Понедельник, Февраль 28 2011 20: 15

Металлы и металлоорганические соединения

Оценить этот пункт
(0 голосов)

Токсичные металлы и металлоорганические соединения, такие как алюминий, сурьма, неорганический мышьяк, бериллий, кадмий, хром, кобальт, свинец, алкилсвинец, металлическая ртуть и ее соли, органические соединения ртути, никель, селен и ванадий, уже некоторое время признаются опасными. представляют потенциальную опасность для здоровья подвергающихся воздействию лиц. В некоторых случаях были изучены эпидемиологические исследования взаимосвязи между дозой внутреннего облучения и результирующим эффектом/реакцией у работников, подвергшихся профессиональному облучению, что позволило предложить биологические предельные значения, основанные на здоровье (см. таблицу 1).

Таблица 1. Металлы: контрольные значения и биологические предельные значения, предложенные Американской конференцией государственных специалистов по промышленной гигиене (ACGIH), Deutsche Forschungsgemeinschaft (DFG) и Lauwerys and Hoet (L и H)

Металл

Образец

Справка1 ценности*

Лимит ACGIH (BEI)2

Предел DFG (BAT)3

L и H предел4 (ТМПК)

алюминий

Сыворотка/плазма

Моча

<1 мкг/100 мл

<30 мкг/г

 

200 мкг/л (конец смены)

150 мкг/г (конец смены)

сурьма

Моча

<1 мкг/г

   

35 мкг/г (конец смены)

мышьяк

Моча (сумма неорганического мышьяка и метилированных метаболитов)

<10 мкг/г

50 мкг/г (конец рабочей недели)

 

50 мкг/г (если TWA: 0.05 мг/м3 ); 30 мкг/г (если TWA: 0.01 мг/м3 ) (конец смены)

бериллий

Моча

<2 мкг/г

     

Кадмий

Кровь

Моча

<0.5 мкг/100 мл

<2 мкг/г

0.5 мкг/100 мл

5 мкг/г

1.5 мкг/100 мл

15 мкг / л

0.5 мкг/100 мл

5 мкг/г

Chromium

(растворимые соединения)

Сыворотка/плазма

Моча

<0.05 мкг/100 мл

<5 мкг/г

30 мкг/г (конец смены, конец рабочей недели); 10 мкг/г (увеличение в течение смены)

 

30 мкг/г (конец смены)

Кобальт

Сыворотка/плазма

Кровь

Моча

<0.05 мкг/100 мл

<0.2 мкг/100 мл

<2 мкг/г

0.1 мкг/100 мл (конец смены, конец рабочей недели)

15 мкг/л (конец смены, конец рабочей недели)

0.5 мкг/100 мл (ЭКА)**

60 мкг/л (ЭКА)**

30 мкг/г (конец смены, конец рабочей недели)

Вести

Кровь (свинец)

ЗПП в крови

Моча (свинец)

АЛК моча

<25 мкг/100 мл

<40 мкг/100 мл крови

<2.5 мкг/г гемоглобина

<50 мкг/г

<4.5 мг/г

30 мкг/100 мл (не критично)

женщина <45 лет:

30 мкг/100 мл

мужчина: 70 мкг/100 мл

женщина <45 лет:

6 мг/л; самец: 15 мг/л

40 мкг/100 мл

40 мкг/100 мл крови или 3 мкг/г Hb

50 мкг/г

5 мг / г

Марганец

Кровь

Моча

<1 мкг/100 мл

<3 мкг/г

     

Ртуть неорганическая

Кровь

Моча

<1 мкг/100 мл

<5 мкг/г

1.5 мкг/100 мл (конец смены, конец рабочей недели)

35 мкг/г (до смены)

5 мкг/100 мл

200 мкг / л

2 мкг/100 мл (конец смены)

50 мкг/г (конец смены)

Никель

(растворимые соединения)

Сыворотка/плазма

Моча

<0.05 мкг/100 мл

<2 мкг/г

 

45 мкг/л (ЭКА)**

30 мкг/г

Селен

Сыворотка/плазма

Моча

<15 мкг/100 мл

<25 мкг/г

     

Ванадий

Сыворотка/плазма

Кровь

Моча

<0.2 мкг/100 мл

<0.1 мкг/100 мл

<1 мкг/г

 

70 мкг/г креатинина

50 мкг/г

* Показатели мочи указаны на грамм креатинина.
** EKA = Эквиваленты воздействия для канцерогенных материалов.
1 Взято с некоторыми изменениями из Lauwerys and Hoet 1993.
2 Из ACGIH 1996-97.
3 Из ДФГ 1996.
4 Ориентировочные максимально допустимые концентрации (TMPCs) взяты из Lauwerys and Hoet 1993.

Одна из проблем при поиске точных и точных измерений металлов в биологических материалах заключается в том, что интересующие металлические вещества часто присутствуют в среде в очень малых количествах. Когда биологический мониторинг состоит из отбора проб и анализа мочи, как это часто бывает, его обычно проводят на «точечных» пробах; Поэтому обычно целесообразна коррекция результатов разбавления мочи. Выражение результатов на грамм креатинина является наиболее часто используемым методом стандартизации. Анализы слишком разбавленной или слишком концентрированной мочи ненадежны и должны быть повторены.

