Среда, Март 16 2011 21: 45

Физические основы работы в тепле

Оценить этот пункт
(2 голосов)

Теплообменники

Человеческое тело обменивается теплом с окружающей средой различными путями: теплопроводностью через соприкасающиеся с ним поверхности, конвекцией и испарением с окружающим воздухом и излучением с соседними поверхностями.

кондукция

Теплопроводность — это передача тепла между двумя соприкасающимися твердыми телами. Такие обмены наблюдаются между кожей и одеждой, обувью, точками давления (сиденье, ручки), инструментами и так далее. На практике при математическом расчете теплового баланса этот тепловой поток за счет теплопроводности косвенно аппроксимируется величиной, равной тепловому потоку за счет конвекции и излучения, который имел бы место, если бы эти поверхности не соприкасались с другими материалами.

Конвекция

Конвекция – это передача тепла между кожей и окружающим ее воздухом. Если температура кожи, tsk, в градусах Цельсия (°C), выше, чем температура воздуха (ta), воздух, соприкасающийся с кожей, нагревается и, следовательно, поднимается вверх. Таким образом, циркуляция воздуха, известная как естественная конвекция, устанавливается на поверхности тела. Этот обмен становится больше, если окружающий воздух проходит над кожей с определенной скоростью: конвекция становится вынужденной. Тепловой поток, обмениваемый конвекцией, C, в единицах ватт на квадратный метр (Вт/м2), можно оценить по:

C = hc FклС (tsk - ta)

в котором hc - коэффициент конвекции (Вт/°C м2), которая является функцией разницы между tsk и ta в случае естественной конвекции и скорости воздуха Va (в м/с) при принудительной конвекции; FклС является фактором, благодаря которому одежда снижает конвекционный теплообмен.

излучение

Каждое тело излучает электромагнитное излучение, интенсивность которого зависит от четвертой степени его абсолютной температуры. T (в градусах Кельвина—К). Кожа, температура которой может быть между 30 и 35°С (303 и 308К), испускает такое излучение, которое находится в инфракрасной зоне. Более того, он принимает излучение, испускаемое соседними поверхностями. Тепловой поток, обмениваемый излучением, R (в Вт/м2), между телом и его окружением можно описать следующим выражением:

где:

s — универсальная постоянная излучения (5.67 × 10-8 Вт/м2 K4)

е - коэффициент излучения кожи, который для инфракрасного излучения равен 0.97 и не зависит от длины волны, а для солнечного излучения составляет около 0.5 для кожи Белого человека и 0.85 для кожи Чернокожего человека.

AR/AD это доля поверхности тела, участвующая в обмене, которая составляет порядка 0.66, 0.70 или 0.77, в зависимости от того, приседает ли субъект, сидит или стоит

FклР является фактором, благодаря которому одежда снижает радиационный теплообмен

Tsk (в K) - средняя температура кожи

Tr (в К) — средняя лучистая температура окружающей среды, т. е. равномерная температура черной матовой сферы большого диаметра, которая окружала бы предмет и обменивалась с ним таким же количеством тепла, как и реальная среда.

Это выражение можно заменить упрощенным уравнением того же типа, что и для обмена конвекцией:

Р = чr (AR/AD) ФклР (tsk - Tr)

в котором hr – коэффициент обмена излучением (Вт/°С·м2).

выпаривание

Каждая влажная поверхность имеет на себе слой воздуха, насыщенный водяным паром. Если сама атмосфера не насыщена, пар диффундирует из этого слоя в атмосферу. Затем слой имеет тенденцию регенерироваться за счет теплоты испарения (0.674 Вт-ч на грамм воды) на влажной поверхности, которая охлаждается. Если кожа полностью покрыта потом, испарение максимально (EМакс) и зависит только от условий окружающей среды согласно следующему выражению:

EМакс = чe FПКЛ (Pск, с - Пa)

где:

he - коэффициент обмена испарением (Вт/м2кПа)

Pск, с - давление насыщения водяного пара при температуре кожи (выраженное в кПа)

Pa парциальное давление водяного пара в окружающей среде (выраженное в кПа)

FПКЛ – коэффициент снижения обменов испарением за счет одежды.

Теплоизоляция одежды

При расчете теплового потока за счет конвекции, излучения и испарения действует поправочный коэффициент, учитывающий одежду. В случае с хлопчатобумажной одеждой два понижающих коэффициента FклС и FклР может определяться:

Fcl = 1/(1+(чc+hr)Icl)

где:

hc - коэффициент обмена конвекцией

hr - коэффициент обмена излучением

Icl - эффективная тепловая изоляция (м2/W) одежды.

