibilidade e fonte de energia, locais de armazenamento de estéril, requisitos de transporte e recursos de infraestrutura, incluindo a localização de centros populacionais para apoiar a força de trabalho ou a necessidade de desenvolver uma cidade.

Os requisitos de transporte podem incluir estradas, rodovias, oleodutos, aeroportos, ferrovias, hidrovias e portos. Para minas de superfície, geralmente são necessárias grandes áreas de terra que podem não ter infraestrutura existente. Em tais casos, estradas, serviços públicos e arranjos de vida devem ser estabelecidos primeiro. A cava seria desenvolvida em conexão com outros elementos de processamento, como áreas de armazenamento de estéril, britadores, concentradores, smelters e refinarias, dependendo do grau de integração necessário. Devido à grande quantidade de capital necessária para financiar essas operações, o desenvolvimento pode ser conduzido em fases para aproveitar o minério vendável ou arrendável o mais cedo possível para ajudar a financiar o restante do desenvolvimento.

Produção e Equipamentos

Perfuração e detonação

Perfuração mecânica e detonação são os primeiros passos na extração de minério das minas a céu aberto mais desenvolvidas e são o método mais comum usado para remover o estéril de rocha dura. Embora existam muitos dispositivos mecânicos capazes de soltar rochas duras, os explosivos são o método preferido, pois nenhum dispositivo mecânico pode atualmente igualar a capacidade de fraturamento da energia contida em cargas explosivas. Um explosivo de rocha dura comumente usado é o nitrato de amônio. O equipamento de perfuração é selecionado com base na natureza do minério e na velocidade e profundidade dos furos necessários para fraturar uma tonelagem específica de minério por dia. Por exemplo, na lavra de uma bancada de minério de 15 m, 60 ou mais furos geralmente serão perfurados 15 m atrás da face de lama atual, dependendo do comprimento da bancada a ser lavrada. Isso deve ocorrer com tempo de espera suficiente para permitir a preparação do local para as atividades subsequentes de carregamento e transporte.

Carregando

A mineração de superfície agora é normalmente conduzida utilizando pás de mesa, carregadeiras frontais ou pás hidráulicas. Na mineração a céu aberto, o equipamento de carregamento é combinado com caminhões de transporte que podem ser carregados em três a cinco ciclos ou passagens da escavadeira; no entanto, vários fatores determinam a preferência do equipamento de carregamento. Com rocha afiada e/ou escavação difícil e/ou climas úmidos, as escavadeiras de esteira são preferíveis. Por outro lado, as carregadeiras com pneus têm custo de capital muito menor e são preferidas para carregar material de baixo volume e fácil de escavar. Além disso, as carregadeiras são muito móveis e adequadas para cenários de mineração que exigem movimentos rápidos de uma área para outra ou para requisitos de mistura de minério. Os carregadores também são frequentemente usados ​​para carregar, transportar e despejar material em trituradores de pilhas de estoque de mistura depositadas perto de trituradores por caminhões de transporte.

As pás hidráulicas e as pás de cabo têm vantagens e limitações semelhantes. As escavadeiras hidráulicas não são preferidas para escavar rocha dura e as escavadeiras de cabo geralmente estão disponíveis em tamanhos maiores. Portanto, grandes escavadeiras a cabo com cargas úteis de cerca de 50 metros cúbicos e maiores são os equipamentos preferidos nas minas onde a produção excede 200,000 toneladas por dia. As escavadeiras hidráulicas são mais versáteis na face da mina e permitem maior controle do operador para carregar seletivamente a partir da metade inferior ou superior da face da mina. Esta vantagem é útil onde a separação de estéril do minério pode ser alcançada na zona de carregamento, maximizando assim o teor de minério que é transportado e processado.

