Понедељак, КСНУМКС децембар КСНУМКС КСНУМКС: КСНУМКС

Дефиниције и концепти

Оцените овај артикал
(КСНУМКС гласова)

Изложеност, доза и одговор

Токсичност је интринзична способност хемијског агенса да негативно утиче на организам.

Ксенобиотици је термин за „стране материје”, односно стране организму. Његова супротност су ендогена једињења. Ксенобиотици укључују лекове, индустријске хемикалије, отрове који се јављају у природи и загађиваче животне средине.

Хазард је потенцијал да се токсичност оствари у одређеном окружењу или ситуацији.

Ризик је вероватноћа појаве одређеног штетног ефекта. Често се изражава као проценат случајева у датој популацији и током одређеног временског периода. Процена ризика се може заснивати на стварним случајевима или на пројекцији будућих случајева, на основу екстраполација.

Оцена токсичности класификација токсичности може се користити у регулаторне сврхе. Оцена токсичности је произвољно степеновање доза или нивоа изложености који изазивају токсичне ефекте. Оцењивање може бити „супертоксично“, „високо токсично“, „умерено токсично“ и тако даље. Најчешће оцене се односе на акутну токсичност. Класификација токсичности се односи на груписање хемикалија у опште категорије према њиховом најважнијем токсичном ефекту. Такве категорије могу укључивати алергене, неуротоксичне, канцерогене и тако даље. Ова класификација може имати административну вредност као упозорење и као информација.

однос дозе и ефекта је однос између дозе и ефекта на индивидуалном нивоу. Повећање дозе може повећати интензитет ефекта или може довести до озбиљнијег ефекта. Крива доза-ефекат се може добити на нивоу целог организма, ћелије или циљног молекула. Неки токсични ефекти, као што су смрт или рак, нису степеновани, већ су ефекти „све или ништа“.

однос доза-одговор је однос између дозе и процента појединаца који показују специфичан ефекат. Са повећањем дозе обично ће бити погођен већи број особа у изложеној популацији.

За токсикологију је неопходно успоставити односе доза-ефекат и доза-одговор. У медицинским (епидемиолошким) студијама критеријум који се често користи за прихватање узрочне везе између агенса и болести је да је ефекат или одговор пропорционалан дози.

Може се нацртати неколико кривуља доза-одговор за хемикалију – по једна за сваку врсту ефекта. Крива доза-одговор за већину токсичних ефеката (када се проучава у великим популацијама) има сигмоидни облик. Обично постоји опсег ниских доза где није откривен одговор; како се доза повећава, одговор прати узлазну криву која обично достиже плато при 100% одговору. Крива доза-одговор одражава варијације међу појединцима у популацији. Нагиб криве варира од хемијског до хемијског и између различитих врста ефеката. За неке хемикалије са специфичним ефектима (канцерогени, иницијатори, мутагени) крива доза-одговор може бити линеарна од нулте дозе унутар одређеног опсега дозе. То значи да не постоји праг и да чак и мале дозе представљају ризик. Изнад тог опсега дозе, ризик се може повећати већом од линеарне стопе.

Варијације у изложености током дана и укупне дужине изложености током животног века могу бити подједнако важне за исход (одговор) као и средњи или просечни или чак интегрисани ниво дозе. Висока вршна изложеност може бити штетнија од равномернијег нивоа изложености. Ово је случај са неким органским растварачима. С друге стране, за неке карциногене, експериментално је показано да фракционисање једне дозе на неколико излагања са истом укупном дозом може бити ефикасније у стварању тумора.