Что касается снижения теплопередачи за счет испарения, то поправочный коэффициент FПКЛ задается следующим выражением:

FПКЛ = 1 / (1+2.22hc Icl)

Утепление одежды Icl выражается в м2/W или в кло. Изоляция 1 кло соответствует 0.155 м2/W и обеспечивается, например, обычной городской одеждой (рубашкой, галстуком, брюками, пиджаком и т. д.).

Стандарт ISO 9920 (1994) определяет теплоизоляцию, обеспечиваемую различными комбинациями одежды. В случае специальной защитной одежды, отражающей тепло или ограничивающей паропроницаемость в условиях теплового воздействия, или поглощающей и изолирующей в условиях холодового стресса, необходимо применять индивидуальные поправочные коэффициенты. Однако на сегодняшний день проблема остается малоизученной, а математические предсказания остаются весьма приблизительными.

Оценка основных параметров рабочей ситуации

Как видно выше, теплообмен посредством конвекции, излучения и испарения является функцией четырех климатических параметров — температуры воздуха ta в °C, влажность воздуха, выраженная его парциальным давлением пара Pa в кПа, средняя лучистая температура tr в °C, а скорость воздуха Va в м/с. Приборы и методы измерения этих физических параметров окружающей среды являются предметом стандарта ISO 7726 (1985), в котором описываются различные типы используемых датчиков, указывается их диапазон измерения и их точность, а также рекомендуются определенные процедуры измерения. В этом разделе обобщается часть данных этого стандарта с особой ссылкой на условия использования наиболее распространенных приборов и аппаратов.

Температура воздуха

Температура воздуха (ta) должны измеряться независимо от теплового излучения; точность измерения должна составлять ±0.2°С в диапазоне от 10 до 30°С и ±0.5°С вне этого диапазона.

На рынке представлено множество типов термометров. Наиболее распространены ртутные термометры. Их преимуществом является точность при условии, что они были правильно откалиброваны изначально. Их основными недостатками являются длительное время отклика и отсутствие возможности автоматической записи. С другой стороны, электронные термометры обычно имеют очень короткое время отклика (от 5 с до 1 мин), но могут иметь проблемы с калибровкой.

Независимо от типа термометра датчик должен быть защищен от излучения. Обычно это обеспечивается полым цилиндром из блестящего алюминия, окружающим датчик. Такую защиту обеспечивает психрометр, о котором будет сказано в следующем разделе.

Парциальное давление водяного пара

Влажность воздуха можно охарактеризовать четырьмя различными способами:

1. температура точки росы: температура, до которой необходимо охладить воздух, чтобы он стал насыщенным влагой (td, °С)

2. парциальное давление водяного пара: доля атмосферного давления за счет водяного пара (Pa, кПа)

3. относительная влажность (RH),, что определяется выражением:

RH = 100·Пa/PС, та

где ПС, та давление насыщенного пара, связанное с температурой воздуха

4. температура влажной лампы (tw), что является самой низкой температурой, достигаемой мокрым рукавом, защищенным от радиации и вентилируемым окружающим воздухом со скоростью более 2 м/с.

Все эти величины связаны математически.

Давление насыщенного водяного пара PС,т при любой температуре t дан кем-то:

а парциальное давление водяного пара связано с температурой соотношением:

Pa = PС, тв - (тa - Tw)/15

в котором PС, тв - давление насыщенного пара при температуре смоченного термометра.

Психрометрическая диаграмма (рис. 1) позволяет совместить все эти значения. Он включает в себя:

Рисунок 1. Психрометрическая диаграмма.

НЕА010F1

  • в y ось, шкала парциального давления водяного пара Pa, выраженное в кПа
  • в x ось, шкала температуры воздуха
  • кривые постоянной относительной влажности
  • наклонные прямые линии постоянной температуры смоченного термометра.
  • Наиболее часто используемые на практике параметры влажности:
  • относительная влажность, измеренная с помощью гигрометров или более специализированных электронных приборов
  • температура смоченного термометра, измеренная с помощью психрометра; отсюда выводится парциальное давление водяного пара, которое является параметром, наиболее часто используемым при анализе теплового баланса.

