Распечатай эту страницу
Воскресенье, Январь 16 2011 19: 30

Подход Соединенных Штатов к оценке риска репродуктивных токсикантов и нейротоксических агентов

Оценить этот пункт
(0 голосов)

Нейротоксичность и репродуктивная токсичность являются важными областями для оценки риска, поскольку нервная и репродуктивная системы очень чувствительны к воздействию ксенобиотиков. Многие агенты были идентифицированы как токсичные для этих систем человека (Barlow and Sullivan 1982; OTA 1990). Многие пестициды специально разработаны для нарушения репродукции и неврологических функций целевых организмов, таких как насекомые, путем вмешательства в гормональную биохимию и нейротрансмиссию.

Трудно идентифицировать вещества, потенциально токсичные для этих систем, по трем взаимосвязанным причинам: во-первых, это одни из самых сложных биологических систем человека, а животные модели репродуктивной и неврологической функции, как правило, признаны неадекватными для представления таких критических событий, как когнитивные функции. или раннее эмбриофетальное развитие; во-вторых, нет простых тестов для выявления потенциальных репродуктивных или неврологических токсикантов; и в-третьих, эти системы содержат несколько типов клеток и органов, так что ни один набор механизмов токсичности не может быть использован для вывода зависимости доза-реакция или предсказания зависимости структура-активность (SAR). Кроме того, известно, что чувствительность как нервной, так и репродуктивной систем меняется с возрастом и что воздействие в критические периоды может иметь гораздо более тяжелые последствия, чем в другое время.

Оценка риска нейротоксичности

Нейротоксичность является важной проблемой общественного здравоохранения. Как показано в таблице 1, имело место несколько эпизодов нейротоксичности человека с участием тысяч рабочих и других групп населения, подвергшихся воздействию промышленных выбросов, зараженных пищевых продуктов, воды и других переносчиков. Профессиональное воздействие нейротоксинов, таких как свинец, ртуть, фосфорорганические инсектициды и хлорсодержащие растворители, широко распространено во всем мире (OTA 1990; Johnson 1978).