A доза се често изражава као количина ксенобиотика која улази у организам (у јединицама као што су мг/кг телесне тежине). Доза се може изразити на различите (више или мање информативне) начине: доза излагања, што представља концентрацију загађивача у ваздуху удахнутог током одређеног временског периода (у хигијени рада обично осам сати), или задржала or апсорбована доза (у индустријској хигијени се назива и оптерећење тела), што је количина присутна у телу у одређено време током или након излагања. Тхе доза ткива је количина супстанце у одређеном ткиву и циљна доза је количина супстанце (обично метаболита) везана за критични молекул. Циљна доза се може изразити као мг хемијске везаности по мг специфичног макромолекула у ткиву. За примену овог концепта потребне су информације о механизму токсичног дејства на молекуларном нивоу. Циљна доза је прецизније повезана са токсичним ефектом. Доза изложености или оптерећење тела могу бити лакше доступни, али су мање прецизно повезани са ефектом.

У концепт дозе често је укључен временски аспект, чак и ако није увек изражен. Теоријска доза по Хаберовом закону је Д = цт, где D је доза, c је концентрација ксенобиотика у ваздуху и t трајање излагања хемикалијама. Ако се овај концепт користи на нивоу циљног органа или молекула, може се користити количина по мг ткива или молекула током одређеног времена. Временски аспект је обично важнији за разумевање поновљених излагања и хроничних ефеката него за једнократна излагања и акутне ефекте.

Додатни ефекти настају као резултат излагања комбинацији хемикалија, где се појединачне токсичности једноставно додају једна другој (1+1=2). Када хемикалије делују преко истог механизма, претпоставља се адитивност њихових ефеката иако то није увек случај у стварности. Интеракција између хемикалија може довести до инхибиције (антагонизам), са мањим ефектом од очекиваног од додавања ефеката појединачних хемикалија (1+1 2). Алтернативно, комбинација хемикалија може произвести израженији ефекат него што би се очекивало додавањем (повећан одговор међу појединцима или повећање учесталости одговора у популацији), то се назива синергизам (1+1 >2).

Време кашњења је време између првог излагања и појаве ефекта или одговора који се може открити. Термин се често користи за канцерогене ефекте, где се тумори могу појавити дуго након почетка излагања, а понекад и дуго након престанка излагања.

A праг дозе је ниво дозе испод којег се не јавља приметан ефекат. Сматра се да постоје прагови за одређене ефекте, као што су акутни токсични ефекти; али не и за друге, као што су канцерогени ефекти (од стране иницијатора који формирају ДНК адукте). Само одсуство одговора у датој популацији, међутим, не треба узети као доказ за постојање прага. Одсуство одговора може бити узроковано једноставним статистичким феноменом: нежељени ефекат који се јавља при ниској фреквенцији можда неће бити детектован у малој популацији.

LD50 (ефикасна доза) је доза која узрокује 50% смртности у популацији животиња. ЛД50 се често наводи у старијој литератури као мера акутне токсичности хемикалија. Што је виши ЛД50, што је нижа акутна токсичност. Веома токсична хемикалија (са ниским ЛД50) тако је речено моћан. Не постоји неопходна корелација између акутне и хроничне токсичности. ЕД50 (ефикасна доза) је доза која изазива специфичан ефекат осим смртности код 50% животиња.

НОЕЛ (НОАЕЛ) означава ниво без уоченог (штетног) ефекта, или највећу дозу која не изазива токсични ефекат. За утврђивање НОЕЛ потребно је више доза, велика популација и додатне информације како би се осигурало да одсуство одговора није само статистички феномен. ЛОЕЛ је најнижа примећена ефективна доза на кривој доза-одговор, или најнижа доза која изазива ефекат.

A фактор безбедности је формални, произвољан број са којим се дели НОЕЛ или ЛОЕЛ добијени експериментима на животињама да би се добила пробна дозвољена доза за људе. Ово се често користи у области токсикологије хране, али се може користити иу токсикологији на раду. Безбедносни фактор се такође може користити за екстраполацију података са малих популација на веће популације. Безбедносни фактори се крећу од 100 до 10.3. Безбедносни фактор два обично може бити довољан да заштити од мање озбиљног ефекта (као што је иритација), а фактор од 1,000 може се користити за веома озбиљне ефекте (као што је рак). Термин фактор безбедности могао би се боље заменити термином заштита фактор или чак, фактор неизвесности. Употреба последњег термина одражава научне несигурности, као што је да ли се тачни подаци о дози и одговору могу превести са животиња на људе за одређени хемијски, токсични ефекат или ситуацију изложености.

