Распечатай эту страницу
Вторник, Февраль 22 2011 17: 05

Исследование функции легких

Оценить этот пункт
(3 голосов)

Функцию легких можно измерить несколькими способами. Однако цель измерений должна быть ясна до обследования, чтобы правильно интерпретировать результаты. В этой статье мы обсудим исследование функции легких с особым учетом профессиональной сферы. Важно помнить об ограничениях в различных измерениях функции легких. Острые временные эффекты функции легких могут быть незаметны в случае воздействия фиброгенной пыли, такой как кварц и асбест, но хронические эффекты на функцию легких после длительного (> 20 лет) воздействия могут быть заметны. Это связано с тем, что хронические эффекты возникают спустя годы после вдыхания пыли и ее осаждения в легких. С другой стороны, острое временное воздействие органической и неорганической пыли, а также плесени, сварочного дыма и выхлопных газов хорошо подходит для изучения. Это связано с тем, что раздражающее действие этих пыли будет проявляться уже через несколько часов воздействия. Острые или хронические нарушения функции легких также могут быть заметны в случаях воздействия раздражающих газов (двуокись азота, альдегиды, кислоты и хлорангидриды) в концентрациях, близких к хорошо задокументированным предельным значениям воздействия, особенно если эффект усиливается за счет загрязнения воздуха твердыми частицами. .

Измерения функции легких должны быть безопасными для обследуемых, а оборудование для определения функции легких должно быть безопасным для исследователя. Имеется сводка конкретных требований к различным видам оборудования для контроля функции легких (например, Quanjer et al., 1993). Разумеется, оборудование должно быть откалибровано в соответствии с независимыми стандартами. Этого может быть трудно достичь, особенно при использовании компьютеризированного оборудования. Результат теста функции легких зависит как от субъекта, так и от исследователя. Чтобы обеспечить удовлетворительные результаты обследования, технические специалисты должны быть хорошо обучены и уметь тщательно инструктировать испытуемого, а также поощрять испытуемого к правильному проведению теста. Исследователь также должен иметь представление о дыхательных путях и легких, чтобы правильно интерпретировать результаты записей.

Рекомендуется, чтобы используемые методы имели достаточно высокую воспроизводимость как между субъектами, так и внутри них. Воспроизводимость может быть измерена как коэффициент вариации, то есть стандартное отклонение, умноженное на 100, деленное на среднее значение. Значения ниже 10% при повторных измерениях на одном и том же объекте считаются приемлемыми.

Чтобы определить, являются ли измеренные значения патологическими или нет, их необходимо сравнить с уравнениями прогнозирования. Обычно уравнения прогнозирования для спирометрических переменных основаны на возрасте и росте, стратифицированных по полу. У мужчин показатели легочной функции в среднем выше, чем у женщин того же возраста и роста. Функция легких снижается с возрастом и увеличивается с ростом. Таким образом, у высокого человека объем легких будет больше, чем у невысокого человека того же возраста. Результаты уравнений прогнозирования могут значительно различаться между различными эталонными популяциями. Различия в возрасте и росте в контрольной популяции также будут влиять на прогнозируемые значения. Это означает, например, что формулу прогнозирования нельзя использовать, если возраст и/или рост обследуемого субъекта находятся за пределами диапазона для населения, которое является основой для уравнения прогнозирования.

Курение также снижает функцию легких, и этот эффект может усиливаться у субъектов, подвергающихся профессиональному воздействию раздражающих агентов. Раньше функция легких считалась непатологической, если полученные значения находились в пределах 80% от прогнозируемого значения, полученного из уравнения прогнозирования.

измерения

Измерения функции легких проводятся для оценки состояния легких. Измерения могут касаться одного или нескольких измеренных объемов легких или динамических свойств дыхательных путей и легких. Последнее обычно определяется маневрами, зависящими от усилия. Состояние легких можно также исследовать с точки зрения их физиологической функции, то есть диффузионной способности, сопротивления и растяжимости дыхательных путей (см. ниже).