алюминий

В промышленности рабочие могут подвергаться воздействию неорганических соединений алюминия при вдыхании и, возможно, при проглатывании пыли, содержащей алюминий. Алюминий плохо всасывается перорально, но его всасывание увеличивается при одновременном приеме цитратов. Скорость всасывания алюминия, депонированного в легких, неизвестна; биодоступность, вероятно, зависит от физико-химических характеристик частицы. Моча является основным путем выведения абсорбированного алюминия. Концентрация алюминия в сыворотке крови и в моче определяется как интенсивностью недавнего воздействия, так и нагрузкой алюминием на организм. У лиц, не подвергающихся профессиональному воздействию, концентрация алюминия в сыворотке обычно ниже 1 мкг/100 мл, а в моче редко превышает 30 мкг/г креатинина. У лиц с нормальной функцией почек экскреция алюминия с мочой является более чувствительным показателем воздействия алюминия, чем его концентрация в сыворотке/плазме.

Данные о сварщиках предполагают, что кинетика экскреции алюминия с мочой включает в себя двухэтапный механизм, первый из которых имеет биологический период полураспада около восьми часов. У рабочих, подвергшихся воздействию в течение нескольких лет, происходит некоторое накопление металла в организме, а концентрация алюминия в сыворотке крови и моче также зависит от содержания алюминия в организме. Алюминий хранится в нескольких отделах тела и выводится из этих отсеков с разной скоростью в течение многих лет. Высокое накопление алюминия в организме (костях, печени, головном мозге) обнаружено также у больных, страдающих почечной недостаточностью. Пациенты, находящиеся на диализе, подвержены риску костной токсичности и/или энцефалопатии, когда концентрация алюминия в их сыворотке хронически превышает 20 мкг/100 мл, но признаки токсичности можно обнаружить и при более низких концентрациях. Комиссия Европейских сообществ рекомендовала, чтобы для предотвращения токсичности алюминия концентрация алюминия в плазме никогда не превышала 20 мкг/100 мл; уровень выше 10 мкг/100 мл должен привести к увеличению частоты мониторинга и наблюдения за состоянием здоровья, а концентрация выше 6 мкг/100 мл следует рассматривать как свидетельство чрезмерного накопления алюминиевой нагрузки в организме.

сурьма

Неорганическая сурьма может попасть в организм при приеме внутрь или вдыхании, но скорость всасывания неизвестна. Абсорбированные пятивалентные соединения в основном выводятся с мочой, а трехвалентные соединения – с фекалиями. Удержание некоторых соединений сурьмы возможно после длительного воздействия. Нормальные концентрации сурьмы в сыворотке и моче, вероятно, ниже 0.1 мкг/100 мл и 1 мкг/г креатинина соответственно.

Предварительное исследование рабочих, подвергшихся воздействию пятивалентной сурьмы, показывает, что средневзвешенное по времени воздействие до 0.5 мг/м3 приведет к увеличению концентрации сурьмы в моче на 35 мкг/г креатинина в течение смены.

Неорганический мышьяк

Неорганический мышьяк может попадать в организм через желудочно-кишечный тракт и дыхательные пути. Поглощенный мышьяк в основном выводится через почки либо в неизмененном виде, либо после метилирования. Неорганический мышьяк также выделяется с желчью в виде комплекса глутатиона.

После однократного перорального приема низкой дозы арсената 25 и 45% введенной дозы выводится с мочой в течение одного и четырех дней соответственно.

После воздействия неорганического трех- или пятивалентного мышьяка экскреция с мочой состоит из 10–20 % неорганического мышьяка, 10–20 % монометиларсоновой кислоты и 60–80 % какодиловой кислоты. После профессионального воздействия неорганического мышьяка доля видов мышьяка в моче зависит от времени отбора проб.

Мышьякоорганические соединения, присутствующие в морских организмах, также легко всасываются в желудочно-кишечном тракте, но выводятся большей частью в неизмененном виде.

Долгосрочные токсические эффекты мышьяка (включая токсическое воздействие на гены) возникают в основном в результате воздействия неорганического мышьяка. Таким образом, биологический мониторинг направлен на оценку воздействия неорганических соединений мышьяка. С этой целью специфическое определение неорганического мышьяка (Asi), монометиларсоновая кислота (ММА) и какодиловая кислота (ДМА) в моче являются методом выбора. Однако, поскольку потребление морепродуктов все еще может влиять на скорость выделения DMA, рабочие, проходящие тестирование, должны воздерживаться от употребления морепродуктов в течение 48 часов до сбора мочи.

У лиц, подвергавшихся непрофессиональному воздействию неорганического мышьяка и недавно не потреблявших морские организмы, сумма этих трех видов мышьяка обычно не превышает 10 мкг/г креатинина в моче. Более высокие значения можно найти в географических районах, где питьевая вода содержит значительное количество мышьяка.

Было подсчитано, что при отсутствии потребления морепродуктов средневзвешенное по времени воздействие 50 и 200 мкг/м3 неорганический мышьяк приводит к средней концентрации суммы метаболитов в моче (Asi, ММА, ДМА) в пробах послесменной мочи 54 и 88 мкг/г креатинина соответственно.

В случае воздействия менее растворимых неорганических соединений мышьяка (например, арсенида галлия) определение мышьяка в моче будет отражать абсорбированное количество, а не общую дозу, доставленную в организм (легкие, желудочно-кишечный тракт).

Мышьяк в волосах является хорошим индикатором количества неорганического мышьяка, поглощенного в период роста волос. Органический мышьяк морского происхождения, по-видимому, не поглощается волосами в той же степени, что и неорганический мышьяк. Определение концентрации мышьяка по длине волос может дать ценную информацию о времени воздействия и продолжительности периода воздействия. Однако определение мышьяка в волосах не рекомендуется при загрязнении атмосферного воздуха мышьяком, так как будет невозможно отличить эндогенный мышьяк от мышьяка, отложившегося на волосах извне. Уровни мышьяка в волосах обычно ниже 1 мг/кг. Мышьяк в ногтях имеет такое же значение, как мышьяк в волосах.