 

Рекомендуемый диапазон измерений и точность составляют от 0.5 до 6 кПа и ±0.15 кПа. Для измерения температуры смоченного термометра диапазон простирается от 0 до 36ºC с точностью, идентичной точности измерения температуры воздуха. Что касается гигрометров для измерения относительной влажности, то диапазон простирается от 0 до 100% с точностью ±5%.

Средняя лучистая температура

Средняя лучистая температура (tr) был определен ранее; его можно определить тремя различными способами:

1. по температуре, измеренной термометром с черной сферой

2. от плоскостных радиационных температур, измеренных по трем перпендикулярным осям

3. расчетным путем, интегрируя эффекты различных источников излучения.

Здесь будет рассмотрена только первая техника.

Термометр с черной сферой состоит из термозонда, чувствительный элемент которого расположен в центре полностью закрытой сферы, изготовленной из металла, хорошо проводящего тепло (медь), и окрашенного в черный матовый цвет, чтобы иметь коэффициент поглощения в инфракрасной зоне близко к 1.0. Сфера располагается на рабочем месте и подвергается обмену конвекцией и излучением. Температура земного шара (tg) затем зависит от средней лучистой температуры, температуры воздуха и скорости воздуха.

Для стандартного черного шара диаметром 15 см среднюю температуру излучения можно рассчитать по температуре шара на основании следующего выражения:

На практике необходимо подчеркнуть необходимость поддерживать коэффициент излучения земного шара близким к 1.0, тщательно перекрашивая его в матовый черный цвет.

Основным ограничением этого типа глобуса является его большое время отклика (порядка 20-30 минут, в зависимости от типа используемого глобуса и условий окружающей среды). Измерение действительно только в том случае, если условия излучения постоянны в течение этого периода времени, что не всегда имеет место в промышленных условиях; тогда измерение будет неточным. Это время отклика применимо к шарам диаметром 15 см при использовании обычных ртутных термометров. Они короче, если используются датчики с меньшей теплоемкостью или если диаметр шара уменьшен. Следовательно, приведенное выше уравнение необходимо изменить, чтобы учесть эту разницу в диаметре.

Индекс WBGT напрямую использует температуру черного земного шара. Тогда необходимо использовать глобус диаметром 15 см. С другой стороны, другие индексы используют среднюю лучистую температуру. Затем можно выбрать шар меньшего размера, чтобы сократить время отклика, при условии, что приведенное выше уравнение будет изменено с учетом этого. Стандарт ISO 7726 (1985 г.) допускает точность ±2ºC при измерении tr от 10 до 40ºC и ±5ºC за пределами этого диапазона.

Скорость воздуха

Скорость воздуха следует измерять независимо от направления потока воздуха. В противном случае измерение необходимо проводить по трем перпендикулярным осям (x, y и z) и глобальная скорость, рассчитанная векторным суммированием:

Диапазон измерений, рекомендуемый стандартом ISO 7726, простирается от 0.05 до 2 м/с. Требуемая точность составляет 5 %. Его следует измерять как среднее значение за 1 или 3 минуты.

Есть две категории приборов для измерения скорости воздуха: анемометры с лопастями и термоанемометры.

Крыльчатые анемометры

Измерение осуществляется путем подсчета количества оборотов, сделанных лопастями за определенный промежуток времени. Таким образом, средняя скорость за этот период времени получается прерывистым образом. Эти анемометры имеют два основных недостатка:

  1. Они очень направленные и должны быть ориентированы строго по направлению воздушного потока. Когда это расплывчато или неизвестно, измерения необходимо проводить в трех направлениях под прямым углом.
  2. Диапазон измерения простирается примерно от 0.3 м/с до 10 м/с. Это ограничение низкими скоростями важно, когда, например, речь идет об анализе ситуации теплового комфорта, когда обычно рекомендуется, чтобы скорость не превышала 0.25 м/с. Хотя диапазон измерения может выходить за пределы 10 м/с, он вряд ли опускается ниже 0.3 и даже 0.5 м/с, что сильно ограничивает возможности использования в средах, близких к комфортным, где максимально допустимые скорости составляют 0.5 и даже 0.25 м/с. с.

Термоанемометры

Эти приборы фактически дополняют крыльчатые анемометры в том смысле, что их динамический диапазон простирается в основном от 0 до 1 м/с. Это приборы, дающие мгновенную оценку скорости в одной точке пространства: поэтому необходимо использовать средние значения во времени и пространстве. Эти приборы также часто имеют очень направленное действие, и приведенные выше замечания также применимы. Наконец, измерение является правильным только с того момента, когда температура прибора достигает температуры окружающей среды, подлежащей оценке.

