Среда, Март 16 2011 20: 28

Плавка и рафинирование

Оценить этот пункт
(0 голосов)

Адаптировано из 3-го издания, Энциклопедия охраны труда и техники безопасности.

При производстве и аффинаже металлов ценные компоненты отделяются от бесполезного материала в ходе ряда различных физических и химических реакций. Конечным продуктом является металл, содержащий контролируемое количество примесей. При первичной плавке и рафинировании металлы получают непосредственно из рудных концентратов, а при вторичной плавке и рафинировании металлы получают из лома и технологических отходов. К лому относятся куски металлических деталей, прутки, стружка, листы и проволока, не соответствующие техническим требованиям или изношенные, но пригодные для вторичной переработки (см. статью «Регенерация металла» в этой главе).

Обзор процессов

Две технологии извлечения металлов обычно используются для производства рафинированных металлов: пирометаллургический гидрометаллургический. Пирометаллургические процессы используют тепло для отделения нужных металлов от других материалов. В этих процессах используются различия между потенциалами окисления, точками плавления, давлением паров, плотностью и/или смешиваемостью компонентов руды при плавлении. Гидрометаллургические технологии отличаются от пирометаллургических процессов тем, что желаемые металлы отделяются от других материалов с использованием методов, которые используют различия между растворимостью компонентов и/или электрохимическими свойствами в водных растворах.

Pyrometallurgy

 При пирометаллической переработке руда после обогащенный (концентрируется путем дробления, измельчения, флотации и сушки), спекается или обжигается (кальцинируется) с другими материалами, такими как мешочная пыль и флюс. Затем концентрат плавится или плавится в доменной печи, чтобы сплавить нужные металлы в нечистый расплавленный слиток. Затем этот слиток подвергается третьему пирометаллическому процессу для очистки металла до желаемого уровня чистоты. Каждый раз, когда руда или слиток нагреваются, образуются отходы. Пыль от вентиляционных и технологических газов может улавливаться в рукавном фильтре и либо утилизироваться, либо возвращаться в процесс, в зависимости от содержания остаточного металла. Сера в газе также улавливается, и при концентрации выше 4% ее можно превратить в серную кислоту. В зависимости от происхождения руды и содержания в ней остаточных металлов различные металлы, такие как золото и серебро, также могут быть получены в качестве побочных продуктов.

Обжиг является важным пирометаллургическим процессом. Сульфатирующий обжиг применяют при производстве кобальта и цинка. Его цель - разделить металлы, чтобы их можно было перевести в водорастворимую форму для дальнейшей гидрометаллургической переработки.

При плавке сульфидных руд получается частично окисленный металлический концентрат (штейн). При плавке бесполезный материал, обычно железо, образует шлак с флюсом и превращается в оксид. Металлическую форму ценные металлы приобретают на стадии конвертирования, которое происходит в конвертерных печах. Этот метод используется в производстве меди и никеля. Железо, феррохром, свинец, магний и соединения железа получают восстановлением руды древесным углем и флюсом (известняком), процесс плавки обычно происходит в электрической печи. (См. также Металлургическая промышленность глава.) Электролиз расплавленной соли, используемый в производстве алюминия, является еще одним примером пирометаллургического процесса.

Высокая температура, необходимая для пирометаллургической обработки металлов, достигается за счет сжигания ископаемого топлива или за счет экзотермической реакции самой руды (например, в процессе взвешенной плавки). Процесс взвешенной плавки является примером энергосберегающего пирометаллургического процесса, в котором железо и сера рудного концентрата окисляются. Экзотермическая реакция в сочетании с системой рекуперации тепла экономит много энергии при плавке. Извлечение с высоким содержанием серы в процессе также полезно для защиты окружающей среды. Большинство недавно построенных медеплавильных и никелевых заводов используют этот процесс.

