Распечатай эту страницу
Понедельник, Февраль 21 2011 20: 04

Структура и функции

Оценить этот пункт
(3 голосов)

Дыхательная система простирается от зоны дыхания сразу за носом и ртом через проводящие дыхательные пути в голове и грудной клетке к альвеолам, где происходит дыхательный газообмен между альвеолами и капиллярной кровью, текущей вокруг них. Его основная функция - доставлять кислород ( O2) в газообменную область легкого, где он может диффундировать к стенкам альвеол и через них для насыщения кислородом крови, проходящей через альвеолярные капилляры, по мере необходимости в широком диапазоне уровней работы или активности. Кроме того, система также должна: (1) удалять равный объем углекислого газа, поступающего в легкие из альвеолярных капилляров; (2) поддерживать температуру тела и насыщение водяным паром в дыхательных путях легких (для поддержания жизнеспособности и функциональных возможностей поверхностных жидкостей и клеток); (3) поддерживать стерильность (для предотвращения инфекций и их неблагоприятных последствий); и (4) устраняют избыточную поверхностную жидкость и мусор, такие как вдыхаемые частицы и стареющие фагоцитарные и эпителиальные клетки. Он должен выполнять все эти сложные задачи непрерывно в течение всего срока службы и делать это с высокой эффективностью с точки зрения производительности и использования энергии. Система может быть нарушена и перегружена серьезными воздействиями, такими как высокие концентрации сигаретного дыма и промышленной пыли, или низкие концентрации специфических патогенов, которые атакуют или разрушают ее защитные механизмы или вызывают их сбои. Его способность преодолевать или компенсировать такие оскорбления так же компетентно, как обычно, является свидетельством элегантного сочетания его структуры и функции.

Массовый трансфер

Сложная структура и многочисленные функции дыхательных путей человека были кратко описаны Целевой группой Международной комиссии по радиологической защите (ICRP 1994), как показано на рисунке 1. Проводящие дыхательные пути, также известные как мертвое пространство дыхательных путей, занимают около 0.2 л. Они кондиционируют вдыхаемый воздух и распределяют его конвективным (объемным) потоком примерно к 65,000 XNUMX дыхательных ацинусов, отходящих от терминальных бронхиол. По мере увеличения дыхательного объема конвективный поток преобладает над газообменом глубже в дыхательные бронхиолы. В любом случае в дыхательных ацинусах расстояние от конвективного приливного фронта до альвеолярных поверхностей достаточно мало, чтобы эффективная СО2-O2 обмен происходит путем молекулярной диффузии. Напротив, переносимые по воздуху частицы с коэффициентами диффузии на порядки меньше, чем у газов, имеют тенденцию оставаться во взвешенном состоянии в приливном воздухе и могут выдыхаться без осаждения.

Рисунок 1. Морфометрия, цитология, гистология, функция и структура дыхательных путей и областей, использованных в дозиметрической модели МКРЗ 1994 года.

РЭС010Ф1

Значительная часть вдыхаемых частиц оседает в дыхательных путях. Механизмы, объясняющие отложение частиц в дыхательных путях легких во время фазы вдоха при спокойном дыхании, обобщены на рисунке 2. Частицы с аэродинамическим диаметром более 2 мм (диаметр сферы единичной плотности, имеющей такую ​​же конечную скорость осаждения (Стокса) скорости) может иметь значительный импульс и откладываться при столкновении с относительно высокими скоростями, присутствующими в крупных дыхательных путях. Частицы размером более 1 мм могут осаждаться в меньших проводящих дыхательных путях, где скорость потока очень низкая. Наконец, частицы диаметром от 0.1 до 1 мм, которые имеют очень низкую вероятность осаждения во время одного дыхательного цикла, могут задерживаться в пределах примерно 15% вдыхаемого дыхательного воздуха, который обменивается с остаточным воздухом легких во время каждого дыхательного цикла. Этот объемный обмен происходит из-за переменных постоянных времени для воздушного потока в различных сегментах легких. Из-за гораздо более длительного времени пребывания остаточного воздуха в легких, небольшие собственные смещения частиц от 0.1 до 1 мм в таких захваченных объемах вдыхаемого приливного воздуха становятся достаточными, чтобы вызвать их осаждение путем седиментации и/или диффузии в течение последовательные вдохи.

