Вторник, Февраль 15 2011 20: 00

Медико-санитарные аспекты управления работой на больших высотах

Оценить этот пункт
(1 голосов)

Большое количество людей работает на больших высотах, особенно в городах и деревнях южноамериканских Анд и на Тибетском нагорье. Большинство этих людей – горцы, живущие в этом районе много лет и, возможно, несколько поколений. Большая часть работы носит сельскохозяйственный характер, например, уход за домашними животными.

Однако суть этой статьи в другом. В последнее время наблюдается значительный рост коммерческой деятельности на высоте от 3,500 до 6,000 м. Примеры включают шахты в Чили и Перу на высоте около 4,500 м. Некоторые из этих шахт очень большие, на них занято более 1,000 рабочих. Другой пример — телескоп в Мауна-Кеа, Гавайи, на высоте 4,200 м.

Традиционно высокие шахты в южноамериканских Андах, некоторые из которых восходят к испанскому колониальному периоду, разрабатывались коренными жителями, которые жили на большой высоте в течение нескольких поколений. Однако в последнее время все шире используются рабочие с уровня моря. Этому изменению есть несколько причин. Во-первых, в этих отдаленных районах не хватает людей для работы на шахтах. Не менее важная причина заключается в том, что по мере того, как шахты становятся все более автоматизированными, требуются квалифицированные люди для управления большими землеройными машинами, погрузчиками и грузовиками, а у местных жителей может не быть необходимых навыков. Третья причина – это экономика разработки этих месторождений. В то время как раньше в окрестностях рудника строились целые города для размещения семей рабочих и необходимых вспомогательных объектов, таких как школы и больницы, теперь считается предпочтительным, чтобы семьи жили на уровне моря, а рабочие ездить на шахты. Это не чисто экономический вопрос. Качество жизни на высоте 4,500 м ниже, чем на более низких высотах (например, дети растут медленнее). Таким образом, решение о том, чтобы семьи оставались на уровне моря, пока рабочие добираются до высокогорья, имеет прочную социально-экономическую основу.

Ситуация, когда рабочая сила перемещается с уровня моря на высоту около 4,500 м, поднимает множество медицинских вопросов, многие из которых в настоящее время плохо изучены. Конечно, у большинства людей, путешествующих с уровня моря на высоту 4,500 м, сначала появляются некоторые симптомы острой горной болезни. Переносимость высоты часто улучшается после первых двух-трех дней. Однако сильная гипоксия этих высот оказывает ряд пагубных воздействий на организм. Максимальная работоспособность снижается, люди быстрее утомляются. Умственная работоспособность снижается, и многим людям гораздо труднее сосредоточиться. Качество сна часто плохое, с частыми пробуждениями и периодическим дыханием (дыхание учащается и ослабевает три-четыре раза в минуту), в результате чего артериальное давление снижается.2 падает до низкого уровня после периодов апноэ или снижения дыхания.

Толерантность к большой высоте сильно различается у разных людей, и часто очень трудно предсказать, кто будет нетерпим к большой высоте. Значительное количество людей, которые хотели бы работать на высоте 4,500 м, обнаруживают, что они не могут этого сделать или что качество жизни настолько низкое, что они отказываются оставаться на этой высоте. Такие темы, как отбор рабочих, способных переносить большую высоту, и планирование их работы между большой высотой и периодом, когда их семьи находятся на уровне моря, являются относительно новыми и недостаточно изученными.

Предварительный осмотр

В дополнение к обычному виду при приеме на работу особое внимание следует уделить сердечно-легочной системе, поскольку работа в условиях высокогорья предъявляет большие требования к дыхательной и сердечно-сосудистой системам. Медицинские состояния, такие как ранняя хроническая обструктивная болезнь легких и астма, будут гораздо более инвалидизирующими на большой высоте из-за высокого уровня вентиляции, и их следует специально искать. Заядлый курильщик сигарет с симптомами раннего бронхита, вероятно, с трудом переносит большую высоту. Форсированную спирометрию следует проводить в дополнение к обычному обследованию грудной клетки, включая рентгенографию грудной клетки. Если возможно, следует провести тест с физической нагрузкой, потому что любая непереносимость физической нагрузки будет преувеличена на большой высоте.

Следует тщательно обследовать сердечно-сосудистую систему, включая электрокардиограмму с нагрузкой, если это возможно. Следует провести анализ крови, чтобы исключить рабочих с необычными степенями анемии или полицитемии.

