Распечатай эту страницу
Вторник, Февраль 15 2011 20: 58

Физические факторы

Оценить этот пункт
(4 голосов)

Шум

Потеря слуха из-за шума на рабочем месте уже много лет признается профессиональным заболеванием. Сердечно-сосудистые заболевания находятся в центре обсуждения возможных хронических внеушных эффектов шума. Эпидемиологические исследования проводились в пределах шумового поля рабочего места (с высокими показателями шума), а также в окружающем шумовом поле (с низкими показателями шума). Лучшие исследования на сегодняшний день были проведены по взаимосвязи между воздействием шума и высоким кровяным давлением. В многочисленных новых обзорных исследованиях исследователи шума оценили имеющиеся результаты исследований и обобщили текущий уровень знаний (Kristensen 1994; Schwarze and Thompson 1993; van Dijk 1990).

Исследования показывают, что шумовой фактор риска заболеваний сердечно-сосудистой системы менее значителен, чем поведенческие факторы риска, такие как курение, плохое питание или отсутствие физической активности (Аро и Хасан, 1987; Джегаден и др., 1986; Корнхубер и Лиссон, 1981).

Результаты эпидемиологических исследований не позволяют дать окончательного ответа о неблагоприятных последствиях для здоровья сердечно-сосудистой системы хронического воздействия шума на рабочем месте или в окружающей среде. Экспериментальные данные о влиянии гормонального стресса и изменении периферической вазоконстрикции, с одной стороны, и наблюдение, что высокий уровень шума на рабочем месте >85 дБА, с другой, способствует развитию артериальной гипертензии, позволяют отнести шум к неблагоприятным факторам. -специфический стресс-стимул в многофакторной модели риска сердечно-сосудистых заболеваний, гарантирующий высокую биологическую достоверность.

В современных исследованиях стресса высказано мнение, что хотя повышение артериального давления во время работы связано с воздействием шума, уровень артериального давления сам по себе зависит от сложного набора личностных факторов и факторов окружающей среды (Theorell et al., 1987). Факторы личности и окружающей среды играют важную роль в определении общей стрессовой нагрузки на рабочем месте.

По этой причине представляется тем более актуальным изучение влияния множественных нагрузок на рабочем месте и выяснение перекрестных эффектов, в основном неизвестных до сих пор, между комбинированными влияющими экзогенными факторами и разнообразными эндогенными характеристиками риска.

Экспериментальные исследования

Сегодня общепризнано, что шумовое воздействие является психофизическим стрессором. Многочисленные экспериментальные исследования на животных и людях позволяют распространить гипотезу о патомеханизме шума на развитие сердечно-сосудистых заболеваний. Относительно однородна картина острых периферических реакций на шумовые раздражители. Шумовые раздражители явно вызывают периферическую вазоконстрикцию, измеряемую как уменьшение амплитуды пульсации пальцев и температуры кожи, а также повышение систолического и диастолического артериального давления. Почти все исследования подтверждают увеличение частоты сердечных сокращений (Carter, 1988; Fisher and Tucker, 1991; Michalak, Ising and Rebentisch, 1990; Millar and Steels, 1990; Schwarze and Thompson, 1993; Thompson, 1993). Степень этих реакций зависит от таких факторов, как тип возникновения шума, возраст, пол, состояние здоровья, нервное состояние и личностные характеристики (Harrison and Kelly, 1989; Parrot et al., 1992; Petiot et al., 1988).

Множество исследований посвящено влиянию шума на обмен веществ и уровень гормонов. Воздействие громкого шума почти всегда довольно быстро приводит к изменениям уровня кортизона в крови, циклического аденозинмонофосфата (CAMP), холестерина и некоторых фракций липопротеинов, глюкозы, белковых фракций, гормонов (например, АКТГ, пролактина), адреналина и норадреналина. В моче можно обнаружить повышенный уровень катехоламинов. Все это ясно показывает, что шумовые раздражители ниже уровня шумовой глухоты могут привести к гиперактивности гипофизарной системы коры надпочечников (Ising, Kruppa, 1993; Rebentisch, Lange-Asschenfeld, Ising, 1994).

Было показано, что хроническое воздействие громкого шума приводит к снижению содержания магния в сыворотке крови, эритроцитах и ​​других тканях, таких как миокард (Altura et al., 1992), но результаты исследований противоречивы (Altura, 1993; Schwarze and Thompson, 1993). ).