Ектраполатионс су теоријске квалитативне или квантитативне процене токсичности (екстраполације ризика) изведене из превођења података са једне врсте на другу или из једног скупа података о дози-одговору (обично у опсегу високе дозе) у регионе доза-одговор где нема података. Екстраполације се обично морају направити да би се предвидели токсични одговори изван опсега посматрања. Математичко моделирање се користи за екстраполације засноване на разумевању понашања хемикалије у организму (токсикокинетичко моделирање) или на основу разумевања статистичких вероватноћа да ће се десити специфични биолошки догађаји (биолошки или механички засновани модели). Неке националне агенције развиле су софистициране моделе екстраполације као формализовани метод за предвиђање ризика у регулаторне сврхе. (Погледајте дискусију о процени ризика касније у поглављу.)

Системски ефекти су токсични ефекти у ткивима удаљеним од пута апсорпције.

Циљни орган је примарни или најосетљивији орган захваћен након излагања. Иста хемикалија која улази у тело различитим путевима дозе, брзине дозе, пола и врсте може утицати на различите циљне органе. Интеракција између хемикалија, или између хемикалија и других фактора може утицати и на различите циљне органе.

Акутни ефекти настају након ограничене изложености и убрзо (сати, дани) након излагања и могу бити реверзибилни или неповратни.

Хронични ефекти настају након дужег излагања (месеци, године, деценије) и/или трају након престанка излагања.

Акутна излагање је изложеност кратког трајања, док хронична изложеност је дуготрајна (понекад доживотна) изложеност.

Толеранција на хемикалију може доћи када поновљена излагања резултирају нижим одговором од онога што би се очекивало без претходног третмана.

Пријем и диспозиција

Транспортни процеси

радиодифузија. Да би ушла у организам и стигла до места на коме настаје оштећење, страна супстанца мора да прође неколико баријера, укључујући ћелије и њихове мембране. Већина токсичних супстанци пролази кроз мембране пасивно дифузијом. Ово се може десити за мале молекуле растворљиве у води проласком кроз водене канале или, за оне растворљиве у мастима, растварањем у и дифузијом кроз липидни део мембране. Етанол, мали молекул који је растворљив и у води и у мастима, брзо дифундује кроз ћелијске мембране.

Дифузија слабих киселина и база. Слабе киселине и базе могу лако да прођу кроз мембране у свом нејонизованом облику растворљивом у мастима, док су јонизовани облици сувише поларни да би могли да прођу. Степен јонизације ових супстанци зависи од пХ. Ако постоји пХ градијент преко мембране, они ће се акумулирати на једној страни. Излучивање слабих киселина и база урина у великој мери зависи од пХ вредности урина. Фетални или ембрионални пХ је нешто виши од пХ вредности мајке, што изазива благо накупљање слабих киселина у фетусу или ембриону.

Олакшана дифузија. Пролаз супстанце може бити олакшан носачима у мембрани. Олакшана дифузија је слична ензимским процесима по томе што је посредована протеинима, високо селективна и засићена. Друге супстанце могу инхибирати олакшани транспорт ксенобиотика.

Активни превоз. Неке супстанце се активно транспортују кроз ћелијске мембране. Овај транспорт је посредован протеинима носачима у процесу аналогном оном код ензима. Активни транспорт је сличан олакшаној дифузији, али се може десити против градијента концентрације. Захтева унос енергије и метаболички инхибитор може блокирати процес. Већина загађивача животне средине се не транспортује активно. Један изузетак је активна тубуларна секреција и реапсорпција метаболита киселине у бубрезима.

Пхагоцитосис је процес у коме специјализоване ћелије као што су макрофаги гутају честице ради накнадног варења. Овај транспортни процес је важан, на пример, за уклањање честица у алвеолама.

