Понедельник, Декабрь 20 2010 19: 18

Токсикокинетика

Оценить этот пункт
(27 голосов)

Организм человека представляет собой сложную биологическую систему на различных уровнях организации, от молекулярно-клеточного до тканей и органов. Организм представляет собой открытую систему, обменивающуюся веществом и энергией с окружающей средой посредством многочисленных биохимических реакций в динамическом равновесии. Окружающая среда может быть загрязнена или загрязнена различными токсикантами.

Проникновение молекул или ионов токсикантов из производственной или жизненной среды в такую ​​жестко скоординированную биологическую систему может обратимо или необратимо нарушать нормальные клеточные биохимические процессы или даже повреждать и разрушать клетку (см. «Клеточное повреждение и клеточная гибель»).

Проникновение токсиканта из окружающей среды к местам его токсического действия внутрь организма можно разделить на три фазы:

  1. Фаза воздействия охватывает все процессы, происходящие между различными токсикантами и/или влиянием на них факторов окружающей среды (свет, температура, влажность и др.). Могут происходить химические превращения, деградация, биоразложение (микроорганизмами), а также распад токсикантов.
  2. Токсикокинетическая фаза включает всасывание токсикантов в организм и все процессы, которые следуют за транспортом жидкостями организма, распределением и накоплением в тканях и органах, биотрансформацией в метаболиты и элиминацией (выведением) токсикантов и/или метаболитов из организма.
  3. Токсикодинамическая фаза относится к взаимодействию токсикантов (молекул, ионов, коллоидов) со специфическими местами действия на клетках или внутри клеток — рецепторами, вызывающими в конечном итоге токсический эффект.

 

Здесь мы сосредоточим наше внимание исключительно на токсикокинетических процессах внутри организма человека при воздействии токсикантов окружающей среды.

Молекулы или ионы токсикантов, присутствующие в окружающей среде, будут проникать в организм через кожу и слизистые оболочки или эпителиальные клетки дыхательных и желудочно-кишечных трактов в зависимости от точки входа. Это означает, что молекулы и ионы токсикантов должны проникать через клеточные мембраны этих биологических систем, а также через сложную систему эндомембран внутри клетки.

Все токсикокинетические и токсикодинамические процессы протекают на молекулярно-клеточном уровне. На эти процессы влияет множество факторов, которые можно разделить на две основные группы:

  • химический состав и физико-химические свойства токсикантов
  • строение клетки, особенно свойства и функции мембран, окружающих клетку, и ее внутренних органелл.

 

Физико-химические свойства токсикантов

В 1854 г. русский токсиколог Е. В. Пеликан начал изучение связи между химическим строением вещества и его биологической активностью — отношения структура-активность (САР). Химическая структура непосредственно определяет физико-химические свойства, часть из которых отвечает за биологическую активность.

Для определения химической структуры в качестве дескрипторов могут быть выбраны многочисленные параметры, которые можно разделить на различные группы:

1. Физико-химические:

  • общие - температура плавления, температура кипения, давление пара, константа диссоциации (pKa)
  • электрические — потенциал ионизации, диэлектрическая проницаемость, дипольный момент, отношение массы к заряду и т. д.
  • квантовая химия — атомный заряд, энергия связи, резонансная энергия, электронная плотность, молекулярная реакционная способность и т. д.

 

 2. Стерик: молекулярный объем, форма и площадь поверхности, форма субструктуры, молекулярная реакционная способность и т. д.
 3. Структурный: количество связей количество колец (в полициклических соединениях), степень разветвления и т. д.

 

Для каждого токсиканта необходимо подобрать набор дескрипторов, относящихся к тому или иному механизму действия. Однако с токсикокинетической точки зрения для всех токсикантов имеют значение два параметра:

  • Коэффициент распределения Нернста (P) устанавливает растворимость молекул токсикантов в двухфазной системе октанол (масло)-вода, коррелируя с их липо- или гидрорастворимостью. Этот параметр будет сильно влиять на распределение и накопление токсических молекул в организме.
  • Константа диссоциации (pKa) определяет степень ионизации (электролитической диссоциации) молекул токсиканта на заряженные катионы и анионы при данном рН. Эта константа представляет собой рН, при котором достигается 50% ионизация. Молекулы могут быть липофильными или гидрофильными, но ионы растворимы исключительно в воде жидкостей и тканей организма. Зная pKa можно рассчитать степень ионизации вещества для каждого рН по уравнению Гендерсона-Гассельбаха.

 

Для вдыхаемой пыли и аэрозолей размер частиц, форма, площадь поверхности и плотность также влияют на их токсикокинетику и токсикодинамику.

Структура и свойства мембран

Эукариотическая клетка организма человека и животных окружена цитоплазматической мембраной, регулирующей транспорт веществ и поддерживающей клеточный гомеостаз. Органеллы клетки (ядра, митохондрии) также имеют мембраны. Цитоплазма клетки разделена сложными мембранными структурами, эндоплазматическим ретикулумом и комплексом Гольджи (эндомембранами). Все эти мембраны структурно схожи, но различаются по содержанию липидов и белков.

Структурный каркас мембран представляет собой бислой липидных молекул (фосфолипиды, сфинголипиды, холестерин). Основой молекулы фосфолипидов является глицерин, две его -ОН-группы которого этерифицированы алифатическими жирными кислотами с 16-18 атомами углерода, а третья группа этерифицирована фосфатной группой и азотистым соединением (холин, этаноламин, серин). В сфинголипидах основанием является сфингозин.

Молекула липидов амфипатична, поскольку состоит из полярной гидрофильной «головки» (аминоспирт, фосфат, глицерин) и неполярного двойного «хвоста» (жирные кислоты). Липидный бислой устроен так, что гидрофильные головки составляют внешнюю и внутреннюю поверхность мембраны, а липофильные хвосты вытянуты внутрь мембраны, содержащей воду, различные ионы и молекулы.

Белки и гликопротеины встраиваются в липидный бислой (внутренние белки) или прикрепляются к поверхности мембраны (внешние белки). Эти белки способствуют структурной целостности мембраны, но они также могут выступать в качестве ферментов, носителей, стенок пор или рецепторов.

Мембрана представляет собой динамическую структуру, которая может разрушаться и восстанавливаться с различным соотношением липидов и белков в соответствии с функциональными потребностями.

Регуляция транспорта веществ в клетку и из клетки представляет собой одну из основных функций наружной и внутренней мембран.

Некоторые липофильные молекулы проходят непосредственно через липидный бислой. Гидрофильные молекулы и ионы транспортируются через поры. Мембраны реагируют на изменение условий, открывая или закрывая определенные поры разного размера.

В транспорте веществ, в том числе токсикантов, через мембраны участвуют следующие процессы и механизмы:

  • диффузия через липидный бислой
  • диффузия через поры
  • транспорт переносчиком (облегченная диффузия).

 

Активные процессы:

  • активный транспорт переносчиком
  • эндоцитоз (пиноцитоз).

 

Вещание

Это представляет собой движение молекул и ионов через липидный бислой или поры из области высокой концентрации или высокого электрического потенциала в область низкой концентрации или потенциала («нисходящий»). Разница в концентрации или электрическом заряде является движущей силой, влияющей на интенсивность потока в обоих направлениях. В равновесном состоянии приток будет равен оттоку. Скорость диффузии следует закону Фикке, согласно которому она прямо пропорциональна доступной поверхности мембраны, разнице в градиенте концентрации (заряда) и характеристическом коэффициенте диффузии и обратно пропорциональна толщине мембраны.

Небольшие липофильные молекулы легко проходят через липидный слой мембраны в соответствии с коэффициентом распределения Нернста.

Крупные липофильные молекулы, водорастворимые молекулы и ионы будут использовать водные поровые каналы для своего прохождения. Размер и стереоконфигурация будут влиять на прохождение молекул. Для ионов, кроме размера, определяющим будет тип заряда. Белковые молекулы стенок пор могут приобретать положительный или отрицательный заряд. Узкие поры, как правило, избирательны: отрицательно заряженные лиганды пропускают только катионы, а положительно заряженные лиганды пропускают только анионы. С увеличением диаметра пор преобладает гидродинамический поток, обеспечивающий свободное прохождение ионов и молекул в соответствии с законом Пуазейля. Эта фильтрация является следствием осмотического градиента. В некоторых случаях ионы могут проникать через определенные сложные молекулы —ионофоры- которые могут продуцироваться микроорганизмами с антибиотическим действием (нонактин, валиномицин, грамацидин и др.).

Облегченная или катализированная диффузия

Для этого необходимо присутствие в мембране носителя, обычно белковой молекулы (пермеазы). Носитель избирательно связывает вещества, напоминая субстратно-ферментный комплекс. Подобные молекулы (включая токсиканты) могут конкурировать за конкретный переносчик до тех пор, пока не будет достигнута его точка насыщения. Токсиканты могут конкурировать за переносчика, и когда они необратимо связаны с ним, транспорт блокируется. Тариф перевозки характерен для каждого вида перевозчика. Если транспорт осуществляется в обоих направлениях, его называют обменной диффузией.

Активный транспорт

Для транспорта некоторых жизненно важных для клетки веществ используется особый тип переносчика, транспортирующийся против градиента концентрации или электрического потенциала («в гору»). Носитель очень стереоспецифичен и может быть насыщен.

Для подъема в гору требуется энергия. Необходимая энергия получается путем каталитического расщепления молекул АТФ до АДФ ферментом аденозинтрифосфатазой (АТФ-азой).

Токсичные вещества могут препятствовать этому транспорту путем конкурентного или неконкурентного ингибирования переносчика или путем ингибирования активности АТФ-азы.

Эндоцитоз

Эндоцитоз определяется как транспортный механизм, при котором клеточная мембрана окружает материал, свертываясь с образованием пузырька, транспортирующего его через клетку. Когда вещество находится в жидком состоянии, процесс называется пиноцитоз. В некоторых случаях материал связывается с рецептором, и этот комплекс транспортируется мембранным пузырьком. Этот вид транспорта особенно используется эпителиальными клетками желудочно-кишечного тракта, клетками печени и почек.