Как и уровни в моче, уровни мышьяка в крови могут отражать количество недавно абсорбированного мышьяка, но связь между интенсивностью воздействия мышьяка и его концентрацией в крови еще не оценивалась.

бериллий

Вдыхание является основным путем поступления бериллия у лиц, подвергающихся профессиональному воздействию. Длительное воздействие может привести к накоплению значительных количеств бериллия в тканях легких и в скелете, в конечном месте хранения. Выведение абсорбированного бериллия происходит главным образом с мочой и лишь в незначительной степени с фекалиями.

Уровни бериллия можно определить в крови и моче, но в настоящее время эти анализы можно использовать только как качественные тесты для подтверждения воздействия металла, поскольку неизвестно, в какой степени на концентрации бериллия в крови и моче могут влиять недавние воздействием и количеством, уже накопленным в организме. Кроме того, трудно интерпретировать ограниченные опубликованные данные об экскреции бериллия у подвергшихся воздействию рабочих, поскольку обычно внешнее воздействие не было адекватно охарактеризовано, а аналитические методы имеют разную чувствительность и точность. Нормальные уровни бериллия в моче и сыворотке, вероятно, ниже
2 мкг/г креатинина и 0.03 мкг/100 мл соответственно.

Однако обнаружение нормальной концентрации бериллия в моче не является достаточным доказательством, чтобы исключить возможность воздействия бериллия в прошлом. Действительно, повышенное выделение бериллия с мочой не всегда обнаруживается у рабочих, даже если они подвергались воздействию бериллия в прошлом и, как следствие, у них развился легочный гранулематоз, заболевание, характеризующееся множественными гранулемами, т. е. узелками воспалительной ткани, обнаруживаемыми в легкие.

Кадмий

В профессиональных условиях всасывание кадмия происходит главным образом при вдыхании. Тем не менее, желудочно-кишечная абсорбция может в значительной степени влиять на внутреннюю дозу кадмия. Одной из важных характеристик кадмия является его длительный биологический период полураспада в организме, превышающий
10 лет. В тканях кадмий в основном связан с металлотионеином. В крови он в основном связывается с эритроцитами. Ввиду свойства кадмия накапливаться, любая программа биологического мониторинга групп населения, подвергающихся хроническому воздействию кадмия, должна пытаться оценивать как текущую, так и суммарную экспозицию.

С помощью нейтронной активации в настоящее время можно проводить в естественных условиях измерения количества кадмия, накопленного в основных местах хранения, почках и печени. Однако эти методы не используются рутинно. До сих пор при наблюдении за здоровьем рабочих в промышленности или в крупномасштабных исследованиях населения воздействие кадмия обычно оценивалось косвенно путем измерения содержания металла в моче и крови.

Детальная кинетика действия кадмия на человека еще полностью не выяснена, но для практических целей можно сформулировать следующие выводы о значении кадмия в крови и моче. У вновь подвергшихся воздействию рабочих уровень кадмия в крови прогрессивно возрастает и через XNUMX—XNUMX мес достигает концентрации, соответствующей интенсивности облучения. У лиц, постоянно подвергающихся воздействию кадмия в течение длительного периода, концентрация кадмия в крови отражает в основном среднее потребление за последние месяцы. Относительное влияние содержания кадмия в организме на уровень кадмия в крови может быть более важным у лиц, которые накопили большое количество кадмия и были удалены от воздействия. После прекращения воздействия уровень кадмия в крови снижается относительно быстро, с начальным периодом полураспада от двух до трех месяцев. Однако в зависимости от нагрузки на организм уровень может оставаться выше, чем у контрольных субъектов. Несколько исследований на людях и животных показали, что уровень кадмия в моче можно интерпретировать следующим образом: при отсутствии острого чрезмерного воздействия кадмия и до тех пор, пока не превышена накопительная способность коркового слоя почек или вызванная кадмием нефропатия еще не произошло, уровень кадмия в моче постепенно увеличивается с увеличением количества кадмия, депонированного в почках. При таких условиях, которые преобладают в основном у населения в целом и у рабочих, умеренно подвергающихся воздействию кадмия, существует значительная корреляция между кадмием в моче и кадмием в почках. Если воздействие кадмия было чрезмерным, участки связывания кадмия в организме постепенно насыщаются, и, несмотря на постоянное воздействие, концентрация кадмия в корковом веществе почек выравнивается.

Начиная с этой стадии, поглощенный кадмий больше не может задерживаться в этом органе и быстро выводится с мочой. Затем на этом этапе на концентрацию кадмия в моче влияют как нагрузка на организм, так и недавнее потребление. Если воздействие продолжается, у некоторых субъектов может развиться повреждение почек, что приводит к дальнейшему увеличению содержания кадмия в моче в результате высвобождения кадмия, хранящегося в почках, и подавления реабсорбции циркулирующего кадмия. Однако после эпизода острого воздействия уровень кадмия в моче может быстро и ненадолго повышаться, не отражая увеличения нагрузки на организм.

Недавние исследования показывают, что металлотионеин в моче имеет такое же биологическое значение. Наблюдалась хорошая корреляция между концентрацией металлотионеина и кадмия в моче независимо от интенсивности воздействия и состояния почечной функции.

Нормальные уровни кадмия в крови и моче обычно ниже 0.5 мкг/100 мл.
2 мкг/г креатинина соответственно. У курящих они выше, чем у некурящих. У рабочих, подвергающихся хроническому воздействию кадмия, риск почечной недостаточности незначителен, если уровень кадмия в моче никогда не превышает 10 мкг/г креатинина. Следует предотвращать накопление кадмия в организме, которое может привести к экскреции с мочой, превышающей этот уровень. Тем не менее, некоторые данные свидетельствуют о том, что некоторые почечные маркеры (значение которых для здоровья до сих пор неизвестно) могут стать ненормальными при значениях кадмия в моче между 3 и 5 мкг/г креатинина, поэтому кажется разумным предложить нижний биологический предел значения 5 мкг/г креатинина. . Для крови был предложен биологический предел 0.5 мкг/100 мл при длительном воздействии. Однако возможно, что у населения в целом, подвергающегося воздействию кадмия через продукты питания или табак, или у пожилых людей, которые обычно страдают от снижения почечной функции, критический уровень в коре почек может быть ниже.