Таблица 1. Отдельные крупные случаи нейротоксичности

Год (ы) Адрес Вещество Комментарии
400 до н.э. Rome Вести Гиппократ признает токсичность свинца в горнодобывающей промышленности.
1930s США (юго-восток) ТОП Соединение, часто добавляемое в смазочные масла, загрязняет алкогольный напиток «Джинджер Джейк»; более 5,000 парализованных, от 20,000 100,000 до XNUMX XNUMX пострадавших.
1930s Европе Апиол (с ТОСР) Вызывающий аборт препарат, содержащий ТОСР, вызывает 60 случаев невропатии.
1932 США (Калифорния) таллий Ячмень с добавлением сульфата таллия, используемый в качестве родентицида, украден и используется для приготовления лепешек; 13 членов семьи госпитализированы с неврологическими симптомами; 6 смертей.
1937 Южно-Африканская Республика ТОП У 60 южноафриканцев развивается паралич после использования загрязненного растительного масла.
1946 - Тетраэтилсвинец Более 25 человек страдают неврологическими последствиями после очистки бензобаков.
1950s Япония (Минимата) ртутный Сотни глотают рыбу и моллюсков, загрязненных ртутью с химического завода; 121 отравление, 46 смертей, много младенцев с серьезными повреждениями нервной системы.
1950s Франция Organotin Загрязнение Сталлинона триэтилоловом приводит к гибели более 100 человек.
1950s Марокко Марганец 150 горняков страдают от хронической интоксикации марганцем, сопровождающейся серьезными нейроповеденческими проблемами.
1950s-1970s США АЭТТ Компонент ароматизаторов оказался нейротоксичным; снят с продажи в 1978 г .; последствия для здоровья человека неизвестны.
1956 - Эндрин 49 человек заболели после употребления хлебобулочных изделий, приготовленных из муки, зараженной инсектицидом эндрином; в некоторых случаях возникают судороги.
1956 Турция HCB Гексахлорбензол, фунгицид для посевного материала, вызывает отравление от 3,000 до 4,000 человек; Смертность 10 процентов.
1956-1977 Япония Клиохинол Препарат, используемый для лечения диареи путешественников, вызывает невропатию; за два десятилетия пострадало до 10,000 XNUMX человек.
1959 Марокко ТОП Кулинарное масло, загрязненное смазочным маслом, затрагивает около 10,000 XNUMX человек.
1960 Ирак ртутный Ртуть, используемая в качестве фунгицида для обработки семенного зерна, используемого в хлебе; пострадало более 1,000 человек.
1964 Япония ртутный Метилртуть заразила 646 человек.
1968 Япония Печатные платы Полихлорированные бифенилы попали в рисовое масло; 1,665 человек пострадали.
1969 Япония н-Гексан 93 случая невропатии возникают после воздействия н-гексана, используемого для изготовления виниловых сандалий.
1971 США Гексахлорофен После многих лет купания младенцев в 3-процентном гексахлорофене дезинфицирующее средство оказалось токсичным для нервной системы и других систем.
1971 Ирак ртутный Ртуть, используемая в качестве фунгицида для обработки семенного зерна, используется в хлебе; более 5,000 тяжелых отравлений, 450 смертей в больницах, воздействие на многих младенцев, подвергшихся внутриутробному воздействию, не задокументировано.
1973 США (Огайо) МИБК Работники завода по производству тканей, подвергшиеся воздействию растворителя; более 80 рабочих страдают невропатией, 180 имеют менее тяжелые последствия.
1974-1975 США (Хоупвелл, Вирджиния) Хлордекон (Кепон) Работники химических заводов, подвергшиеся воздействию инсектицидов; более 20 страдают серьезными неврологическими проблемами, более 40 имеют менее серьезные проблемы.
1976 США (Техас) Лептофос (Фосвел) По меньшей мере 9 сотрудников страдают от серьезных неврологических проблем в результате воздействия инсектицида в процессе производства.
1977 США (Калифорния) Дихлорпропен (телоне II) 24 человека госпитализированы после воздействия пестицида телоне в результате дорожно-транспортного происшествия.
1979-1980 США (Ланкастер, Техас) BHMH (Люсель-7) Семь сотрудников завода по производству пластиковых ванн испытывают серьезные неврологические проблемы после воздействия BHMH.
1980s США МПТП Установлено, что примесь в синтезе запрещенного наркотика вызывает симптомы, идентичные симптомам болезни Паркинсона.
1981 Испания Загрязненное токсичное масло 20,000 500 человек отравились ядовитым веществом в нефти, в результате чего погибло более XNUMX человек; многие страдают тяжелой невропатией.
1985 Соединенные Штаты и Канада алдикарба Более 1,000 человек в Калифорнии и других западных штатах и ​​Британской Колумбии испытывают нервно-мышечные и сердечные проблемы после употребления в пищу дынь, загрязненных пестицидом алдикарбом.
1987 Канада Домоевая кислота Употребление в пищу мидий, зараженных домоевой кислотой, вызывает 129 заболеваний и 2 смерти; симптомы включают потерю памяти, дезориентацию и судороги.

Источник: ОТА 1990.

Химические вещества могут воздействовать на нервную систему посредством воздействия на любую из нескольких клеточных мишеней или биохимических процессов в центральной или периферической нервной системе. Токсическое воздействие на другие органы может также поражать нервную систему, как на примере печеночной энцефалопатии. Проявления нейротоксичности включают влияние на обучение (включая память, познание и интеллектуальную деятельность), соматосенсорные процессы (включая чувствительность и проприорецепцию), моторную функцию (включая баланс, походку и контроль над мелкими движениями), аффект (включая статус личности и эмоциональность) и вегетативную функцию. функция (нервная регуляция эндокринной функции и систем внутренних органов). Токсическое воздействие химических веществ на нервную систему часто меняется по чувствительности и степени выраженности с возрастом: во время развития центральная нервная система может быть особенно восприимчива к токсическому воздействию из-за длительного процесса клеточной дифференцировки, миграции и межклеточных контактов. что происходит у людей (OTA 1990). Кроме того, цитотоксическое повреждение нервной системы может быть необратимым, поскольку нейроны не заменяются после эмбриогенеза. В то время как центральная нервная система (ЦНС) в некоторой степени защищена от контакта с абсорбированными соединениями через систему тесно связанных клеток (гематоэнцефалический барьер, состоящий из капиллярных эндотелиальных клеток, выстилающих сосудистую сеть головного мозга), токсичные химические вещества могут получить доступ к ЦНС по трем механизмам: растворители и липофильные соединения могут проходить через клеточные мембраны; некоторые соединения могут присоединяться к эндогенным белкам-транспортерам, которые служат для снабжения ЦНС питательными веществами и биомолекулами; небольшие белки при вдыхании могут напрямую поглощаться обонятельным нервом и транспортироваться в мозг.