Рисунок 2. Механизмы отложения частиц в дыхательных путях легких

РЭС010Ф2

Практически свободный от частиц остаточный легочный воздух, составляющий около 15 % экспираторного дыхательного потока, имеет тенденцию действовать как оболочка из чистого воздуха вокруг осевого ядра дистально движущегося дыхательного воздуха, так что осаждение частиц в дыхательных ацинусах концентрируется во внутренних органах. поверхности, такие как бифуркации дыхательных путей, в то время как межветвевые стенки дыхательных путей имеют небольшое отложение.

Количество осевших частиц и их распределение по поверхности дыхательных путей наряду с токсическими свойствами осевшего материала являются критическими детерминантами патогенного потенциала. Осажденные частицы могут повреждать эпителиальные и/или подвижные фагоцитирующие клетки в месте отложения или рядом с ним или могут стимулировать секрецию жидкости и клеточных медиаторов, оказывающих вторичное воздействие на систему. Растворимые материалы, отложившиеся в виде частиц, на них или внутри них, могут диффундировать в поверхностные жидкости и клетки и через них и быстро переноситься кровотоком по всему телу.

Растворимость сыпучих материалов в воде является плохим показателем растворимости частиц в дыхательных путях. Растворимость обычно значительно повышается за счет очень большого отношения поверхности к объему частиц, достаточно малых для проникновения в легкие. Кроме того, ионное и липидное содержание поверхностных жидкостей в дыхательных путях сложное и сильно изменчивое, что может привести либо к повышенной растворимости, либо к быстрому осаждению водных растворов. Кроме того, пути клиренса и время пребывания частиц на поверхности дыхательных путей сильно различаются в различных функциональных отделах дыхательных путей.

Пересмотренная модель очистки Целевой группы МКРЗ определяет основные пути очистки в дыхательных путях, которые важны для определения удержания различных радиоактивных материалов и, следовательно, доз радиации, полученных дыхательными тканями и другими органами после перемещения. Модель осаждения МКРЗ используется для оценки количества вдыхаемого материала, попадающего на каждый путь очистки. Эти дискретные пути представлены компартментной моделью, показанной на рис. 3. Они соответствуют анатомическим компартментам, показанным на рис. 1, и обобщены в таблице 1 вместе с другими группами, обеспечивающими руководство по дозиметрии вдыхаемых частиц.

Рисунок 3. Модель отсека для представления зависящего от времени переноса частиц из каждого региона в модели МКРЗ 1994 г.

РЭС010Ф3

Таблица 1. Области дыхательных путей, определенные в моделях осаждения частиц

Анатомические структуры включены Регион ACGIH Регионы ISO и CEN Регион рабочей группы МКРЗ 1966 г. Регион рабочей группы МКРЗ 1994 г.
Нос, носоглотка
Рот, ротоглотка, гортаноглотка
Головные дыхательные пути (HAR) Внегрудной (E) Носоглотка (НП) Передние носовые ходы (ET1 )
Все другие экстраторакальные (ET2 )
Трахея, бронхи Трахеобронхиальный (ТБР) Трахеобронхиальный (Б) Трахеобронхиальный (ТБ) Трахея и крупные бронхи (ББ)
Бронхиолы (до терминальных бронхиол)       Бронхиолы (бб)
дыхательные бронхиолы, альвеолярные ходы,
альвеолярные мешочки, альвеолы
Газообмен (GER) Альвеолярный (А) Легочный (П) Альвеолярно-интерстициальный (ИИ)

 

Внегрудные дыхательные пути

Как показано на рисунке 1, внегрудные дыхательные пути были разделены МКРЗ (1994 г.) на две отдельные зоны просвета и дозиметрии: передние носовые ходы (ET1) и все другие внегрудные дыхательные пути (ЭТ2), то есть задние носовые ходы, носо- и ротоглотка, гортань. Частицы, осевшие на поверхности кожи, выстилающей передние носовые ходы (ЭТ1) подлежат удалению только внешними средствами (высморканием, вытиранием и т. д.). Основная масса материала депонируется в носо-ротоглотке или гортани (ЭТ2) подлежит быстрому клиренсу в слое жидкости, покрывающем эти дыхательные пути. Новая модель признает, что диффузионное отложение сверхмелких частиц во внегрудных дыхательных путях может быть существенным, в отличие от более ранних моделей.