Chromium

Токсичность хрома связана главным образом с его шестивалентными соединениями. Абсорбция шестивалентных соединений относительно выше, чем абсорбция трехвалентных соединений. Выведение происходит в основном с мочой.

У лиц, не подвергающихся профессиональному воздействию хрома, концентрация хрома в сыворотке крови и моче обычно не превышает 0.05 мкг/100 мл и 2 мкг/г креатинина соответственно. Недавнее воздействие растворимых солей шестивалентного хрома (например, в гальванических установках и сварочных аппаратах из нержавеющей стали) можно оценить путем мониторинга уровня хрома в моче в конце рабочей смены. Исследования, проведенные несколькими авторами, предполагают следующую зависимость: воздействие TWA 0.025 или 0.05 мг/м3 шестивалентный хром связан со средней концентрацией в конце периода воздействия 15 или 30 мкг/г креатинина соответственно. Это отношение справедливо только на групповой основе. После воздействия 0.025 мг/м3 шестивалентного хрома, нижнее значение 95% доверительного интервала составляет примерно 5 мкг/г креатинина. Другое исследование среди сварщиков нержавеющей стали показало, что концентрация хрома в моче порядка 40 мкг/л соответствует среднему воздействию 0.1 мг/м.3 триоксид хрома.

Шестивалентный хром легко проникает через клеточные мембраны, но внутри клетки восстанавливается до трехвалентного хрома. Концентрация хрома в эритроцитах может быть показателем интенсивности воздействия шестивалентного хрома в течение жизни эритроцитов, но это не относится к трехвалентному хрому.

В какой степени мониторинг хрома в моче полезен для оценки риска для здоровья, еще предстоит оценить.

Кобальт

После всасывания при вдыхании и в некоторой степени через рот кобальт (с биологическим периодом полураспада в несколько дней) выводится в основном с мочой. Воздействие растворимых соединений кобальта приводит к увеличению концентрации кобальта в крови и моче.

На концентрацию кобальта в крови и моче в основном влияет недавнее воздействие. У лиц, не подвергающихся профессиональному воздействию, содержание кобальта в моче обычно ниже 2 мкг/г креатинина, а в сыворотке/плазме — ниже 0.05 мкг/100 мл.

Для воздействия TWA 0.1 мг/м3 и 0.05 мг/м3, средние уровни в моче колеблются от 30 до 75 мкг/л и от 30 до 40 мкг/л соответственно (используя пробы в конце смены). Время отбора проб важно, так как в течение рабочей недели наблюдается прогрессивное повышение уровня кобальта в моче.

У рабочих, подвергшихся воздействию оксидов кобальта, солей кобальта или порошка металлического кобальта на нефтеперерабатывающем заводе, TWA составляет 0.05 мг/м.3 было обнаружено, что средняя концентрация кобальта в моче, собранной в конце смены в понедельник и пятницу, составляет 33 и 46 мкг/г креатинина соответственно.

Вести

Неорганический свинец, кумулятивный токсин, поглощаемый легкими и желудочно-кишечным трактом, несомненно, является наиболее изученным металлом; таким образом, из всех металлических загрязнителей надежность методов оценки недавнего воздействия или нагрузки на организм биологическими методами является наибольшей для свинца.

В условиях стационарного воздействия свинец в цельной крови считается лучшим индикатором концентрации свинца в мягких тканях и, следовательно, недавнего воздействия. Однако увеличение уровня свинца в крови (Pb-B) становится все меньше с увеличением уровня воздействия свинца. При длительном профессиональном воздействии прекращение воздействия не обязательно связано с возвращением Pb-B к уровню до воздействия (фоновому) из-за непрерывного выделения свинца из тканевых депо. Нормальные уровни свинца в крови и моче обычно ниже 20 мкг/100 мл и 50 мкг/г креатинина соответственно. На эти уровни могут влиять пищевые привычки и место жительства субъектов. ВОЗ предложила 40 мкг/100 мл в качестве максимально переносимой индивидуальной концентрации свинца в крови для взрослых мужчин и 30 мкг/100 мл для женщин детородного возраста. У детей более низкие концентрации свинца в крови связаны с неблагоприятным воздействием на центральную нервную систему. Уровень свинца в моче увеличивается экспоненциально с увеличением содержания Pb-B, и в стационарном состоянии это в основном отражение недавнего воздействия.

Количество свинца, выводимого с мочой после введения хелатирующего агента (например, CaEDTA), отражает мобилизуемый пул свинца. У контрольных субъектов количество свинца, выделяемого с мочой в течение 24 часов после внутривенного введения одного грамма ЭДТА, обычно не превышает 600 мкг. Похоже, что при постоянном воздействии значения хелатируемого свинца в основном отражают запасы свинца в крови и мягких тканях, и лишь небольшая часть приходится на кости.

Рентгенофлуоресцентный метод был разработан для измерения концентрации свинца в костях (фаланги пальцев, большеберцовые кости, пяточные кости, позвонки), но в настоящее время предел обнаружения этого метода ограничивает его использование лицами, подвергающимися профессиональному облучению.

Определение содержания свинца в волосах было предложено в качестве метода оценки мобилизуемого пула свинца. Однако в профессиональных условиях трудно отличить свинец, эндогенно включенный в волосы, от свинца, просто адсорбированного на их поверхности.