Регулирующие органы США

Законодательные полномочия по регулированию веществ, вызывающих нейротоксичность, закреплены за четырьмя агентствами в Соединенных Штатах: Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA), Агентством по охране окружающей среды (EPA), Управлением по безопасности и гигиене труда (OSHA) и Комиссией по безопасности потребительских товаров. (КПСК). В то время как OSHA обычно регулирует профессиональное воздействие нейротоксичных (и других) химических веществ, EPA имеет полномочия регулировать профессиональное и непрофессиональное воздействие пестицидов в соответствии с Федеральным законом об инсектицидах, фунгицидах и родентицидах (FIFRA). EPA также регулирует новые химические вещества до производства и продажи, что обязывает агентство учитывать как профессиональные, так и непрофессиональные риски.

Идентификация опасности

Агенты, которые неблагоприятно влияют на физиологию, биохимию или структурную целостность нервной системы или функции нервной системы, выражающиеся в поведении, определяются как нейротоксические опасности (EPA 1993). Определение врожденной нейротоксичности представляет собой трудный процесс из-за сложности нервной системы и множественных проявлений нейротоксичности. Некоторые эффекты могут проявляться с задержкой, например, отсроченная нейротоксичность некоторых фосфорорганических инсектицидов. При определении нейротоксической опасности требуются осторожность и рассудительность, включая рассмотрение условий воздействия, дозы, продолжительности и времени.

Идентификация опасностей обычно основывается на токсикологических исследованиях интактных организмов, в ходе которых оцениваются поведенческие, когнитивные, моторные и соматосенсорные функции с помощью ряда исследовательских инструментов, включая биохимию, электрофизиологию и морфологию (Tilson and Cabe, 1978; Spencer and Schaumberg, 1980). Важность тщательного наблюдения за поведением всего организма невозможно переоценить. Выявление опасностей также требует оценки токсичности на разных стадиях развития, включая ранний период жизни (внутриутробный и ранний неонатальный) и старение. У людей идентификация нейротоксичности включает клиническую оценку с использованием методов неврологической оценки моторной функции, беглости речи, рефлексов, сенсорной функции, электрофизиологии, нейропсихологического тестирования и, в некоторых случаях, передовых методов визуализации мозга и количественной электроэнцефалографии. ВОЗ разработала и утвердила основную батарею нейроповеденческих тестов (NCTB), которая включает в себя тесты двигательной функции, зрительно-моторной координации, времени реакции, непосредственной памяти, внимания и настроения. Эта батарея прошла международную валидацию в рамках скоординированного процесса (Johnson 1978).

Идентификация опасностей с использованием животных также зависит от тщательных методов наблюдения. Агентство по охране окружающей среды США разработало набор функциональных наблюдений в качестве теста первого уровня, предназначенного для обнаружения и количественной оценки основных явных нейротоксических эффектов (Moser, 1990). Этот подход также включен в методы тестирования субхронической и хронической токсичности ОЭСР. Типичная батарея включает следующие меры: осанка; походка; мобильность; общее возбуждение и реактивность; наличие или отсутствие тремора, судорог, слезотечения, пилоэрекции, слюноотделения, избыточного мочеиспускания или дефекации, стереотипии, кружения или других странных форм поведения. Вызванное поведение включает реакцию на прикосновение, щипок за хвост или щелчки; равновесие, восстанавливающий рефлекс и силу захвата задних конечностей. Некоторые репрезентативные тесты и агенты, идентифицированные с помощью этих тестов, показаны в таблице 2.

