Распечатай эту страницу
Воскресенье, Январь 16 2011 16: 29

Клеточная травма и клеточная смерть

Оценить этот пункт
(4 голосов)

Практически вся медицина посвящена либо предотвращению гибели клеток при таких заболеваниях, как инфаркт миокарда, инсульт, травма и шок, либо ее вызыванию, как в случае инфекционных заболеваний и рака. Поэтому важно понимать природу и механизмы вовлечения. Гибель клеток классифицируется как «случайная», то есть вызванная токсическими агентами, ишемией и т. д., или «запрограммированная», происходящая во время эмбриологического развития, включая формирование пальцев и резорбцию хвоста головастика.

Таким образом, повреждение клеток и их гибель важны как в физиологии, так и в патофизиологии. Физиологическая гибель клеток чрезвычайно важна во время эмбриогенеза и эмбрионального развития. Изучение гибели клеток во время развития привело к получению важной и новой информации о задействованной молекулярной генетике, особенно благодаря изучению развития беспозвоночных животных. У этих животных было тщательно изучено точное расположение и значение клеток, которым суждено подвергнуться клеточной гибели, и с использованием классических методов мутагенеза в настоящее время идентифицировано несколько задействованных генов. Во взрослых органах баланс между клеточной гибелью и клеточной пролиферацией контролирует размер органа. В некоторых органах, таких как кожа и кишечник, происходит постоянный обмен клеток. В коже, например, клетки дифференцируются, достигая поверхности, и, наконец, претерпевают терминальную дифференциацию и гибель клеток по мере того, как происходит ороговение с образованием сшитых оболочек.

Многие классы токсичных химических веществ способны вызывать острое повреждение клеток с последующей смертью. К ним относятся аноксия и ишемия, а также их химические аналоги, такие как цианистый калий; химические канцерогены, образующие электрофилы, ковалентно связывающиеся с белками в нуклеиновых кислотах; химические вещества-окислители, приводящие к образованию свободных радикалов и окислительному повреждению; активация комплемента; и различные ионофоры кальция. Гибель клеток также является важным компонентом химического канцерогенеза; многие полные химические канцерогены в канцерогенных дозах вызывают острый некроз и воспаление с последующей регенерацией и пренеоплазией.

Определения

Повреждение клеток

Повреждение клетки определяется как событие или стимул, такой как токсичное химическое вещество, которое нарушает нормальный гомеостаз клетки, вызывая, таким образом, ряд событий (рис. 1). Основными мишенями проиллюстрированных смертельных повреждений являются ингибирование синтеза АТФ, нарушение целостности плазматической мембраны или изъятие основных факторов роста.

Рисунок 1. Повреждение клеток

ТОХ060F1

Смертельные травмы приводят к гибели клетки через разный период времени, в зависимости от температуры, типа клетки и раздражителя; или они могут быть сублетальными или хроническими, то есть повреждение приводит к изменению гомеостатического состояния, которое, хотя и ненормально, не приводит к гибели клеток (Trump and Arstila, 1971; Trump and Berezesky, 1992; Trump and Berezesky, 1995; Trump, Berezesky and Осорнио-Варгас 1981). В случае летального повреждения существует фаза, предшествующая моменту гибели клетки.

за это время клетка восстановится; однако после определенного момента времени («точки невозврата» или точки гибели клетки) устранение повреждения не приводит к выздоровлению, а вместо этого клетка подвергается деградации и гидролизу, в конечном итоге достигая физико-химического равновесия с среда. Это фаза, известная как некроз. Во время предлетальной фазы происходит несколько основных типов изменений в зависимости от клетки и типа повреждения. Они известны как апоптоз и онкоз.

 

 

 

 

 

Апоптоз

Апоптоз происходит от греческих слов апо, то есть вдали от и птоз, то есть упасть. Срок отпадение от происходит от того факта, что во время этого типа предлетальных изменений клетки сморщиваются и на их периферии появляются заметные вздутия. Затем пузырьки отделяются и уплывают. Апоптоз происходит в различных типах клеток после различных типов токсического повреждения (Wyllie, Kerr and Currie, 1980). Это особенно заметно в лимфоцитах, где он является преобладающим механизмом оборота клонов лимфоцитов. Полученные фрагменты приводят к базофильным тельцам, наблюдаемым внутри макрофагов в лимфатических узлах. В других органах апоптоз обычно происходит в одиночных клетках, которые быстро удаляются до и после гибели путем фагоцитоза фрагментов соседними паренхиматозными клетками или макрофагами. Апоптоз, происходящий в одиночных клетках с последующим фагоцитозом, обычно не приводит к воспалению. Перед смертью апоптотические клетки имеют очень плотный цитозоль с нормальными или конденсированными митохондриями. Эндоплазматический ретикулум (ЭР) нормальный или лишь слегка расширен. Ядерный хроматин заметно скоплен вдоль ядерной оболочки и вокруг ядрышка. Контур ядра также неправильный, и происходит фрагментация ядра. Конденсация хроматина связана с фрагментацией ДНК, которая во многих случаях происходит между нуклеосомами, что дает характерный вид лестницы при электрофорезе.