Измерения, касающиеся дыхательной способности, получают с помощью спирометрии. Дыхательный маневр обычно выполняется в виде максимального вдоха, за которым следует максимальный выдох, жизненная емкость легких (ЖЕЛ, измеряемая в литрах). Необходимо сделать не менее трех технически удовлетворительных записей (т. е. полное усилие вдоха и выдоха и отсутствие наблюдаемых утечек) и зафиксировать наивысшее значение. Объем может быть измерен непосредственно с помощью водонепроницаемого или низкоомного колокола или косвенно с помощью пневмотахографии (т. е. путем интегрирования сигнала потока во времени). Здесь важно отметить, что все измеренные объемы легких должны быть выражены в BTPS, то есть в температуре тела и атмосферном давлении, насыщенном водяным паром.

Форсированная жизненная емкость легких на выдохе (ФЖЕЛ, в литрах) определяется как измерение ЖЕЛ, выполненное с максимальным усилием форсированного выдоха. Благодаря простоте теста и относительно недорогому оборудованию форсированная экспирограмма стала полезным тестом для мониторинга функции легких. Однако это привело ко многим плохим записям, практическая ценность которых спорна. Для проведения удовлетворительных записей могут быть полезны обновленные рекомендации по сбору и использованию форсированной экспирограммы, опубликованные Американским торакальным обществом в 1987 году.

Мгновенные потоки могут быть измерены на кривых поток-объем или поток-время, в то время как средние по времени потоки или время получаются из спирограммы. Связанные переменные, которые можно рассчитать на основе форсированной экспирограммы, — это объем форсированного выдоха за одну секунду (ОФВ).1, в литрах в секунду), в процентах от ФЖЕЛ (ОФВ1%), пиковый поток (ПСВ, л/с), максимальные потоки при 50% и 75% форсированной жизненной емкости легких (МЖЕЛ).50 и МЭФ25, соответственно). Иллюстрация происхождения ОФВ1 форсированной экспирограммы показано на рис. 1. У здоровых людей максимальные скорости потока при больших объемах легких (т. е. в начале выдоха) отражают в основном характеристики потока в крупных дыхательных путях, а при малых объемах легких (т. е. в конце выдоха) выдоха) обычно отражают характеристики мелких дыхательных путей, рис. 2. В последних поток ламинарный, тогда как в крупных дыхательных путях он может быть турбулентным.

Рисунок 1. Спирограмма форсированного выдоха, показывающая происхождение ОФВ1 и ФЖЕЛ по принципу экстраполяции.

РЭС030Ф1

 

Рисунок 2. Кривая поток-объем, показывающая расчет пиковой скорости выдоха (ПСВ), максимальных потоков при 50% и 75% форсированной жизненной емкости легких (и , соответственно).

РЭС030Ф2

PEF также можно измерить с помощью небольшого портативного устройства, такого как устройство, разработанное Райтом в 1959 году. Преимущество этого оборудования состоит в том, что субъект может проводить серийные измерения, например, на рабочем месте. Однако, чтобы получить полезные записи, необходимо хорошо проинструктировать испытуемых. Кроме того, следует иметь в виду, что измерения ПСВ с помощью, например, измерителя Райта и измерения обычной спирометрии не следует сравнивать из-за различий в технике удара.

Спирометрические показатели ЖЕЛ, ФЖЕЛ и ОФВ1 показывают разумные различия между людьми, где возраст, рост и пол обычно объясняют от 60 до 70% различий. Рестриктивные нарушения функции легких приведут к более низким значениям ЖЕЛ, ФЖЕЛ и ОФВ.1. Измерения потоков во время выдоха показывают большие индивидуальные различия, поскольку измеренные потоки зависят как от усилия, так и от времени. Это означает, например, что у субъекта будет чрезвычайно высокий поток в случае уменьшения объема легких. С другой стороны, поток может быть чрезвычайно низким в случае очень большого объема легких. Однако при хронических обструктивных заболеваниях (например, при астме, хроническом бронхите) кровоток обычно снижен.

Рис. 3. Принципиальная схема оборудования для определения общей емкости легких (ТСЛ) методом гелиевого разбавления.