Таблица 2. Примеры специализированных тестов для измерения нейротоксичности

Функция Процедура Агенты-представители
нервно-мышечный
Слабое место сила захвата; плавательная выносливость; подвеска из стержня; дискриминационная двигательная функция; растопыренность задних конечностей н-гексан, метилбутилкетон, карбарил
несогласованность Rotorod, измерения походки 3-ацетилпиридин, этанол
Тремор Рейтинговая шкала, спектральный анализ Хлордекон, Пиретроиды типа I, ДДТ
Миоклония, судороги Рейтинговая шкала, спектральный анализ ДДТ, Пиретроиды типа II
Сенсорный
слуховой Дискриминантное обусловливание, рефлекторная модификация толуол, триметилолово
Визуальная токсичность Дискриминантное кондиционирование Метил ртуть
Соматосенсорная токсичность Дискриминантное кондиционирование акриламид
Болевая чувствительность Дискриминантное кондиционирование (бтрация); функциональная наблюдательная батарея паратион
Обонятельная токсичность Дискриминантное кондиционирование 3-метилиндола метилбромид
Обучение, память
Привыкание Поразительный рефлекс Диизопропилфторфосфат (ДФФ)
Классическое кондиционирование Мигательная перепонка, условное отвращение к вкусу, пассивное избегание, обонятельное кондиционирование Алюминий, карбарил, триметилолово, IDPN, триметилолово (неонатальный)
Оперативное или инструментальное обусловливание Одностороннее избегание, Двустороннее избегание, Избегание Y-образного лабиринта, Водный лабиринт Биола, Водный лабиринт Морриса, Лабиринт с радиальными рукавами, Отложенное сопоставление с образцом, Повторное получение, Обучение визуальному различению Хлордекон, свинец (неонатальный), гипервитаминоз А, стирол, ДФП, триметилолово, ДФП. карбарил, свинец

Источник: АООС, 1993 г.

За этими тестами могут следовать более сложные оценки, обычно предназначенные для механистических исследований, а не для выявления опасностей. Методы идентификации опасностей нейротоксичности in vitro ограничены, поскольку они не дают указаний на воздействие на сложные функции, такие как обучение, но они могут быть очень полезными для определения целевых участков токсичности и повышения точности исследований доза-реакция в целевых участках (см. WHO 1986 и EPA 1993 для всестороннего обсуждения принципов и методов выявления потенциальных нейротоксикантов).

Оценка доза-реакция

Взаимосвязь между токсичностью и дозой может быть основана на данных о людях, если таковые имеются, или на тестах на животных, как описано выше. В Соединенных Штатах для нейротоксикантов обычно используется метод неопределенности или фактора безопасности. Этот процесс включает определение «уровня отсутствия наблюдаемого вредного воздействия» (NOAEL) или «наименьшего наблюдаемого уровня вредного воздействия» (LOAEL), а затем деление этого числа на коэффициенты неопределенности или безопасности (обычно кратные 10), чтобы учесть такие соображения, как неполнота данные, потенциально более высокая чувствительность людей и изменчивость реакции человека из-за возраста или других факторов хозяина. Полученное число называется эталонной дозой (RfD) или эталонной концентрацией (RfC). Эффект, возникающий при самой низкой дозе у наиболее чувствительных видов животных и пола, обычно используется для определения LOAEL или NOAEL. Преобразование дозы у животных в облучение человека производится стандартными методами межвидовой дозиметрии с учетом различий в продолжительности жизни и продолжительности облучения.

Использование подхода фактора неопределенности предполагает, что существует порог или доза, ниже которой не возникает никакого вредного воздействия. Пороговые значения для конкретных нейротоксикантов трудно определить экспериментально; они основаны на предположениях относительно механизма действия, которые могут быть справедливы или неверны для всех нейротоксикантов (Silbergeld 1990).

Оценка воздействия

На этом этапе оценивается информация об источниках, путях, дозах и продолжительности воздействия нейротоксиканта на человеческие популяции, субпопуляции или даже отдельных лиц. Эта информация может быть получена в результате мониторинга экологических сред или отбора проб у людей, или из оценок, основанных на стандартных сценариях (таких как условия на рабочем месте и должностные инструкции) или моделях поведения и рассеивания в окружающей среде (см. EPA 1992 для общих рекомендаций по методам оценки воздействия). В некоторых ограниченных случаях биологические маркеры могут использоваться для проверки выводов и оценок воздействия; однако существует относительно немного пригодных для использования биомаркеров нейротоксикантов.

Характеристика риска

Для разработки характеристики риска используется сочетание идентификации опасностей, доза-реакция и оценка воздействия. Этот процесс включает допущения относительно экстраполяции высоких доз к низким, экстраполяции от животных к человеку, а также уместности пороговых допущений и использования факторов неопределенности.