Поглощение токсикантов

Люди подвергаются воздействию многочисленных токсикантов, присутствующих в рабочей и бытовой среде, которые могут проникать в организм человека через три основных входа:

  • через дыхательные пути при вдыхании загрязненного воздуха
  • через желудочно-кишечный тракт при употреблении зараженной пищи, воды и напитков
  • через кожу дермальным, кожным проникновением.

 

В случае воздействия в промышленности преобладающим путем проникновения токсикантов является вдыхание, за которым следует проникновение через кожу. В сельском хозяйстве воздействие пестицидов при всасывании через кожу почти равносильно случаям комбинированного вдыхания и проникновения через кожу. Население в целом подвергается воздействию в основном при употреблении зараженных продуктов питания, воды и напитков, затем при вдыхании и реже через кожу.

Всасывание через дыхательные пути

Абсорбция в легких представляет собой основной путь поглощения многочисленных переносимых по воздуху токсикантов (газов, паров, дыма, тумана, дыма, пыли, аэрозолей и т. д.).

Дыхательные пути (ДП) представляют собой идеальную газообменную систему, обладающую мембраной площадью 30 мкм.2 (срок действия) до 100 м2 (глубокий вдох), за которым располагается сеть из около 2,000 км капилляров. Система, выработанная в процессе эволюции, размещена в относительно небольшом пространстве (грудной полости), защищенном ребрами.

Анатомически и физиологически ЛТ можно разделить на три отдела:

  • верхняя часть РТ, или носоглоточная (НП), начинается у ноздрей и распространяется на глотку и гортань; эта часть служит системой кондиционирования воздуха
  • трахеобронхиальное дерево (ТБ), охватывающее многочисленные трубки разного размера, по которым воздух поступает в легкие
  • легочный отдел (P), который состоит из миллионов альвеол (воздушных мешочков), расположенных гроздьями.

 

Гидрофильные токсиканты легко абсорбируются эпителием носоглоточной области. Весь эпителий областей НП и ТБ покрыт водной пленкой. Липофильные токсиканты частично всасываются в НП и ТБ, но в основном в альвеолах путем диффузии через альвеоло-капиллярные мембраны. Скорость всасывания зависит от вентиляции легких, сердечного выброса (кровотока через легкие), растворимости токсиканта в крови и скорости его метаболизма.

В альвеолах осуществляется газообмен. Альвеолярная стенка состоит из эпителия, интерстициального каркаса базальной мембраны, соединительной ткани и эндотелия капилляров. Через эти слои толщиной около 0.8 мкм происходит очень быстрая диффузия токсикантов. В альвеолах токсикант переходит из воздушной фазы в жидкую фазу (кровь). Скорость всасывания (распределения из воздуха в кровь) токсиканта зависит от его концентрации в альвеолярном воздухе и коэффициента распределения Нернста для крови (коэффициента растворимости).

В крови токсикант может быть растворен в жидкой фазе простыми физическими процессами или связан с клетками крови и/или компонентами плазмы в соответствии с химическим сродством или путем адсорбции. Содержание воды в крови составляет 75%, поэтому гидрофильные газы и пары обладают высокой растворимостью в плазме (например, спирты). Липофильные токсиканты (например, бензол) обычно связаны с клетками или макромолекулами, такими как белок.

С самого начала воздействия в легких происходят два противоположных процесса: всасывание и десорбция. Равновесие между этими процессами зависит от концентрации токсиканта в альвеолярном воздухе и крови. В начале воздействия концентрация токсиканта в крови равна 0, а удерживание в крови почти 100%. При продолжении воздействия достигается равновесие между абсорбцией и десорбцией. Гидрофильные токсиканты быстро достигают равновесия, и скорость абсорбции зависит от легочной вентиляции, а не от кровотока. Липофильным токсикантам требуется больше времени для достижения равновесия, и здесь поток ненасыщенной крови регулирует скорость всасывания.

Осаждение частиц и аэрозолей в РТ зависит от физических и физиологических факторов, а также размера частиц. Короче говоря, чем меньше частица, тем глубже она проникнет в РТ.

Относительно постоянная низкая задержка частиц пыли в легких лиц, подвергающихся сильному облучению (например, шахтеров), предполагает существование очень эффективной системы очистки от частиц. В верхнем отделе РТ (трахеобронхиальном) просвет осуществляет мукоцилиарный покров. В легочной части работают три различных механизма: (1) мукоцилиарный покров, (2) фагоцитоз и (3) прямое проникновение частиц через альвеолярную стенку.

Первые 17 из 23 ветвей трахео-бронхиального дерева содержат реснитчатые эпителиальные клетки. Эти реснички своими взмахами постоянно перемещают слизистый покров в сторону рта. Частицы, осевшие на этом мукоцилиарном покрове, будут проглочены ртом (проглатывание). Слизистый покров также покрывает поверхность альвеолярного эпителия, продвигаясь к мукоцилиарному покрову. Кроме того, специализированные подвижные клетки — фагоциты — поглощают частицы и микроорганизмы в альвеолах и мигрируют в двух возможных направлениях:

  • к мукоцилиарному покрову, который транспортирует их в рот
  • через межклеточные пространства альвеолярной стенки в лимфатическую систему легких; также частицы могут проникать непосредственно этим путем.

 

Всасывание через желудочно-кишечный тракт

Токсиканты могут попасть внутрь при случайном проглатывании, приеме зараженных продуктов питания и напитков или проглатывании очищенных от РТ частиц.

Весь пищеварительный тракт от пищевода до ануса устроен в основном одинаково. Слизистый слой (эпителий) поддерживается соединительной тканью, а затем сетью капилляров и гладкой мускулатурой. Поверхностный эпителий желудка очень морщинистый, что увеличивает площадь поверхности всасывания/выделения. Область кишечника содержит многочисленные мелкие выступы (ворсинки), способные всасывать материал путем «накачки». Активная площадь всасывания в кишечнике составляет около 100 мXNUMX.2.

В желудочно-кишечном тракте (ЖКТ) очень активны все процессы всасывания:

  •  трансклеточный транспорт путем диффузии через липидный слой и/или поры клеточных мембран, а также через поровую фильтрацию
  •  парацеллюлярная диффузия через соединения между клетками
  •  облегченная диффузия и активный транспорт
  •  эндоцитоз и насосный механизм ворсинок.

 

Некоторые ионы токсичных металлов используют специальные транспортные системы для основных элементов: таллий, кобальт и марганец используют систему железа, а свинец, по-видимому, использует систему кальция.

На скорость всасывания токсикантов в различных отделах ЖКТ влияет множество факторов:

  • физико-химические свойства токсикантов, особенно коэффициент распределения Нернста и константа диссоциации; для частиц важен размер частиц — чем меньше размер, тем выше растворимость
  • количество пищи, присутствующей в ЖКТ (разбавляющий эффект)
  • время пребывания в каждом отделе ЖКТ (от нескольких минут во рту до одного часа в желудке и многих часов в кишечнике).
  • площадь всасывания и всасывающая способность эпителия
  • локальный рН, который регулирует абсорбцию диссоциированных токсикантов; при кислом рН желудка недиссоциированные кислые соединения будут быстрее всасываться
  • перистальтика (движение кишечника мышцами) и местный кровоток
  • желудочный и кишечный секреты превращают токсиканты в более или менее растворимые продукты; желчь является эмульгатором, образующим более растворимые комплексы (гидротрофия)
  • комбинированное воздействие других токсикантов, которые могут вызывать синергетические или антагонистические эффекты в процессах абсорбции
  • наличие комплексообразователей/хелатирующих агентов
  • действие микрофлоры РТ (около 1.5 кг), около 60 различных видов бактерий, способных осуществлять биотрансформацию токсикантов.

 

Также необходимо упомянуть о энтерогепатической циркуляции. Полярные токсиканты и/или метаболиты (глюкурониды и другие конъюгаты) выводятся с желчью в двенадцатиперстную кишку. Здесь ферменты микрофлоры осуществляют гидролиз, а выделившиеся продукты реабсорбируются и транспортируются по воротной вене в печень. Этот механизм очень опасен в случае гепатотоксических веществ, допуская их временное накопление в печени.

В случае токсикантов, биотрансформирующихся в печени в менее токсичные или нетоксичные метаболиты, прием внутрь может представлять собой менее опасные входные ворота. После всасывания в ЖКТ эти токсиканты будут транспортироваться по воротной вене в печень, где они могут частично детоксицироваться путем биотрансформации.

Всасывание через кожу (кожное, чрескожное)

Кожа (1.8 м2 поверхности у взрослого человека) вместе со слизистыми оболочками отверстий тела покрывает поверхность тела. Он представляет собой барьер против физических, химических и биологических агентов, поддерживая целостность и гомеостаз организма и выполняя множество других физиологических задач.

В основном кожа состоит из трех слоев: эпидермиса, истинной кожи (дермы) и подкожной клетчатки (гиподермы). С токсикологической точки зрения наибольший интерес здесь представляет эпидермис. Он построен из многих слоев клеток. Роговая поверхность уплощенных мертвых клеток (роговой слой) является верхним слоем, под которым располагается сплошной слой живых клеток (роговой компактный слой), за которым следует типичная липидная оболочка, а затем блестящий слой, грамулезный слой и слой слизистая оболочка. Липидная мембрана представляет собой защитный барьер, но в волосистых участках кожи через нее проникают как волосяные фолликулы, так и каналы потовых желез. Следовательно, абсорбция через кожу может происходить по следующим механизмам:

  • трансэпидермальное всасывание путем диффузии через липидную мембрану (барьер), преимущественно липофильными веществами (органическими растворителями, пестицидами и др.) и в незначительной степени некоторыми гидрофильными веществами через поры
  • трансфолликулярное всасывание вокруг стержня волоса в волосяной фолликул, минуя мембранный барьер; это поглощение происходит только на волосистых участках кожи
  • абсорбция через протоки потовых желез, площадь поперечного сечения которых составляет примерно от 0.1 до 1% от общей площади кожи (относительная абсорбция находится в этой пропорции)
  • всасывание через кожу при механических, термических, химических повреждениях или кожных заболеваниях; здесь разрушаются слои кожи, в том числе липидный барьер, и открывается путь для проникновения токсикантов и вредных веществ.