Transporte

O transporte em minas a céu aberto e a céu aberto é mais comumente realizado por caminhões de transporte. A função dos caminhões de transporte em muitas minas de superfície é restrita ao ciclo entre a zona de carregamento e o ponto de transferência, como uma estação de britagem na mina ou sistema de transporte. Caminhões de transporte são favorecidos com base em sua flexibilidade de operação em relação às ferrovias, que eram o método de transporte preferido até a década de 1960. No entanto, o custo de transporte de materiais em poços metálicos e não metálicos de superfície é geralmente superior a 50% do custo operacional total da mina. A britagem na cava e o transporte por meio de sistemas de correia transportadora têm sido um fator primordial na redução dos custos de transporte. Os desenvolvimentos técnicos em caminhões de transporte, como motores a diesel e acionamentos elétricos, levaram a veículos de capacidade muito maior. Vários fabricantes produzem atualmente caminhões com capacidade de 240 toneladas, com expectativa de caminhões com capacidade superior a 310 toneladas no futuro próximo. Além disso, o uso de sistemas de despacho computadorizados e tecnologia global de posicionamento por satélite permite que os veículos sejam rastreados e programados com maior eficiência e produtividade.

Os sistemas rodoviários de transporte podem usar tráfego de direção única ou dupla. O tráfego pode ser configuração de faixa esquerda ou direita. Freqüentemente, o tráfego na faixa da esquerda é preferido para melhorar a visibilidade do operador sobre a posição dos pneus em caminhões muito grandes. A segurança também é aprimorada com o tráfego pela esquerda, reduzindo o potencial de colisão do lado do motorista no centro de uma estrada. Os gradientes da estrada de transporte são normalmente limitados entre 8 e 15% para transportes sustentados e, idealmente, são cerca de 7 a 8%. A segurança e a drenagem da água exigem que os gradientes longos incluam seções de pelo menos 45 m com um gradiente máximo de 2% para cada 460 m de gradiente severo. As bermas da estrada (bordas de terra elevadas) localizadas entre estradas e escavações adjacentes são recursos de segurança padrão em minas de superfície. Eles também podem ser colocados no meio da estrada para separar o tráfego oposto. Onde existem estradas de retorno em zigue-zague, faixas de escape de elevação crescente podem ser instaladas no final de longos declives íngremes. Barreiras de borda de estrada, como bermas, são padrão e devem estar localizadas entre todas as estradas e escavações adjacentes. Estradas de alta qualidade aumentam a produtividade máxima ao maximizar as velocidades seguras dos caminhões, reduzir o tempo de inatividade para manutenção e reduzir a fadiga do motorista. A manutenção de estradas de caminhões de transporte contribui para a redução dos custos operacionais por meio da redução do consumo de combustível, maior vida útil dos pneus e redução dos custos de reparo.

O transporte ferroviário, nas melhores condições, é superior a outros métodos de transporte de minério por longas distâncias fora da mina. No entanto, na prática, o transporte ferroviário não é mais amplamente utilizado na mineração a céu aberto desde o advento dos caminhões elétricos e movidos a diesel. O transporte ferroviário foi substituído para capitalizar a maior versatilidade e flexibilidade dos caminhões de transporte e dos sistemas de transporte na mina. As ferrovias exigem inclinações muito suaves de 0.5 a um máximo de 3% para transportes em subidas. O investimento de capital para motores ferroviários e requisitos de trilhos é muito alto e requer uma longa vida útil da mina e grandes saídas de produção para justificar o retorno do investimento.

Manuseio de minério (transporte)

A britagem e transporte na mina é uma metodologia que cresceu em popularidade desde que foi implementada pela primeira vez em meados da década de 1950. A localização de um britador semimóvel na mina com o subsequente transporte para fora da mina por um sistema transportador resultou em vantagens significativas de produção e economia de custos em relação ao transporte tradicional de veículos. A construção e manutenção de estradas de transporte de alto custo são reduzidas e os custos de mão-de-obra associados à operação de caminhões de transporte e manutenção de caminhões e combustível são minimizados.