Репродуктивная токсикология — методы оценки риска

Репродуктивные опасности могут воздействовать на несколько функциональных конечных точек и клеточных мишеней у людей, что имеет последствия для здоровья пострадавшего человека и будущих поколений. Репродуктивные факторы могут повлиять на развитие репродуктивной системы у мужчин и женщин, репродуктивное поведение, гормональную функцию, гипоталамус и гипофиз, гонады и половые клетки, фертильность, беременность и продолжительность репродуктивной функции (OTA 1985). Кроме того, мутагенные химические вещества могут также влиять на репродуктивную функцию, нарушая целостность зародышевых клеток (Dixon, 1985).

Характер и степень неблагоприятного воздействия химического воздействия на репродуктивную функцию в человеческом населении в значительной степени неизвестны. Относительно мало данных эпиднадзора доступно по таким конечным точкам, как фертильность мужчин и женщин, возраст наступления менопаузы у женщин или количество сперматозоидов у мужчин. Однако и мужчины, и женщины работают в отраслях, где может возникнуть опасность для репродуктивной системы (OTA 1985).

В этом разделе не повторяются те элементы, которые являются общими для оценки риска нейротоксикантов и токсикантов для репродуктивной системы, а основное внимание уделяется вопросам, характерным для оценки риска токсикантов для репродуктивной системы. Как и в случае с нейротоксикантами, полномочия по регулированию токсичности химических веществ для репродуктивной системы законодательно возложены на EPA, OSHA, FDA и CPSC. Из этих агентств только EPA имеет установленный набор рекомендаций по оценке риска репродуктивной токсичности. Кроме того, в штате Калифорния были разработаны методы оценки риска репродуктивной токсичности в соответствии с законом штата Proposition 65 (Pease et al., 1991).

Репродуктивные токсиканты, такие как нейротоксиканты, могут воздействовать на любой из ряда органов-мишеней или молекулярных участков действия. Их оценка имеет дополнительную сложность из-за необходимости оценивать три различных организма по отдельности и вместе — самца, самку и потомство (Mattison and Thomford, 1989). В то время как важной конечной точкой репродуктивной функции является рождение здорового ребенка, репродуктивная биология также играет роль в здоровье развивающихся и зрелых организмов независимо от их участия в деторождении. Например, потеря овуляторной функции в результате естественного истощения или хирургического удаления ооцитов оказывает существенное влияние на здоровье женщины, включая изменения артериального давления, метаболизма липидов и физиологии костей. Изменения биохимии гормонов могут повлиять на предрасположенность к раку.

Идентификация опасности

Идентификация репродуктивной опасности может быть сделана на основе данных о людях или животных. В целом данные о людях относительно скудны из-за необходимости тщательного наблюдения для выявления изменений репродуктивной функции, таких как количество или качество сперматозоидов, частота овуляции и продолжительность цикла или возраст наступления половой зрелости. Выявление репродуктивных опасностей путем сбора информации о коэффициентах фертильности или данных об исходе беременности может быть затруднено из-за преднамеренного подавления фертильности, осуществляемого многими парами с помощью мер планирования семьи. Тщательный мониторинг отдельных популяций показывает, что частота невынашивания репродуктивной функции (выкидыша) может быть очень высокой при оценке биомаркеров ранней беременности (Sweeney et al., 1988).

Протоколы тестирования с использованием экспериментальных животных широко используются для выявления репродуктивных токсикантов. В большинстве этих дизайнов, разработанных в США FDA и EPA и на международном уровне в рамках программы руководств по тестированию ОЭСР, эффекты подозрительных агентов выявляются с точки зрения фертильности после воздействия на мужчин и / или женщин; наблюдение за сексуальным поведением, связанным со спариванием; и гистопатологическое исследование гонад и дополнительных половых желез, таких как молочные железы (EPA 1994). Часто исследования репродуктивной токсичности включают непрерывное введение доз животным в течение одного или нескольких поколений с целью выявления воздействия на интегрированный репродуктивный процесс, а также для изучения воздействия на конкретные органы воспроизводства. Рекомендуется проводить исследования на нескольких поколениях, поскольку они позволяют выявить эффекты, которые могут быть вызваны воздействием во время развития репродуктивной системы внутриутробно. Специальный протокол испытаний, Репродуктивная оценка путем непрерывного размножения (RACB), был разработан в Соединенных Штатах Национальной программой токсикологии. Этот тест предоставляет данные об изменениях временных промежутков между беременностями (отражающих овуляторную функцию), а также количестве и размере пометов за весь период тестирования. При распространении на всю жизнь самки это может дать информацию о ранней репродуктивной недостаточности. Показатели спермы могут быть добавлены к RACB для обнаружения изменений мужской репродуктивной функции. Специальный тест для выявления пре- или постимплантационной потери является доминирующим летальным тестом, предназначенным для выявления мутагенных эффектов в мужском сперматогенезе.