 

Скорость всасывания через кожу будет зависеть от многих факторов:

  • концентрация токсиканта, тип транспортного средства (среда), наличие других веществ
  • оводненность кожи, рН, температура, локальный кровоток, потливость, площадь загрязненной поверхности кожи, толщина кожи
  • анатомо-физиологические особенности кожи, обусловленные полом, возрастом, индивидуальными особенностями, различиями, встречающимися у различных этнических групп и рас и др.

Транспорт токсикантов кровью и лимфой

После поглощения любым из этих входных ворот токсиканты попадают в кровь, лимфу или другие жидкости организма. Кровь представляет собой основной транспорт токсикантов и их метаболитов.

Кровь является текучим циркулирующим органом, доставляющим к клеткам необходимый кислород и жизненно важные вещества и удаляющим продукты метаболизма. Кровь также содержит клеточные компоненты, гормоны и другие молекулы, участвующие во многих физиологических функциях. Кровь течет внутри относительно хорошо замкнутой кровеносной системы высокого давления, толкаемой работой сердца. Из-за высокого давления происходит утечка жидкости. Лимфатическая система представляет собой дренажную систему, в виде мелкой сети мелких, тонкостенных лимфатических капилляров, разветвляющихся через мягкие ткани и органы.

Кровь представляет собой смесь жидкой фазы (плазма, 55%) и твердых клеток крови (45%). Плазма содержит белки (альбумины, глобулины, фибриноген), органические кислоты (молочную, глутаминовую, лимонную) и многие другие вещества (липиды, липопротеины, гликопротеины, ферменты, соли, ксенобиотики и др.). Элементы клеток крови включают эритроциты (Er), лейкоциты, ретикулоциты, моноциты и тромбоциты.

Токсичные вещества поглощаются в виде молекул и ионов. Некоторые токсиканты при рН крови образуют коллоидные частицы в качестве третьей формы в этой жидкости. Молекулы, ионы и коллоиды токсикантов имеют различные возможности транспорта в крови:

  •  быть физически или химически связанными с элементами крови, в основном Er
  •  физически растворяться в плазме в свободном состоянии
  •  связываться с одним или несколькими типами белков плазмы, образовывать комплексы с органическими кислотами или присоединяться к другим фракциям плазмы.

 

Большинство токсикантов в крови существуют частично в свободном состоянии в плазме и частично связаны с эритроцитами и компонентами плазмы. Распределение зависит от сродства токсикантов к этим компонентам. Все фракции находятся в динамическом равновесии.

Некоторые токсиканты транспортируются элементами крови, в основном эритроцитами, очень редко лейкоцитами. Токсичные вещества могут адсорбироваться на поверхности Er или связываться с лигандами стромы. Если они проникают в Er, они могут связываться с гемом (например, монооксидом углерода и селеном) или с глобином (Sb).111, По210). Некоторые токсиканты, переносимые Er, включают мышьяк, цезий, торий, радон, свинец и натрий. Шестивалентный хром связан исключительно с Er, а трехвалентный хром – с белками плазмы. За цинк возникает конкуренция между Er и плазмой. Около 96% свинца транспортируется Er. Органическая ртуть в основном связана с Er, а неорганическая ртуть переносится в основном альбумином плазмы. Эрг несет мелкие фракции бериллия, меди, теллура и урана.

Большинство токсикантов транспортируются плазмой или белками плазмы. Многие электролиты присутствуют в виде ионов в равновесии с недиссоциированными молекулами, свободными или связанными с фракциями плазмы. Эта ионная фракция токсикантов хорошо диффундирует, проникая через стенки капилляров в ткани и органы. В плазме могут растворяться газы и пары.

Белки плазмы обладают общей площадью поверхности от 600 до 800 кмXNUMX.2 предлагается для поглощения токсикантов. Молекулы альбумина имеют около 109 катионных и 120 анионных лигандов в распоряжении ионов. Многие ионы частично переносятся альбумином (например, медь, цинк и кадмий), как и такие соединения, как динитро- и орто-крезолы, нитро- и галогенпроизводные ароматических углеводородов, фенолы.

Молекулы глобулинов (альфа и бета) переносят небольшие молекулы токсикантов, а также некоторые ионы металлов (медь, цинк и железо) и коллоидные частицы. Фибриноген проявляет сродство к некоторым малым молекулам. В связывании токсикантов с белками плазмы могут участвовать многие типы связей: силы Ван-дер-Ваальса, притяжение зарядов, ассоциация между полярными и неполярными группами, водородные мостики, ковалентные связи.

Липопротеины плазмы переносят липофильные токсиканты, такие как ПХБ. Другие фракции плазмы также служат транспортным средством. Сродство токсикантов к белкам плазмы предполагает их сродство к белкам в тканях и органах при распределении.

Органические кислоты (молочная, глутаминовая, лимонная) образуют комплексы с некоторыми токсикантами. Щелочные и редкоземельные элементы, а также некоторые тяжелые элементы в виде катионов образуют комплексы также с органическими окси- и аминокислотами. Все эти комплексы обычно диффундируют и легко распределяются в тканях и органах.

Физиологически хелатирующие агенты в плазме, такие как трансферрин и металлотионеин, конкурируют с органическими кислотами и аминокислотами за катионы, образуя устойчивые хелаты.

Диффундирующие свободные ионы, некоторые комплексы и некоторые свободные молекулы легко выводятся из крови в ткани и органы. Свободная часть ионов и молекул находится в динамическом равновесии со связанной частью. Концентрация токсиканта в крови будет определять скорость его распределения в тканях и органах или его мобилизацию из них в кровь.

Распределение токсикантов в организме

Организм человека можно разделить на следующие отсеки. (1) внутренние органы, (2) кожа и мышцы, (3) жировая ткань, (4) соединительная ткань и кости. Эта классификация в основном основана на степени сосудистой (кровяной) перфузии в порядке убывания. Например, внутренние органы (включая головной мозг), которые составляют всего 12% от общей массы тела, получают около 75% всего объема крови. С другой стороны, соединительные ткани и кости (15% от общей массы тела) получают только один процент от общего объема крови.

В хорошо перфузируемых внутренних органах обычно достигается наибольшая концентрация токсикантов в кратчайшие сроки, а также равновесие между кровью и этим компартментом. Поглощение токсикантов менее перфузируемыми тканями происходит намного медленнее, но задержка выше, а продолжительность пребывания намного больше (накопление) из-за низкой перфузии.

Для внутриклеточного распределения токсикантов основное значение имеют три компонента: содержание воды, липидов и белков в клетках различных тканей и органов. Вышеупомянутый порядок компартментов также тесно связан с уменьшением содержания воды в их ячейках. Гидрофильные токсиканты будут быстрее распределяться в жидкостях организма и клетках с высоким содержанием воды, а липофильные – в клетках с более высоким содержанием липидов (жировая ткань).

В организме существуют барьеры, препятствующие проникновению некоторых групп токсикантов, преимущественно гидрофильных, в определенные органы и ткани, такие как:

  • гематоэнцефалический барьер (цереброспинальный барьер), ограничивающий проникновение крупных молекул и гидрофильных токсикантов в головной мозг и ЦНС; этот барьер состоит из тесно соединенного слоя эндотелиальных клеток; таким образом, через нее могут проникать липофильные токсиканты
  • плацентарный барьер, оказывающий аналогичное влияние на проникновение токсикантов в плод из крови матери
  • гистогематологический барьер в стенках капилляров, проницаемый для молекул малого и среднего размера, а также для некоторых более крупных молекул, а также ионов.

 

Как отмечалось ранее, только свободные формы токсикантов в плазме (молекулы, ионы, коллоиды) доступны для проникновения через стенки капилляров, участвующих в распределении. Эта свободная фракция находится в динамическом равновесии со связанной фракцией. Концентрация токсикантов в крови находится в динамическом равновесии с их концентрацией в органах и тканях, определяя ретенцию (накопление) или мобилизацию из них.

В распространении играют роль состояние организма, функциональное состояние органов (особенно нервно-гуморальная регуляция), гормональный баланс и другие факторы.

Сохранение токсиканта в определенном компартменте, как правило, временное, и может происходить его перераспределение в другие ткани. Задержка и накопление основаны на разнице между скоростями всасывания и выведения. Продолжительность удержания в компартменте выражается биологическим периодом полураспада. Это интервал времени, за который 50% токсиканта выводится из ткани или органа и перераспределяется, транслоцируется или выводится из организма.

Процессы биотрансформации происходят при распределении и удерживании в различных органах и тканях. В результате биотрансформации образуются более полярные, более гидрофильные метаболиты, которые легче выводятся. Низкая скорость биотрансформации липофильного токсиканта обычно вызывает его накопление в компартменте.

Токсичные вещества можно разделить на четыре основные группы в зависимости от их сродства, преимущественного удерживания и накопления в конкретном компартменте:

  1. Токсичные вещества, растворимые в жидкостях организма, равномерно распределяются в зависимости от содержания воды в отсеках. По такому принципу распределяются многие одновалентные катионы (например, литий, натрий, калий, рубидий) и некоторые анионы (например, хлор, бром).
  2. Липофильные токсиканты проявляют высокое сродство к богатым липидами органам (ЦНС) и тканям (жировым, жировым).
  3. Токсиканты, образующие коллоидные частицы, затем улавливаются специализированными клетками ретикулоэндотелиальной системы (РЭС) органов и тканей. Трех- и четырехвалентные катионы (лантан, цезий, гафний) распределены в РЭС тканей и органов.
  4. К токсикантам, проявляющим высокое сродство к костям и соединительной ткани (остеотропные элементы, костоискатели), относятся двухвалентные катионы (например, кальций, барий, стронций, радон, бериллий, алюминий, кадмий, свинец).

 

Накопление в тканях, богатых липидами

«Стандартный мужчина» с массой тела 70 кг содержит около 15% массы тела в виде жировой ткани, увеличиваясь при ожирении до 50%. Однако эта липидная фракция распределена неравномерно. Мозг (ЦНС) является богатым липидами органом, а периферические нервы покрыты богатой липидами миелиновой оболочкой и шванновскими клетками. Все эти ткани открывают возможности для накопления липофильных токсикантов.