При апоптозе увеличивается [Ca2+]i может стимулировать К+ отток приводит к усадке клеток, что, вероятно, требует АТФ. Таким образом, повреждения, которые полностью подавляют синтез АТФ, с большей вероятностью приведут к апоптозу. Устойчивое увеличение [Ca2+]i имеет ряд вредных эффектов, включая активацию протеаз, эндонуклеаз и фосфолипаз. Активация эндонуклеазы приводит к одно- и двухцепочечному разрыву ДНК, что, в свою очередь, стимулирует повышение уровня p53 и рибозилирования поли-АДФ, а также ядерных белков, необходимых для репарации ДНК. Активация протеаз модифицирует ряд субстратов, включая актин и родственные белки, что приводит к образованию пузырьков. Другим важным субстратом является поли(АДФ-рибозо)полимераза (PARP), которая ингибирует репарацию ДНК. Повышенный [Са2+]i также связано с активацией ряда протеинкиназ, таких как МАР-киназа, кальмодулинкиназа и др. Такие киназы участвуют в активации факторов транскрипции, которые инициируют транскрипцию непосредственно-ранних генов, например, c-fos, c-jun и c-myc, а также в активации фосфолипазы А.2 что приводит к пермеабилизации плазматической мембраны и внутриклеточных мембран, таких как внутренняя мембрана митохондрий.

Онкоз

Онкоз, производное от греческого слова онкосНабухание названо так потому, что при этом типе предлетального изменения клетка начинает набухать почти сразу после травмы (Majno and Joris, 1995). Причиной набухания является увеличение содержания катионов в воде внутри клетки. Основным ответственным катионом является натрий, содержание которого обычно регулируется для поддержания объема клетки. Однако в отсутствие АТФ или при ингибировании Na-АТФазы плазмалеммы контроль объема теряется из-за внутриклеточного белка, а содержание натрия в воде продолжает увеличиваться. Таким образом, среди ранних событий при онкозах повышенное [Na+]i что приводит к набуханию клеток и увеличению [Ca2+]i в результате притока из внеклеточного пространства или высвобождения из внутриклеточных запасов. Это приводит к набуханию цитозоля, набуханию эндоплазматического ретикулума и аппарата Гольджи, а также к образованию водянистых пузырьков вокруг клеточной поверхности. Митохондрии сначала подвергаются конденсации, но позже и они обнаруживают высокоамплитудное набухание из-за повреждения внутренней митохондриальной мембраны. При этом типе предлетальных изменений хроматин подвергается конденсации и, в конечном счете, деградации; однако характерная лестница апоптоза не видна.

Некроз

Некроз относится к ряду изменений, которые происходят после гибели клетки, когда клетка превращается в дебрис, который обычно удаляется в результате воспалительной реакции. Различают два типа: онкотический некроз и апоптотический некроз. Онкотический некроз обычно возникает в больших зонах, например, при инфаркте миокарда или регионарно в органе после химической токсичности, например, в проксимальных канальцах почек после введения HgCl.2. Поражаются обширные зоны органа, и некротические клетки быстро вызывают воспалительную реакцию, сначала острую, а затем хроническую. В случае выживания организма во многих органах некроз сменяется отмиранием мертвых клеток и регенерацией, например, в печени или почках после химической токсичности. Напротив, апоптотический некроз обычно возникает на основе одной клетки, а некротический дебрис образуется внутри фагоцитов макрофагов или соседних паренхиматозных клеток. Самые ранние характеристики некротических клеток включают нарушения непрерывности плазматической мембраны и появление хлопьевидных уплотнений, представляющих собой денатурированные белки в митохондриальном матриксе. При некоторых формах повреждения, которые изначально не препятствуют накоплению кальция в митохондриях, в митохондриях можно увидеть отложения фосфата кальция. Аналогичным образом фрагментируются и другие мембранные системы, такие как ЭПР, лизосомы и аппарат Гольджи. В конечном итоге ядерный хроматин подвергается лизису в результате атаки лизосомальных гидролаз. После гибели клеток лизосомальные гидролазы играют важную роль в удалении дебриса с помощью катепсинов, нуклеолаз и липаз, поскольку они имеют оптимальный кислый рН и могут выживать при низком рН некротических клеток, в то время как другие клеточные ферменты денатурируются и инактивируются.