Грудные дыхательные пути

Радиоактивный материал, отложившийся в грудной клетке, обычно делится на трахеобронхиальную (ТБ) область, где осевшие частицы подвергаются относительно быстрому мукоцилиарному клиренсу, и альвеолярно-интерстициальную (АИ) область, где клиренс частиц происходит намного медленнее.

В целях дозиметрии МКРЗ (1994 г.) разделила отложение вдыхаемого материала в области ТБ между трахеей и бронхами (BB) и более дистальными мелкими дыхательными путями, бронхиолами (bb). Однако последующая эффективность, с которой реснички в обоих типах дыхательных путей способны очищать отложенные частицы, является спорной. Чтобы быть уверенным, что дозы на бронхиальный и бронхиолярный эпителий не будут занижены, Целевая группа предположила, что около половины количества частиц, отложившихся в этих дыхательных путях, подвергается относительно «медленному» мукоцилиарному клиренсу. Вероятность того, что частица относительно медленно выводится мукоцилиарной системой, по-видимому, зависит от ее физического размера.

Материал, отложенный в области AI, подразделяется на три компартмента (AI1AI2 и ИИ3), каждый из которых очищается медленнее, чем отложение ТБ, при этом субрегионы очищаются с разной характерной скоростью.

Рис. 4. Фракционное отложение в каждой области дыхательных путей для эталонного легкого работника (нормальный носовой дышащий) в модели ICRP 1994 года.

РЭС010Ф4

На рис. 4 показаны прогнозы модели МКРЗ (1994 г.) в отношении фракционного осаждения в каждой области в зависимости от размера вдыхаемых частиц. Он отражает минимальное отложение в легких от 0.1 до 1 мм, где отложение в значительной степени определяется обменом в глубоких отделах легких между дыхательным и остаточным воздухом в легких. Осаждение увеличивается ниже 0.1 мм, так как диффузия становится более эффективной с уменьшением размера частиц. Осаждение увеличивается с увеличением размера частиц более 1 мм, так как седиментация и сдавливание становятся все более эффективными.

 

 

Менее сложные модели для селективного осаждения по размеру были приняты специалистами и агентствами по гигиене труда и общественному загрязнению воздуха, и они использовались для определения пределов воздействия при вдыхании в пределах определенных диапазонов размеров частиц. Различают:

  1. те частицы, которые не вдыхаются в нос или рот и поэтому не представляют опасности при вдыхании
  2. вдыхаемый (также известный как вдохновляющий) масса твердых частиц (IPM) - те, которые вдыхаются и опасны при осаждении в любом месте дыхательных путей.
  3. грудная твердая масса (TPM) - те, которые проникают в гортань и опасны, когда откладываются в любом месте грудной клетки и
  4. вдыхаемая твердая масса (ВЧМ) — те частицы, которые проникают через терминальные бронхиолы и представляют опасность, когда оседают в зоне газообмена легких.

 

В начале 1990-х годов была проведена международная гармонизация количественных определений IPM, TPM и RPM. В таблице 1993 перечислены характеристики впускных отверстий для проб воздуха, соответствующие критериям Американской конференции государственных специалистов по промышленной гигиене (ACGIH, 1991 г.), Международной организации по стандартизации (ISO, 1991 г.) и Европейского комитета по стандартизации (CEN, 2 г.). отличаются от фракций осаждения МКРЗ (1994 г.), особенно для более крупных частиц, потому что они придерживаются консервативной позиции, согласно которой должна быть обеспечена защита для тех, кто занимается пероральным вдыханием, и тем самым обойти более эффективную эффективность фильтрации носовых ходов.