Влияние шума на рабочем месте на артериальное давление неоднозначно. Ряд эпидемиологических исследований, которые в основном были разработаны как поперечные исследования, показывают, что у сотрудников, длительное время подвергающихся воздействию громкого шума, наблюдаются более высокие значения систолического и/или диастолического артериального давления, чем у тех, кто работает в менее шумных условиях. Противовесом, однако, являются исследования, которые обнаружили очень небольшую статистическую связь между длительным воздействием шума и повышенным кровяным давлением или гипертонией (Schwarze and Thompson, 1993; Thompson, 1993; van Dijk, 1990). Исследования, в которых потеря слуха рассматривается как суррогат шума, показывают разные результаты. В любом случае потеря слуха не является подходящим биологическим индикатором воздействия шума (Kristensen 1989; van Dijk 1990). Появляется все больше указаний на то, что шум и факторы риска — повышенное кровяное давление, повышенный уровень холестерина в сыворотке крови (Pillsburg, 1986) и курение (Baron et al., 1987) — оказывают синергетический эффект на развитие вызванного шумом слуха. потеря. Дифференцировать потерю слуха из-за шума и потерю слуха из-за других факторов сложно. В исследованиях (Talbott et al., 1990; van Dijk, Veerbeck and de Vries, 1987) не было обнаружено связи между воздействием шума и высоким кровяным давлением, тогда как потеря слуха и высокое кровяное давление имеют положительную корреляцию после поправки на обычные факторы риска. , особенно возраст и масса тела. Относительный риск высокого кровяного давления колеблется от 1 до 3.1 по сравнению с воздействием громкого и менее громкого шума. Исследования с качественно более совершенной методологией сообщают о более низком соотношении. Различия между средними группами артериального давления относительно невелики, со значениями от 0 до 10 мм рт.ст.

Крупное эпидемиологическое исследование женщин-текстильщиц в Китае (Zhao, Liu and Zhang, 1991) играет ключевую роль в исследовании воздействия шума. Чжао установил дозозависимую зависимость между уровнем шума и кровяным давлением у женщин-промышленников, которые в течение многих лет подвергались различным шумовым воздействиям. При использовании аддитивной логистической модели факторы «указанное употребление соли для приготовления пищи», «семейный анамнез высокого кровяного давления» и «уровень шума» (0.05) достоверно коррелировали с вероятностью высокого кровяного давления. Авторы пришли к выводу, что смешивания не было из-за избыточного веса. Фактор уровня шума, тем не менее, составлял половину риска артериальной гипертензии по сравнению с первыми двумя названными факторами. Увеличение уровня шума с 70 до 100 дБА повышало риск повышения артериального давления в 2.5 раза. Количественная оценка риска гипертонии с использованием более высоких уровней воздействия шума была возможна в этом исследовании только потому, что предлагаемые средства защиты органов слуха не использовались. В этом исследовании принимали участие некурящие женщины в возрасте 35 ± 8 лет, поэтому, согласно результатам v. Eiff (1993), связанный с шумом риск артериальной гипертензии среди мужчин может быть значительно выше.

Защита органов слуха предписывается в западных промышленно развитых странах при уровне шума более 85-90 дБА. Многие исследования, проведенные в этих странах, не продемонстрировали явного риска при таких уровнях шума, поэтому на основе Gierke and Harris (1990) можно сделать вывод, что ограничение уровня шума установленными пределами предотвращает большинство внеушных эффектов.

Тяжелая физическая работа

Влияние «недостатка движения» как фактора риска сердечно-сосудистых заболеваний и физической активности как фактора, способствующего укреплению здоровья, освещалось в таких классических публикациях, как работы Морриса, Паффенбаргера и их сотрудников в 1950-х и 1960-х годах, а также в многочисленных эпидемиологических исследованиях. (Берлин и Кольдиц, 1990; Пауэлл и др., 1987). В предыдущих исследованиях не было показано прямой причинно-следственной связи между недостатком движения и уровнем сердечно-сосудистых заболеваний или смертности. Эпидемиологические исследования, однако, указывают на положительный, защитный эффект физической активности на снижение различных хронических заболеваний, включая ишемическую болезнь сердца, высокое кровяное давление, инсулиннезависимый сахарный диабет, остеопороз и рак толстой кишки, а также тревогу и депрессию. Связь между отсутствием физической активности и риском развития ишемической болезни сердца наблюдается во многих странах и группах населения. Относительный риск ишемической болезни сердца среди неактивных людей по сравнению с активными колеблется от 1.5 до 3.0; с исследованиями с использованием качественно более высокой методологии, показывающей более высокую связь. Этот повышенный риск сравним с риском гиперхолестеринемии, артериальной гипертензии и курения (Berlin and Colditz, 1990; Centers for Disease Control and Prevention, 1993; Kristensen, 1994; Powell et al., 1987).