РЭС030Ф3

Долю остаточного объема (ОО), т. е. объема воздуха, который еще находится в легких после максимального выдоха, можно определить с помощью газового разведения или с помощью бодиплетизмографии. Метод разбавления газа требует менее сложного оборудования и поэтому более удобен в исследованиях, проводимых на рабочем месте. На рисунке 3 показан принцип метода разбавления газа. Методика основана на разбавлении индикаторного газа в дыхательном контуре. Индикаторный газ должен быть умеренно растворим в биологических тканях, чтобы он не поглощался тканями и кровью легких. Первоначально использовался водород, но из-за его способности образовывать с воздухом взрывоопасные смеси его заменили гелием, который легко обнаруживается с помощью принципа теплопроводности.

Испытуемый и аппарат образуют замкнутую систему, поэтому начальная концентрация газа снижается при его разбавлении объемом газа в легких. После уравновешивания концентрация газа-индикатора в легких такая же, как и в аппарате, а функциональную остаточную емкость (ФОЕ) можно рассчитать с помощью простого уравнения разбавления. Объем спирометра (включая добавление газовой смеси в спирометр) обозначен VS, VL объем легких, Fi - начальная концентрация газа и Ff является конечной концентрацией.

ФРК = VL знак равноVS · Fi) / Ff] - VS

 

 

 

 

 

 

 

 

 

Выполняются от двух до трех маневров VC, чтобы обеспечить надежную основу для расчета TLC (в литрах). Подразделения различных объемов легких показаны на рисунке 4.

 

Рисунок 4. Спирограмма с пометками, показывающими подразделения общей емкости.

РЭС030Ф4

Из-за изменения эластических свойств дыхательных путей RV и FRC увеличиваются с возрастом. При хронических обструктивных заболеваниях обычно наблюдаются повышенные значения RV и FRC при снижении VC. Однако у пациентов с плохо вентилируемыми участками легких, например у пациентов с эмфиземой, метод разведения газа может занижать RV, FRC, а также TLC. Это связано с тем, что газ-индикатор не будет сообщаться с перекрытыми дыхательными путями, и поэтому уменьшение концентрации газа-индикатора будет давать ошибочно малые значения.

 

 

 

Рисунок 5. Принципиальная схема записи закрытия дыхательных путей и наклон альвеолярного плато (%).

РЭС030Ф5

Показатели закрытия дыхательных путей и распределения газа в легких могут быть получены в ходе одного и того же маневра методом промывания одним вдохом, рис. непрерывные измерения концентрации азота. Маневр осуществляется за счет максимального вдоха чистого кислорода из мешка. В начале выдоха концентрация азота увеличивается за счет опустошения мертвого пространства субъекта, содержащего чистый кислород. Выдох продолжается воздухом из дыхательных путей и альвеол. Наконец, выдыхается воздух из альвеол, содержащий от 5 до 20% азота. При увеличении выдоха из базальных отделов легких концентрация азота будет резко повышаться в случае закрытия дыхательных путей в зависимых отделах легких, рис. 40. Этот объем выше ПЖ, при котором дыхательные пути закрываются во время выдоха, обычно выражается как закрывающий объем. (CV) в процентах от VC (CV%). Распределение вдыхаемого воздуха в легких выражается наклоном альвеолярного плато (%N2 или фаза III, %N2/л). Его получают путем деления разницы концентрации азота между точкой, когда выдыхается 30 % воздуха, и точкой закрытия дыхательных путей на соответствующий объем.

Старение, а также хронические обструктивные заболевания приведут к увеличению значений как CV%, так и фазы III. Однако даже у здоровых людей распределение газов в легких неравномерно, что приводит к несколько повышенным значениям для фазы III, то есть от 1 до 2% N.2/л. Считается, что переменные CV% и фаза III отражают состояние в периферических мелких дыхательных путях с внутренним диаметром около 2 мм. В норме периферические дыхательные пути составляют небольшую часть (от 10 до 20%) общего сопротивления дыхательных путей. Довольно обширные изменения, которые не обнаруживаются обычными тестами функции легких, такими как динамическая спирометрия, могут возникнуть, например, в результате воздействия раздражающих веществ в воздухе на периферические дыхательные пути. Это говорит о том, что обструкция дыхательных путей начинается в мелких дыхательных путях. Результаты исследований также показали изменения CV% и фазы III до того, как произошли какие-либо изменения динамической и статической спирометрии. Эти ранние изменения могут перейти в стадию ремиссии после прекращения воздействия опасных агентов.