Таблица 2. Критерии вдыхаемой, торакальной и вдыхаемой пыли ACGIH, ISO и CEN, а также PM10 критерии Агентства по охране окружающей среды США

Вдыхаемый торакальный вдыхаемый PM10
Частица аэро-
динамический диаметр (мм)
Вдыхаемый
Твердые частицы
Масса
(ИПМ) (%)
Частица аэро-
динамический диаметр (мм)
торакальный
Твердые частицы
Масса (т/мин) (%)
Частица аэро-
динамический диаметр (мм)
вдыхаемый
Твердые частицы
Масса (об/мин) (%)
Частица аэро-
динамический диаметр (мм)
торакальный
Твердые частицы
Масса (т/мин) (%)
0 100 0 100 0 100 0 100
1 97 2 94 1 97 2 94
2 94 4 89 2 91 4 89
5 87 6 80.5 3 74 6 81.2
10 77 8 67 4 50 8 69.7
20 65 10 50 5 30 10 55.1
30 58 12 35 6 17 12 37.1
40 54.5 14 23 7 9 14 15.9
50 52.5 16 15 8 5 16 0
100 50 18 9.5 10 1    
    20 6        
    25 2        

 

Стандарт Агентства по охране окружающей среды США (EPA 1987) для концентрации частиц в окружающем воздухе известен как PM.10, то есть твердые частицы с аэродинамическим диаметром менее 10 мм. Он имеет входной критерий пробоотборника, аналогичный (функционально эквивалентный) критерию TPM, но, как показано в таблице 2, имеет несколько иные числовые характеристики.

Загрязнители воздуха

Загрязняющие вещества могут быть рассеяны в воздухе при нормальных температурах и давлениях окружающей среды в газообразной, жидкой и твердой формах. Последние два представляют собой взвеси частиц в воздухе и получили общий термин аэрозоли Гиббсом (1924) по аналогии с термином гидрозоль, используется для описания дисперсных систем в воде. Газы и пары, присутствующие в виде дискретных молекул, образуют в воздухе настоящие растворы. Частицы, состоящие из материалов с давлением паров от среднего до высокого, имеют тенденцию к быстрому испарению, потому что те, которые достаточно малы, чтобы оставаться во взвешенном состоянии в воздухе более нескольких минут (т. е. частицы меньше примерно 10 мм), имеют большое отношение поверхности к объему. Некоторые материалы с относительно низким давлением паров могут иметь заметные доли как в паровой, так и в аэрозольной формах одновременно.

Газы и пары

После диспергирования в воздухе загрязняющие газы и пары обычно образуют настолько разбавленные смеси, что их физические свойства (такие как плотность, вязкость, энтальпия и т. д.) неотличимы от свойств чистого воздуха. Можно считать, что такие смеси подчиняются законам идеального газа. Между газом и паром нет практической разницы, за исключением того, что последний обычно считается газообразной фазой вещества, которое может существовать в твердом или жидком состоянии при комнатной температуре. При диспергировании в воздухе все молекулы данного соединения практически эквивалентны по размеру и вероятности захвата окружающими поверхностями, поверхностями дыхательных путей и коллекторами загрязняющих веществ или пробоотборниками.

Аэрозоли

Аэрозоли, представляющие собой дисперсии твердых или жидких частиц в воздухе, имеют очень важную дополнительную переменную размера частиц. Размер влияет на движение частиц и, следовательно, на вероятность физических явлений, таких как коагуляция, дисперсия, седиментация, столкновение с поверхностями, межфазные явления и светорассеивающие свойства. Невозможно охарактеризовать данную частицу одним параметром размера. Например, аэродинамические свойства частицы зависят от плотности и формы, а также от линейных размеров, а эффективный размер для рассеяния света зависит от показателя преломления и формы.