O objetivo do sistema de britagem na mina é principalmente permitir o transporte de minério por transportador. Os sistemas de britagem na cava podem variar de instalações permanentes a unidades totalmente móveis. No entanto, mais comumente, os britadores são construídos de forma modular para permitir alguma portabilidade dentro da mina. Os trituradores podem ser realocados a cada um a dez anos; pode levar horas, dias ou meses para concluir a mudança, dependendo do tamanho e complexidade da unidade e da distância de realocação.

As vantagens dos transportadores em relação aos caminhões de transporte incluem partida instantânea, operação automática e contínua e um alto grau de confiabilidade com até 90 a 95% de disponibilidade. Eles geralmente não são prejudicados pelo mau tempo. Os transportadores também têm requisitos de mão de obra muito menores em relação aos caminhões de transporte; operar e manter uma frota de caminhões pode exigir dez vezes mais tripulantes do que um sistema de transporte de capacidade equivalente. Além disso, os transportadores podem operar em inclinações de até 30%, enquanto as inclinações máximas para caminhões são geralmente de 10%. O uso de inclinações mais íngremes diminui a necessidade de remover material de estéril de baixo teor e pode reduzir a necessidade de estabelecer estradas de transporte de alto custo. Os sistemas de transportadores também são integrados às escavadeiras de roda de caçamba em muitas operações de carvão de superfície, o que elimina a necessidade de caminhões de transporte.

Métodos de mineração de solução

A mineração de solução, o mais comum dos dois tipos de mineração aquosa, é empregada para extrair minério solúvel onde os métodos convencionais de mineração são menos eficientes e/ou menos econômicos. Também conhecida como lixiviação ou lixiviação de superfície, esta técnica pode ser um método de mineração primário, como na mineração de lixiviação de ouro e prata, ou pode complementar as etapas pirometalúrgicas convencionais de fundição e refino, como no caso da lixiviação de minérios de óxido de cobre de baixo teor .


Aspectos ambientais da mineração de superfície

Os efeitos ambientais significativos das minas de superfície atraem a atenção onde quer que as minas estejam localizadas. A alteração do terreno, a destruição da vida vegetal e os efeitos adversos sobre os animais indígenas são consequências inevitáveis ​​da mineração de superfície. A contaminação de águas superficiais e subterrâneas muitas vezes apresenta problemas, particularmente com o uso de lixiviantes na mineração de solução e no escoamento da mineração hidráulica.

Graças à crescente atenção de ambientalistas de todo o mundo e ao uso de aviões e fotografias aéreas, as empresas de mineração não estão mais livres para “cavar e correr” quando a extração do minério desejado estiver concluída. Leis e regulamentos foram promulgados na maioria dos países desenvolvidos e, por meio das atividades de organizações internacionais, estão sendo exigidos onde ainda não existem. Eles estabelecem um programa de gestão ambiental como elemento integrante de todo projeto de mineração e estipulam requisitos como avaliações preliminares de impacto ambiental; programas progressivos de reabilitação, incluindo restauração de contornos de terra, reflorestamento, replantio da fauna indígena, repovoamento da vida selvagem indígena e assim por diante; bem como auditoria de conformidade simultânea e de longo prazo (UNEP 1991, UN 1992, Agência de Proteção Ambiental (Austrália) 1996, ICME 1996). É essencial que sejam mais do que declarações na documentação exigida para as licenças governamentais necessárias. Os princípios básicos devem ser aceitos e praticados pelos gerentes de campo e comunicados aos trabalhadores em todos os níveis.


 

Independentemente da necessidade ou vantagem econômica, todos os métodos de solução de superfície compartilham duas características comuns: (1) o minério é extraído da maneira usual e depois armazenado; e, (2) uma solução aquosa é aplicada ao topo do estoque de minério que reage quimicamente com o metal de interesse do qual a solução de sal de metal resultante é canalizada através da pilha de estoque para coleta e processamento. A aplicação da mineração de solução de superfície depende do volume, da metalurgia do(s) mineral(es) de interesse e da rocha hospedeira relacionada, e da área e drenagem disponíveis para desenvolver depósitos de lixiviação suficientemente grandes para tornar a operação economicamente viável.