Механизмы

Начальный стимул

В случае смертельных травм наиболее распространенными начальными взаимодействиями, приводящими к повреждению, ведущему к гибели клеток, являются нарушение энергетического обмена, такое как аноксия, ишемия или ингибиторы дыхания, и гликолиз, такой как цианид калия, окись углерода, йодацетат и скоро. Как упоминалось выше, высокие дозы соединений, подавляющих энергетический обмен, обычно приводят к онкозам. Другим распространенным типом начального повреждения, приводящего к острой гибели клеток, является изменение функции плазматической мембраны (Trump and Arstila, 1971; Trump, Berezesky and Osornio-Vargas, 1981). Это может быть как прямое повреждение и пермеабилизация, как в случае травмы, так и активация комплекса С5b-С9 комплемента, механическое повреждение клеточной мембраны или ингибирование натрий-калиевого (Na+-K+) насос с гликозидами, такими как уабаин. Ионофоры кальция, такие как иономицин или A23187, которые быстро переносят [Ca2+] вниз по градиенту в клетку, также вызывают острую смертельную травму. В некоторых случаях паттерном предлетальных изменений является апоптоз; в других случаях это онкоз.

Сигнальные пути

При многих типах повреждений быстро нарушаются митохондриальное дыхание и окислительное фосфорилирование. В некоторых клетках это стимулирует анаэробный гликолиз, способный поддерживать АТФ, но при многих повреждениях он подавляется. Недостаток АТФ приводит к неспособности активизировать ряд важных гомеостатических процессов, в частности, контроль гомеостаза внутриклеточных ионов (Trump and Berezesky 1992; Trump, Berezesky and Osornio-Vargas 1981). Это приводит к быстрому увеличению [Ca2+]i, и увеличилась [Na+] и [Cl-] приводит к набуханию клеток. Увеличение [Ca2+]i приводят к активации ряда других сигнальных механизмов, обсуждаемых ниже, включая ряд киназ, которые могут приводить к усилению экспрессии гена непосредственно на раннем этапе. Повышенный [Са2+]i также изменяет функцию цитоскелета, частично приводя к образованию пузырьков и активации эндонуклеаз, протеаз и фосфолипаз. Они, по-видимому, запускают многие важные эффекты, описанные выше, такие как повреждение мембран за счет активации протеазы и липазы, прямую деградацию ДНК в результате активации эндонуклеазы и активацию киназ, таких как MAP-киназа и кальмодулинкиназа, которые действуют как факторы транскрипции.

Благодаря обширной работе по развитию беспозвоночных C. Элеганс и Дрозофила, а также в клетках человека и животных идентифицирован ряд предсмертных генов. Было обнаружено, что некоторые из этих генов беспозвоночных имеют аналоги у млекопитающих. Например, ген ced-3, необходимый для запрограммированной гибели клеток у С. Элеганс, обладает протеазной активностью и сильной гомологией с ферментом, превращающим интерлейкин млекопитающих (ICE). Близкородственный ген, названный apopain или prICE, недавно был идентифицирован с еще более близкой гомологией (Nicholson et al. 1995). В Дрозофила, ген жнеца, по-видимому, участвует в сигнале, который приводит к запрограммированной гибели клеток. Другие гены, способствующие смерти, включают мембранный белок Fas и важный ген-супрессор опухоли p53, который широко консервативен. p53 индуцируется на уровне белка после повреждения ДНК и при фосфорилировании действует как фактор транскрипции для других генов, таких как gadd45 и waf-1, которые участвуют в передаче сигналов гибели клеток. Другие непосредственные ранние гены, такие как c-fos, c-jun и c-myc, по-видимому, также вовлечены в некоторые системы.

В то же время существуют гены антисмерти, которые противодействуют генам смерти. Первым из них, который был идентифицирован, был ced-9 из C. Элеганс, который гомологичен bcl-2 у человека. Эти гены действуют пока неизвестным образом, предотвращая гибель клеток генетическими или химическими токсинами. Некоторые недавние данные указывают на то, что bcl-2 может действовать как антиоксидант. В настоящее время предпринимаются большие усилия для понимания задействованных генов и разработки способов активации или ингибирования этих генов в зависимости от ситуации.

 

Назад

Читать 12287 раз Последнее изменение во вторник, 26 июля 2022 19: 28