Определение концентрации свинца в околопульпарном дентине молочных зубов (молочных зубов) использовалось для оценки воздействия свинца в раннем детстве.

Параметры, отражающие влияние свинца на биологические процессы, также могут быть использованы для оценки интенсивности воздействия свинца. В настоящее время используются следующие биологические параметры: копропорфирин в моче (COPRO-U), дельта-аминолаевулиновая кислота в моче (ALA-U), протопорфирин эритроцитов (EP, или протопорфирин цинка), дельта-аминолаевулиновая кислота дегидратаза (ALA-D), и пиримидин-5'-нуклеотидаза (P5N) в эритроцитах. В стационарных ситуациях изменения этих параметров положительно (COPRO-U, ALA-U, EP) или отрицательно (ALA-D, P5N) коррелируют с уровнями свинца в крови. Экскреция с мочой КОПРО (преимущественно изомера III) и АЛК начинает увеличиваться, когда концентрация свинца в крови достигает значения около 40 мкг/100 мл. Протопорфирин эритроцитов начинает значительно повышаться при уровне свинца в крови около 35 мкг/100 мл у мужчин и 25 мкг/100 мл у женщин. После прекращения профессионального воздействия свинца протопорфирин эритроцитов остается повышенным непропорционально текущему уровню свинца в крови. В этом случае уровень ВП лучше коррелирует с количеством хелатируемого свинца, выделяемого с мочой, чем со свинцом в крови.

Небольшой дефицит железа также вызывает повышенную концентрацию протопорфирина в эритроцитах. Ферменты эритроцитов, ALA-D и P5N, очень чувствительны к ингибирующему действию свинца. В диапазоне уровней свинца в крови от 10 до 40 мкг/100 мл наблюдается тесная отрицательная корреляция между активностью обоих ферментов и свинцом в крови.

Алкил свинец

В некоторых странах тетраэтилсвинец и тетраметилсвинец используются в качестве антидетонаторов в автомобильном топливе. Свинец в крови не является хорошим индикатором воздействия тетраалкилсвинца, в то время как содержание свинца в моче, по-видимому, полезно для оценки риска передозировки.

Марганец

В производственных условиях марганец поступает в организм преимущественно через легкие; всасывание через желудочно-кишечный тракт низкое и, вероятно, зависит от гомеостатического механизма. Выведение марганца происходит с желчью, лишь небольшое количество выводится с мочой.

Нормальные концентрации марганца в моче, крови, сыворотке или плазме обычно составляют менее 3 мкг/г креатинина, 1 мкг/100 мл и 0.1 мкг/100 мл соответственно.

Похоже, что на индивидуальной основе ни марганец в крови, ни марганец в моче не коррелируют с параметрами внешнего воздействия.

По-видимому, прямой связи между концентрацией марганца в биологическом материале и тяжестью хронического отравления марганцем нет. Возможно, что после профессионального воздействия марганца ранние неблагоприятные воздействия на центральную нервную систему могут быть обнаружены уже при биологических уровнях, близких к нормальным значениям.

Металлическая ртуть и ее неорганические соли

Вдыхание представляет собой основной путь поступления металлической ртути. Абсорбция металлической ртути в желудочно-кишечном тракте незначительна. Неорганические соли ртути могут всасываться через легкие (вдыхание аэрозоля неорганической ртути), а также через желудочно-кишечный тракт. Возможна кожная абсорбция металлической ртути и ее неорганических солей.

Биологический период полураспада ртути составляет порядка двух месяцев в почках, но гораздо дольше в центральной нервной системе.

Неорганическая ртуть выводится в основном с фекалиями и мочой. Небольшие количества выводятся через слюнные, слезные и потовые железы. Ртуть также можно обнаружить в выдыхаемом воздухе в течение нескольких часов после контакта с парами ртути. В условиях хронического воздействия существует, по крайней мере, на групповой основе, зависимость между интенсивностью недавнего воздействия паров ртути и концентрацией ртути в крови или моче. Ранние исследования, в ходе которых статические пробы использовались для мониторинга общего воздуха в рабочих помещениях, показали, что средняя концентрация ртути в воздухе, ртути в воздухе, 100 мкг/мXNUMX3 соответствует средним уровням ртути в крови (Hg-B) и в моче (Hg-U) 6 мкг Hg/100 мл и от 200 до 260 мкг/л соответственно. Более поздние наблюдения, особенно те, которые оценивают вклад внешней микросреды, близкой к дыхательным путям рабочих, показывают, что воздух (мкг/м3Соотношение ртути )/моча (мкг/г креатинина)/кровь (мкг/100 мл) составляет примерно 1/1.2/0.045. Несколько эпидемиологических исследований рабочих, подвергшихся воздействию паров ртути, показали, что при длительном воздействии критические уровни воздействия Hg-U и Hg-B составляют приблизительно 50 мкг/г креатинина и 2 мкг/100 мл соответственно.

Однако некоторые недавние исследования показывают, что признаки неблагоприятного воздействия на центральную нервную систему или почки уже можно наблюдать при уровне ртути в моче ниже 50 мкг/г креатинина.

Нормальные уровни креатинина в моче и крови обычно ниже 5 мкг/г и 1 мкг/100 мл соответственно. На эти значения может влиять потребление рыбы и количество пломб из ртутной амальгамы в зубах.

Органические соединения ртути

Органические соединения ртути легко всасываются всеми путями. В крови они находятся в основном в эритроцитах (около 90%). Однако необходимо проводить различие между короткоцепочечными алкильными соединениями (в основном метилртутью), которые очень стабильны и устойчивы к биотрансформации, и арильными или алкоксиалкильными производными, которые высвобождают неорганическую ртуть. в естественных условиях. Для последних соединений концентрация ртути в крови, а также в моче, вероятно, указывает на интенсивность воздействия.