Тесты in vitro также были разработаны для скрининга токсичности для репродуктивной системы (и развития) (Heindel and Chapin 1993). Эти тесты обычно используются для дополнения результатов тестов in vivo, предоставляя больше информации о целевом участке и механизме наблюдаемых эффектов.

В таблице 3 показаны три типа конечных точек при оценке репродуктивной токсичности: опосредованная парами, специфичная для женщин и специфичная для мужчин. Конечные точки, опосредованные парами, включают те, которые обнаруживаются в исследованиях с участием нескольких поколений и одного организма. Как правило, они также включают оценку потомства. Следует отметить, что измерение фертильности у грызунов, как правило, нечувствительно по сравнению с таким измерением у людей, и что неблагоприятное воздействие на репродуктивную функцию вполне может проявляться при более низких дозах, чем те, которые значительно влияют на фертильность (EPA, 1994). Специфические для мужчин конечные точки могут включать тесты на доминантную летальность, а также гистопатологическую оценку органов и спермы, измерение гормонов и маркеров полового развития. Функцию сперматозоидов также можно оценить с помощью методов экстракорпорального оплодотворения для определения свойств зародышевых клеток проникновения и капацитации; эти тесты ценны, потому что они напрямую сопоставимы с оценками in vitro, проводимыми в клиниках по лечению бесплодия, но сами по себе они не дают информации о доза-реакция. Специфические для женщин конечные точки включают, в дополнение к гистопатологии органов и измерениям гормонов, оценку последствий репродукции, включая лактацию и рост потомства.

Таблица 3. Конечные точки репродуктивной токсикологии

  Опосредованные парой конечные точки
Исследования нескольких поколений Другие репродуктивные конечные точки
Скорость спаривания, время до спаривания (время до беременности1)
Уровень беременности1
Скорость доставки1
Продолжительность беременности1
Размер помета (общий и живой)
Количество живых и мертвых потомков (внутриутробная смертность1)
Пол потомства1
Вес при рождении1
Послеродовой вес1
Выживание потомства1
Внешние пороки развития и вариации1
Воспроизведение потомства1
Скорость овуляции

Скорость внесения удобрений
Преимплантационная потеря
Номер имплантации
Постимплантационная потеря1
Внутренние пороки развития и вариации1
Постнатальное структурное и функциональное развитие1
  Конечные точки для мужчин
Вес органов

Визуальный осмотр и гистопатология

оценка спермы1

Уровень гормонов1

развивающий
Семенники, придатки яичек, семенные пузырьки, простата, гипофиз
Семенники, придатки яичек, семенные пузырьки, простата, гипофиз
Количество сперматозоидов (количество) и качество (морфология, подвижность)
Лютеинизирующий гормон, фолликулостимулирующий гормон, тестостерон, эстроген, пролактин
Опускание яичка1, отделение препуция, продукция спермы1аногенитальное расстояние, нормальность наружных половых органов1
  Женские конечные точки
Вес тела
Вес органов
Визуальный осмотр и гистопатология

Эструс (менструальный1) нормальность цикла
Уровень гормонов1
Кормление грудью1
Развитие


Старение (менопауза1)

Яичник, матка, влагалище, гипофиз
Яичник, матка, влагалище, гипофиз, яйцевод, молочная железа
Цитология вагинального мазка
ЛГ, ФСГ, эстроген, прогестерон, пролактин
Рост потомства
Нормальность наружных половых органов1, вагинальное отверстие, цитология вагинального мазка, начало эструса (менструация1)
Цитология вагинального мазка, гистология яичников

1 Конечные точки, которые можно получить относительно неинвазивно на людях.

Источник: АООС, 1994 г.