В некоторых особых случаях все частицы имеют практически одинаковый размер. Такие аэрозоли считаются монодисперсными. Примерами являются натуральная пыльца и некоторые аэрозоли, созданные в лаборатории. Обычно аэрозоли состоят из частиц разных размеров и поэтому называются гетеродисперсными или полидисперсными. Различные аэрозоли имеют разную степень дисперсии размеров. Поэтому необходимо указать по крайней мере два параметра для характеристики размера аэрозоля: меру центральной тенденции, такую ​​как среднее или медиана, и меру рассеивания, такую ​​как арифметическое или геометрическое стандартное отклонение.

Частицы, генерируемые одним источником или процессом, обычно имеют диаметры, соответствующие логарифмически нормальному распределению; то есть логарифмы их индивидуальных диаметров имеют гауссово распределение. В этом случае мерой дисперсии является геометрическое стандартное отклонение, которое представляет собой отношение размера 84.1 процентиля к размеру 50 процентиля. Когда имеет значение более одного источника частиц, образующийся смешанный аэрозоль обычно не подчиняется единственному логарифмически нормальному распределению, и может оказаться необходимым описать его суммой нескольких распределений.

Характеристики частиц

Существует много других свойств частиц, помимо их линейного размера, которые могут сильно влиять на их поведение в воздухе и их воздействие на окружающую среду и здоровье. К ним относятся:

Поверхность. Для сферических частиц поверхность изменяется пропорционально квадрату диаметра. Однако для аэрозоля данной массовой концентрации общая поверхность аэрозоля увеличивается с уменьшением размера частиц. Для несферических или агрегатных частиц, а также для частиц с внутренними трещинами или порами отношение поверхности к объему может быть намного больше, чем для сфер.

Объем. Объем частиц изменяется пропорционально кубу диаметра; следовательно, несколько самых крупных частиц в аэрозоле имеют тенденцию преобладать в его объемной (или массовой) концентрации.

Форма. Форма частицы влияет на ее аэродинамическое сопротивление, а также на площадь поверхности и, следовательно, на вероятность ее движения и осаждения.

Плотность. Скорость частицы в ответ на гравитационные или инерционные силы увеличивается пропорционально квадратному корню из ее плотности.

Аэродинамический диаметр. Диаметр сферы единичной плотности, имеющей ту же конечную скорость осаждения, что и рассматриваемая частица, равен ее аэродинамическому диаметру. Конечная скорость осаждения – это равновесная скорость частицы, падающей под действием силы тяжести и сопротивления жидкости. Аэродинамический диаметр определяется фактическим размером частиц, плотностью частиц и коэффициентом аэродинамической формы.

Виды аэрозолей

Обычно аэрозоли классифицируют по способу их образования. Хотя следующая классификация не является ни точной, ни всеобъемлющей, она широко используется и принимается в областях промышленной гигиены и загрязнения воздуха.

Пыли. Аэрозоль, образующийся в результате механического разделения сыпучего материала на содержащиеся в воздухе мелкие частицы, имеющие одинаковый химический состав. Частицы пыли, как правило, твердые, неправильной формы и имеют диаметр более 1 мм.

Дым. Аэрозоль твердых частиц, образующийся при конденсации паров, образующихся при сгорании или сублимации при повышенных температурах. Первичные частицы обычно очень малы (менее 0.1 мм) и имеют сферическую или характерную кристаллическую форму. Они могут быть химически идентичны исходному материалу или могут состоять из продукта окисления, такого как оксид металла. Поскольку они могут образовываться в больших концентрациях, они часто быстро коагулируют, образуя скопления агрегатов с низкой общей плотностью.

Дым. Аэрозоль, образующийся при конденсации продуктов сгорания, как правило, органических материалов. Частицы обычно представляют собой капли жидкости диаметром менее 0.5 мм.

Туман. Капельный аэрозоль, образованный механическим сдвигом объемной жидкости, например, путем распыления, распыления, барботажа или распыления. Размер капель может охватывать очень большой диапазон, обычно от примерно 2 мм до более чем 50 мм.