Коэффициент переноса легких (ммоль/мин; кПа) является выражением диффузионной способности транспорта кислорода в легочные капилляры. Трансфер фактор может быть определен с использованием методов одиночного или множественного дыхания; техника одиночного дыхания считается наиболее подходящей для занятий на рабочем месте. Окись углерода (CO) используется, поскольку противодавление CO в периферической крови очень низкое, в отличие от кислорода. Предполагается, что поглощение CO следует экспоненциальной модели, и это предположение можно использовать для определения коэффициента переноса для легких.

Определение TLCO (коэффициент передачи, измеренный с помощью CO) осуществляется посредством дыхательного маневра, включающего максимальный выдох, за которым следует максимальный вдох газовой смеси, содержащей окись углерода, гелий, кислород и азот. После задержки дыхания делают максимальный выдох, отражающий содержание в альвеолярном воздухе рис. 10. Для определения альвеолярного объема используют гелий (VA). Предполагая, что разбавление СО такое же, как и для гелия, можно рассчитать начальную концентрацию СО до начала диффузии. TLCO рассчитывается по приведенному ниже уравнению, где k зависит от размерности составляющих терминов, t - эффективное время задержки дыхания, а log - логарифм по основанию 10. Вдохновленный объем обозначается Vi и дроби F СО и гелия обозначаются i и a для вдыхаемого и альвеолярного соответственно.

TLCO = k Vi (Fa,Он/Fi,He) журнал (Fi,CO Fa,He/Fa, СО Fi,Он) (t)-1

 

Рисунок 6. Принципиальная схема регистрации коэффициента передачи

РЭС030Ф6

Размеры TLCO будет зависеть от множества условий, например, от количества доступного гемоглобина, объема вентилируемых альвеол и перфузируемых легочных капилляров и их соотношения друг с другом. Значения для TLCO уменьшаются с возрастом и увеличиваются при физической активности и увеличении объема легких. Уменьшился TLCO встречается как при рестриктивных, так и при обструктивных заболеваниях легких.

Растяжимость (л/кПа) является функцией, среди прочего, эластических свойств легких. Легкие имеют внутреннюю тенденцию сотрудничать, то есть коллапсировать. Способность удерживать легкие в растянутом состоянии будет зависеть от эластичности легочной ткани, поверхностного натяжения в альвеолах и бронхиальной мускулатуры. С другой стороны, грудная стенка имеет тенденцию расширяться при объемах легких на 1–2 литра выше уровня ФОЕ. При более высоких объемах легких необходимо применять силу для дальнейшего расширения стенки грудной клетки. На уровне ФОЕ соответствующая тенденция в легких уравновешивается тенденцией к расширению. Таким образом, уровень ФОЕ обозначается уровнем покоя легкого.

Податливость легкого определяется как изменение объема, деленное на изменение транспульмонального давления, то есть разность давлений во рту (атмосферное) и в легких в результате дыхательного маневра. Измерение давления в легких провести нелегко, поэтому его заменяют измерением давления в пищеводе. Давление в пищеводе почти равно давлению в легком и измеряется тонким полиэтиленовым катетером с баллоном, охватывающим дистальные 10 см. Во время вдоха и выдоха изменения объема и давления регистрируются с помощью спирометра и датчика давления соответственно. Когда измерения выполняются во время спокойного дыхания, можно измерить динамическую податливость. Статическая податливость достигается при выполнении медленного маневра VC. В последнем случае измерения проводят на бодиплетизмографе, а выдох прерывисто прерывают с помощью заслонки. Однако измерения податливости обременительны при изучении воздействия воздействия на функцию легких на рабочем месте, и этот метод считается более подходящим для лаборатории.

Снижение податливости (повышенная эластичность) наблюдается при фиброзе. Чтобы вызвать изменение объема, необходимы большие изменения давления. С другой стороны, высокая податливость наблюдается, например, при эмфиземе вследствие потери эластической ткани, а следовательно, и эластичности легкого.