Регулярная физическая активность в свободное время, по-видимому, снижает риск ишемической болезни сердца за счет различных физиологических и метаболических механизмов. Экспериментальные исследования показали, что регулярные двигательные тренировки положительно влияют на известные факторы риска и другие факторы, связанные со здоровьем. Это приводит, например, к повышению уровня холестерина ЛПВП и снижению уровня триглицеридов в сыворотке крови и артериального давления (Bouchard, Shepard and Stephens, 1994; Pate et al., 1995).

Серия эпидемиологических исследований, вдохновленных исследованиями Morris et al. о коронарном риске среди водителей и кондукторов лондонских автобусов (Morris, Heady and Raffle, 1956; Morris et al., 1966), а также исследование Paffenbarger et al. (1970) среди американских портовых рабочих изучали взаимосвязь между уровнем сложности физической работы и заболеваемостью сердечно-сосудистыми заболеваниями. Основываясь на более ранних исследованиях 1950-х и 1960-х годов, преобладала идея о том, что физическая активность на работе может оказывать определенное защитное действие на сердце. Самый высокий относительный риск сердечно-сосудистых заболеваний был обнаружен у людей с физически неактивной работой (например, сидячей работой) по сравнению с людьми, выполняющими тяжелую физическую работу. Но более новые исследования не обнаружили различий в частоте коронарных заболеваний между активными и неактивными профессиональными группами или даже обнаружили более высокую распространенность и частоту сердечно-сосудистых факторов риска и сердечно-сосудистых заболеваний среди тяжелых рабочих (Ilmarinen 1989; Kannel et al. 1986; Kristensen 1994). ; Suurnäkki и др., 1987). Можно привести несколько причин противоречия между оздоравливающим влиянием свободных физических занятий на сердечно-сосудистую заболеваемость и отсутствием этого влияния при тяжелом физическом труде:

    • Процессы первичного и вторичного отбора (эффект здорового рабочего) могут привести к серьезным искажениям в профессиональных медико-эпидемиологических исследованиях.
    • На обнаруженную взаимосвязь между физической работой и возникновением сердечно-сосудистых заболеваний может влиять ряд смешанных переменных (таких как социальный статус, образование, поведенческие факторы риска).
    • Оценка физической нагрузки, часто исключительно на основе должностных инструкций, должна рассматриваться как неадекватный метод.

         

        Социальное и технологическое развитие с 1970-х годов привело к тому, что осталось лишь несколько рабочих мест с «динамической физической активностью». Физическая активность на современном рабочем месте часто связана с подъемом или переноской тяжестей и высокой долей статической мышечной работы. Поэтому неудивительно, что при физических нагрузках на занятиях данного типа отсутствует важнейший критерий коронаропротекторного эффекта: достаточная интенсивность, продолжительность и частота для оптимизации физической нагрузки на большие группы мышц. Физическая работа в целом интенсивна, но оказывает меньшее тренировочное воздействие на сердечно-сосудистую систему. Сочетание тяжелой, физически тяжелой работы и высокой физической активности в свободное время может создать наиболее благоприятную ситуацию в отношении профиля сердечно-сосудистых факторов риска и возникновения ИБС (Салтин, 1992).

        Результаты исследований на сегодняшний день также не согласуются в вопросе о том, связана ли тяжелая физическая работа с возникновением артериальной гипертензии.

        Физически тяжелая работа связана с изменениями артериального давления. При динамической работе, в которой задействованы большие мышечные массы, кровоснабжение и потребность в крови находятся в равновесии. При динамической работе, требующей малых и средних мышечных масс, сердце может выбрасывать больше крови, чем необходимо для общей физической работы, в результате чего может значительно повышаться систолическое и диастолическое артериальное давление (Frauendorf et al., 1986).