гидрометаллургии

Примерами гидрометаллургических процессов являются выщелачивание, осаждение, электролитическое восстановление, ионный обмен, мембранное разделение и экстракция растворителем. Первая стадия гидрометаллургических процессов — выщелачивание ценных металлов из менее ценного, например серной кислотой. Выщелачиванию часто предшествует предварительная обработка (например, сульфатирующий обжиг). Процесс выщелачивания часто требует высокого давления, добавления кислорода или высоких температур. Выщелачивание также можно проводить с помощью электричества. Из выщелачивающего раствора нужный металл или его соединение извлекают путем осаждения или восстановления различными способами. Восстановление осуществляется, например, при производстве кобальта и никеля газом.

Электролиз металлов в водных растворах также считается гидрометаллургическим процессом. В процессе электролиза ион металла восстанавливается до металла. Металл находится в слабокислом растворе, из которого под действием электрического тока осаждается на катодах. Большинство цветных металлов также можно рафинировать электролизом.

Часто металлургические процессы представляют собой комбинацию пиро- и гидрометаллургических процессов, в зависимости от обрабатываемого рудного концентрата и типа рафинируемого металла. Например, производство никеля.

Опасности и их предотвращение

Предупреждение рисков для здоровья и несчастных случаев в металлургической промышленности является в первую очередь учебно-техническим вопросом. Медицинские осмотры являются второстепенными и играют лишь дополнительную роль в предотвращении рисков для здоровья. Гармоничный обмен информацией и сотрудничество между отделами планирования, производства, безопасности и гигиены труда внутри компании дают наиболее эффективный результат в предотвращении рисков для здоровья.

Наилучшие и наименее затратные превентивные меры принимаются на этапе планирования нового предприятия или процесса. При планировании новых производственных объектов необходимо учитывать как минимум следующие аспекты:

  • Потенциальные источники загрязнителей воздуха должны быть ограждены и изолированы.
  • Конструкция и размещение технологического оборудования должны обеспечивать легкий доступ для обслуживания.
  • Области, в которых может возникнуть внезапная и непредвиденная опасность, должны находиться под постоянным наблюдением. Должны быть включены соответствующие предупреждающие уведомления. Например, зоны, в которых возможно воздействие арсина или цианистого водорода, должны находиться под постоянным наблюдением.
  • Добавление ядовитых технологических химикатов и обращение с ними следует планировать таким образом, чтобы можно было избежать ручного обращения.
  • По возможности следует использовать устройства для отбора проб личной гигиены труда, чтобы оценить реальное воздействие на отдельного работника. Регулярный стационарный мониторинг газов, пыли и шума дает общее представление об облучении, но играет лишь дополнительную роль в оценке дозы облучения.
  • При планировании пространства следует учитывать требования будущих изменений или расширений процесса, чтобы не ухудшились стандарты гигиены труда на предприятии.
  • Должна существовать непрерывная система обучения и обучения персонала по охране труда, а также мастеров и рабочих. В частности, новые работники должны быть тщательно проинформированы о потенциальных рисках для здоровья и о том, как их предотвратить в своей рабочей среде. Кроме того, обучение следует проводить всякий раз, когда вводится новый процесс.
  • Важны рабочие практики. Например, плохая личная гигиена из-за приема пищи и курения на рабочем месте может значительно увеличить воздействие на человека.
  • У руководства должна быть система мониторинга здоровья и безопасности, которая дает адекватные данные для принятия технических и экономических решений.

 

Ниже приведены некоторые конкретные опасности и меры предосторожности, связанные с плавкой и очисткой.

Травмы

В металлургической и нефтеперерабатывающей промышленности уровень травматизма выше, чем в большинстве других отраслей. Источниками этих травм являются: брызги и разливы расплавленного металла и шлака, приводящие к ожогам; взрывы газов и взрывы от контакта расплавленного металла с водой; столкновения с движущимися локомотивами, вагонами, мостовыми кранами и другой подвижной техникой; падения тяжелых предметов; падение с высоты (например, при доступе к кабине крана); а также поскользнуться и споткнуться из-за препятствий на полу и в проходах.

Меры предосторожности включают: надлежащую подготовку, соответствующие средства индивидуальной защиты (СИЗ) (например, каски, защитную обувь, рабочие перчатки и защитную одежду); хорошее хранение, ведение хозяйства и техническое обслуживание оборудования; правила движения для движущегося оборудования (включая определенные маршруты и эффективную систему сигналов и предупреждений); и программа защиты от падения.