Туман. Водный аэрозоль, образующийся при конденсации водяного пара на ядрах атмосферы при высокой относительной влажности. Размеры капель обычно превышают 1 мм.

Смог. Популярный термин для загрязняющего аэрозоля, полученный из комбинации дыма и тумана. В настоящее время он широко используется для любой смеси атмосферных загрязнителей.

Haze. Аэрозоль субмикронного размера, состоящий из гигроскопичных частиц, которые поглощают водяной пар при относительно низкой относительной влажности.

Эйткена или ядра конденсации (ЯК). Очень мелкие атмосферные частицы (в основном менее 0.1 мм), образующиеся в результате процессов горения и химической конверсии газообразных прекурсоров.

Накопительный режим. Термин, обозначающий частицы в окружающей атмосфере диаметром от 0.1 до примерно 1.0 мм. Эти частицы обычно имеют сферическую форму (с жидкой поверхностью) и образуются в результате коагуляции и конденсации более мелких частиц, образующихся из газообразных предшественников. Будучи слишком большими для быстрой коагуляции и слишком маленькими для эффективного осаждения, они имеют тенденцию накапливаться в окружающем воздухе.

Режим крупных частиц. Частицы окружающего воздуха с аэродинамическим диаметром более 2.5 мм, обычно образующиеся в результате механических процессов и повторного взвешивания пыли на поверхности.

Биологические реакции дыхательной системы на загрязнители воздуха

Реакции на загрязнители воздуха варьируются от дискомфорта до некроза тканей и смерти, от общих системных эффектов до высокоспецифических атак на отдельные ткани. Факторы хозяина и окружающей среды служат для изменения эффектов вдыхаемых химических веществ, и конечная реакция является результатом их взаимодействия. Основными принимающими факторами являются:

  1. возраст — например, пожилые люди, особенно с хронически сниженной сердечно-сосудистой и дыхательной функцией, которые могут быть не в состоянии справиться с дополнительными нагрузками на легкие
  2. состояние здоровья — например, сопутствующее заболевание или дисфункция
  3. состояние питания
  4. иммунологический статус
  5. пол и другие генетические факторы — например, связанные с ферментами различия в механизмах биотрансформации, такие как неполноценные метаболические пути и неспособность синтезировать определенные ферменты детоксикации.
  6. психологическое состояние, например, стресс, тревога и
  7. культурные факторы — например, курение сигарет, которое может повлиять на нормальную защиту или усилить действие других химических веществ.

 

Факторы окружающей среды включают концентрацию, стабильность и физико-химические свойства агента в среде воздействия, а также продолжительность, частоту и путь воздействия. Острое и хроническое воздействие химического вещества может привести к различным патологическим проявлениям.

Любой орган может реагировать только ограниченным числом способов, и существует множество диагностических ярлыков для возникающих в результате заболеваний. В следующих разделах обсуждаются общие типы реакций дыхательной системы, которые могут возникнуть после воздействия загрязнителей окружающей среды.

Раздражающая реакция

Раздражители вызывают генерализованное неспецифическое воспаление тканей, и в области контакта с загрязняющими веществами может возникнуть разрушение. Некоторые раздражители не оказывают системного действия, поскольку раздражающий ответ намного сильнее, чем любой системный эффект, в то время как некоторые также имеют значительные системные эффекты после всасывания, например, сероводород всасывается через легкие.

В высоких концентрациях раздражители могут вызывать жжение в носу и горле (обычно также в глазах), боль в груди и кашель, вызывающие воспаление слизистой оболочки (трахеит, бронхит). Примерами раздражителей являются такие газы, как хлор, фтор, диоксид серы, фосген и оксиды азота; туманы кислот или щелочей; пары кадмия; пыли хлорида цинка и пятиокиси ванадия. Высокие концентрации химических раздражителей могут также проникать глубоко в легкие и вызывать отек легких (альвеолы ​​заполняются жидкостью) или воспаление (химический пневмонит).

Сильно повышенные концентрации пыли, не обладающей химическими раздражающими свойствами, могут также механически раздражать бронхи и, попадая в желудочно-кишечный тракт, также способствовать возникновению рака желудка и толстой кишки.