O desenvolvimento de depósitos de lixiviação em uma mina de superfície na qual a mineração de solução é o principal método de produção é o mesmo que todas as operações a céu aberto, exceto que o minério é destinado exclusivamente ao depósito e não a uma usina. Em minas com métodos de moagem e solução, o minério é segregado em porções moídas e lixiviadas. Por exemplo, a maior parte do minério de sulfeto de cobre é moída e purificada para cobre de qualidade comercial por fundição e refino. O minério de óxido de cobre, que geralmente não é passível de processamento pirometalúrgico, é encaminhado para operações de lixiviação. Uma vez que o depósito é desenvolvido, a solução lixivia o metal solúvel da rocha circundante a uma taxa previsível que é controlada pelos parâmetros de projeto do depósito, a natureza e o volume da solução aplicada e a concentração e mineralogia do metal no depósito. minério. A solução usada para extrair o metal solúvel é chamada de lixiviante. Os lixiviantes mais comuns usados ​​neste setor de mineração são soluções diluídas de cianeto de sódio alcalino para ouro, ácido sulfúrico ácido para cobre, dióxido de enxofre aquoso para manganês e sulfato férrico-ácido sulfúrico para minérios de urânio; entretanto, a maior parte do urânio lixiviado e dos sais solúveis são coletados por no local lavra em que o lixiviante é injetado diretamente no corpo de minério sem prévia extração mecânica. Esta última técnica permite que minérios de baixo teor sejam processados ​​sem extrair o minério do depósito mineral.

Aspectos de saúde e segurança

Os riscos de saúde e segurança ocupacional associados à extração mecânica do minério na mineração de solução são essencialmente semelhantes aos das operações convencionais de mineração de superfície. Uma exceção a essa generalização é a necessidade de minério sem lixiviação passar por britagem primária na mina de superfície antes de ser transportado para uma usina para processamento convencional, enquanto o minério é geralmente transportado por caminhão de transporte diretamente do local de extração para o depósito de lixiviação em mineração de soluções. Os trabalhadores da mineração de soluções teriam, portanto, menos exposição a riscos primários de esmagamento, como poeira, ruído e riscos físicos.

As principais causas de lesões em ambientes de minas de superfície incluem manuseio de materiais, escorregões e quedas, maquinário, uso de ferramentas manuais, transporte de energia e contato com fontes elétricas. No entanto, exclusivo da mineração de solução é a exposição potencial aos lixiviantes químicos durante o transporte, atividades de campo de lixiviação e processamento químico e eletrolítico. Exposições à névoa ácida podem ocorrer em tanques de extração eletrolítica de metal. Os perigos da radiação ionizante, que aumentam proporcionalmente da extração à concentração, devem ser abordados na mineração de urânio.

Métodos de Mineração Hidráulica

Na mineração hidráulica, ou “hydraulicking”, spray de água de alta pressão é usado para escavar material frouxamente consolidado ou não consolidado em uma pasta para processamento. Os métodos hidráulicos são aplicados principalmente a depósitos de metal e pedra agregada, embora carvão, arenito e rejeitos de usinas de metal também sejam passíveis de uso desse método. A aplicação mais comum e mais conhecida é mineração de aluvião em que concentrações de metais como ouro, titânio, prata, estanho e tungstênio são lavadas de dentro de um depósito aluvial (placer). Abastecimento e pressão de água, inclinação do solo para escoamento, distância da face da mina até as instalações de processamento, grau de consolidação do material lavrável e disponibilidade de áreas de descarte de resíduos são considerações primárias no desenvolvimento de uma operação de mineração hidráulica. Tal como acontece com outras minas de superfície, a aplicabilidade é específica do local. As vantagens inerentes a este método de mineração incluem custos operacionais relativamente baixos e flexibilidade resultante do uso de equipamentos simples, robustos e móveis. Como resultado, muitas operações hidráulicas se desenvolvem em áreas remotas de mineração onde os requisitos de infraestrutura não são uma limitação.