 

Назад

Читать 7645 раз Последнее изменение четверг, 13 октября 2011 г., 21:14

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Ссылки на тепло и холод

ACGIH (Американская конференция государственных специалистов по промышленной гигиене). 1990. Пороговые значения и индексы биологического воздействия за 1989–1990 годы. Нью-Йорк: ACGIH.

—. 1992. Холодовой стресс. В пороговых значениях для физических агентов в рабочей среде. Нью-Йорк: ACGIH.

Бедфорд, Т. 1940. Теплота окружающей среды и ее измерение. Меморандум о медицинских исследованиях № 17. Лондон: Канцелярия Ее Величества.

Белдинг, HS и TF Hatch. 1955. Индекс для оценки теплового стресса с точки зрения результирующего физиологического напряжения. Трубопровод отопления, кондиционер 27:129–136.

Биттель, JHM. 1987. Тепловой долг как показатель адаптации мужчин к холоду. J Appl Physiol 62 (4): 1627–1634.

Bittel, JHM, C Nonotte-Varly, GH Livecchi-Gonnot, GLM Savourey и AM Hanniquet. 1988. Физическая подготовленность и терморегуляторные реакции в условиях холода у мужчин. J Appl Physiol 65:1984-1989.

Bittel, JHM, GH Livecchi-Gonnot, AM Hanniquet и JL Etienne. 1989. Тепловые изменения, наблюдаемые до и после путешествия Дж. Л. Этьена к Северному полюсу. Eur J Appl Physiol 58: 646–651.

Блай, Дж. и К.Г. Джонсон. 1973. Глоссарий терминов по тепловой физиологии. J Appl Physiol 35(6):941–961.

Ботсфорд, Дж. Х. 1971. Влажный термометр для измерения тепла окружающей среды. Ам Инд Хиг J 32:1–10.

Бутелье, К. 1979. Охрана и защита оборудования в случае случайного погружения в воду. Нейи-сюр-Сен: AGARD AG 211.

Brouha, L. 1960. Физиология в промышленности. Нью-Йорк: Пергамон Пресс.

Бертон, AC и О. Г. Эдхольм. 1955. Человек в холодной среде. Лондон: Эдвард Арнольд.

Чен, Ф., Х. Нильссон и Р.И. Холмер. 1994. Охлаждение подушечки пальца при контакте с алюминиевой поверхностью. Am Ind Hyg Assoc J 55 (3): 218-22.

Европейский комитет по нормализации (CEN). 1992. EN 344. Защитная одежда от холода. Брюссель: CEN.

—. 1993. EN 511. Перчатки защитные от холода. Брюссель: CEN.

Комиссия Европейских Сообществ (CEC). 1988. Материалы семинара по индексам теплового стресса. Люксембург: ЦИК, Управление по охране труда и технике безопасности.

Даанен, ХАМ. 1993. Ухудшение ручных характеристик в холодную и ветреную погоду. АГАРД, НАТО, CP-540.

Даслер, АР. 1974. Вентиляция и термическая нагрузка на берегу и на плаву. В главе 3 Руководства по военно-морской профилактической медицине. Вашингтон, округ Колумбия: Военно-морской департамент, Бюро медицины и хирургии.

—. 1977. Тепловой стресс, рабочие функции и физиологические пределы воздействия тепла на человека. В термическом анализе — Комфорт человека — Внутренняя среда. Специальная публикация NBS 491. Вашингтон, округ Колумбия: Министерство торговли США.

Немецкий институт нормирования (DIN) 7943-2. 1992. Schlafsacke, Thermophysiologische Prufung. Берлин: DIN.

Дюбуа, Д. и Э. Ф. Дюбуа. 1916. Клиническая калориметрия X: формула для оценки подходящей площади поверхности, если известны рост и вес. Arch Int Med 17: 863–871.

Иган, CJ. 1963. Введение и терминология. Протокол ФРС 22:930–933.

Эдвардс, JSA, Д. Е. Робертс и С. Х. Муттер. 1992. Отношения для использования в холодных условиях. J Wildlife Med 3: 27–47.

Энандер, А. 1987. Сенсорные реакции и работоспособность при умеренном холоде. Докторская диссертация. Солна: Национальный институт гигиены труда.