Воздействие раздражителей может привести к смерти, если критические органы серьезно повреждены. С другой стороны, повреждение может быть обратимым или может привести к необратимой потере некоторой степени функции, например к нарушению способности газообмена.

Фиброзная реакция

Ряд пыли приводит к развитию группы хронических заболеваний легких, называемых пневмокониозы. Этот общий термин охватывает многие фиброзные состояния легких, то есть заболевания, характеризующиеся образованием рубцов в интерстициальной соединительной ткани. Пневмокониозы возникают вследствие вдыхания и последующего избирательного удержания некоторых пылей в альвеолах, из которых они подвергаются интерстициальной секвестрации.

Пневмокониозы характеризуются специфическими фиброзными поражениями, которые различаются по типу и структуре в зависимости от вовлеченной пыли. Например, силикоз, обусловленный отложением бескристаллического кремнезема, характеризуется узелковым типом фиброза, а диффузный фиброз обнаруживается при асбестозе, обусловленном воздействием асбестовых волокон. Некоторые виды пыли, такие как оксид железа, вызывают только измененную рентгенологию (сидероз) без функциональных нарушений, в то время как эффекты других варьируются от минимальной инвалидности до летального исхода.

Аллергический ответ

Аллергические реакции включают явление, известное как сенсибилизация. Первоначальное воздействие аллергена приводит к индукции образования антител; последующее воздействие на уже «сенсибилизированного» человека приводит к иммунному ответу, то есть к реакции антитело-антиген (антиген представляет собой аллерген в сочетании с эндогенным белком). Эта иммунная реакция может возникнуть сразу после воздействия аллергена или может быть отсроченной реакцией.

Первичными респираторными аллергическими реакциями являются бронхиальная астма, реакции в верхних дыхательных путях, которые включают высвобождение гистамина или гистаминоподобных медиаторов после иммунных реакций в слизистой оболочке, и тип пневмонита (воспаление легких), известный как внешний аллергический альвеолит. Помимо этих местных реакций, после воздействия некоторых химических аллергенов может развиться системная аллергическая реакция (анафилактический шок).

Инфекционный ответ

Инфекционные агенты могут вызывать туберкулез, сибирскую язву, орнитоз, бруцеллез, гистоплазмоз, болезнь легионеров и так далее.

Канцерогенный ответ

Рак — это общий термин для группы родственных заболеваний, характеризующихся неконтролируемым ростом тканей. Его развитие обусловлено сложным процессом взаимодействия множества факторов хозяина и внешней среды.

Одной из больших трудностей при попытках связать воздействие конкретного агента с развитием рака у человека является длительный латентный период, обычно от 15 до 40 лет, между началом воздействия и проявлением заболевания.

Примерами загрязнителей воздуха, которые могут вызывать рак легких, являются мышьяк и его соединения, хроматы, диоксид кремния, частицы, содержащие полициклические ароматические углеводороды, и некоторые никельсодержащие пыли. Волокна асбеста могут вызывать рак бронхов и мезотелиому плевры и брюшины. Осажденные радиоактивные частицы могут подвергать легочную ткань воздействию высоких локальных доз ионизирующего излучения и вызывать рак.

Системный ответ

Многие химические вещества окружающей среды вызывают общее системное заболевание из-за их воздействия на ряд целевых участков. Легкие являются не только мишенью для многих вредных агентов, но и местом поступления токсических веществ, которые через легкие попадают в кровоток без какого-либо повреждения легких. Однако при попадании с током крови в различные органы они могут повреждать их или вызывать общее отравление и оказывать системное действие. Эта роль легких в профессиональной патологии не является предметом данной статьи. Однако следует упомянуть о воздействии мелкодисперсных частиц (дымов) некоторых оксидов металлов, которые часто связаны с острым системным синдромом, известным как лихорадка дыма металлов.

 

Назад

Читать 16880 раз Последнее изменение во вторник, 11 октября 2011 20: 56