В этот отсек будут распределяться многочисленные неэлектролиты и неполярные токсиканты с подходящим коэффициентом распределения Нернста, а также многочисленные органические растворители (спирты, альдегиды, кетоны и т. д.), хлорированные углеводороды (включая хлорорганические инсектициды, такие как ДДТ), некоторые инертные газы (радон) и др.

Жировая ткань будет накапливать токсиканты из-за ее низкой васкуляризации и более низкой скорости биотрансформации. При этом накопление токсикантов может представлять собой своеобразную временную «нейтрализацию» из-за отсутствия мишеней для токсического воздействия. Однако всегда присутствует потенциальная опасность для организма из-за возможности мобилизации токсикантов из этого компартмента обратно в кровоток.

Очень опасно отложение токсикантов в головном мозге (ЦНС) или богатой липидами ткани миелиновой оболочки периферической нервной системы. Нейротоксиканты откладываются здесь непосредственно рядом со своими мишенями. Токсиканты, задерживающиеся в богатых липидами тканях эндокринных желез, могут вызывать гормональные нарушения. Несмотря на гематоэнцефалический барьер, в головной мозг (ЦНС) попадают многочисленные нейротоксиканты липофильной природы: анестетики, органические растворители, пестициды, тетраэтилсвинец, ртутьорганические соединения и др.

Удержание в ретикулоэндотелиальной системе

В каждой ткани и органе определенный процент клеток специализирован для фагоцитарной деятельности, поглощая микроорганизмы, частицы, коллоидные частицы и т. д. Эта система называется ретикулоэндотелиальной системой (РЭС), состоящей из фиксированных клеток, а также подвижных клеток (фагоцитов). Эти клетки присутствуют в неактивной форме. Увеличение количества вышеупомянутых микробов и частиц активирует клетки до точки насыщения.

Токсиканты в виде коллоидов будут улавливаться РЭС органов и тканей. Распределение зависит от размера частиц коллоида. Для более крупных частиц предпочтительна задержка в печени. Более мелкие коллоидные частицы будут иметь более или менее равномерное распределение между селезенкой, костным мозгом и печенью. Выведение коллоидов из РВИ происходит очень медленно, хотя мелкие частицы выводятся сравнительно быстрее.

Накопление в костях

Около 60 элементов могут быть идентифицированы как остеотропные элементы или искатели кости.

Остеотропные элементы можно разделить на три группы:

  1. Элементы, представляющие или заменяющие физиологические составляющие кости. Двадцать таких элементов присутствуют в больших количествах. Остальные появляются в следовых количествах. В условиях хронического воздействия токсичные металлы, такие как свинец, алюминий и ртуть, также могут попадать в минеральный матрикс костных клеток.
  2. Щелочные земли и другие элементы, образующие катионы с ионным диаметром, подобным кальцию, взаимозаменяемы с ним в костном минерале. Также некоторые анионы способны обмениваться с анионами (фосфат, гидроксил) костного минерала.
  3. Элементы, образующие микроколлоиды (редкоземельные элементы), могут адсорбироваться на поверхности костного минерала.

 

Скелет стандартного человека составляет от 10 до 15% от общей массы тела, представляя собой большое потенциальное хранилище для остеотропных токсикантов. Кость представляет собой высокоспециализированную ткань, состоящую по объему на 54 % из минералов и на 38 % из органического матрикса. Минеральный матрикс кости - гидроксиапатит, Ca10(РО4)6(ОЙ)2 , в котором отношение Ca к P составляет примерно 1.5 к одному. Площадь поверхности минерала, доступного для адсорбции, составляет около 100 м.2 на грамм кости.

Метаболическую активность костей скелета можно разделить на две категории:

  • активная, метаболическая кость, в которой процессы резорбции и образования новой кости или ремоделирования существующей кости очень обширны
  • стабильная кость с низкой скоростью ремоделирования или роста.

 

У плода метаболическая кость младенцев и детей раннего возраста (см. «доступный скелет») составляет почти 100% скелета. С возрастом этот процент метаболической кости уменьшается. Включение токсикантов при воздействии происходит в метаболической кости и в более медленно вращающихся отделах.

Включение токсикантов в кости происходит двумя путями:

  1. Для ионов ионный обмен происходит с физиологически присутствующими катионами кальция или анионами (фосфат, гидроксил).
  2. Для токсикантов, образующих коллоидные частицы, происходит адсорбция на поверхности минерала.

 

Ионообменные реакции

Минерал кости, гидроксиапатит, представляет собой сложную ионообменную систему. Катионы кальция могут быть заменены различными катионами. Анионы, присутствующие в кости, также могут обмениваться на анионы: фосфат на цитраты и карбонаты, гидроксил на фтор. Не обменные ионы могут адсорбироваться на поверхности минерала. Когда ионы токсиканта включаются в минерал, новый слой минерала может покрывать поверхность минерала, закапывая токсикант в структуру кости. Ионный обмен является обратимым процессом, зависящим от концентрации ионов, рН и объема жидкости. Так, например, увеличение содержания кальция в рационе может уменьшить отложение ионов токсикантов в решетке минералов. Было отмечено, что с возрастом процент метаболической кости уменьшается, хотя ионный обмен продолжается. С возрастом происходит резорбция костных минералов, при которой плотность костной ткани фактически уменьшается. В этот момент могут выделяться токсические вещества в костях (например, свинец).

Около 30% ионов, включенных в костные минералы, слабо связаны и могут быть обменены, захвачены природными хелатирующими агентами и выведены из организма с биологическим периодом полураспада 15 дней. Остальные 70% связаны более прочно. Мобилизация и экскреция этой фракции имеют биологический период полураспада 2.5 года и более в зависимости от типа кости (процессы ремоделирования).

Хелатирующие агенты (Са-ЭДТА, пеницилламин, БАЛ и др.) могут мобилизовать значительные количества некоторых тяжелых металлов, и их экскреция с мочой значительно увеличивается.

Коллоидная адсорбция

Коллоидные частицы адсорбируются в виде пленки на поверхности минерала (100 мкм).2 на г) силами Ван-дер-Ваальса или хемосорбцией. Этот слой коллоидов на минеральных поверхностях покрывается следующим слоем образовавшихся минералов, а токсиканты глубже проникают в костную структуру. Скорость мобилизации и элиминации зависит от процессов ремоделирования.

Накопление в волосах и ногтях

Волосы и ногти содержат кератин с сульфгидрильными группами, способными хелатировать катионы металлов, такие как ртуть и свинец.

Распределение токсиканта внутри клетки

В последнее время большое значение приобретает распределение токсикантов, особенно некоторых тяжелых металлов, в клетках тканей и органов. С помощью методов ультрацентрифугирования можно разделить различные фракции клеток для определения содержания в них ионов металлов и других токсикантов.

Исследования на животных показали, что после проникновения в клетку некоторые ионы металлов связываются со специфическим белком - металлотионеином. Этот низкомолекулярный белок присутствует в клетках печени, почек и других органов и тканей. Его сульфгидрильные группы могут связывать шесть ионов на молекулу. Повышенное присутствие ионов металлов индуцирует биосинтез этого белка. Ионы кадмия являются наиболее мощными индукторами. Металлотионеин также служит для поддержания гомеостаза жизненно важных ионов меди и цинка. Металлотионеин может связывать катионы цинка, меди, кадмия, ртути, висмута, золота, кобальта и других.

Биотрансформация и элиминация токсикантов

При задержании в клетках различных тканей и органов токсиканты подвергаются воздействию ферментов, способных их биотрансформировать (метаболизировать) с образованием метаболитов. Существует множество путей выведения токсикантов и/или метаболитов: с выдыхаемым воздухом через легкие, с мочой через почки, с желчью через ЖКТ, с потом через кожу, со слюной через слизистую оболочку рта, с молоком через кишечник. молочными железами, а также волосами и ногтями за счет нормального роста и обновления клеток.

Выведение абсорбированного токсиканта зависит от входных ворот. В легких сразу же начинается процесс всасывания/десорбции, и токсиканты частично выводятся с выдыхаемым воздухом. Элиминация токсикантов, абсорбированных другими путями поступления, пролонгирована и начинается после транспорта кровью, в конечном итоге завершаясь после распределения и биотрансформации. При всасывании существует равновесие между концентрациями токсиканта в крови, в тканях и органах. Экскреция снижает концентрацию токсиканта в крови и может вызвать мобилизацию токсиканта из тканей в кровь.

На скорость выведения токсикантов и их метаболитов из организма могут влиять многие факторы:

  • физико-химические свойства токсикантов, особенно коэффициент распределения Нернста (P), константа диссоциации (pKa), полярность, молекулярная структура, форма и вес
  • уровень воздействия и время постэкспозиционной элиминации
  • входной портал
  • распределение в отделах тела, различающихся по скорости обмена с кровью и кровоснабжению
  • скорость биотрансформации липофильных токсикантов в более гидрофильные метаболиты
  • общее состояние организма и особенно органов выделения (легкие, почки, ЖКТ, кожа и др.)
  • наличие других токсикантов, которые могут препятствовать элиминации.

 

Здесь мы различаем две группы компартментов: (1) система быстрого обмена — в этих компартментах концентрация токсиканта в тканях близка к концентрации в крови; и (2) система медленного обмена, где концентрация токсиканта в тканях выше, чем в крови, за счет связывания и накопления — жировая ткань, скелет и почки могут временно удерживать некоторые токсиканты, например, мышьяк и цинк.

Токсическое вещество может выделяться одновременно двумя или более путями выделения. Однако, как правило, один маршрут является доминирующим.

Ученые разрабатывают математические модели, описывающие выделение того или иного токсиканта. Эти модели основаны на движении из одного или обоих отделов (системы обмена), биотрансформации и т.д.

Выведение с выдыхаемым воздухом через легкие

Выведение через легкие (десорбция) характерно для токсикантов с высокой летучестью (например, органических растворителей). Газы и пары с низкой растворимостью в крови будут быстро удаляться таким образом, тогда как токсиканты с высокой растворимостью в крови будут удаляться другими путями.