Сопротивление в дыхательных путях существенно зависит от радиуса и длины дыхательных путей, а также от вязкости воздуха. Сопротивление дыхательных путей (RL в (кПа/л)/с), можно определить с помощью спирометра, датчика давления и пневмотахографа (для измерения расхода). Измерения также можно проводить с помощью бодиплетизмографа для регистрации изменений потока и давления во время маневров с одышкой. При введении препарата, вызывающего бронхоконстрикцию, могут быть идентифицированы чувствительные субъекты в результате их гиперреактивности дыхательных путей. Субъекты с астмой обычно имеют повышенные значения RL.

Острые и хронические эффекты профессионального облучения на легочную функцию

Измерение функции легких может быть использовано для выявления влияния профессионального облучения на легкие. Обследование функции легких перед приемом на работу не следует использовать для исключения лиц, ищущих работу. Это связано с тем, что функция легких у здоровых людей колеблется в широких пределах и трудно провести границу, ниже которой можно с уверенностью констатировать патологию легкого. Другая причина заключается в том, что рабочая среда должна быть достаточно хорошей, чтобы даже субъекты с легким нарушением функции легких могли безопасно работать.

Хроническое воздействие на легкие у лиц, подвергающихся профессиональному облучению, можно обнаружить несколькими способами. Однако эти методы предназначены для определения исторических эффектов и менее подходят для использования в качестве рекомендаций по предотвращению ухудшения функции легких. Обычный дизайн исследования заключается в сравнении фактических значений у подвергшихся воздействию субъектов со значениями функции легких, полученными в контрольной популяции без профессионального воздействия. Референтные субъекты могут быть набраны с одних и тех же (или близлежащих) рабочих мест или из одного и того же города.

В некоторых исследованиях использовался многомерный анализ для оценки различий между подвергшимися воздействию субъектами и соответствующими не подвергавшимися воздействию референтами. Значения функции легких у подвергшихся воздействию субъектов также могут быть стандартизированы с помощью эталонного уравнения, основанного на значениях функции легких у не подвергавшихся воздействию субъектов.

Другой подход заключается в изучении разницы между значениями функции легких у подвергшихся и не подвергавшихся облучению рабочих после поправки на возраст и рост с использованием внешних эталонных значений, рассчитанных с помощью уравнения прогнозирования на основе здоровых людей. Эталонная популяция также может быть сопоставлена ​​с подвергшимися воздействию субъектами в соответствии с этнической группой, полом, возрастом, ростом и привычками к курению, чтобы дополнительно контролировать эти влияющие факторы.

Проблема, однако, заключается в том, чтобы решить, является ли снижение достаточно большим, чтобы его можно было классифицировать как патологическое, когда используются внешние эталонные значения. Хотя инструменты в исследованиях должны быть портативными и простыми, необходимо обращать внимание как на чувствительность выбранного метода выявления малых аномалий дыхательных путей и легких, так и на возможность комбинирования различных методов. Имеются признаки того, что субъекты с респираторными симптомами, такими как одышка при физической нагрузке, подвержены более высокому риску ускоренного ухудшения функции легких. Это означает, что наличие респираторных симптомов важно, и поэтому им нельзя пренебрегать.

Субъект может также проходить спирометрию, например, один раз в год в течение нескольких лет, чтобы предупредить развитие болезни. Однако существуют ограничения, так как это потребует очень много времени, и функция легких может необратимо ухудшиться, когда можно будет наблюдать снижение. Таким образом, такой подход не должен служить оправданием для отсрочки проведения мероприятий по снижению вредных концентраций загрязнителей атмосферного воздуха.

Наконец, хроническое воздействие на функцию легких можно также изучить путем изучения индивидуальных изменений функции легких у подвергшихся и не подвергшихся воздействию субъектов в течение ряда лет. Одним из преимуществ лонгитюдного плана исследования является то, что исключается межсубъектная изменчивость; однако проектирование считается трудоемким и дорогим.