Жизнь на большой высоте увеличивает психологический стресс у многих людей, и следует тщательно собрать анамнез, чтобы исключить потенциальных работников с предыдущими поведенческими проблемами. Многие современные шахты на большой высоте являются сухими (алкоголь запрещен). Желудочно-кишечные симптомы распространены у некоторых людей, живущих на большой высоте, и рабочие, у которых в анамнезе была диспепсия, могут плохо себя чувствовать.

Отбор рабочих для работы на большой высоте

В дополнение к исключению работников с заболеваниями легких или сердца, которые могут плохо себя чувствовать на большой высоте, было бы очень полезно провести тесты, чтобы определить, кто, вероятно, хорошо переносит высоту. К сожалению, в настоящее время мало что известно о предикторах толерантности к большой высоте, хотя в настоящее время в этом направлении ведется значительная работа.

Лучшим предиктором толерантности к большой высоте, вероятно, является предыдущий опыт пребывания на большой высоте. Если кто-то смог работать на высоте 4,500 м в течение нескольких недель без заметных проблем, очень вероятно, что он или она сможет сделать это снова. Точно так же тот, кто пытался работать на большой высоте и обнаружил, что не может этого вынести, скорее всего, столкнется с той же проблемой в следующий раз. Поэтому при отборе работников большое внимание следует уделять успешному предыдущему месту работы на большой высоте. Однако очевидно, что этот критерий не может быть использован для всех работников, поскольку в противном случае новые люди не вошли бы в состав высотного рабочего пула.

Другим возможным предиктором является величина вентиляционной реакции на гипоксию. Это можно измерить на уровне моря, дав потенциальному работнику низкую концентрацию кислорода для дыхания и измерив увеличение вентиляции. Имеются данные о том, что люди с относительно слабой гипоксической дыхательной реакцией плохо переносят большую высоту. Например, Schoene (1982) показал, что 14 альпинистов-высотников имели значительно более высокие гипоксические дыхательные реакции, чем 1981 человек из контрольной группы. Дальнейшие измерения были сделаны во время Американской медицинской исследовательской экспедиции на Эверест в XNUMX г., где было показано, что гипоксическая дыхательная реакция, измеренная до и во время экспедиции, хорошо коррелирует с производительностью высоко в горах (Schoene, Lahiri and Hackett). 1984). Масуяма, Кимура и Сугита (1986) сообщили, что пять альпинистов, достигших 8,000 м в Канченджанге, имели более высокую гипоксическую дыхательную реакцию, чем пять альпинистов, которые этого не сделали.

Однако эта корреляция отнюдь не универсальна. В проспективном исследовании 128 альпинистов, отправляющихся на большие высоты, показатель гипоксической дыхательной реакции не коррелировал с достигнутой высотой, в то время как измерение максимального поглощения кислорода на уровне моря коррелировало (Rchalet, Kerome and Bersch, 1988). Это исследование также показало, что реакция частоты сердечных сокращений на острую гипоксию может быть полезным предиктором производительности на большой высоте. Были и другие исследования, демонстрирующие слабую корреляцию между гипоксической дыхательной реакцией и работоспособностью на большой высоте (Ward, Milledge and West, 1995).

Проблема со многими из этих исследований заключается в том, что результаты в основном применимы к гораздо большим высотам, чем представляют интерес здесь. Также есть много примеров альпинистов с умеренными значениями гипоксической дыхательной реакции, которые хорошо себя чувствуют на большой высоте. Тем не менее, аномально низкая гипоксическая дыхательная реакция, вероятно, является фактором риска для переносимости даже средних высот, таких как 4,500 м.

Один из способов измерения гипоксической дыхательной реакции на уровне моря состоит в том, чтобы испытуемый снова вдохнул в мешок, который первоначально был наполнен 24% кислорода, 7% углекислым газом и оставшимся азотом. Во время повторного вдоха PCO2 контролируется и поддерживается постоянным с помощью регулируемого байпаса и поглотителя углекислого газа. Возвратное дыхание можно продолжать до тех пор, пока вдохновленный РО2 падает примерно до 40 мм рт. ст. (5.3 кПа). Насыщение артериальной крови кислородом постоянно измеряется с помощью пульсоксиметра, а вентиляция строится в зависимости от насыщения (Rebuck and Campbell, 1974). Другой способ измерения гипоксической дыхательной реакции заключается в определении инспираторного давления в течение короткого периода окклюзии дыхательных путей, когда испытуемый дышит смесью с низким содержанием кислорода (Whitelaw, Derenne and Milic-Emili, 1975).