Фуллер, Ф. Х. и Л. Броуха. 1966. Новые инженерные методы оценки рабочей среды. АШРАЕ J 8 (1): 39–52.

Фуллер, Ф.Х. и П.Е. Смит. 1980. Эффективность профилактических работ в горячем цехе. В FN Dukes-Dobos и A Henschel (ред.). Материалы семинара NIOSH по рекомендуемым стандартам теплового стресса. Вашингтон, округ Колумбия: публикация DHSS (NIOSH) № 81-108.

—. 1981. Оценка теплового стресса в горячем цехе по физиологическим измерениям. Am Ind Hyg Assoc J 42:32–37.

Гагге А.П., Фобелец А.П., Берглунд Л.Г. 1986. Стандартный прогностический индекс реакции человека на тепловую среду. АШРАЭ Транс 92: 709–731.

Gisolfi, CV и CB Венгер. 1984. Регулирование температуры во время тренировки: старые концепции, новые идеи. Упражнение Sport Sci Rev 12: 339–372.

Дживони, Б. 1963. Новый метод оценки промышленного теплового воздействия и максимально допустимой рабочей нагрузки. Документ представлен Международному биометеорологическому конгрессу в Париже, Франция, сентябрь 1963 г.

—. 1976. Человек, климат и архитектура, 2-е изд. Лондон: прикладная наука.

Дживони, Б. и Р.Ф. Голдман. 1972. Прогнозирование реакции ректальной температуры на работу, окружающую среду и одежду. J Appl Physiol 2(6):812–822.

—. 1973. Прогнозирование реакции сердечного ритма на работу, окружающую среду и одежду. J Appl Physiol 34(2):201–204.

Гольдман, РФ. 1988. Стандарты воздействия тепла на человека. В книге «Эргономика окружающей среды» под редакцией И. Б. Мекьявича, Э. В. Банистера и Дж. Б. Моррисона. Лондон: Тейлор и Фрэнсис.

Хейлз, Дж. Р. С. и Д. Б. Ричардс. 1987. Тепловой стресс. Амстердам, Нью-Йорк: Oxford Excerpta Medica.

Хаммель, ХТ. 1963. Резюме сравнительных тепловых моделей человека. Протокол ФРС 22:846–847.

Хавенит, Г., Р. Хеус и В. А. Лотенс. 1990. Вентиляция одежды, индекс паронепроницаемости и проницаемости: изменения в зависимости от позы, движения и ветра. Эргономика 33:989–1005.

Хейс. 1988. В книге «Эргономика окружающей среды» под редакцией И. Б. Мекьявича, Э. В. Банистера и Дж. Б. Моррисона. Лондон: Тейлор и Фрэнсис.

Холмер, И. 1988. Оценка холодового стресса с точки зрения необходимой теплоизоляции одежды — IREQ. Int J Ind Erg 3: 159–166.

—. 1993. Работа на морозе. Обзор методов оценки холодового стресса. Int Arch Occ Env Health 65: 147–155.

—. 1994. Холодовой стресс: Часть 1 — Руководство для практикующих врачей. Int J Ind Erg 14: 1–10.

—. 1994. Холодовой стресс: Часть 2 — Научная основа (база знаний) руководства. Int J Ind Erg 14: 1–9.

Houghton, FC и CP Yagoglou. 1923. Определение равных линий комфорта. ДЖАШВЕ 29:165–176.

Международная организация по стандартизации (ИСО). 1985. ISO 7726. Тепловая среда — инструменты и методы измерения физических величин. Женева: ИСО.

—. 1989а. ISO 7243. Горячие среды — оценка теплового стресса для рабочего человека на основе индекса WBGT (температура влажного шарика). Женева: ИСО.

—. 1989б. ISO 7933. Горячие среды — аналитическое определение и интерпретация термического напряжения с использованием расчета требуемой скорости потоотделения. Женева: ИСО.

—. 1989г. ISO DIS 9886. Эргономика — оценка тепловой деформации с помощью физиологических измерений. Женева: ИСО.

—. 1990. ISO 8996. Эргономика — определение метаболического производства тепла. Женева: ИСО.

—. 1992. ISO 9886. Оценка термической деформации физиологическими измерениями. Женева: ИСО.

—. 1993. Оценка влияния тепловой среды с использованием шкал субъективных суждений. Женева: ИСО.