        Даже при сочетанном физическом и умственном перенапряжении или физическом перенапряжении под воздействием шума у ​​определенного процента (примерно 30%) людей наблюдается существенное повышение артериального давления и частоты сердечных сокращений (Фрауендорф, Кобрин и Гельбрих, 1992; Фрауендорф и др., 1995). XNUMX).

        В настоящее время нет исследований хронических эффектов повышенной циркуляторной активности на местную мышечную работу с шумом или умственным напряжением или без них.

        В двух недавно опубликованных независимых исследованиях, проведенных американскими и немецкими исследователями (Mittleman et al., 1993; Willich et al., 1993), рассматривался вопрос о том, может ли тяжелая физическая работа спровоцировать острый инфаркт миокарда. В исследованиях 1,228 и 1,194 человек, перенесших острый инфаркт миокарда соответственно, физическое напряжение за час до инфаркта сравнивали с ситуацией за 25 часов до него. Были рассчитаны следующие относительные риски возникновения инфаркта миокарда в течение одного часа тяжелой физической нагрузки по сравнению с легкой активностью или отдыхом: 5.9 (95% ДИ: 4.6-7.7) у американца и 2.1 (95% ДИ: 1.6-3.1). 4.4) в немецком исследовании. Риск был самым высоким для людей не в форме. Однако важным ограничивающим наблюдением является то, что тяжелая физическая нагрузка возникла за час до инфаркта только у 7.1 и XNUMX% пациентов с инфарктом соответственно.

        Эти исследования затрагивают вопросы значения физического напряжения или стресс-индуцированной повышенной продукции катехоламинов на коронарное кровоснабжение, на провоцирование коронарных спазмов или немедленного вредного действия катехоламинов на бета-адренорецепторы мембраны сердечной мышцы как причины проявления инфаркта или острой сердечной смерти. Можно предположить, что таких результатов не будет при здоровой системе коронарных сосудов и интактном миокарде (Fritze and Müller, 1995).

        Наблюдения ясно показывают, что утверждения о возможных причинно-следственных связях между тяжелым физическим трудом и влиянием на сердечно-сосудистую заболеваемость нелегко обосновать. Проблема с этим типом исследования явно заключается в сложности измерения и оценки «тяжелой работы» и в исключении предварительных отборов (эффект здорового работника). Необходимы проспективные когортные исследования хронического воздействия отдельных форм физической работы, а также влияния комбинированного физического, умственного или шумового стресса на отдельные функциональные области сердечно-сосудистой системы.

        Парадоксально, но результат снижения тяжелой динамической мышечной работы, который до сих пор воспринимался как значительное улучшение уровня напряжения на современном рабочем месте, может привести к новой серьезной проблеме со здоровьем в современном индустриальном обществе. С точки зрения медицины труда можно сделать вывод, что статическая физическая нагрузка на мышечно-скелетную систему при недостатке движения представляет гораздо больший риск для здоровья, чем предполагалось ранее, согласно результатам исследований, проведенных на сегодняшний день.

        Там, где нельзя избежать монотонных неправильных нагрузок, следует поощрять уравновешивание занятиями спортом в свободное время сопоставимой продолжительности (например, плаванием, ездой на велосипеде, ходьбой и теннисом).

        Жара и холод

        Считается, что воздействие сильной жары или холода влияет на сердечно-сосудистые заболевания (Kristensen 1989; Kristensen 1994). Острое воздействие высоких температур наружного воздуха или холода на систему кровообращения хорошо задокументировано. Увеличение смертности от сердечно-сосудистых заболеваний, в основном инфарктов и инсультов, наблюдалось при низких температурах (ниже +10°С) зимой в странах северных широт (Curwen 1991; Douglas, Allan and Rawles 1991; Kristensen 1994). ; Кунст, Луман и Макенбах, 1993). Pan, Li и Tsai (1995) обнаружили впечатляющую U-образную зависимость между температурой наружного воздуха и смертностью от ишемической болезни сердца и инсультов на Тайване, в субтропической стране, с таким же падающим градиентом между +10°C и +29°C и резкий рост после этого при температуре выше +32°C. Температура, при которой наблюдалась самая низкая смертность от сердечно-сосудистых заболеваний, на Тайване выше, чем в странах с более холодным климатом. Кунст, Луман и Макенбах обнаружили в Нидерландах V-образную зависимость между общей смертностью и температурой наружного воздуха, при этом наименьшая смертность наблюдалась при 17°C. Большинство смертей от холода произошло у людей с сердечно-сосудистыми заболеваниями, а большинство смертей от жары было связано с заболеваниями дыхательных путей. Исследования, проведенные в США (Rogot and Padgett, 1976) и других странах (Wyndham and Fellingham, 1978), показывают аналогичную U-образную зависимость с самой низкой смертностью от инфарктов и инсультов при наружных температурах от 25 до 27°C.