Другим возможным предиктором выносливости к высоте является работоспособность при острой гипоксии на уровне моря. Обоснование здесь заключается в том, что тот, кто не может переносить острую гипоксию, с большей вероятностью будет нетерпим к хронической гипоксии. Существует мало доказательств за или против этой гипотезы. Советские физиологи использовали толерантность к острой гипоксии как один из критериев отбора альпинистов для успешной экспедиции на Эверест в 1982 г. 1987). С другой стороны, изменения, происходящие при акклиматизации, настолько глубоки, что неудивительно, если работоспособность при острой гипоксии плохо коррелирует с работоспособностью при хронической гипоксии.

Другой возможный предиктор — повышение давления в легочной артерии при острой гипоксии на уровне моря. У многих людей это можно измерить неинвазивно с помощью ультразвуковой допплерографии. Основным обоснованием этого теста является известная корреляция между развитием высотного отека легких и степенью гипоксической легочной вазоконстрикции (Ward, Milledge and West, 1995). Однако, поскольку высотный отек легких у людей, работающих на высоте 4,500 м, встречается редко, практическая ценность этого теста сомнительна.

Единственный способ определить, имеют ли эти тесты для отбора рабочих практическую ценность, - это проспективное исследование, в котором результаты тестов, проведенных на уровне моря, соотносятся с последующей оценкой толерантности к большой высоте. В связи с этим возникает вопрос о том, как будет измеряться высотная толерантность. Обычно это делается с помощью опросников, таких как опросник Лейк-Луиз (Hackett and Oelz, 1992). Тем не менее, анкеты для этой группы населения могут быть ненадежными, поскольку работники считают, что если они признаются в нетерпимости к высоте, они могут потерять работу. Это правда, что существуют объективные показатели непереносимости высоты, такие как уход с работы, хрипы в легких как признаки субклинического отека легких и легкая атаксия как признак субклинического высокогорного отека мозга. Однако эти особенности будут видны только у людей с тяжелой непереносимостью высоты, и проспективное исследование, основанное исключительно на таких измерениях, было бы очень нечувствительным.

Следует подчеркнуть, что значение этих возможных проб для определения толерантности к работе на большой высоте не установлено. Однако экономические последствия найма значительного числа рабочих, которые не могут удовлетворительно работать на большой высоте, таковы, что было бы очень ценно иметь полезные предикторы. В настоящее время проводятся исследования, чтобы определить, являются ли некоторые из этих предикторов ценными и осуществимыми. Такие измерения, как гипоксическая вентиляционная реакция на гипоксию и работоспособность при острой гипоксии на уровне моря, не представляют особой сложности. Однако их должна проводить профессиональная лаборатория, и стоимость этих исследований может быть оправдана только в том случае, если прогностическая ценность измерений значительна.

Планирование между большой высотой и уровнем моря

Опять же, эта статья посвящена конкретным проблемам, возникающим, когда в коммерческой деятельности, такой как шахты на высоте около 4,500 м, нанимаются рабочие, которые добираются до работы с уровня моря, где живут их семьи. Планирование, очевидно, не является проблемой, когда люди постоянно живут на большой высоте.

Разработка оптимального графика перемещения между большой высотой и уровнем моря является сложной задачей, и до сих пор существует мало научных оснований для графиков, которые использовались до сих пор. Они были основаны в основном на социальных факторах, таких как то, как долго рабочие готовы провести на большой высоте, прежде чем снова увидеть свои семьи.

Основное медицинское обоснование проведения нескольких дней подряд на большой высоте - это преимущество, полученное в результате акклиматизации. Многие люди, у которых появляются симптомы острой горной болезни после подъема на большую высоту, чувствуют себя намного лучше через два-четыре дня. Поэтому в этот период происходит быстрая акклиматизация. Кроме того, известно, что дыхательная реакция на гипоксию занимает от семи до десяти дней, чтобы достичь устойчивого состояния (Lahiri, 1972; Dempsey and Forster, 1982). Это усиление вентиляции является одной из важнейших особенностей процесса акклиматизации, поэтому целесообразно рекомендовать период работы на большой высоте не менее десяти дней.