—. 1993. ISO CD 12894. Эргономика тепловой среды — медицинское наблюдение за лицами, подвергающимися воздействию горячей или холодной среды. Женева: ИСО.

—. 1993. ISO TR 11079 Оценка холодных сред — определение требуемой теплоизоляции одежды, IREQ. Женева: ИСО. (Технический отчет)

—. 1994. ISO 9920. Эргономика — оценка тепловых характеристик комплекта одежды. Женева: ИСО.

—. 1994. ISO 7730. Умеренная тепловая среда — определение индексов PMV и PPD и спецификация условий теплового комфорта. Женева: ИСО.

—. 1995. ISO DIS 11933. Эргономика тепловой среды. Принципы и применение международных стандартов. Женева: ИСО.

Кеннет, В., П. Сатхасивам, А. Л. Валлеран и Т. Б. Грэм. 1990. Влияние кофеина на метаболические реакции мужчин в покое при 28 и 5°С. J Appl Physiol 68 (5): 1889–1895.

Кенни, В.Л. и С.Р. Фаулер. 1988. Активируемая метилхолином плотность эккринных потовых желез и выход в зависимости от возраста. J Appl Physiol 65: 1082–1086.

Керслейк, DMcK. 1972. Стресс от жаркой среды. Кембридж: Издательство Кембриджского университета.

ЛеБлан, Дж. 1975. Человек на морозе. Спрингфилд, Иллинойс, США: Charles C Thomas Publ.

Лейтхед, Калифорния и А.Р. Линд. 1964. Тепловой стресс и головные расстройства. Лондон: Кассел.

Линд, АР. 1957. Физиологический критерий для установления тепловых пределов окружающей среды для работы каждого. J Appl Physiol 18: 51–56.

Лотенс, Вашингтон. 1989. Собственно утепление многослойной одежды. Scand J Work Environment Health 15 Suppl. 1: 66–75.

—. 1993. Передача тепла от людей в одежде. Диссертация, Технический университет. Делфт, Нидерланды. (ISBN 90-6743-231-8).

Лотенс, В. А. и Г. Хавенит. 1991. Расчет утепления и паронепроницаемости одежды. Эргономика 34: 233–254.

Маклин, Д. и Д. Эмсли-Смит. 1977. Случайная гипотермия. Оксфорд, Лондон, Эдинбург, Мельбурн: научное издание Blackwell.

Макферсон, РК. 1960. Физиологические реакции на жаркую среду. Серия специальных отчетов Совета медицинских исследований № 298. Лондон: HMSO.

Мартино, Л. и я Джейкоб. 1988. Использование мышечного гликогена при термогенезе дрожи у людей. J Appl Physiol 56: 2046–2050.

Моэн, Р.Дж. 1991. Потеря и восполнение жидкости и электролитов при физических нагрузках. J Sport Sci 9: 117–142.

Макардл, Б., Данхэм В., Холлинг Х.Е., Ладелл В.С., Скальт Дж.В., Томсон М.Л. и Вайнер Дж.С. 1947. Предсказание физиологических эффектов теплых и жарких сред. Совет медицинских исследований Rep 47/391. Лондон: РНП.

Маккалоу, Э.А., Б.В. Джонс и П.Дж. Хак. 1985. Обширная база данных для оценки изоляции одежды. АШРАЭ Транс 91: 29–47.

Маккалоу, Э.А., Б.В. Джонс и Т. Тамура. 1989. База данных для определения сопротивления испарению одежды. АШРАЭ Транс 95: 316–328.

Макинтайр, Д.А. 1980. Климат в помещении. Лондон: Applied Science Publishers Ltd.

Мекьявич, И.Б., Э.В. Банистер и Дж.Б. Моррисон (ред.). 1988. Экологическая эргономика. Филадельфия: Тейлор и Фрэнсис.

Нильсен, Б. 1984. Обезвоживание, регидратация и терморегуляция. В Э. Джокле и М. Хеббелинке (ред.). Медицина и спортивная наука. Базель: С. Каргер.

—. 1994. Тепловой стресс и акклиматизация. Эргономика 37(1):49–58.

Нильсен Р., Б. В. Олесен и П. О. Фангер. 1985. Влияние физической активности и скорости воздуха на теплоизоляцию одежды. Эргономика 28: 1617–1632.

Национальный институт охраны труда и здоровья (NIOSH). 1972. Профессиональное воздействие жаркой среды. ХСМ 72-10269. Вашингтон, округ Колумбия: Министерство здравоохранения и социального обеспечения США.