        Пока неясно, как следует интерпретировать эти результаты. Некоторые авторы пришли к выводу, что, возможно, существует причинно-следственная связь между температурным стрессом и патогенезом сердечно-сосудистых заболеваний (Curwen and Devis, 1988; Curwen, 1991; Douglas, Allan and Rawles, 1991; Khaw, 1995; Kunst, Looman and Mackenbach, 1993; Rogot and Padgett, 1976; Уиндем и Феллингем, 1978). Эта гипотеза была поддержана Хо в следующих наблюдениях:

          • Температура оказалась самым сильным, острым (повседневным) предиктором смертности от сердечно-сосудистых заболеваний при различных параметрах, таких как сезонные изменения окружающей среды и такие факторы, как загрязнение воздуха, воздействие солнечного света, заболеваемость гриппом и питание. Это противоречит предположению о том, что температура действует только как заменяющая переменная для других вредных условий окружающей среды.
          • Кроме того, убедительна постоянство связи в разных странах и группах населения, во времени и в разных возрастных группах.
          • Данные клинических и лабораторных исследований указывают на различные биологически вероятные патомеханизмы, включая влияние изменения температуры на гемостаз, вязкость крови, уровни липидов, симпатическую нервную систему и вазоконстрикцию (Clark and Edholm, 1985; Gordon, Hyde and Trost, 1988; Keatinge et al., 1986). ; Ллойд, 1991; Нейлд и др., 1994; Стаут и Гроуфорд, 1991; Вудхаус, Хоу и Пламмер, 1993b; Вудхаус и др., 1994).

               

              Воздействие холода повышает кровяное давление, вязкость крови и частоту сердечных сокращений (Кунст, Луман и Макенбах, 1993; Танака, Конно и Хашимото, 1989; Кавахара и др., 1989). Исследования Стаута и Грауфорда (1991) и Вудхауса с коллегами (1993; 1994) показывают, что зимой у пожилых людей были выше уровни фибриногена, фактора свертывания крови VIIc и липидов.

              Повышение вязкости крови и уровня холестерина в сыворотке было обнаружено при воздействии высоких температур (Clark and Edholm, 1985; Gordon, Hyde and Trost, 1988; Keatinge et al., 1986). Согласно Woodhouse, Khaw и Plummer (1993a), существует сильная обратная корреляция между артериальным давлением и температурой.

              До сих пор неясен решающий вопрос о том, приводит ли длительное воздействие холода или тепла к длительному повышенному риску сердечно-сосудистых заболеваний, или же воздействие тепла или холода повышает риск острых проявлений сердечно-сосудистых заболеваний (например, инфаркта миокарда, сердечно-сосудистых заболеваний). инсульт) в связи с фактическим воздействием («триггерный эффект»). Кристенсен (1989) заключает, что гипотеза об остром повышении риска осложнений сердечно-сосудистых заболеваний у людей с сопутствующими органическими заболеваниями подтверждается, тогда как гипотеза о хроническом воздействии тепла или холода не может быть ни подтверждена, ни отвергнута.