Другие особенности высотной акклиматизации, вероятно, развиваются гораздо дольше. Одним из примеров является полицитемия, для достижения устойчивого состояния которой требуется несколько недель. Однако следует добавить, что физиологическое значение полицитемии гораздо менее определенно, чем считалось в свое время. Действительно, Winslow и Monge (1987) показали, что тяжелые степени полицитемии, которые иногда наблюдаются у постоянных жителей на высоте около 4,500 м над уровнем моря, являются контрпродуктивными, поскольку иногда работоспособность может повышаться, если гематокрит снижается путем забора крови в течение нескольких недель. .

Еще один важный вопрос – скорость деакклиматизации. В идеале рабочие не должны терять всю акклиматизацию, которую они выработали на большой высоте во время пребывания со своими семьями на уровне моря. К сожалению, было проведено мало исследований скорости деакклиматизации, хотя некоторые измерения показывают, что скорость изменения дыхательной реакции во время деакклиматизации медленнее, чем во время акклиматизации (Lahiri 1972).

Другой практический вопрос — время, необходимое для перемещения рабочих с уровня моря на большую высоту и обратно. На новом руднике в Коллахуаси на севере Чили до рудника можно добраться на автобусе всего за несколько часов из прибрежного города Икике, где, как ожидается, проживает большинство семей. Однако, если работник проживает в Сантьяго, поездка может занять больше дня. В этих условиях короткий период работы в три-четыре дня на большой высоте явно будет неэффективен из-за потери времени на дорогу.

Социальные факторы также играют решающую роль в любом расписании, которое предполагает время вдали от семьи. Даже если есть медицинские и физиологические причины, по которым период акклиматизации в 14 дней является оптимальным, тот факт, что рабочие не желают покидать свои семьи более чем на семь или десять дней, может быть решающим фактором. Опыт до сих пор показывает, что график семи дней на большой высоте с последующими семью днями на уровне моря или десять дней на большой высоте с последующим таким же периодом на уровне моря, вероятно, является наиболее приемлемым графиком.

Обратите внимание, что при таком графике рабочий никогда полностью не акклиматизируется на большой высоте и не полностью деакклиматизируется на уровне моря. Поэтому он проводит свое время, колеблясь между двумя крайностями, никогда не получая полной выгоды ни от одного из состояний. Кроме того, некоторые рабочие жалуются на сильную усталость, когда возвращаются на уровень моря, и первые два-три дня восстанавливаются. Возможно, это связано с плохим качеством сна, которое часто бывает присуще жизни на большой высоте. Эти проблемы подчеркивают наше невежество в отношении факторов, определяющих наилучшие графики, и в этой области явно требуется дополнительная работа.

Какой бы график ни использовался, очень выгодно, если рабочие могут спать на более низкой высоте, чем рабочее место. Естественно, осуществимо ли это, зависит от топографии региона. Нижняя высота для сна невозможна, если для ее достижения требуется несколько часов, потому что это слишком сильно сокращает рабочий день. Однако, если на несколько сотен метров ниже есть место, до которого можно добраться, скажем, за один час, создание спальных помещений на этой более низкой высоте улучшит качество сна, комфорт и самочувствие работников, а также производительность.

Обогащение воздуха помещения кислородом для уменьшения гипоксии высоких Высота

Вредные эффекты большой высоты вызваны низким парциальным давлением кислорода в воздухе. В свою очередь, это связано с тем, что при такой же концентрации кислорода, как и на уровне моря, барометрическое давление низкое. К сожалению, мало что можно сделать на большой высоте, чтобы противостоять этой «климатической агрессии», как ее окрестил Карлос Монге, отец высотной медицины в Перу (Monge 1948).

Одной из возможностей является повышение барометрического давления на небольшом участке, и это принцип мешка Гамова, который иногда используется для экстренного лечения горной болезни. Однако герметизация больших пространств, таких как помещения, затруднена с технической точки зрения, а также возникают медицинские проблемы, связанные с входом и выходом из помещения с повышенным давлением. Примером может служить дискомфорт в среднем ухе, если евстахиева труба заблокирована.

Альтернативой является повышение концентрации кислорода в некоторых частях рабочего помещения, и это относительно новая разработка, которая показывает большие перспективы (West 1995). Как указывалось ранее, даже после периода акклиматизации в течение семи-десяти дней на высоте 4,500 м тяжелая гипоксия продолжает снижать работоспособность, умственную работоспособность и качество сна. Поэтому было бы очень выгодно снизить степень гипоксии в некоторых частях рабочего помещения, если бы это было возможно.