зной

Заболевания, вызванные тепловым стрессом, такие как тепловой удар, представляют собой распространенную опасность, в первую очередь из-за инфракрасного излучения печей и расплавленного металла. Это особенно проблема, когда напряженная работа должна выполняться в жарких условиях.

Профилактика тепловых заболеваний может включать водяные экраны или воздушные завесы перед печами, точечное охлаждение, закрытые кабинки с кондиционированием воздуха, теплозащитную одежду и костюмы с воздушным охлаждением, обеспечивающие достаточное время для акклиматизации, перерывы в работе в прохладных помещениях и адекватное питание. напитков для частого употребления.

Химическая опасность

Во время плавки и рафинирования может происходить воздействие широкого спектра опасных видов пыли, паров, газов и других химических веществ. В частности, дробление и измельчение руды может привести к сильному воздействию кремнезема и токсичной металлической пыли (например, содержащей свинец, мышьяк и кадмий). Воздействие пыли также может происходить во время операций по техническому обслуживанию печи. Во время плавки пары металлов могут быть серьезной проблемой.

Выбросы пыли и дыма можно контролировать с помощью ограждения, автоматизации процессов, местной и вытяжной вентиляции, смачивания материалов, сокращения количества операций с материалами и других изменений процесса. Там, где этого недостаточно, потребуется защита органов дыхания.

Многие плавильные операции включают производство большого количества диоксида серы из сульфидных руд и монооксида углерода в результате процессов сжигания. Разрежение и местная вытяжная вентиляция (LEV) необходимы.

Серная кислота производится как побочный продукт плавильных операций и используется при электролитическом рафинировании и выщелачивании металлов. Воздействие может происходить как от жидкости, так и от туманов серной кислоты. Необходима защита кожи и глаз, а также LEV.

Плавка и рафинирование некоторых металлов могут представлять особую опасность. Примеры включают карбонил никеля при рафинировании никеля, фториды при плавке алюминия, мышьяк при плавке и рафинировании меди и свинца, а также воздействие ртути и цианидов при аффинаже золота. Эти процессы требуют своих особых мер предосторожности.

Прочие опасности

Блики и инфракрасное излучение от печей и расплавленного металла могут вызвать повреждение глаз, включая катаракту. Следует носить надлежащие защитные очки и лицевые щитки. Высокий уровень инфракрасного излучения также может вызвать ожоги кожи, если не надет защитный костюм.

Высокий уровень шума от дробления и измельчения руды, газоразрядных воздуходувок и мощных электрических печей может привести к потере слуха. Если источник шума не может быть закрыт или изолирован, следует носить средства защиты органов слуха. Следует внедрить программу сохранения слуха, включающую аудиометрическое тестирование и обучение.

Во время электролитических процессов может возникнуть опасность поражения электрическим током. Меры предосторожности включают надлежащее техническое обслуживание электрооборудования с процедурами блокировки/маркировки; изолированные перчатки, одежда и инструменты; и прерыватели цепи замыкания на землю, где это необходимо.

Ручной подъем и перемещение материалов может привести к травмам спины и верхних конечностей. Механические приспособления для подъема и надлежащее обучение методам подъема могут уменьшить эту проблему.

Загрязнение и защита окружающей среды

Выбросы раздражающих и агрессивных газов, таких как двуокись серы, сероводород и хлористый водород, могут способствовать загрязнению воздуха и вызывать коррозию металлов и бетона на заводе и в окружающей среде. Толерантность растительности к двуокиси серы варьируется в зависимости от типа леса и почвы. В целом вечнозеленые деревья переносят более низкие концентрации диоксида серы, чем лиственные. Выбросы твердых частиц могут содержать неспецифические твердые частицы, фториды, свинец, мышьяк, кадмий и многие другие токсичные металлы. Сточные воды могут содержать различные токсичные металлы, серную кислоту и другие примеси. Твердые отходы могут быть загрязнены мышьяком, свинцом, сульфидами железа, кремнеземом и другими загрязняющими веществами.