Ao contrário de outros tipos de mineração de superfície, as técnicas hidráulicas dependem da água como meio tanto para a mineração quanto para o transporte do material extraído (“sluicing”). Os sprays de água de alta pressão são fornecidos por monitores ou canhões de água a um banco de placer ou depósito mineral. Eles desintegram o cascalho e o material não consolidado, que são levados para as instalações de coleta e processamento. As pressões da água podem variar de um fluxo de gravidade normal para materiais finos muito soltos a milhares de quilogramas por centímetro quadrado para depósitos não consolidados. Buldôzeres e niveladoras ou outros equipamentos móveis de escavação às vezes são empregados para facilitar a mineração de materiais mais compactados. Historicamente, e em operações modernas de pequena escala, a coleta do lodo ou escoamento é gerenciada com pequenas caixas de eclusas e captadores. As operações em escala comercial dependem de bombas, bacias de contenção e decantação e equipamentos de separação que podem processar volumes muito grandes de polpa por hora. Dependendo do tamanho da jazida a ser lavrada, a operação dos monitores de água pode ser manual, controlada remotamente ou controlada por computador.

Quando a mineração hidráulica ocorre debaixo d'água, ela é chamada de dragagem. Neste método, uma estação de processamento flutuante extrai depósitos soltos, como argila, silte, areia, cascalho e quaisquer minerais associados, usando uma linha de caçamba, linha de arrasto e/ou jatos de água submersos. O material extraído é transportado hidraulicamente ou mecanicamente para uma estação de lavagem que pode fazer parte da plataforma de dragagem ou separar fisicamente com etapas de processamento subsequentes para segregar e concluir o processamento. Embora a dragagem seja usada para extrair minerais comerciais e pedras agregadas, ela é mais conhecida como uma técnica usada para limpar e aprofundar canais de água e planícies aluviais.

Saúde e segurança

Os perigos físicos na mineração hidráulica diferem daqueles nos métodos de mineração de superfície. Devido à aplicação mínima de perfuração, explosivos, transporte e atividades de redução, os riscos de segurança tendem a ser associados principalmente com sistemas de água de alta pressão, movimentação manual de equipamentos móveis, problemas de proximidade envolvendo fontes de alimentação e água, problemas de proximidade associados ao colapso do face da mina e atividades de manutenção. Os riscos à saúde envolvem principalmente a exposição a ruídos e poeiras e riscos ergonômicos relacionados ao manuseio de equipamentos. A exposição à poeira geralmente é menos problemática do que na mineração de superfície tradicional devido ao uso de água como meio de mineração. Atividades de manutenção, como soldagem descontrolada, também podem contribuir para a exposição dos trabalhadores.

 

Voltar

Leia 37802 vezes Última modificação em sábado, 30 de julho de 2022 03:23

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de mineração e pedreiras

Agricola, G. 1950. De Re Metallica, traduzido por HC Hoover e LH Hoover. Nova York: Dover Publications.

BICKEL, KL. 1987. Análise de equipamentos de mina movidos a diesel. Nos Anais do Seminário de Transferência de Tecnologia do Bureau of Mines: Diesels in Underground Mines. Circular Informativa 9141. Washington, DC: Bureau of Mines.

Bureau de Minas. 1978. Prevenção de incêndios e explosões em minas de carvão. Circular Informativa 8768. Washington, DC: Bureau of Mines.

—. 1988. Desenvolvimentos Recentes em Metal e Nonmetal Fire Protection. Circular Informativa 9206. Washington, DC: Bureau of Mines.

Chamberlain, EAC. 1970. A oxidação de temperatura ambiente de carvão em relação à detecção precoce de aquecimento espontâneo. Engenheiro de Minas (outubro) 130(121):1-6.