              Существует мало эпидемиологических данных, если они вообще есть, в поддержку гипотезы о том, что риск сердечно-сосудистых заболеваний выше среди населения с профессиональным долговременным воздействием высокой температуры (Dukes-Dobos 1981). Два недавних перекрестных исследования были посвящены рабочим-металлистам в Бразилии (Kloetzel et al., 1973) и стекольному заводу в Канаде (Wojtczak-Jaroszowa and Jarosz, 1986). Оба исследования выявили значительно повышенную распространенность гипертонии среди лиц, подвергающихся воздействию высоких температур, которая увеличивалась с увеличением продолжительности горячей работы. Предполагаемое влияние возраста или питания можно исключить. Лебедева, Алимова и Эфендиев (1991) изучали смертность среди рабочих металлургической компании и обнаружили высокий риск смертности среди людей, подвергшихся воздействию высоких температур сверх установленных законом пределов. Цифры были статистически значимы для болезней крови, высокого кровяного давления, ишемической болезни сердца и заболеваний дыхательных путей. Карнаух и др. (1990) сообщают о росте заболеваемости ишемической болезнью сердца, высоким кровяным давлением и геморроем среди рабочих, занимающихся горячим литьем. Дизайн этого исследования неизвестен. Уайлд и др. (1995) оценили уровень смертности между 1977 и 1987 годами в когортном исследовании французских калийных шахтеров. Смертность от ишемической болезни сердца была выше у подземных горняков, чем у наземных рабочих (относительный риск = 1.6). Среди людей, уволенных с предприятия по состоянию здоровья, смертность от ишемической болезни сердца была в пять раз выше в группе облучения по сравнению с наземными работниками. Когортное исследование смертности, проведенное в Соединенных Штатах, показало, что смертность от сердечно-сосудистых заболеваний у работников, подвергающихся тепловому воздействию, на 10% ниже, чем у не подвергавшихся воздействию контрольной группы. В любом случае среди тех рабочих, которые находились на работах с тепловым воздействием менее шести месяцев, смертность от сердечно-сосудистых заболеваний была относительно высокой (Redmond, Gustin and Kamon, 1975; Redmond et al., 1979). Сопоставимые результаты были приведены Moulin et al. (1993) в когортном исследовании французских сталелитейщиков. Эти результаты были приписаны возможному эффекту здоровых рабочих среди рабочих, подвергшихся тепловому воздействию.

              Нет известных эпидемиологических исследований рабочих, подвергшихся воздействию холода (например, работники холодильников, скотобоен или рыбных промыслов). Следует отметить, что холодовой стресс зависит не только от температуры. Эффекты, описанные в литературе, по-видимому, зависят от комбинации таких факторов, как мышечная активность, одежда, сырость, сквозняки и, возможно, плохие условия жизни. На рабочих местах с воздействием холода следует уделять особое внимание соответствующей одежде и избегать сквозняков (Kristensen 1994).

              вибрация

              Вибрационная нагрузка на кисть руки

              Давно известно и хорошо задокументировано, что вибрации, передаваемые на руки вибрирующими инструментами, могут вызывать расстройства периферических сосудов в дополнение к повреждению мышечной и скелетной системы, а также нарушения функции периферических нервов в области кистей рук (Dupuis et al., 1993). ; Пелмер, Тейлор и Вассерман, 1992). «Болезнь белых пальцев», впервые описанная Рейно, имеет более высокие показатели распространенности среди подверженного воздействию населения и признана профессиональным заболеванием во многих странах.

              Феномен Рейно характеризуется приступом с вазоспастически редуцированным сращением всех или некоторых пальцев, за исключением больших, сопровождающимся нарушением чувствительности в пораженных пальцах, чувством холода, бледностью и парестезиями. По окончании воздействия возобновляется кровообращение, сопровождающееся болезненной гиперемией.

              Предполагается, что эндогенные факторы (например, в смысле первичного феномена Рейно), а также экзогенные воздействия могут нести ответственность за возникновение вибрационного вазоспастического синдрома (ВВС). Риск явно выше при вибрациях от машин с более высокими частотами (от 20 до более 800 Гц), чем от машин, производящих низкочастотные вибрации. Количество статической деформации (сила захвата и сжатия), по-видимому, является фактором, способствующим этому. Относительное значение холода, шума и других физических и психологических стрессоров, а также чрезмерного употребления никотина в развитии феномена Рейно до сих пор неясно.

              Феномен Рейно патогенетически основан на вазомоторном расстройстве. Несмотря на большое количество исследований по функциональным, неинвазивным (термография, плетизмография, капилляроскопия, холодовая проба) и инвазивным исследованиям (биопсия, артериография), патофизиология вибрационного феномена Рейно до сих пор не ясна. Вызывает ли вибрация прямое повреждение сосудистой мускулатуры («локальная ошибка»), или это сужение сосудов в результате симпатической гиперактивности, или оба эти фактора необходимы, в настоящее время все еще неясно (Gemne 1994; Gemne 1992). ).