Управление металлургическим заводом должно включать оценку и контроль выбросов завода. Это специализированная работа, которая должна выполняться только персоналом, хорошо знакомым с химическими свойствами и токсичностью материалов, выбрасываемых в результате производственного процесса. Физическое состояние материала, температура, при которой он выходит из процесса, другие материалы в потоке газа и другие факторы должны учитываться при планировании мер по контролю загрязнения воздуха. Также желательно содержать метеостанцию, вести метеорологические записи и быть готовым к снижению производительности, когда погодные условия неблагоприятны для рассеивания стоков из дымовых труб. Полевые поездки необходимы для наблюдения за влиянием загрязнения воздуха на жилые и сельскохозяйственные районы.

Диоксид серы, один из основных загрязнителей, извлекается в виде серной кислоты, если присутствует в достаточном количестве. В противном случае, чтобы соответствовать нормам выбросов, диоксид серы и другие опасные газообразные отходы контролируются скрубберами. Выбросы твердых частиц обычно контролируются тканевыми фильтрами и электростатическими осадителями.

Большое количество воды используется в процессах флотации, таких как обогащение меди. Большая часть этой воды повторно используется в процессе. Хвосты флотации перекачиваются в виде пульпы в отстойники. В процессе вода рециркулируется. Металлосодержащие технологические и дождевые воды очищаются на водоочистных сооружениях перед сбросом или переработкой.

Твердофазные отходы включают шлаки от плавки, шламы продувки от преобразования диоксида серы в серную кислоту и шламы из поверхностных водоемов (например, отстойников). Некоторые шлаки могут быть повторно сконцентрированы и возвращены на плавильные заводы для повторной обработки или извлечения других присутствующих металлов. Многие из этих твердофазных отходов являются опасными отходами, которые должны храниться в соответствии с природоохранными нормами.

 

Назад

Читать 14548 раз Последнее изменение вторник, 28 июня 2011 г. 14:13

ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: МОТ не несет ответственности за контент, представленный на этом веб-портале, который представлен на каком-либо языке, кроме английского, который является языком, используемым для первоначального производства и рецензирования оригинального контента. Некоторые статистические данные не обновлялись с тех пор. выпуск 4-го издания Энциклопедии (1998 г.)».

Содержание:

Справочные материалы по металлообработке и металлообработке

Buonicore, AJ и WT Davis (ред.). 1992. Инженерное руководство по загрязнению воздуха. Нью-Йорк: Ван Ностранд Рейнхольд / Ассоциация управления воздухом и отходами.

Агентство по охране окружающей среды (EPA). 1995. Профиль отрасли цветных металлов. EPA/310-R-95-010. Вашингтон, округ Колумбия: EPA.

Международная ассоциация по изучению рака (IARC). 1984. Монографии по оценке канцерогенного риска для человека. Том. 34. Лион: МАИР.

Джонсон А., С.И. Мойра, Л. Маклин, Э. Аткинс, А. Дайбунико, Ф. Ченг и Д. Энарсон. 1985. Респираторные нарушения у рабочих черной металлургии. Brit J Ind Med 42: 94–100.

Кроненберг Р.С., Дж.К. Левин, Р.Ф. Додсон, Дж.Г.Н. Гарсия и Д.Э. Гриффит. 1991. Заболевание, связанное с асбестом, у работников сталелитейного завода и завода по производству стеклянных бутылок. Ann NY Acad Sci 643:397–403.

Ландриган, П.Дж., Черняк М.Г., Льюис Ф.А., Катлетт Л.Р. и Хорнунг Р.В. 1986. Силикоз в литейном цехе серого чугуна. Постоянство древней болезни. Scand J Work Environment Health 12:32–39.

Национальный институт охраны труда и здоровья (NIOSH). 1996. Критерии рекомендуемого стандарта: Воздействие жидкостей для металлообработки на рабочем месте. Цинцинатти, Огайо: NIOSH.

Палета, Д. и Тейлор. 1995. Ртуть в экологических и биологических образцах из района добычи золота в районе Амазонки в Бразилии. Наука об окружающей среде 168:63-69.

Томас, PR и Д. Кларк. 1992 Вибрационный белый палец и контрактура Дюпюитрена: связаны ли они? Оккупай Мед 42 (3): 155–158.