Восприимчивые субъекты также могут быть идентифицированы путем сравнения функции их легких с воздействием и без воздействия во время рабочих смен. Чтобы свести к минимуму возможные эффекты суточных колебаний, функцию легких измеряют в одно и то же время суток в одном случае без воздействия и в одном случае с воздействием. Необлученное состояние можно получить, например, периодически перемещая рабочего в незагрязненную зону или используя подходящий респиратор в течение всей смены, или, в некоторых случаях, выполняя измерения функции легких во второй половине дня рабочего дня.

Особое беспокойство вызывает то, что повторяющиеся временные эффекты могут привести к хроническим последствиям. Острое временное снижение функции легких может быть не только индикатором биологического воздействия, но и предиктором хронического снижения функции легких. Воздействие загрязнителей воздуха может привести к заметным острым последствиям для функции легких, хотя средние значения измеренных загрязнителей воздуха ниже гигиенических предельных значений. Таким образом, возникает вопрос, действительно ли эти эффекты вредны в долгосрочной перспективе. На этот вопрос трудно ответить прямо, тем более, что загрязнение воздуха на рабочих местах часто имеет сложный состав и воздействие не может быть описано в терминах средних концентраций отдельных соединений. Влияние профессионального облучения также частично связано с индивидуальной чувствительностью. Это означает, что некоторые субъекты будут реагировать раньше или в большей степени, чем другие. Лежащая в основе патофизиологическая основа острого временного снижения функции легких до конца не изучена. Однако неблагоприятная реакция на воздействие раздражающего загрязнителя воздуха является объективной мерой, в отличие от субъективных переживаний, таких как симптомы различного происхождения.

Преимущество раннего выявления изменений в дыхательных путях и легких, вызванных опасными загрязнителями воздуха, очевидно: преобладающее воздействие можно уменьшить, чтобы предотвратить более тяжелые заболевания. Поэтому важной целью в этом отношении является использование измерений острых временных воздействий на функцию легких в качестве чувствительной системы раннего предупреждения, которую можно использовать при изучении групп здоровых работающих людей.

Мониторинг раздражителей

Раздражение является одним из наиболее частых критериев для установления предельных значений воздействия. Однако нет уверенности в том, что соблюдение предела воздействия, основанного на раздражении, защитит от раздражения. Следует учитывать, что предел воздействия загрязнителя воздуха обычно содержит как минимум две части — средневзвешенный предел воздействия (TWAL) и предел кратковременного воздействия (STEL) или, по крайней мере, правила превышения средневзвешенного значения. предел, «ограничения экскурсии». В случае сильнораздражающих веществ, таких как диоксид серы, акролеин и фосген, важно ограничивать концентрацию даже в течение очень коротких периодов времени, и поэтому общепринятой практикой является установление предельных значений профессионального воздействия в виде предельных значений, с периодом отбора проб, который поддерживается настолько коротким, насколько это позволяют измерительные средства.

Средневзвешенные по времени предельные значения для восьмичасового рабочего дня в сочетании с правилами превышения этих значений приведены для большинства веществ в списке пороговых предельных значений (TLV) Американской конференции государственных промышленных гигиенистов (ACGIH). Перечень TLV 1993-94 годов содержит следующее заявление относительно пределов отклонений для превышения предельных значений:

«Для подавляющего большинства веществ с TLV-TWA недостаточно токсикологических данных, чтобы гарантировать STEL = предел кратковременного воздействия). Тем не менее отклонения выше TLV-TWA следует контролировать, даже если восьмичасовое средневзвешенное значение находится в рекомендуемых пределах».

Измерения воздействия известных загрязнителей воздуха и сравнение с хорошо задокументированными предельно допустимыми значениями должны проводиться на регулярной основе. Однако существует множество ситуаций, когда определения соблюдения предельных значений воздействия недостаточно. Это имеет место в следующих случаях (среди прочего):

  1. когда предельное значение слишком велико для защиты от раздражения
  2. когда раздражитель неизвестен
  3. когда раздражитель представляет собой сложную смесь и неизвестен подходящий индикатор.

 

Как указывалось выше, в этих случаях можно использовать измерение острого временного воздействия на функцию легких в качестве предостережения от чрезмерного воздействия раздражителей.