Органические растворители, абсорбированные ЖКТ или кожей, выводятся частично с выдыхаемым воздухом при каждом прохождении крови через легкие, если они имеют достаточное давление паров. На этом факте основан тест Breathalyser, используемый для подозреваемых в нетрезвом вождении. Концентрация СО в выдыхаемом воздухе находится в равновесии с содержанием СО-Hb в крови. Радиоактивный газ радон появляется в выдыхаемом воздухе из-за распада радия, накопленного в скелете.

Выведение токсиканта с выдыхаемым воздухом в зависимости от постэкспозиционного периода времени обычно выражается трехфазной кривой. Первая фаза представляет собой элиминацию токсиканта из крови с коротким периодом полураспада. Вторая, более медленная фаза представляет собой элиминацию за счет обмена кровью с тканями и органами (система быстрого обмена). Третья, очень медленная фаза связана с обменом кровью с жировой тканью и скелетом. Если в таких отсеках не накапливается токсикант, кривая будет двухфазной. В некоторых случаях возможна и четырехфазная кривая.

Определение газов и паров в выдыхаемом воздухе в постэкспозиционный период иногда используют для оценки облучения рабочих.

Почечная экскреция

Почка является органом, специализирующимся на выведении многочисленных водорастворимых токсикантов и метаболитов, поддерживая гомеостаз организма. Каждая почка имеет около миллиона нефронов, способных осуществлять выделение. Почечная экскреция представляет собой очень сложное явление, охватывающее три различных механизма:

  • Клубочковая фильтрация капсулой Боумена
  • активный транспорт в проксимальных канальцах
  • пассивный транспорт в дистальных канальцах.

 

Экскреция токсиканта через почки в мочу зависит от коэффициента распределения Нернста, константы диссоциации и рН мочи, размера и формы молекулы, скорости метаболизма в более гидрофильные метаболиты, а также состояния почек.

Кинетика почечной экскреции токсиканта или его метаболита может быть выражена двух-, трех- или четырехфазной кривой экскреции в зависимости от распределения конкретного токсиканта в различных отделах организма, различающихся скоростью обмена с кровью.

слюна

Через слизистую рта со слюной могут выводиться некоторые лекарства и ионы металлов, например свинец («свинцовая линия»), ртуть, мышьяк, медь, а также бромиды, йодиды, этиловый спирт, алкалоиды и др. Затем токсиканты проглатываются и достигают желудочно-кишечного тракта, где могут реабсорбироваться или выводиться с фекалиями.

Потеть

Через кожу с потом частично выводятся многие неэлектролиты: этиловый спирт, ацетон, фенолы, сероуглерод и хлорированные углеводороды.

Молоко

Многие металлы, органические растворители и некоторые хлорорганические пестициды (ДДТ) выделяются через молочную железу с материнским молоком. Этот путь может представлять опасность для грудных детей.

Волосы

Анализ волос можно использовать как показатель гомеостаза некоторых физиологических веществ. Кроме того, с помощью этого вида биоанализа можно оценить воздействие некоторых токсикантов, особенно тяжелых металлов.

Выведение токсикантов из организма можно увеличить за счет:

  • механическое перемещение путем промывания желудка, переливания крови или диализа
  • создание физиологических условий, мобилизующих токсиканты, диетой, изменением гормонального баланса, улучшением функции почек применением диуретиков
  • введение комплексообразователей (цитраты, оксалаты, салицилаты, фосфаты) или хелатирующих агентов (Ca-EDTA, BAL, ATA, DMSA, пеницилламин); этот метод показан только лицам, находящимся под строгим медицинским контролем. Применение хелатирующих агентов часто используется для выведения тяжелых металлов из организма облученных рабочих в процессе их лечения. Этот метод также используется для оценки общей нагрузки на организм и уровня воздействия в прошлом.

 

Определение экспозиции

Определение токсикантов и метаболитов в крови, выдыхаемом воздухе, моче, поте, фекалиях и волосах все чаще используется для оценки воздействия на человека (экспозиционные тесты) и/или оценки степени интоксикации. Поэтому недавно были установлены пределы биологического воздействия (значения биологического ПДК, индексы биологического воздействия — BEI). Эти биоанализы показывают «внутреннее воздействие» на организм, то есть общее воздействие на организм как в рабочей, так и в жилой среде через все пути проникновения (см. «Методы токсикологических испытаний: биомаркеры»).

Комбинированные эффекты из-за многократного воздействия

Люди на работе и/или в жилой среде обычно одновременно или последовательно подвергаются воздействию различных физических и химических агентов. Также необходимо учитывать, что некоторые лица употребляют лекарства, курят, употребляют алкоголь и пищу, содержащую добавки и так далее. Это означает, что обычно имеет место многократное воздействие. Физические и химические агенты могут взаимодействовать на каждом этапе токсикокинетических и/или токсикодинамических процессов, вызывая три возможных эффекта:

  1. Независимый. Каждый агент производит различный эффект из-за различного механизма действия,
  2. синергистический. Комбинированный эффект больше, чем у каждого отдельного агента. Здесь мы различаем два типа: (а) аддитивный, когда комбинированный эффект равен сумме эффектов, производимых каждым агентом в отдельности, и (б) потенцирующий, когда комбинированный эффект больше аддитивного.
  3. Антагонистический. Комбинированный эффект ниже аддитивного.

 

Однако исследования комбинированных эффектов редки. Этот вид исследования очень сложен из-за сочетания различных факторов и агентов.

Можно сделать вывод, что при одновременном или последовательном воздействии на организм человека двух и более токсикантов необходимо учитывать возможность некоторых сочетанных эффектов, которые могут увеличивать или уменьшать скорость токсикокинетических процессов.

 

Назад

Читать 13702 раз Последнее изменение вторник, 14 июня 2011 г. 16:52

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Токсикологические ссылки

Андерсен, К.Э. и Х.И. Майбах. 1985. Прогностические тесты на контактную аллергию на морских свинках. Глава. 14 дюймов Актуальные проблемы дерматологии. Базель: Каргер.

Эшби, Дж. и Р.В. Теннант. 1991. Окончательная взаимосвязь между химической структурой, канцерогенностью и мутагенностью для 301 химического вещества, испытанного НПТ США. Mutat Res 257: 229-306.

Барлоу, С. и Ф. Салливан. 1982. Репродуктивная опасность промышленных химикатов. Лондон: Академическая пресса.

Барретт, Дж. К. 1993а. Механизмы действия известных канцерогенов человека. В Механизмы канцерогенеза при идентификации риска, под редакцией H Vainio, PN Magee, DB McGregor и AJ McMichael. Лион: Международное агентство по изучению рака (IARC).

—. 1993б. Механизмы многоступенчатого канцерогенеза и оценка канцерогенного риска. Окружающая среда Health Persp 100: 9-20.

Бернштейн, Мэн. 1984. Агенты, влияющие на мужскую репродуктивную систему: влияние структуры на активность. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. Молекулярная биология вариантов G6PD и других дефектов эритроцитов. Анну Рев Мед 43: 47-59.

Блум, AD. 1981. Руководство по репродуктивным исследованиям среди подвергающихся воздействию человеческих популяций. Уайт-Плейнс, Нью-Йорк: Фонд March of Dimes.

Боргхофф, С., Б. Шорт и Дж. Свенберг. 1990. Биохимические механизмы и патобиология а-2-глобулиновой нефропатии. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly и PI Mackenzie. 1991. Суперсемейство генов UPD-глюкуронозилтрансферазы: предложенная номенклатура, основанная на эволюционном расхождении. ДНК-клеточная биология 10: 487-494.

Берлесон, Г., А. Мансон и Дж. Дин. 1995. Современные методы иммунотоксикологии. Нью-Йорк: Вили.

Capecchi, M. 1994. Целенаправленная замена генов. Sci Am 270: 52-59.

Карни, Э.В. 1994. Комплексный взгляд на токсичность этиленгликоля для развития. Представитель Токсикол 8: 99-113.

Дин, Дж. Х., М. И. Ластер, А. Э. Мансон и я Кимбер. 1994. Иммунотоксикология и иммунофармакология. Нью-Йорк: Рэйвен Пресс.

Дескотес, Дж. 1986. Иммунотоксикология лекарственных средств и химических веществ. Амстердам: Эльзевир.

Devary, Y, C Rosette, JA DiDonato и M Karin. 1993. Активация NFkB ультрафиолетовым светом, не зависящая от ядерного сигнала. Наука 261: 1442-1445.

Диксон, Р.Л. 1985 год. Репродуктивная токсикология. Нью-Йорк: Рэйвен Пресс.

Даффус, Дж. Х. 1993. Словарь терминов, используемых в токсикологии для химиков. Чистая прикладная химия 65: 2003-2122.

Эльсенханс, Б., К. Шуманн и В. Форт. 1991. Токсичные металлы: Взаимодействие с основными металлами. В Питание, токсичность и рак, отредактированный IR Rowland. Бока-Ратон: CRC Press.

Агентство по охране окружающей среды (EPA). 1992. Руководство по оценке воздействия. Федеральный регистр 57: 22888-22938.

—. 1993. Принципы оценки риска нейротоксичности. Федеральный регистр 58: 41556-41598.

—. 1994 г. Руководство по оценке репродуктивной токсичности. Вашингтон, округ Колумбия: Агентство по охране окружающей среды США: Управление исследований и разработок.

Фергюссон, Дж. Э. 1990. Тяжелые элементы. Глава. 15 дюймов Химия, воздействие на окружающую среду и воздействие на здоровье. Оксфорд: Пергамон.

Геринг, П.Дж., П.Г. Ватанабэ и Г.Е. Блау. 1976. Фармакокинетические исследования по оценке токсикологической и экологической опасности химических веществ. Новые концепции Saf Eval 1 (Часть 1, Глава 8): 195-270.

Гольдштейн, Дж. А. и С. М. Ф. де Мораис. 1994. Биохимия и молекулярная биология человека. CYP2C подсемейство. Фармакогенетика 4: 285-299.