              Связанный с работой синдром гипотенарного молотка (СГГ) следует отличать при дифференциальной диагностике от вызванного вибрацией феномена Рейно. Патогенетически это хронотравматическое поражение локтевой артерии (поражение интимы с последующим тромбированием) в области поверхностного хода над крючковидной костью. (ос хаматум). ГГС вызывается длительными механическими воздействиями в виде внешнего давления или ударов, либо внезапным напряжением в виде механических частичных колебаний тела (часто сочетающихся с постоянным давлением и воздействием ударов). По этой причине HHS может возникать как осложнение или в связи с VVS (Kaji et al., 1993; Marshall and Bilderling, 1984).

              Помимо ранних и, при воздействии на кисть-руку, специфических периферических сосудистых эффектов, особый научный интерес представляют так называемые неспецифические хронические изменения автономной регуляции систем органов, например сердечно-сосудистой системы, возможно, вызвано вибрацией (Gemne and Taylor 1983). Немногочисленные экспериментальные и эпидемиологические исследования возможных хронических эффектов вибрации кистей рук не дают четких результатов, подтверждающих гипотезу о возможных связанных с вибрацией эндокринных и сердечно-сосудистых нарушениях метаболических процессов, функций сердца или артериального давления (Färkkilä, Pyykkö and Heinonen 1990; Virokannas 1990), за исключением того, что активность адренергической системы повышается при воздействии вибрации (Bovenzi 1990; Olsen 1990). Это относится к вибрации отдельно или в сочетании с другими факторами деформации, такими как шум или холод.

              Вибрация всего тела

              Если механические вибрации всего тела оказывают влияние на сердечно-сосудистую систему, то ряд параметров, таких как частота сердечных сокращений, кровяное давление, сердечный выброс, электрокардиограмма, плетизмограмма и некоторые метаболические параметры должны давать соответствующие реакции. Выводы по этому поводу затруднены по методологической причине того, что эти количественные показатели циркуляции не реагируют конкретно на вибрации, но на них могут влиять и другие одновременные факторы. Увеличение частоты сердечных сокращений проявляется только при очень сильных вибрационных нагрузках; влияние на значения артериального давления не показывает систематических результатов, а электрокардиографические (ЭКГ) изменения не являются значимо дифференцируемыми.

              Нарушения периферического кровообращения, возникающие в результате вазоконстрикции, менее изучены и кажутся более слабыми и менее продолжительными, чем нарушения, возникающие при вибрациях кистей рук, для которых характерно влияние на хватательную силу пальцев (Dupuis and Zerlett, 1986).

              В большинстве исследований острое воздействие вибраций всего тела на сердечно-сосудистую систему водителей транспортных средств оказалось относительно слабым и временным (Dupius and Christ, 1966; Griffin, 1990).

              Wikström, Kjellberg and Landström (1994) в всеобъемлющем обзоре процитировали восемь эпидемиологических исследований, проведенных с 1976 по 1984 год, в которых изучалась связь между вибрациями всего тела и сердечно-сосудистыми заболеваниями и расстройствами. Только два из этих исследований обнаружили более высокую распространенность таких заболеваний в группе, подвергшейся воздействию вибраций, но ни в одном из них это не интерпретировалось как влияние вибраций всего тела.

              Широко распространено мнение, что изменения физиологических функций посредством вибраций всего тела имеют очень ограниченное влияние на сердечно-сосудистую систему. Причины, а также механизмы реакции сердечно-сосудистой системы на вибрации всего тела еще недостаточно известны. В настоящее время нет оснований предполагать, что колебания всего тела сам по себе способствуют риску заболеваний сердечно-сосудистой системы. Но следует обратить внимание на то, что этот фактор очень часто сочетается с воздействием шума, малоподвижностью (сидячей работой) и сменной работой.

              Ионизирующее излучение, электромагнитные поля, радио- и микроволны, ультра- и инфразвук

              Многие тематические исследования и несколько эпидемиологических исследований привлекли внимание к возможности того, что ионизирующее излучение, используемое для лечения рака или других заболеваний, может способствовать развитию атеросклероза и тем самым повышать риск ишемической болезни сердца, а также других сердечно-сосудистых заболеваний (Kristensen 1989; Кристенсен 1994). Исследования заболеваемости сердечно-сосудистыми заболеваниями в профессиональных группах, подвергающихся воздействию ионизирующего излучения, отсутствуют.