Это можно сделать, добавив кислород в обычную вентиляцию воздуха некоторых помещений. Примечательна ценность относительно небольших степеней обогащения воздуха помещения кислородом. Было показано, что каждый 1% увеличения концентрации кислорода (например, с 21 до 22%) уменьшает эквивалентную высоту на 300 м. Эквивалентная высота - это та, которая имеет такое же вдохновленное PO2 при воздушном дыхании, как в помещении, обогащенном кислородом. Таким образом, на высоте 4,500 м повышение концентрации кислорода в помещении с 21 до 26% приведет к уменьшению эквивалентной высоты на 1,500 м. Результатом будет эквивалентная высота 3,000 м, что легко переносится. Кислород будет добавляться к обычной вентиляции помещения и, следовательно, будет частью системы кондиционирования воздуха. Все мы ожидаем, что в помещении будет комфортная температура и влажность. Контроль концентрации кислорода можно рассматривать как следующий логический шаг в контроле человечества над окружающей средой.

Обогащение кислородом стало возможным благодаря внедрению относительно недорогого оборудования для получения больших количеств почти чистого кислорода. Наиболее перспективным является концентратор кислорода, использующий молекулярное сито. Такое устройство преимущественно адсорбирует азот и, таким образом, производит газ, обогащенный кислородом, из воздуха. Трудно производить чистый кислород с помощью концентратора этого типа, но легко доступны большие количества 90% кислорода в азоте, и они столь же полезны для этого применения. Эти устройства могут работать непрерывно. На практике попеременно используются два молекулярных сита, одно из которых продувается, а другое активно адсорбирует азот. Единственным требованием является электроэнергия, которой на современной шахте обычно достаточно. В качестве приблизительного показателя стоимости обогащения кислородом можно купить небольшое коммерческое устройство, которое производит 300 литров в час 90% кислорода. Он был разработан для производства кислорода для лечения пациентов с заболеваниями легких в домашних условиях. Требуемая мощность устройства составляет 350 Вт, а первоначальная стоимость составляет около 2,000 долларов США. Такой машины достаточно, чтобы поднять концентрацию кислорода в помещении на 3% для одного человека при минимальном, но приемлемом уровне вентиляции помещения. Также доступны очень большие кислородные концентраторы, которые используются в целлюлозно-бумажной промышленности. Также возможно, что жидкий кислород может быть экономичным при некоторых обстоятельствах.

Например, в шахте есть несколько зон, где можно рассмотреть возможность обогащения кислородом. Одним из них может быть кабинет директора или конференц-зал, где принимаются важные решения. Например, если в шахте произойдет кризис, такой как серьезная авария, такое оборудование, вероятно, приведет к более ясному мышлению, чем обычная гипоксическая среда. Имеются убедительные доказательства того, что высота 4,500 м ухудшает работу мозга (Ward, Milledge and West, 1995). Еще одно место, где было бы полезно обогащение кислородом, — это лаборатория, где проводятся измерения контроля качества. Еще одной возможностью является обогащение кислородом спальных помещений для улучшения качества сна. Двойные слепые испытания эффективности обогащения кислородом на высоте около 4,500 м было бы легко спланировать, и их следует провести как можно скорее.

Следует учитывать возможные осложнения обогащения кислородом. Повышенная пожароопасность - одна из проблем, которая была поднята. Однако увеличение концентрации кислорода на 5% на высоте 4,500 м создает атмосферу с более низкой воспламеняемостью, чем воздух на уровне моря (West 1996). Следует иметь в виду, что хотя обогащение кислородом увеличивает РО2, это все еще намного ниже, чем значение уровня моря. Воспламеняемость атмосферы зависит от двух переменных (Roth 1964):

  • парциальное давление кислорода, которое в обогащенном воздухе на большой высоте значительно ниже, чем на уровне моря
  • гасящее действие инертных компонентов (т. е. азота) атмосферы.

 

Это гашение немного уменьшается на большой высоте, но конечным результатом является более низкая воспламеняемость. Чистый или почти чистый кислород, конечно, опасен, и следует соблюдать обычные меры предосторожности при подаче кислорода от кислородного концентратора к вентиляционному каналу.