Гонсалес, Ф.Дж. 1992. Цитохромы Р450 человека: проблемы и перспективы. Тренды Pharmacol Sci 13: 346-352.

Гонсалес, Ф.Дж., К.Л. Креспи и Х.В. Гелбойн. 1991. Цитохром Р450 человека с экспрессией кДНК: новая эра в молекулярной токсикологии и оценке рисков для человека. Mutat Res 247: 113-127.

Гонсалес, Ф.Дж. и Д.В. Неберт. 1990. Эволюция надсемейства генов P450: «война» между животными и растениями, молекулярный драйв и генетические различия человека в окислении лекарств. Тенденции Жене 6: 182-186.

Грант, Дм. 1993. Молекулярная генетика N-ацетилтрансфераз. Фармакогенетика 3: 45-50.

Грей, Л.Э., Дж. Остби, Р. Сигмон, Дж. Феррел, Р. Линдер, Р. Купер, Дж. Голдман и Дж. Ласки. 1988. Разработка протокола для оценки репродуктивных эффектов токсикантов у крыс. Представитель Токсикол 2: 281-287.

Генгерих, Ф.П. 1989. Полиморфизм цитохрома Р450 у человека. Тренды Pharmacol Sci 10: 107-109.

—. 1993. Ферменты цитохрома Р450. Научный 81: 440-447.

Ханш, С и Лео. 1979. Константы заместителей для корреляционного анализа в химии и биологии. Нью-Йорк: Вили.

Ханш, С. и Л. Чжан. 1993. Количественные зависимости структура-активность цитохрома Р450. Drug Metab Rev 25: 1-48.

Хейс А.В. 1988 год. Принципы и методы токсикологии. 2-е изд. Нью-Йорк: Рэйвен Пресс.

Хайнделл, Дж. Дж. и Р. Е. Чапин. 1993. Методы токсикологии: мужская и женская репродуктивная токсикология. Том. 1 и 2. Сан-Диего, Калифорния: Academic Press.

Международное агентство по изучению рака (IARC). 1992. Солнечное и ультрафиолетовое излучение. Лион: МАИР.

—. 1993 г. Профессиональное воздействие на парикмахеров и парикмахеров и личное использование красок для волос: некоторые краски для волос, косметические красители, промышленные красители и ароматические амины. Лион: МАИР.

—. 1994а. Преамбула. Лион: МАИР.

—. 1994б. Некоторые промышленные химикаты. Лион: МАИР.

Международная комиссия по радиологической защите (ICRP). 1965 год. Принципы мониторинга окружающей среды, связанные с обращением с радиоактивными материалами. Отчет Комитета IV Международной комиссии по радиологической защите. Оксфорд: Пергамон.

Международная программа по химической безопасности (IPCS). 1991. Принципы и методы оценки нефротоксичности, связанной с воздействием химических веществ, EHC 119. Женева: ВОЗ.

—. 1996 г. Принципы и методы оценки Прямая иммунотоксичность, связанная с воздействием химических веществ, ЭГС 180. Женева: ВОЗ.

Йохансон, Г. и П. Х. Наслунд. 1988. Программирование электронных таблиц - новый подход к физиологическому моделированию токсикокинетики растворителей. Токсикольные письма 41: 115-127.

Джонсон, БЛ. 1978 год. Профилактика нейротоксических заболеваний у работающего населения. Нью-Йорк: Вили.

Джонс, Дж. К., Дж. М. Уорд, У. Мор и Р. Д. Хант. 1990. Кроветворная система, монография ILSI, Берлин: Springer Verlag.

Калоу, В. 1962. Фармакогенетика: наследственность и реакция на лекарства. Филадельфия: В. Б. Сондерс.

—. 1992 г. Фармакогенетика метаболизма лекарственных средств. Нью-Йорк: Пергамон.

Каммюллер, М.Е., Н. Блоксма и В. Сейнен. 1989. Аутоиммунитет и токсикология. Иммунная дисрегуляция, вызванная лекарствами и химическими веществами. Амстердам: Elsevier Sciences.

Кавадзири, К., Дж. Ватанабэ и С.И. Хаяси. 1994. Генетический полиморфизм Р450 и рак человека. В Цитохром P450: биохимия, биофизика и молекулярная биология, под редакцией MC Lechner. Париж: Евротекст Джона Либби.

Керер, Дж. П. 1993. Свободные радикалы как медиаторы повреждения и заболевания тканей. Крит Рев Токсикол 23: 21-48.

Келлерман, Г., Ч. Р. Шоу и М. Люйтен-Келлерман. 1973. Индуцируемость арилуглеводородной гидроксилазы и бронхогенная карцинома. New Engl J Med 289: 934-937.

Кера, К.С. 1991. Химически индуцированные изменения материнского гомеостаза и гистологии зачатия: их этиологическое значение при аномалиях плода крыс. Тератология 44: 259-297.

Киммел, Калифорния, Г. Л. Киммел и В. Франкос. 1986. Семинар Межведомственной группы по связям с регулирующими органами по оценке риска репродуктивной токсичности. Окружающая среда Health Persp 66: 193-221.

Клаассен, К. Д., М. О. Амдур и Дж. Доулл (ред.). 1991. Токсикология Казаретта и Доулла. Нью-Йорк: Пергамон Пресс.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen и ED Kroese. 1995. Количественные методы в токсикологии для оценки реакции на дозу у человека. RIVM-отчет №. 659101004.

Кресс, С., Саттер, П. Т. Стрикленд, Х. Мухтар, Дж. Швейцер и М. Шварц. 1992. Канцероген-специфический мутационный паттерн в гене p53 при плоскоклеточном раке кожи мышей, индуцированном ультрафиолетовым излучением В. Рак Рез 52: 6400-6403.

Кревски Д., Гейлор Д., Шязкович М. 1991. Безмодельный подход к экстраполяции малых доз. Конверт H Перс 90: 270-285.

Лоутон, член парламента, Т. Крестейл, А. А. Эльфарра, Э. Ходжсон, Дж. Озолс, Р. М. Филпот, А. Э. Ретти, Д. Э. Уильямс, Дж. Р. Кэшман, К. Т. Долфин, Р. Н. Хайнс, Т. Кимура, И. Р. Филлипс, Л. Л. Поулсен, Э. А. Шефар и Д. М. Циглер. 1994. Номенклатура семейства генов флавинсодержащих монооксигеназ млекопитающих, основанная на идентичности аминокислотных последовательностей. Arch Biochem Biophys 308: 254-257.

Левальтер, Дж. и У. Кораллус. 1985. Конъюгаты белков крови и ацетилирование ароматических аминов. Новые данные по биологическому мониторингу. Int Arch Occup Environment Health 56: 179-196.

Майно, Г. и я Йорис. 1995. Апоптоз, онкоз и некроз: обзор гибели клеток. Ам Джей Патол 146: 3-15.

Мэттисон, Д.Р. и П.Дж. Томфорд. 1989. Механизм действия репродуктивных токсикантов. Токсикол Патол 17: 364-376.

Мейер, UA. 1994. Полиморфизм цитохрома P450 CYP2D6 как фактор риска канцерогенеза. В Цитохром P450: биохимия, биофизика и молекулярная биология, под редакцией MC Lechner. Париж: Евротекст Джона Либби.

Моллер, Х., Х. Вайнио и Э. Хезелтин. 1994. Количественная оценка и прогнозирование риска в Международном агентстве по изучению рака. Рак Рез 54: 3625-3627.

Муленаар, Р.Дж. 1994. Допущения по умолчанию при оценке риска канцерогенов, используемые регулирующими органами. Регул Токсикол Фармакол 20: 135-141.

Мозер, ВК. 1990. Подходы к скринингу нейротоксичности: батарея функциональных наблюдений. Дж Ам Колл Токсикол 1: 85-93.

Национальный исследовательский совет (NRC). 1983. Оценка рисков в федеральном правительстве: управление процессом. Вашингтон, округ Колумбия: NAS Press.

—. 1989 г. Биологические маркеры репродуктивной токсичности. Вашингтон, округ Колумбия: NAS Press.

—. 1992 г. Биологические маркеры в иммунотоксикологии. Подкомитет по токсикологии. Вашингтон, округ Колумбия: NAS Press.

Неберт, Д.В. 1988. Гены, кодирующие ферменты, метаболизирующие лекарственные препараты: возможная роль в заболеваниях человека. В Фенотипическая изменчивость в популяциях, под редакцией А. Д. Вудхеда, М. А. Бендера и Р. С. Леонарда. Нью-Йорк: Издательство Пленум.

—. 1994. Ферменты, метаболизирующие лекарственные средства, в лиганд-модулируемой транскрипции. Biochem Pharmacol 47: 25-37.

Неберт, Д. В. и В. В. Вебер. 1990. Фармакогенетика. В Принципы действия лекарств. Основы фармакологии, под редакцией В. Б. Пратта и П. В. Тейлора. Нью-Йорк: Черчилль-Ливингстон.

Неберт, Д. В. и Д. Р. Нельсон. 1991. Номенклатура генов P450, основанная на эволюции. В Методы энзимологии. Цитохром Р450, под редакцией М. Р. Уотермана и Э. Ф. Джонсона. Орландо, Флорида: Academic Press.

Неберт, Д. В. и Р. А. Маккиннон. 1994. Цитохром P450: эволюция и функциональное разнообразие. Прог Лив Дис 12: 63-97.

Неберт, Д. В., М. Адесник, М. Дж. Кун, Р. В. Эстабрук, Ф. Дж. Гонсалес, Ф. П. Генгерих, И. С. Гансалус, Э. Ф. Джонсон, Б. Кемпер, В. Левин, И. Р. Филлипс, Р. Сато и М. Р. Уотерман. 1987. Надсемейство генов P450: рекомендуемая номенклатура. ДНК-клеточная биология 6: 1-11.