В Соединенных Штатах идентификация опасности завершается качественной оценкой данных о токсичности, по которой химические вещества оцениваются как имеющие достаточные или недостаточные доказательства опасности (EPA, 1994). «Достаточные» доказательства включают эпидемиологические данные, предоставляющие убедительные доказательства причинно-следственной связи (или ее отсутствия), основанные на исследованиях типа «случай-контроль» или когортных исследованиях, или хорошо подтвержденных сериях случаев. Достаточные данные о животных могут быть объединены с ограниченными данными о людях, чтобы подтвердить обнаружение опасности для репродуктивной системы: чтобы быть достаточными, экспериментальные исследования, как правило, должны использовать руководящие принципы тестирования двух поколений Агентства по охране окружающей среды и должны включать минимум данных, демонстрирующих неблагоприятное влияние на репродуктивную функцию. в соответствующем, хорошо проведенном исследовании на одном подопытном виде. Ограниченные человеческие данные могут быть доступны или недоступны; в этом нет необходимости для целей идентификации опасностей. Чтобы исключить потенциальную репродуктивную опасность, данные о животных должны включать адекватный набор конечных точек из более чем одного исследования, показывающего отсутствие неблагоприятного воздействия на репродуктивную функцию при дозах, минимально токсичных для животного (EPA, 1994).

Оценка доза-реакция

Как и при оценке нейротоксикантов, демонстрация дозозависимых эффектов является важной частью оценки риска репродуктивных токсикантов. При анализе зависимости от дозы возникают две особые трудности из-за сложной токсикокинетики во время беременности и важности разграничения специфической репродуктивной токсичности и общей токсичности для организма. Ослабленные животные или животные со значительной неспецифической токсичностью (например, потеря веса) могут не иметь овуляции или спаривания. Материнская токсичность может повлиять на жизнеспособность беременности или поддержку лактации. Эти эффекты, хотя и свидетельствуют о токсичности, не специфичны для репродукции (Kimmel et al., 1986). Оценка реакции на дозу для конкретной конечной точки, такой как фертильность, должна проводиться в контексте общей оценки репродукции и развития. Зависимости доза-реакция для различных эффектов могут значительно различаться, но мешают обнаружению. Например, средства, уменьшающие размер приплода, могут не оказывать влияния на вес приплода из-за снижения конкуренции за внутриутробное питание.

Оценка воздействия

Важным компонентом оценки воздействия для оценки репродуктивного риска является информация о времени и продолжительности воздействия. Меры кумулятивного воздействия могут быть недостаточно точными, в зависимости от затронутого биологического процесса. Известно, что воздействие на разных стадиях развития самцов и самок может привести к различным последствиям как у людей, так и у экспериментальных животных (Gray et al., 1988). Временной характер сперматогенеза и овуляции также влияет на результат. Воздействие на сперматогенез может быть обратимым при прекращении воздействия; однако токсичность ооцитов необратима, поскольку самки имеют фиксированный набор половых клеток, которые используются для овуляции (Mattison and Thomford, 1989).

Характеристика риска

Как и в случае нейротоксикантов, для репродуктивных токсикантов обычно предполагается существование порога. Однако действие мутагенных соединений на зародышевые клетки можно считать исключением из этого общего предположения. Для других конечных точек RfD или RfC рассчитывают так же, как и для нейротоксикантов, путем определения NOAEL или LOAEL и применения соответствующих факторов неопределенности. Эффект, используемый для определения NOAEL или LOAEL, является наиболее чувствительной конечной точкой неблагоприятного воздействия на репродуктивную функцию для наиболее подходящих или наиболее чувствительных видов млекопитающих (EPA, 1994). Факторы неопределенности включают рассмотрение межвидовой и внутривидовой изменчивости, возможность определить истинный NOAEL и чувствительность обнаруженной конечной точки.

Характеристики риска также должны быть сосредоточены на конкретных подгруппах риска, возможно, с указанием мужчин и женщин, статуса беременности и возраста. Особо чувствительные лица, такие как кормящие женщины, женщины с уменьшенным количеством ооцитов или мужчины с уменьшенным количеством сперматозоидов, а также подростки препубертатного возраста, также могут быть рассмотрены.

 

Назад

Читать 7885 раз Последнее изменение во вторник, 26 июля 2022 19: 37