Ellicott, CW. 1981. Avaliação da explosibilidade de misturas de gases e monitoramento de tendências de tempo de amostragem. Anais do Simpósio sobre Ignições, Explosões e Incêndios. Illawara: Instituto Australiano de Mineração e Metalurgia.

Agência de Proteção Ambiental (Austrália). 1996. Melhores Práticas de Gestão Ambiental em Mineração. Camberra: Agência de Proteção Ambiental.

Funkemeyer, M e FJ Kock. 1989. Prevenção de incêndios em costuras de pilotos de trabalho propensas à combustão espontânea. Gluckauf 9-12.

Graham, JI. 1921. A produção normal de monóxido de carbono em minas de carvão. Transações do Instituto de Engenheiros de Minas 60:222-234.

Grannes, SG, MA Ackerson e GR Green. 1990. Prevenindo Falha nos Sistemas Automáticos de Supressão de Incêndio em Transportadores de Correia de Mineração Subterrânea. Circular Informativa 9264. Washington, DC: Bureau of Mines.

Greuer, R. 1974. Estudo de Combate a Incêndio em Minas Utilizando Gases Inertes. Relatório de contrato USBM nº S0231075. Washington, DC: Bureau of Mines.

Griffin, R. 1979. Avaliação In-mine de Detectores de Fumaça. Circular Informativa 8808. Washington, DC: Bureau of Mines.

Hartman, HL (ed.). 1992. Manual de Engenharia de Minas para PME, 2ª edição. Baltimore, MD: Sociedade de Mineração, Metalurgia e Exploração.

Hertzberg, M. 1982. Inibição e extinção de pó de carvão e explosões de metano. Relatório de Investigações 8708. Washington, DC: Bureau of Mines.

Hoek, E, PK Kaiser e WF Bawden. 1995. Projeto de suporte para minas subterrâneas de hard rock. Roterdã: AA Balkema.

Hughes, AJ e WE Raybold. 1960. A rápida determinação da explosibilidade dos gases de incêndio de minas. Engenheiro de Minas 29:37-53.

Conselho Internacional de Metais e Meio Ambiente (ICME). 1996. Estudos de Caso Ilustrando Práticas Ambientais em Mineração e Processos Metalúrgicos. Ottawa: ICME.

Organização Internacional do Trabalho (OIT). 1994. Desenvolvimentos recentes na indústria de mineração de carvão. Genebra: OIT.

Jones, JE e JC Trickett. 1955. Algumas observações sobre o exame de gases resultantes de explosões em minas de carvão. Transações do Instituto de Engenheiros de Minas 114: 768-790.

Mackenzie-Wood P e J Strang. 1990. Gases de incêndio e sua interpretação. Engenheiro de Minas 149(345):470-478.

Associação de Prevenção de Acidentes de Minas Ontário. nd Diretrizes de Preparação para Emergências. Relatório do Comitê Técnico Permanente. North Bay: Mines Accident Prevention Association Ontario.

Mitchell, D e F Burns. 1979. Interpretando o Estado de um Incêndio de Mina. Washington, DC: Departamento do Trabalho dos EUA.

Morais, RM. 1988. Uma nova taxa de incêndio para determinar as condições em áreas fechadas. Engenheiro de Minas 147(317):369-375.

Morrow, GS e CD Litton. 1992. Avaliação In-mine de Detectores de Fumaça. Circular Informativa 9311. Washington, DC: Bureau of Mines.

Associação Nacional de Proteção Contra Incêndios (NFPA). 1992a. Código de Prevenção de Incêndios. NFPA 1. Quincy, MA: NFPA.

—. 1992b. Padrão em sistemas de combustível pulverizado. NFPA 8503. Quincy, MA: NFPA.

—. 1994a. Norma de Prevenção de Incêndio na Utilização de Processos de Corte e Solda. NFPA 51B. Quincy, MA: NFPA.