Неберт, Д. У., Д. Р. Нельсон, М. Дж. Кун, Р. В. Эстабрук, Р. Фейерайсен, Ю. Фуджи-Курияма, Ф. Дж. Гонсалес, Ф. П. Генгерих, И. С. Гансалас, Э. Ф. Джонсон, Дж. К. Лопер, Р. Сато, М. Р. Уотерман и Д. Д. Ваксман. 1991. Суперсемейство P450: обновленная информация о новых последовательностях, картировании генов и рекомендуемой номенклатуре. ДНК-клеточная биология 10: 1-14.

Неберт, Д. В., Д. Д. Петерсен и А. Пуга. 1991. Полиморфизм локуса AH человека и рак: индуцируемость CYP1A1 и других генов продуктами горения и диоксином. Фармакогенетика 1: 68-78.

Неберт, Д. В., А. Пуга и В. Василиу. 1993. Роль рецептора Ah и диоксин-индуцируемой генной батареи [Ah] в токсичности, раке и передаче сигнала. Ann NY Acad Sci 685: 624-640.

Нельсон, Д. Р., Т. Каматаки, Д. Д. Ваксман, Ф. П. Генгерих, Р. В. Эстабрук, Р. Фейерайзен, Ф. Дж. Гонсалес, М. Дж. Кун, И. С. Гансалус, О. Гото, Д. В. Неберт и К. Окуда. 1993. Суперсемейство P450: обновленная информация о новых последовательностях, картировании генов, инвентарных номерах, ранних тривиальных названиях ферментов и номенклатуре. ДНК-клеточная биология 12: 1-51.

Николсон, Д. В., Олл, Н. А. Торнберри, Дж. П. Вайанкур, С. К. Дин, М. Галлант, Ю. Гаро, П. Р. Гриффин, М. Лабелль, Ю. А. Лазебник, Н. А. Мандей, С. М. Раджу, М. Е. Смулсон, Т. Т. Ямин, В. Л. Ю и Д. К. Миллер. 1995. Идентификация и ингибирование протеазы ICE/CED-3, необходимой для апоптоза млекопитающих. природа 376: 37-43.

Нолан, Р. Дж., В. Т. Стотт и П. Г. Ватанабэ. 1995. Токсикологические данные в оценке химической безопасности. Глава. 2 дюйма Промышленная гигиена и токсикология Пэтти, под редакцией LJ Cralley, LV Cralley и JS Bus. Нью-Йорк: Джон Уайли и сыновья.

Нордберг, ГФ. 1976 год. Влияние и взаимосвязь доза-реакция токсичных металлов. Амстердам: Эльзевир.

Управление оценки технологий (OTA). 1985 год. Репродуктивные опасности на рабочем месте. Документ № ОТА-БА-266. Вашингтон, округ Колумбия: Государственная типография.

—. 1990 г. Нейротоксичность: выявление и контроль ядов нервной системы. Документ № ОТА-БА-436. Вашингтон, округ Колумбия: Государственная типография.

Организация экономического сотрудничества и развития (ОЭСР). 1993. Совместный проект Агентства по охране окружающей среды США и ЕС по оценке (количественной) взаимосвязи между структурой и активностью. Париж: ОЭСР.

Парк, CN и NC Хокинс. 1993. Обзор технологии; обзор оценки риска рака. Токсические методы 3: 63-86.

Пиз, В., Дж. Ванденберг и В.К. Хупер. 1991. Сравнение альтернативных подходов к установлению нормативных уровней репродуктивных токсикантов: DBCP в качестве тематического исследования. Окружающая среда Health Persp 91: 141-155.

Прпи ƒ -Маджи ƒ , Д, С. Телишман и С. Кези ƒ . 6.5. Исследование in vitro взаимодействия свинца и алкоголя и ингибирования дегидратазы дельта-аминолевулиновой кислоты эритроцитов у человека. Scand J Work Environment Health 10: 235-238.

Рейц, Р. Х., Р. Дж. Нолан и А. М. Шуман. 1987. Разработка мультивидовых, многомаршрутных фармакокинетических моделей для метиленхлорида и 1,1,1-трихлорэтана. В Фармакокинетика и оценка риска, Питьевая вода и здоровье. Вашингтон, округ Колумбия: Издательство Национальной академии.

Ройтт И., Дж. Бростофф и Д. Мале. 1989. Иммунология. Лондон: Медицинское издательство Gower.

Сато, А. 1991. Влияние факторов окружающей среды на фармакокинетическое поведение паров органических растворителей. Энн Оккуп Хюг 35: 525-541.

Зильбергельд, ЕК. 1990. Разработка формальных методов оценки риска для нейротоксикантов: оценка современного уровня техники. В Достижения нейроповеденческой токсикологии, под редакцией Б. Л. Джонсона, В. К. Энгера, А. Дурао и К. Ксинтараса. Челси, Мичиган: Льюис.

Спенсер, PS и HH Шаумберг. 1980. Экспериментальная и клиническая нейротоксикология. Балтимор: Уильямс и Уилкинс.

Суини, А. М., М. Р. Мейер, Дж. Х. Ааронс, Дж. Л. Миллс и Р. Е. ЛеПорт. 1988. Оценка методов проспективного выявления ранних потерь плода в эпидемиологических исследованиях окружающей среды. Am J Epidemiol 127: 843-850.

Тейлор, Б. А., Х. Дж. Хайнигер и Х. Мейер. 1973. Генетический анализ устойчивости к кадмиевому повреждению яичек у мышей. Proc Soc Exp Biol Med 143: 629-633.

Телишман, С. 1995. Взаимодействия основных и/или токсичных металлов и металлоидов относительно индивидуальных различий в восприимчивости к различным токсикантам и хроническим заболеваниям у человека. Арх риг рада токсикол 46: 459-476.

Телишман С., А. Пинент и Д. Прпи ƒ -Маджи ƒ . 6.5. Влияние свинца на метаболизм цинка и взаимодействие свинца и цинка у людей как возможное объяснение очевидной индивидуальной восприимчивости к свинцу. В Тяжелые металлы в окружающей среде, под редакцией Р. Дж. Аллана и Дж. О. Нриагу. Эдинбург: Консультанты CEP.

Телишман, С, Д Прпи ƒ -Маджи ƒ , и С Кези ƒ . 6.5. Исследование in vivo взаимодействия свинца и алкоголя и ингибирования дегидратазы дельта-аминолевулиновой кислоты эритроцитов у человека. Scand J Work Environment Health 10: 239-244.

Тилсон, Х.А. и П.А. Кэб. 1978. Стратегии оценки нейроповеденческих последствий факторов окружающей среды. Окружающая среда Health Persp 26: 287-299.

Трамп, БФ и АУ Арстила. 1971. Повреждение клеток и гибель клеток. В Принципы патобиологии, под редакцией MF LaVia и RB Hill Jr. Нью-Йорк: Oxford Univ. Нажимать.

Трамп, Б.Ф. и И.К. Березский. 1992. Роль цитозольного Ca2. + при повреждении клеток, некрозе и апоптозе. Curr Opin Cell Biol 4: 227-232.

—. 1995. Опосредованное кальцием повреждение клеток и гибель клеток. FASEB J 9: 219-228.

Трамп, Б. Ф., Березский И. К. и Осорнио-Варгас А. 1981. Гибель клеток и болезненный процесс. Роль кальция в клетке. В Гибель клеток в биологии и патологии, под редакцией И. Д. Боуэна и Р. А. Локшина. Лондон: Чепмен и Холл.

Вос, Дж. Г., М. Юнес и Э. Смит. 1995. Аллергическая гиперчувствительность, вызванная химическими веществами: рекомендации по профилактике, опубликованные от имени Европейского регионального бюро Всемирной организации здравоохранения. Бока-Ратон, Флорида: CRC Press.

Вебер, ВВ. 1987. Гены-ацетиляторы и реакция на лекарства. Нью-Йорк: Оксфордский ун-т. Нажимать.

Всемирная организация здравоохранения (ВОЗ). 1980. Рекомендуемые ограничения для здоровья при профессиональном воздействии тяжелых металлов. Серия технических отчетов, № 647. Женева: ВОЗ.

—. 1986 г. Принципы и методы оценки нейротоксичности, связанной с воздействием химических веществ. Критерии гигиены окружающей среды, № 60. Женева: ВОЗ.

—. 1987 г. Руководство по качеству воздуха для Европы. Европейская серия, № 23. Копенгаген: Региональные публикации ВОЗ.

—. 1989 г. Глоссарий терминов по химической безопасности для использования в публикациях IPCS. Женева: ВОЗ.

—. 1993 г. Получение ориентировочных значений для пределов воздействия на здоровье. Критерии гигиены окружающей среды, неотредактированный проект. Женева: ВОЗ.

Уилли, А.Х., Дж.Ф.Р. Керр и А.Р. Карри. 1980. Гибель клеток: значение апоптоза. Int Rev Цитол 68: 251-306.

@REFS LABEL = Другие важные показания

Альберт, РЭ. 1994. Оценка канцерогенного риска в Агентстве по охране окружающей среды США. крит. Преподобный Токсикол 24: 75-85.

Альбертс, Б., Д. Брей, Дж. Льюис, М. Рафф, К. Робертс и Дж. Д. Уотсон. 1988 год. Молекулярная биология клетки. Нью-Йорк: Издательство Гарленд.

Ариенс, Э.Дж. 1964. Молекулярная фармакология. Том 1. Нью-Йорк: Академическая пресса.

Ариенс, Э. Дж., Э. Мучлер и А. М. Симонис. 1978 год. Allgemeine Toxicologie [Общая токсикология]. Штутгарт: Георг Тиме Верлаг.

Эшби, Дж. и Р.В. Теннант. 1994. Прогнозирование канцерогенности 44 химических веществ для грызунов: результаты. мутагенеза 9: 7-15.

Эшфорд, Н.А., С.Дж. Спадафор, Д.Б. Хэттис и К.С. Калдарт. 1990. Мониторинг работника на предмет воздействия и заболевания. Балтимор: Университет Джона Хопкинса. Нажимать.

Балабуха Н.С. и Фрадкин Г.Е. 1958 год. Накопление радиоактивных элементов в организме и их выведение. Москва: Медгиз.