В стационарных условиях содержание ртути в цельной крови и в волосах коррелирует с содержанием метилртути в организме и с риском появления признаков отравления метилртутью. У лиц, подвергающихся хроническому воздействию алкилртути, наиболее ранние признаки интоксикации (парестезии, нарушения чувствительности) могут возникать при уровне ртути в крови и волосах выше 20 мкг/100 мл и 50 мкг/г соответственно.

Никель

Никель не является кумулятивным токсином, и почти все поглощенное количество выводится в основном с мочой с биологическим периодом полувыведения от 17 до 39 часов. У лиц, не подвергающихся профессиональному воздействию, концентрация никеля в моче и плазме обычно ниже 2 мкг/г креатинина и 0.05 мкг/100 мл соответственно.

Концентрация никеля в плазме и моче является хорошим индикатором недавнего контакта с металлическим никелем и его растворимыми соединениями (например, при гальванике никеля или производстве никелевых батарей). Значения в пределах нормы обычно указывают на незначительное воздействие, а повышенные значения указывают на чрезмерное воздействие.

Для рабочих, подвергающихся воздействию растворимых соединений никеля, предварительно предложено биологическое предельное значение креатинина 30 мкг/г (конец смены) для никеля в моче.

У рабочих, подвергшихся воздействию малорастворимых или нерастворимых соединений никеля, повышенные уровни в жидкостях организма обычно указывают на значительную абсорбцию или постепенное высвобождение количества, хранящегося в легких; однако значительные количества никеля могут откладываться в дыхательных путях (полости носа, легкие) без значительного повышения его концентрации в плазме или моче. Поэтому «нормальные» значения следует интерпретировать с осторожностью, и они не обязательно указывают на отсутствие риска для здоровья.

Селен

Селен является важным микроэлементом. Растворимые соединения селена легко всасываются через легкие и желудочно-кишечный тракт. Селен в основном выводится с мочой, но при очень высоком воздействии он также может выделяться с выдыхаемым воздухом в виде паров диметилселенида. Нормальные концентрации селена в сыворотке и моче зависят от суточного потребления, которое может значительно различаться в разных частях мира, но обычно ниже 15 мкг/100 мл и 25 мкг/г креатинина соответственно. Концентрация селена в моче в основном является отражением недавнего воздействия. Связь между интенсивностью воздействия и концентрацией селена в моче до сих пор не установлена.

По-видимому, концентрация в плазме (или сыворотке) и моче в основном отражает краткосрочное воздействие, тогда как содержание селена в эритроцитах отражает более длительное воздействие.

Измерение селена в крови или моче дает некоторую информацию о статусе селена. В настоящее время он чаще используется для обнаружения дефицита, а не передержки. Поскольку имеющиеся данные о риске для здоровья при длительном воздействии селена и взаимосвязи между потенциальным риском для здоровья и уровнями в биологических средах слишком ограничены, нельзя предложить никакого биологического порогового значения.

Ванадий

В промышленности ванадий всасывается в основном легочным путем. Пероральная абсорбция кажется низкой (менее 1%). Ванадий выводится с мочой с биологическим периодом полураспада от 20 до 40 часов и в незначительной степени с фекалиями. Ванадий в моче, по-видимому, является хорошим индикатором недавнего воздействия, но взаимосвязь между поглощением и уровнями ванадия в моче еще недостаточно установлена. Было высказано предположение, что разница между концентрацией ванадия в моче после смены и до смены позволяет оценить воздействие в течение рабочего дня, тогда как содержание ванадия в моче через два дня после прекращения воздействия (в понедельник утром) будет отражать накопление металла в организме. . У лиц, не подвергающихся профессиональному воздействию, концентрация ванадия в моче обычно ниже 1 мкг/г креатинина. Предварительное биологическое предельное значение креатинина 50 мкг/г (конец смены) было предложено для ванадия в моче.

 

Назад

Читать 8110 раз Последнее изменение четверг, 13 октября 2011 г., 20:21

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Справочные материалы по биологическому мониторингу

Альчини, Д., М. Марони, А. Коломби, Д. Шаиз и В. Фоа. 1988. Оценка стандартизированного европейского метода определения активности холинэстеразы в плазме и эритроцитах. Мед Лаворо 79(1):42-53.

Алессио, Л., А. Берлин и В. Фоа. 1987. Факторы влияния, кроме воздействия, на уровни биологических индикаторов. В книге «Химические опасности на производстве и окружающей среде» под редакцией В. Фоа, Ф. А. Эммета, М. Марони и А. Коломби. Чичестер: Уайли.

Алессио, Л., Л. Апостоли, Л. Минойя и Э. Саббиони. 1992. От макродоз к микродозам: справочные значения для токсичных металлов. В книге «Наука об окружающей среде в целом» под редакцией Л. Алессио, Л. Апостоли, Л. Минойи и Э. Саббиони. Нью-Йорк: Elsevier Science.

Американская конференция государственных специалистов по промышленной гигиене (ACGIH). 1997. 1996-1997 Пороговые значения для химических веществ и физических агентов и индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

—. 1995. 1995-1996 Пороговые значения для химических веществ и физических агентов и индексы биологического воздействия. Цинциннати, Огайо: ACGIH.

Аугустинссон, КБ. 1955. Нормальные изменения активности холинэстеразы в крови человека. Acta Physiol Scand 35:40-52.

Барке, А., К. Моргаде и К. Д. Пфаффенбергер. 1981. Определение хлорорганических пестицидов и метаболитов в питьевой воде, крови человека, сыворотке и жировой ткани. J Toxicol Environ Health 7:469-479.