              Кристенсен (1989) сообщает о трех эпидемиологических исследованиях, проведенных в начале 1980-х годов, по изучению связи между сердечно-сосудистыми заболеваниями и воздействием электромагнитных полей. Результаты противоречивы. В 1980-х и 1990-х годах возможное влияние электрических и магнитных полей на здоровье человека привлекло все большее внимание специалистов в области медицины труда и окружающей среды. Значительное внимание привлекли частично противоречивые эпидемиологические исследования, направленные на выявление связи между профессиональным и/или экологическим воздействием слабых низкочастотных электрических и магнитных полей, с одной стороны, и возникновением нарушений здоровья, с другой. На первый план многочисленных экспериментальных и немногочисленных эпидемиологических исследований выдвигаются возможные долговременные эффекты, такие как канцерогенность, тератогенность, воздействие на иммунную или гормональную системы, на репродуктивную функцию (с особым вниманием к выкидышам и дефектам), а также а также к «гиперчувствительности к электричеству» и нервно-психическим поведенческим реакциям. Возможный сердечно-сосудистый риск в настоящее время не обсуждается (Gamberale, 1990; Knave, 1994).

              Определенные немедленные воздействия низкочастотных магнитных полей на организм, которые были научно задокументированы в в пробирке и в естественных условиях в этой связи следует упомянуть исследования напряженности поля от низкой до высокой (UNEP/WHO/IRPA 1984; UNEP/WHO/IRPA 1987). В магнитном поле, например в кровотоке или при сокращении сердца, заряженные носители вызывают индукцию электрических полей и токов. Так, электрическое напряжение, создаваемое в сильном статическом магнитном поле над аортой вблизи сердца во время коронарной активности, может достигать 30 мВ при толщине потока 2 Тесла (Тл), а на ЭКГ регистрировались значения индукции более 0.1 Тл. А вот влияния на артериальное давление, например, не обнаружено. Магнитные поля, изменяющиеся со временем (перемежающиеся магнитные поля), индуцируют электрические вихревые поля в биологических объектах, которые могут, например, возбуждать нервные и мышечные клетки в организме. При электрических полях или наведенных токах менее 1 мА/м не возникает определенного эффекта.2. Зрительные (индуцированные магнетофосфеном) и нервные эффекты сообщаются при 10–100 мА/м.2. Экстрасистолические и сердечные фибрилляции появляются при частоте более 1 А/м.2. Согласно имеющимся в настоящее время данным, не следует ожидать прямой угрозы здоровью при кратковременном воздействии на все тело до 2 Тл (UNEP/WHO/IRPA 1987). Однако порог опасности для косвенных воздействий (например, от силового воздействия магнитного поля на ферромагнитные материалы) лежит ниже, чем для прямых воздействий. Таким образом, меры предосторожности необходимы для лиц с ферромагнитными имплантатами (униполярные кардиостимуляторы, намагничиваемые зажимы для аневризм, гемоклипсы, части искусственного клапана сердца, другие электрические имплантаты, а также металлические фрагменты). Порог опасности для ферромагнитных имплантатов начинается от 50 до 100 мТл. Риск заключается в том, что травмы или кровотечение могут возникнуть в результате миграции или поворотных движений, а также могут быть затронуты функциональные возможности (например, сердечных клапанов, кардиостимуляторов и т. д.). В научно-исследовательских и промышленных учреждениях с сильными магнитными полями некоторые авторы рекомендуют проводить диспансерное наблюдение за людьми с сердечно-сосудистыми заболеваниями, в том числе с высоким кровяным давлением, на работах, где магнитное поле превышает 2 Тл (Bernhardt, 1986; Bernhardt, 1988). Общее воздействие 5 Тл может привести к магнитоэлектродинамическому и гидродинамическому воздействию на систему кровообращения, и следует исходить из того, что кратковременное общее воздействие 5 Тл представляет опасность для здоровья, особенно у лиц с сердечно-сосудистыми заболеваниями, в том числе с повышенным артериальным давлением. (Бернхардт, 1988 г.; ЮНЕП/ВОЗ/IRPA, 1987 г.).

              Исследования, изучающие различные эффекты радио и микроволн, не обнаружили вредного воздействия на здоровье. Возможность воздействия на сердечно-сосудистую систему ультразвука (диапазон частот от 16 кГц до 1 ГГц) и инфразвука (диапазон частот >20 кГц) обсуждается в литературе, но эмпирических данных очень мало (Kristensen 1994).

               

              Назад

              Читать 5806 раз Последнее изменение: понедельник, 13 июня 2022 г., 00:08