Потеря акклиматизации к большой высоте иногда упоминается как недостаток обогащения кислородом. Однако принципиальной разницы между входом в помещение с обогащенной кислородом атмосферой и спуском на более низкую высоту нет. Все бы спали на более низкой высоте, если бы могли, и поэтому это вряд ли аргумент против использования обогащения кислородом. Это правда, что частое пребывание на более низкой высоте приведет к меньшей акклиматизации к большей высоте, при прочих равных условиях. Однако конечной целью является эффективная работа на большой высоте шахты, и предположительно ее можно повысить за счет обогащения кислородом.

Иногда предполагается, что изменение атмосферы таким образом может увеличить юридическую ответственность учреждения в случае развития какого-либо заболевания, связанного с гипоксией. На самом деле более разумной представляется противоположная точка зрения. Вполне возможно, что рабочий, у которого, скажем, развился инфаркт миокарда во время работы на большой высоте, мог утверждать, что высота была способствующим фактором. Любая процедура, снижающая гипоксический стресс, снижает вероятность высотных заболеваний.

Первая помощь

Ранее в этой главе обсуждались различные виды высотной болезни, включая острую горную болезнь, высокогорный отек легких и высокогорный отек мозга. Немного нужно добавить в контексте работы на большой высоте.

Всем, у кого развилась высотная болезнь, следует предоставить отдых. Этого может быть достаточно для таких состояний, как острая горная болезнь. Кислород следует подавать через маску, если она доступна. Однако, если состояние пациента не улучшается или ухудшается, спуск, безусловно, является лучшим методом лечения. Обычно это легко сделать в крупном коммерческом объекте, т.к. транспорт всегда доступен. Все болезни, связанные с высокогорьем, обычно быстро реагируют на перемещение на более низкую высоту.

В коммерческом учреждении может быть место для небольшого герметичного контейнера, в который можно поместить пациента и уменьшить эквивалентную высоту за счет нагнетания воздуха. В полевых условиях это обычно делается с помощью прочного мешка. Одна конструкция известна как сумка Гамова в честь ее изобретателя. Тем не менее, основным преимуществом мешка является его портативность, и, поскольку эта функция не очень важна для коммерческого объекта, вероятно, было бы лучше использовать более крупный и жесткий резервуар. Он должен быть достаточно большим, чтобы обслуживающий персонал мог находиться в учреждении с пациентом. Конечно, необходима адекватная вентиляция такого контейнера. Интересно, что есть неподтвержденные данные о том, что повышение атмосферного давления таким образом иногда более эффективно при лечении высотной болезни, чем введение больному высокой концентрации кислорода. Непонятно, почему это должно быть так.

Острая горная болезнь

Это обычно самоограничивается, и пациент чувствует себя намного лучше через день или два. Заболеваемость острой горной болезнью можно снизить, принимая ацетазоламид (диамокс) по одной-две таблетки по 250 мг в день. Их можно начинать до достижения большой высоты или принимать при появлении симптомов. Даже люди с легкими симптомами обнаруживают, что половина таблетки на ночь часто улучшает качество сна. Аспирин или парацетамол полезны при головной боли. Тяжелую острую горную болезнь можно лечить дексаметазоном, сначала 8 мг, а затем по 4 мг каждые шесть часов. Тем не менее, спуск, безусловно, является лучшим лечением, если состояние тяжелое.

Высотный отек легких

Это потенциально серьезное осложнение горной болезни, которое необходимо лечить. Опять же, лучшая терапия — это спуск. В ожидании эвакуации или если эвакуация невозможна, дайте кислород или поместите в камеру высокого давления. Следует назначить нифедипин (блокатор кальциевых каналов). Доза составляет 10 мг сублингвально с последующим медленным высвобождением 20 мг. Это приводит к падению давления в легочной артерии и часто очень эффективно. Однако пациента следует спустить на более низкую высоту.

Высотный отек головного мозга

Это потенциально очень серьезное осложнение и является показанием к немедленному спуску. В ожидании эвакуации или если эвакуация невозможна, дайте кислород или поместите в среду с повышенным давлением. Следует давать дексаметазон, сначала 8 мг, а затем по 4 мг каждые шесть часов.

Как указывалось ранее, у людей, у которых развилась тяжелая острая горная болезнь, высокогорный отек легких или высокогорный отек мозга, вероятно, будет рецидив, если они вернутся на большую высоту. Поэтому, если у рабочего развивается какое-либо из этих состояний, следует попытаться найти работу на более низкой высоте.