В случаях (2) и (3) острые, временные воздействия на функцию легких могут быть применимы также при проверке эффективности мер контроля по снижению воздействия загрязнения воздуха или в научных исследованиях, например, при приписывании биологических эффектов компонентам воздуха. загрязнения. Далее следует ряд примеров, в которых острые, временные эффекты функции легких были успешно использованы в исследованиях гигиены труда.

Исследования острых, временных эффектов функции легких

Связанное с работой временное снижение функции легких в течение рабочей смены было зафиксировано у хлопкоробов в конце 1950-х годов. Позже ряд авторов сообщали о связанных с работой острых временных изменениях функции легких у конопляных и текстильщиков, шахтеров, рабочих. подвергающиеся воздействию диизоцианата толуола, пожарные, рабочие по обработке резины, формовщики и стержневые мастера, сварщики, намазчики лыж, рабочие, подвергающиеся воздействию органической пыли и раздражающих веществ в красках на водной основе.

Однако есть также несколько примеров, когда измерения до и после воздействия, обычно во время смены, не продемонстрировали каких-либо острых эффектов, несмотря на высокое воздействие. Это, вероятно, связано с эффектом нормальных циркадных колебаний, главным образом, в переменных функции легких, зависящих от размера калибра дыхательных путей. Таким образом, временное снижение этих переменных должно превышать нормальные циркадные вариации, чтобы их можно было распознать. Однако эту проблему можно обойти, измеряя функцию легких в одно и то же время дня при каждом исследовании. Используя подвергающегося воздействию работника в качестве своего собственного контроля, межиндивидуальные вариации еще больше уменьшаются. Таким образом были исследованы сварщики, и хотя средняя разница между необлученными и подвергнутыми воздействию значениями ФЖЕЛ составляла менее 3% у 15 обследованных сварщиков, эта разница была достоверной при уровне достоверности 95% с мощностью более 99%.

Обратимые преходящие воздействия на легкие можно использовать в качестве индикатора воздействия сложных раздражающих компонентов. В упомянутом выше исследовании частицы в рабочей среде сыграли решающую роль в раздражающем воздействии на дыхательные пути и легкие. Частицы удалялись респиратором, состоящим из фильтра, совмещенного со сварочной маской. Результаты показали, что воздействие на легкие было вызвано частицами сварочного дыма, и что использование противоаэрозольного респиратора может предотвратить этот эффект.

Воздействие выхлопных газов дизельных двигателей также оказывает заметное раздражающее воздействие на легкие, проявляющееся в виде острого временного снижения функции легких. Механические фильтры, установленные на выхлопных трубах грузовиков, используемых стивидорами при погрузочных работах, уменьшали субъективные расстройства и уменьшали острое временное снижение функции легких, наблюдаемое при отсутствии фильтрации. Таким образом, результаты показывают, что присутствие частиц в рабочей среде действительно играет роль в раздражающем воздействии на дыхательные пути и легкие, и что это воздействие можно оценить путем измерения острых изменений функции легких.

Множественность воздействий и постоянно меняющаяся рабочая среда могут создавать трудности в установлении причинно-следственной связи между различными агентами, существующими в рабочей среде. Наглядным примером является сценарий воздействия на лесопильных заводах. Невозможно (например, по экономическим причинам) проводить измерения воздействия всех возможных агентов (терпенов, пыли, плесени, бактерий, эндотоксинов, микотоксинов и т. д.) в этой рабочей среде. Выполнимый метод может состоять в том, чтобы проследить развитие функции легких в продольном направлении. При обследовании рабочих лесопилки в отделе обрезки древесины исследовали функцию легких до и после рабочей недели, и не было обнаружено статистически значимого снижения. Однако последующее исследование, проведенное несколько лет спустя, показало, что у тех рабочих, у которых действительно наблюдалось численное снижение функции легких в течение рабочей недели, также наблюдалось ускоренное долгосрочное снижение функции легких. Это может указывать на то, что уязвимые субъекты могут быть обнаружены путем измерения изменений функции легких в течение рабочей недели.

 

Назад

Читать 11660 раз Последнее изменение: суббота, 23 июля 2022 г., 19:46