Берлин А., Р. Е. Йодайкен и Б. А. Хенман. 1984. Оценка токсичных агентов на рабочем месте. Роли атмосферного и биологического мониторинга. Материалы Международного семинара, проходившего в Люксембурге 8-12 декабря. 1980. Ланкастер, Великобритания: Мартинус Нийхофф.

Бернар, А. и Р. Ловерис. 1987. Общие принципы биологического мониторинга воздействия химических веществ. В Биологическом мониторинге воздействия химических веществ: органические соединения, под редакцией М. Х. Хо и К. Х. Диллона. Нью-Йорк: Уайли.

Брюньоне, Ф., Л. Пербеллини, Э. Гаффури и П. Апостоли. 1980. Биомониторинг воздействия промышленных растворителей на альвеолярный воздух рабочих. Int Arch Occup Environ Health 47: 245-261.

Буллок, Д.Г., Н.Дж. Смит и Т.П. Уайтхед. 1986. Внешняя оценка качества анализов свинца в крови. Клин Хим 32:1884-1889.

Каносса, Э., Г. Ангиули, Г. Гарасто, А. Буццони и Э. Де Роса. 1993. Показатели доз у сельскохозяйственных рабочих, подвергшихся воздействию манкоцеба. Мед Лаворо 84(1):42-50.

Катеначчи, Г., Ф. Барбьери, М. Берсани, А. Фериоли, Д. Коттика и М. Марони. 1993. Биологический мониторинг воздействия атразина на человека. Токсикол Письма 69: 217-222.

Чалермчайкит Т., Л. Дж. Феличе и М. Дж. Мерфи. 1993. Одновременное определение восьми антикоагулянтных родентицидов в сыворотке крови и печени. Дж. Анальный токсин 17:56-61.

Колозио, К., Ф. Барбьери, М. Берсани, Х. Шлитт и М. Марони. 1993. Маркеры профессионального воздействия пентахлорфенола. B Environ Contam Tox 51:820-826.

Комиссия Европейских Сообществ (CEC). 1983. Биологические индикаторы для оценки воздействия промышленных химикатов на человека. В EUR 8676 EN под редакцией Л. Алессио, А. Берлина, Р. Роя и М. Бони. Люксембург: ЦИК.

—. 1984. Биологические индикаторы для оценки воздействия промышленных химикатов на человека. В EUR 8903 EN под редакцией Л. Алессио, А. Берлина, Р. Роя и М. Бони. Люксембург: ЦИК.

—. 1986. Биологические индикаторы для оценки воздействия промышленных химикатов на человека. В EUR 10704 EN под редакцией Л. Алессио, А. Берлина, Р. Роя и М. Бони. Люксембург: ЦИК.

—. 1987. Биологические индикаторы для оценки воздействия промышленных химикатов на человека. В EUR 11135 EN под редакцией Л. Алессио, А. Берлина, Р. Роя и М. Бони. Люксембург: ЦИК.

—. 1988а. Биологические индикаторы для оценки воздействия промышленных химикатов на человека. В EUR 11478 EN под редакцией Л. Алессио, А. Берлина, Р. Роя и М. Бони. Люксембург: ЦИК.

—. 1988б. Показатели для оценки воздействия и биологического действия генотоксических химических веществ. 11642 евро Люксембург: CEC.

—. 1989. Биологические индикаторы для оценки воздействия промышленных химикатов на человека. В EUR 12174 EN под редакцией Л. Алессио, А. Берлина, Р. Роя и М. Бони. Люксембург: ЦИК.

Cranmer, M. 1970. Определение п-нитрофенола в моче человека. B Environ Contam Tox 5:329-332.

Дейл, В.Е., А. Керли и К. Куэто. 1966. Экстрагируемые гексаном хлорированные инсектициды в крови человека. Науки о жизни 5:47-54.

Доусон, Дж. А., Д. Ф. Хит, Дж. А. Роуз, Э. М. Тейн и Дж. Б. Уорд. 1964. Экскреция человеком фенола, полученного in vivo из 2-изопропоксифенил-N-метилкарбамата. Бык ВОЗ 30:127-134.

ДеБернардис, М.Дж. и В.А. Варгин. 1982. Высокоэффективное жидкостное хроматографическое определение карбарила и 1-нафтола в биологических жидкостях. J Хроматогр 246:89-94.

Deutsche Forschungsgemeinschaft (DFG). 1996. Максимальные концентрации на рабочем месте (MAK) и значения биологической устойчивости (CBAT) для рабочих материалов. Отчет №28.ВЧ. Вайнхайм, Германия: Комиссия по расследованию опасности для здоровья от химических соединений в рабочей зоне.

—. 1994. Список значений MAK и BAT 1994. Вайнхайм, Германия: VCH.

Диллон, Х.К. и М.Х. Хо. 1987. Биологический мониторинг воздействия фосфорорганических пестицидов. В Биологическом мониторинге воздействия химических веществ: органические соединения, под редакцией Х.К. Диллона и М.Х. Хо. Нью-Йорк: Уайли.

Дрейпер, ВМ. 1982. Многокомпонентная процедура для определения и подтверждения кислотных остатков гербицидов в моче человека. J Сельскохозяйственная пищевая химия 30:227-231.

Эдсфорт, К.В., П.С. Брэгт и Н.Дж. ван Ситтер. 1988. Исследования дозовыделения человека с пиретроидными инсектицидами циперметрином и альфациперметрином: актуальность для биологического мониторинга. Ксенобиотика 18:603-614.

Эллман, Г.Л., К.Д. Кортни, В. Андрес и Р.М. Фезерстоун. 1961. Новое и быстрое колориметрическое определение активности ацетилхолинэстеразы. Биохим Фармакол 7:88-95.