—. 1994b. Norma para Extintores de Incêndio Portáteis. NFPA 10. Quincy, MA: NFPA.

—. 1994c. Padrão para sistemas de espuma de média e alta expansão. NFPA 11A. Quncy, MA: NFPA.

—. 1994d. Norma para sistemas de extinção de pó químico. NFPA 17. Quincy, MA: NFPA.

—. 1994e. Norma para Plantas de Preparação de Carvão. NFPA 120. Quincy, MA: NFPA.

—. 1995a. Norma para Prevenção e Controle de Incêndios em Minas Subterrâneas de Metais e Não-metálicos. NFPA 122. Quincy, MA: NFPA.

—. 1995b. Norma para Prevenção e Controle de Incêndios em Minas Subterrâneas de Carvão Betuminoso. NFPA 123. Quincy, MA: NFPA.

—. 1996a. Norma sobre proteção contra incêndio para equipamentos autopropulsados ​​e móveis de mineração de superfície. NFPA 121. Quincy, MA: NFPA.

—. 1996b. Código de Líquidos Inflamáveis ​​e Combustíveis. NFPA 30. Quincy, MA: NFPA.

—. 1996c. Código Elétrico Nacional. NFPA 70. Quincy, MA: NFPA.

—. 1996d. Código Nacional de Alarme de Incêndio. NFPA 72. Quincy, MA: NFPA.

—. 1996e. Norma para a instalação de sistemas de sprinklers. NFPA 13. Quincy, MA: NFPA.

—. 1996f. Norma para a Instalação de Sistemas de Pulverização de Água. NFPA 15. Quincy, MA: NFPA.

—. 1996g. Norma sobre Sistemas de Extinção de Incêndio com Agente Limpo. NFPA 2001. Quincy, MA: NFPA.

—. 1996h. Prática Recomendada para Proteção Contra Incêndio em Centrais Geradoras Elétricas e Estações Conversoras CC de Alta Tensão. NFPA 850. Quincy, MA: NFPA.

Ng, D e CP Lazzara. 1990. Desempenho de bloqueios de blocos de concreto e painéis de aço em um incêndio simulado em mina. Tecnologia de Fogo 26(1):51-76.

Ninteman, DJ. 1978. Oxidação Espontânea e Combustão de Minérios de Sulfeto em Minas Subterrâneas. Circular Informativa 8775. Washington, DC: Bureau of Mines.

Pomroy, WH e TL Muldoon. 1983. Um novo sistema de alerta de incêndio por gás fedorento. In Actas da Assembleia Geral Anual e Sessões Técnicas do MAPAO 1983. North Bay: Mines Accident Prevention Association Ontario.

Ramaswatny, A e PS Katiyar. 1988. Experiências com nitrogênio líquido no combate a incêndios de carvão no subsolo. Journal of Mines Metals and Fuels 36(9):415-424.

Smith, AC e CN Thompson. 1991. Desenvolvimento e aplicação de um método para prever o potencial de combustão espontânea de carvões betuminosos. Apresentado na 24ª Conferência Internacional de Segurança em Institutos de Pesquisa em Minas, Makeevka State Research Institute for Safety in the Coal Industry, Makeevka, Federação Russa.

Timmons, ED, RP Vinson e FN Kissel. 1979. Previsão de perigos de metano em minas de metais e não metais. Relatório de Investigações 8392. Washington, DC: Bureau of Mines.

Departamento de Cooperação Técnica para o Desenvolvimento das Nações Unidas (ONU) e Fundação Alemã para o Desenvolvimento Internacional. 1992. Mineração e Meio Ambiente: As Diretrizes de Berlim. Londres: Mining Journal Books.

Programa das Nações Unidas para o Meio Ambiente (PNUMA). 1991. Aspectos ambientais de metais não ferrosos selecionados (Cu, Ni, Pb, Zn, Au) na mineração de minério. Paris: PNUMA.