—. 1986. Профессиональное воздействие жаркой среды. Публикация NIOSH № 86-113. Вашингтон, округ Колумбия: NIOSH.

Ниши, Y и А. П. Гагге. 1977. Шкала эффективных температур, используемая для гипо- и гипербарических сред. Aviation Space and Envir Med 48: 97–107.

Олесен, БВ. 1985. Тепловой стресс. В Техническом обзоре Bruel and Kjaer № 2. Дания: Bruel and Kjaer.

Олесен, Б.В., Э. Сливинска, Т.Л. Мэдсен и П.О. Фангер. 1982. Влияние положения тела и активности на теплоизоляцию одежды: измерения подвижным тепловым манекеном. АШРАЭ Транс 88: 791–805.

Пандольф, К.Б., Б.С. Кадаретте, М.Н. Савка, А.Дж. Янг, Р.П. Франческони и Р.Р. Гонсалес. 1988. J Appl Physiol 65(1):65–71.

Парсонс, KC. 1993. Тепловая среда человека. Хэмпшир, Великобритания: Тейлор и Фрэнсис.

Рид, Х. Л., Д. Брайс, К. М. Шакир, К. Д. Бурман, М. М. Д'Алесандро и Дж. Т. О'Брайан. 1990. Снижение свободной фракции тиреоидных гормонов после длительного проживания в Антарктиде. J Appl Physiol 69: 1467–1472.

Роуэлл, Л.Б. 1983. Сердечно-сосудистые аспекты терморегуляции человека. Циркуляр рез. 52: 367–379.

—. 1986. Регуляция кровообращения человека при физическом напряжении. Оксфорд: ОУП.

Сато, К. и Ф. Сато. 1983. Индивидуальные вариации структуры и функции эккринных потовых желез человека. Am J Physiol 245: R203–R208.

Савуре Г., А. Л. Вальеран и Дж. Биттель. 1992. Общая и местная адаптация после лыжного путешествия в суровых арктических условиях. Eur J Appl Physiol 64: 99–105.

Савуре Г., Дж. П. Каравел, Б. Барнавол и Дж. Биттел. 1994. Изменения гормонов щитовидной железы в условиях холодного воздуха после местной холодовой акклиматизации. J Appl Physiol 76 (5): 1963–1967.

Савуре, Г., Б. Барнавол, Дж. П. Каравел, К. Фейерштейн и Дж. Биттел. 1996. Гипотермическая общая холодовая адаптация, вызванная локальной холодовой акклиматизацией. Eur J Appl Physiol 73: 237–244.

Валлеран, А.Л., Якоб Якоб и М.Ф. Кавана. 1989. Механизм повышения устойчивости к холоду у людей при приеме смеси эфедрина и кофеина. J Appl Physiol 67: 438–444.

ван Дилла, Массачусетс, Р. Дэй и П.А. Сайпл. 1949. Особые проблемы рук. В «Физиологии терморегуляции» под редакцией Р. Ньюбурга. Филадельфия: Сондерс.

Веллар, ОД. 1969. Потери питательных веществ с потом. Осло: Universitetsforlaget.

Фогт, Дж. Дж., В. Кандас, Дж. П. Либерт и Ф. Даулл. 1981. Требуемая скорость потоотделения как показатель термической деформации в промышленности. В книге «Биоинженерия, тепловая физиология и комфорт» под редакцией К. Сины и Дж. А. Кларка. Амстердам: Эльзевир. 99–110.

Ван, LCH, SFP Man и AN Bel Castro. 1987. Метаболические и гормональные реакции на повышенную теофиллином холодостойкость у самцов. J Appl Physiol 63: 589–596.

Всемирная организация здравоохранения (ВОЗ). 1969. Факторы здоровья при работе в условиях теплового стресса. Технический отчет 412. Женева: ВОЗ.

Висслер, Э.Х. 1988. Обзор тепловых моделей человека. В книге «Эргономика окружающей среды» под редакцией И. Б. Мекьявича, Э. В. Банистера и Дж. Б. Моррисона. Лондон: Тейлор и Фрэнсис.

Вудкок, АХ. 1962. Перенос влаги в текстильных системах. Часть I. Textile Res J 32: 628–633.

Yaglou, CP и D Minard. 1957. Контроль тепловых потерь в военных учебных центрах. Am Med Assoc Arch Ind Health 16: 302–316 и 405.