Боллс, М., Дж. Бриджес и Дж. Саути. 1991. Животные и альтернативы в токсикологии. Текущее состояние и перспективы на будущее. Ноттингем, Великобритания: Фонд замены животных в медицинских экспериментах.

Берлин, А., Дж. Дин, М. Х. Дрейпер, Э. М. Б. Смит и Ф. Спреафико. 1987. Иммунотоксикология. Дордрехт: Мартинус Нийхофф.

Бойхаус, А. 1974. Дыхание. Нью-Йорк: Grune & Stratton.

Брандау, Р. и Б. Х. Липпольд. 1982. Кожная и трансдермальная абсорбция. Штутгарт: Wissenschaftliche Verlagsgesellschaft.

Брусик, диджей. 1994. Методы оценки генетического риска. Бока-Ратон: Издательство Льюиса.

Баррелл, Р. 1993. Иммунная токсичность человека. Мол Аспекты Мед 14: 1-81.

Castell, JV и MJ Гомес-Лехон. 1992. Альтернативы in vitro фармакотоксикологии животных. Мадрид, Испания: Фарминдустрия.

Чепмен, Г. 1967. Жидкости организма и их функции. Лондон: Эдвард Арнольд.

Комитет по биологическим маркерам Национального исследовательского совета. 1987. Биологические маркеры в исследованиях гигиены окружающей среды. Окружающая среда Health Persp 74: 3-9.

Кралли, Л.Дж., Л.В. Кралли и Дж. С. Автобус (ред.). 1978 год. Промышленная гигиена и токсикология Пэтти. Нью-Йорк: Уити.

Даян А.Д., Хертель Р.Ф., Хезелтайн Э., Казантис Г., Смит Э.М. и Ван дер Венн М.Т. 1990. Иммунотоксичность металлов и иммунотоксикология. Нью-Йорк: Пленум Пресс.

Джурик, Д. 1987. Молекулярно-клеточные аспекты профессионального воздействия токсичных химических веществ. В Часть 1 Токсикокинетика. Женева: ВОЗ.

Даффус, Дж. Х. 1980. Экологическая токсикология. Лондон: Эдвард Арнольд.

ЭКОТОК. 1986 год. Связь структура-активность в токсикологии и экотоксикологии. Монография № 8. Брюссель: ЭКОТОК.

Форт, В., Д. Хеншлер и В. Раммель. 1983. Фармакология и токсикология. Мангейм: Библиографический институт.

Фрейзер, Дж. М. 1990. Научные критерии валидации тестов на токсичность in vitro. Экологическая монография ОЭСР, №. 36. Париж: ОЭСР.

—. 1992 г. Токсичность in vitro — применение в оценке безопасности. Нью-Йорк: Марсель Деккер.

Гад, СК. 1994. Токсикология in vitro. Нью-Йорк: Рэйвен Пресс.

Гадаскина, ИД. 1970. Жирорая ткан и яди [Жировые ткани и токсиканты]. В Актуальные проблемы промышленной токсикологии.под редакцией Н.В. Лазарева. Ленинград: Минздрав РСФСР.

Гейлор, Д.У. 1983. Использование факторов безопасности для контроля риска. J Toxicol Environment Health 11: 329-336.

Гибсон, Г.Г., Р. Хаббард и Д.В. Парк. 1983. Иммунотоксикология. Лондон: Академическая пресса.

Голдберг, AM. 1983-1995 гг. Альтернативы в токсикологии. Том. 1-12. Нью-Йорк: Мэри Энн Либерт.

Grandjean, P. 1992. Индивидуальная восприимчивость к токсичности. Токсикольные письма 64 / 65: 43-51.

Ханке, Дж. и Дж. К. Пиотровски. 1984. Биохимические подставы токсикологии [Биохимические основы токсикологии]. Варшава: PZWL.

Хэтч, Т. и П. Гросс. 1954. Легочное осаждение и удержание вдыхаемых аэрозолей. Нью-Йорк: Академическая пресса.

Совет по здравоохранению Нидерландов: Комитет по оценке канцерогенности химических веществ. 1994. Оценка риска канцерогенных химических веществ в Нидерландах. Регул Токсикол Фармакол 19: 14-30.

Холланд, В.К., Р.Л. Кляйн и А.Х. Бриггс. 1967. Молекулярная фармакология.

Хафф, Дж. Э. 1993. Химические вещества и рак у людей: первые данные на экспериментальных животных. Окружающая среда Health Persp 100: 201-210.

Клаассен, К.Д. и Д.Л. Итон. 1991. Принципы токсикологии. Глава. 2 дюйма Токсикология Казаретта и Доулла, под редакцией CD Klaassen, MO Amdur и J Doull. Нью-Йорк: Пергамон Пресс.

Коссовер, Э.М. 1962 год. Молекулярная биохимия, Нью-Йорк: Макгроу-Хилл.

Кундиев, Ю.И. 1975 год.Всасывание пестицидов через кожу и профилактика отравлений.. Киев: Здоровье.

Кустов В.В., Тиунов Л.А., Васильев Ю.А. 1975 год. Комвинование действие промышленных ядов [Комбинированное воздействие промышленных токсикантов]. Москва: Медицина.

Ловерис, Р. 1982. Промышленная токсикология и профессиональные интоксикации. Париж: Массон.

Ли, А.П. и Р.Х. Хефлих. 1991. Генетическая токсикология. Бока-Ратон: CRC Press.

Лоуи, А.Г. и П. Зикевиц. 1969. Структура клетки и функции. Нью-Йорк: Холт, Рейнхарт и Уинстон.

Лумис, Т.А. 1976 год. Основы токсикологии. Филадельфия: Леа и Фебигер.

Мендельсон, М.Л. и Р.Дж. Альбертини. 1990. Мутация и окружающая среда, части AE. Нью-Йорк: Уайли Лисс.

Метцлер, DE. 1977. Биохимия. Нью-Йорк: Академическая пресса.

Миллер, К., Дж. Л. Терк и С. Никлин. 1992. Принципы и практика иммунотоксикологии. Оксфорд: Blackwells Scientific.

Министерство международной торговли и промышленности. 1981. Справочник по существующим химическим веществам. Токио: Chemical Daily Press.

—. 1987 г. Заявка на одобрение химических веществ Законом о контроле за химическими веществами. (на японском и английском языках). Токио: Kagaku Kogyo Nippo Press.

Монтанья, В. 1956. Строение и функции кожи. Нью-Йорк: Академическая пресса.

Муленаар, Р.Дж. 1994. Оценка канцерогенного риска: международное сравнение. рэгул токсикол фармакол 20: 302-336.

Национальный исследовательский совет. 1989. Биологические маркеры репродуктивной токсичности. Вашингтон, округ Колумбия: NAS Press.

Нойман, В. Г. и М. Нойман. 1958 год. Химическая динамика костных минералов. Чикаго: Университет. из Чикаго Пресс.

Ньюкомб, Д.С., Н.Р. Роуз и Дж.С. Блум. 1992. Клиническая иммунотоксикология. Нью-Йорк: Рэйвен Пресс.

Пачеко, Х. 1973. Молекулярная фармакология. Париж: Университетская пресса.

Пиотровски, Дж.К. 1971. Применение метаболической и экскреторной кинетики к задачам промышленной токсикологии.. Вашингтон, округ Колумбия: Министерство здравоохранения, образования и социального обеспечения США.

—. 1983. Биохимические взаимодействия тяжелых металлов: металотионеин. В Воздействие на здоровье комбинированного воздействия химических веществ. Копенгаген: Европейское региональное бюро ВОЗ.

Материалы конференции Arnold O. Beckman/IFCC по экологической токсикологии биомаркеров химического воздействия. 1994. Clin Chem 40(7Б).

Рассел, WMS и Р.Л. Берч. 1959. Принципы гуманной экспериментальной техники. Лондон: Метуэн и Ко. Перепечатано Федерацией университетов по защите животных, 1993 г.

Райкрофт, Р. Дж. Г., Т. Менне, П. Дж. Фрош и К. Бенезра. 1992. Учебник по контактному дерматиту. Берлин: Спрингер-Верлаг.

Шуберт, Дж. 1951. Оценка содержания радиоактивных элементов в облученных людях. нуклеоника 8: 13-28.

Шелби, доктор медицины и Э. Зейгер. 1990. Активность канцерогенов человека в цитогенетических тестах на сальмонеллу и костный мозг грызунов. Mutat Res 234: 257-261.

Стоун, Р. 1995. Молекулярный подход к риску рака. Наука 268: 356-357.

Тайзингер, Дж. 1984. Экспозиционное испытание в промышленной токсикологии [Испытания на воздействие в промышленной токсикологии]. Берлин: VEB Verlag Volk und Gesundheit.

Конгресс США. 1990. Генетический мониторинг и скрининг на рабочем месте, OTA-BA-455. Вашингтон, округ Колумбия: Типография правительства США.

ВЭБ. 1981. Kleine Enzyklopaedie: Leben [Жизнь]. Лейпциг: Библиографический институт ВЭБ.

Вейл, Э. 1975. Элементы промышленной токсикологии [Элементы промышленной токсикологии]. Париж: Masson et Cie.

Всемирная организация здравоохранения (ВОЗ). 1975. Методы, применяемые в СССР для установления безопасных уровней токсичных веществ. Женева: ВОЗ.

1978. Принципы и методы оценки токсичности химических веществ, часть 1. Критерии гигиены окружающей среды, №6. Женева: ВОЗ.

—. 1981 г. Комбинированное воздействие химических веществ, Промежуточный документ № 11. Копенгаген: Европейское региональное бюро ВОЗ.

—. 1986 г. Принципы токсикокинетических исследований. Критерии гигиены окружающей среды, №. 57. Женева: ВОЗ.

Yoftrey, JM и FC Courtice. 1956. Лимфатика, лимфа и лимфоидная ткань. Кембридж: Гарвардский ун-т. Нажимать.

Закутинский, Д.И. 1959. Вопросы токсикологии радиоактивных веществ. Москва: Медгиз.

Зурло, Дж., Д. Рудасиль и А. М. Голдберг. 1993. Животные и альтернативы в тестировании: история, наука и этика. Нью-Йорк: Мэри Энн Либерт.