 

Назад

Читать 10092 раз Последнее изменение во вторник, 26 июля 2022 20: 59

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Барометрическое давление, сокращенные ссылки

Демпси, Дж. А. и Х. В. Форстер. 1982. Опосредование вентиляционных адаптаций. Physiol Rev 62: 262-346. 

Газенко О.Г. (ред.) 1987. Физиология человека на больших высотах (на русском). Москва: Наука.

Hackett, PH и Oelz. 1992. Консенсус в Лейк-Луизе по определению и количественной оценке высотной болезни. В Гипоксия и горная медицина, под редакцией Дж. Р. Саттона, Г. Коутса и К. С. Хьюстона. Берлингтон: Принтеры Квин-Сити.

Hornbein, TF, BD Townes, RB Schoene, JR Sutton и CS Houston. 1989. Стоимость центральной нервной системы восхождения на очень большую высоту. New Engl J Med 321: 1714-1719.

Лахири, С. 1972. Динамические аспекты регуляции вентиляции у человека при акклиматизации к большой высоте. Респ Физиол 16: 245-258.

Лейхниц, К. 1977. Использование детекторных трубок в экстремальных условиях (влажность, давление, температура). Am Ind Hyg Assoc J 38: 707.

Линденбум, Р. Х. и Э. Д. Палмес. 1983. Влияние пониженного атмосферного давления на диффузионный пробоотборник. Am Ind Hyg Assoc J 44: 105.

Масуяма, С., Х. Кимура и Т. Сугита. 1986. Контроль вентиляции у альпинистов-экстремалов. J Appl Physiol 61: 500-506.

Монж, К. 1948. Акклиматизация в Андах: исторические подтверждения «климатической агрессии» в развитии андского человека. Балтимор: Университет Джона Хопкинса. Нажимать.

Паустенбах, диджей. 1985. Пределы воздействия на рабочем месте, фармакокинетика и необычный график работы. В Промышленная гигиена и токсикология Пэтти, под редакцией LJ Cralley и LV Cralley. Нью-Йорк: Уайли.

Ребак, А.С. и Э.Дж. Кэмпбелл. 1974. Клинический метод оценки дыхательной реакции на гипоксию. Ам Рев Респир Дис 109: 345-350.

Ришале, Дж. П., А. Керомес и Б. Берш. 1988. Физиологические особенности высотников. Научный спорт 3: 89-108.

Рот, Э.М. 1964. Атмосфера космической кабины: Часть II, Опасность пожара и взрыва. Отчет НАСА SP-48. Вашингтон, округ Колумбия: НАСА.

Шене, РБ. 1982. Контроль вентиляции у альпинистов на большой высоте. J Appl Physiol 53: 886-890.

Шон, Р.Б., С. Лахири и П.Х. Хакетт. 1984. Взаимосвязь гипоксической дыхательной реакции с физическими упражнениями на горе Эверест. J Appl Physiol 56: 1478-1483.

Уорд, член парламента, Дж. С. Милледж и Дж. Б. Уэст. 1995. Высотная медицина и физиология. Лондон: Чепмен и Холл.

Уэст, Дж.Б. 1995. Обогащение воздуха помещений кислородом для облегчения гипоксии высокогорья. Респ Физиол 99: 225-232.

—. 1997. Пожароопасность в обогащенной кислородом атмосфере при низком барометрическом давлении. Авиат Спейс Энвайрон Мед, 68: 159-162.

Уэст, Джей Би и С. Лахири. 1984. Высота и человек. Бетесда, Мэриленд: Американское физиологическое общество.

Уэст, Дж. Б. и П. Д. Вагнер. 1980. Прогноз газообмена на вершине Эвереста. Респ Физиол 42: 1-16.

West, JB, SJ Boyer, DJ Graber, PH Hackett, KH Maret, JS Milledge, RM Peters, CJ Pizzo, M Samaja, FH Sarnquist, RB Schoene и RM Winslow. 1983. Максимальные упражнения на экстремальных высотах на горе Эверест. J Appl Physiol. 55: 688-698. 

Уайтлоу, В. А., Дж. П. Деренн и Дж. Милик-Эмили. 1975. Окклюзионное давление как показатель работы дыхательного центра у человека в сознании. Респ Физиол 23: 181-199.

Уинслоу, Р. М. и К. С. Монж. 1987. Гипоксия, полицитемия и хроническая горная болезнь. Балтимор: Университет Джона Хопкинса. Нажимать.