Гейдж, Дж. К. 1967. Значение измерения активности холинэстеразы в крови. Остаток Откр. 18:159-167.

Исполнительный директор по охране труда и технике безопасности (HSE). 1992. Биологический мониторинг химического воздействия на рабочем месте. Руководство EH 56. Лондон: HMSO.

Международное агентство по изучению рака (IARC). 1986. Монографии МАИР по оценке канцерогенных рисков для человека – обновление (избранных) монографий МАИР с 1 по 42 тома. Приложение 6: Генетические и родственные эффекты; Дополнение 7: Общая оценка канцерогенности. Лион: МАИР.

—. 1987. Метод обнаружения агентов, повреждающих ДНК у людей: применение в эпидемиологии и профилактике рака. Научные публикации IARC, № 89, под редакцией Х. Барча, К. Хемминки и И. К. О'Нила. Лион: МАИР.

—. 1992. Механизмы канцерогенеза при выявлении риска. Научные публикации IARC, № 116, под редакцией Х. Вайнио. Лион: МАИР.

—. 1993. Аддукты ДНК: идентификация и биологическое значение. Научные публикации IARC, № 125, под редакцией К. Хемминки. Лион: МАИР.

Колмодин-Хедман, Б., Свенсон А., Акерблом М. 1982. Профессиональное воздействие некоторых синтетических пиретроидов (перметрин и фенвалерат). Арх Токсикол 50:27-33.

Курттио, П., Т. Вартиайнен и К. Саволайнен. 1990. Экологический и биологический мониторинг воздействия этиленбисдитиокарбаматных фунгицидов и этилентиомочевины. Br J Ind Med 47: 203-206.

Лоуерис, Р. и П. Хоет. 1993. Промышленное химическое воздействие: Руководство по биологическому мониторингу. Бока-Ратон: Льюис.

Законы, ERJ. 1991. Диагностика и лечение отравлений. В Справочнике по токсикологии пестицидов под редакцией WJJ Hayes и ERJ Laws. Нью-Йорк: Академическая пресса.

Лукас, А. Д., А. Д. Джонс, М. Х. Гудроу и С. Г. Сайз. 1993. Определение метаболитов атразина в моче человека: разработка биомаркера воздействия. Chem Res Toxicol 6:107-116.

Марони, М., А. Фериоли, А. Фейт и Ф. Барбьери. 1992. Messa a punto del rischio tossicologico per l'uomo connesso alla produzione ed uso di antiparassitari. Назад Огги 4:72-133.

Рид, С.Дж. и Р.Р. Уоттс. 1981. Метод определения остатков диаклилфосфата в моче. J Анальный токсикол 5.

Рихтер, Э. 1993. Фосфорорганические пестициды: многонациональное эпидемиологическое исследование. Копенгаген: Программа гигиены труда и Европейское региональное бюро ВОЗ.

Шафик, М.Т., Д.Е. Брэдуэй, Х.Р. Энос и А.Р. Йобс. 1973а. Воздействие на человека фосфорорганических пестицидов: модифицированная процедура газожидкостного хроматографического анализа алкилфосфатных метаболитов в моче. J Agricul Food Chem 21:625-629.

Шафик, М.Т., Х.К. Салливан и Х.Р. Энос. 1973б. Процедура с несколькими остатками для гало- и нитрофенолов: Измерения воздействия биоразлагаемых пестицидов, дающих эти соединения в виде метаболитов. Дж. Сельскохозяйственная пищевая химия 21:295-298.

Саммерс, Лос-Анджелес. 1980. Гербициды Bipyridylium. Лондон: Академическая пресса.

Tordoir, WF, M Maroni и F He. 1994. Наблюдение за здоровьем работников пестицидов: руководство для специалистов по гигиене труда. Токсикология 91.

Управление по оценке технологий США. 1990. Генетический мониторинг и скрининг на рабочем месте. ОТА-БА-455. Вашингтон, округ Колумбия: Типография правительства США.

ван Ситтер, Нью-Джерси и Э. П. Дюма. 1990. Полевое исследование экспозиции и воздействия фосфорорганических пестицидов на здоровье для сохранения регистрации на Филиппинах. Мед Лаворо 81:463-473.

ван Ситтер, штат Нью-Джерси, и В. Ф. Тордуар. 1987. Олдрин и дильдрин. В «Биологических индикаторах для оценки воздействия промышленных химикатов на человека» под редакцией Л. Алессио, А. Берлина, М. Бони и Р. Роя. Люксембург: ЦИК.

Verberk, MM, DH Brouwer, EJ Brouer, and DP Bruyzeel. 1990. Влияние пестицидов на здоровье луковичных культур в Голландии. Мед Лаворо 81(6):530-541.

Вестгард, Дж. О., П. Л. Барри, М. Р. Хант и Т. Грот. 1981. Многоуровневая диаграмма Шухарта для контроля качества в клинической химии. Клин Хим 27:493-501.

Уайтхед, ТП. 1977. Контроль качества в клинической химии. Нью-Йорк: Уайли.

Всемирная организация здравоохранения (ВОЗ). 1981. Внешняя оценка качества медицинских лабораторий. Отчеты и исследования ЕВРО 36. Копенгаген: Европейское региональное бюро ВОЗ.

—. 1982а. Полевое обследование воздействия пестицидов, стандартный протокол. Документ. № VBC/82.1 Женева: ВОЗ.

—. 1982б. Рекомендуемые ограничения для здоровья при профессиональном воздействии пестицидов. Серия технических отчетов, № 677. Женева: ВОЗ.

—. 1994. Руководство по биологическому мониторингу химического воздействия на рабочем месте. Том. 1. Женева: ВОЗ.