Највећи проток. Супстанце се такође транспортују у телу заједно са кретањем ваздуха у респираторном систему током дисања, као и кретањем крви, лимфе или урина.

Филтрација. Због хидростатског или осмотског притиска вода тече у ринфузи кроз поре у ендотелу. Сваки раствор који је довољно мали биће филтриран заједно са водом. Филтрација се у извесној мери јавља у капиларном кориту у свим ткивима, али је посебно важна у формирању примарног урина у бубрежним гломерулима.

Апсорпција

Апсорпција је унос супстанце из околине у организам. Појам обично укључује не само улазак у баријерно ткиво већ и даљи транспорт у крв која циркулише.

Плућна апсорпција. Плућа су примарни пут депозиције и апсорпције малих честица у ваздуху, гасова, пара и аеросола. За гасове и паре који су високо растворљиви у води, значајан део апсорпције се дешава у носу и респираторном стаблу, али за мање растворљиве супстанце првенствено се одвија у плућним алвеолама. Алвеоле имају веома велику површину (око 100м2 код људи). Поред тога, дифузиона баријера је изузетно мала, са само два танка слоја ћелија и растојањем реда микрометара од алвеоларног ваздуха до системске циркулације крви. То чини плућа веома ефикасним не само у размени кисеоника и угљен-диоксида већ и других гасова и пара. Генерално, дифузија преко алвеоларног зида је толико брза да не ограничава апсорпцију. Брзина апсорпције уместо тога зависи од протока (пулмонална вентилација, минутни волумен срца) и растворљивости (крв: коефицијент расподеле ваздуха). Други важан фактор је метаболичка елиминација. Релативни значај ових фактора за плућну апсорпцију увелико варира за различите супстанце. Физичка активност доводи до повећане плућне вентилације и минутног волумена, и смањеног протока крви у јетри (а самим тим и стопе биотрансформације). За многе инхалационе супстанце то доводи до значајног повећања плућне апсорпције.

Перкутана апсорпција. Кожа је веома ефикасна баријера. Осим своје терморегулаторне улоге, дизајниран је да штити организам од микроорганизама, ултраљубичастог зрачења и других штетних агенаса, као и од прекомерног губитка воде. Удаљеност дифузије у дермису је реда десетина милиметара. Поред тога, кератински слој има веома високу отпорност на дифузију за већину супстанци. Ипак, може доћи до значајне дермалне апсорпције која резултира токсичношћу за неке супстанце — високо токсичне супстанце растворљиве у мастима као што су органофосфорни инсектициди и органски растварачи, на пример. Вероватно ће доћи до значајне апсорпције након излагања течним супстанцама. Перкутана апсорпција паре може бити важна за раствараче са веома ниским притиском паре и високим афинитетом према води и кожи.

Гастроинтестинална апсорпција јавља се након случајног или намерног гутања. Веће честице које су првобитно удахнуте и депоноване у респираторном тракту могу се прогутати након мукоцилијарног транспорта до фаринкса. Практично све растворљиве супстанце се ефикасно апсорбују у гастроинтестиналном тракту. Низак пХ црева може олакшати апсорпцију, на пример, метала.

Друге руте. У тестирању токсичности и другим експериментима, посебни путеви примене се често користе ради погодности, иако су ретки и обично нису релевантни у окружењу на послу. Ови путеви укључују интравенске (ИВ), субкутане (сц), интраперитонеалне (ип) и интрамускуларне (им) ињекције. Генерално, супстанце се апсорбују већом брзином и потпуније овим путевима, посебно након ИВ ињекције. Ово доводи до краткотрајних, али високих пикова концентрације који могу повећати токсичност дозе.

Дистрибуција

Дистрибуција супстанце у организму је динамичан процес који зависи од брзине узимања и елиминације, као и од протока крви до различитих ткива и њихових афинитета за супстанцу. Мали, ненаелектрисани молекули растворљиви у води, једновалентни катјони и већина ањона лако се дифундују и на крају ће достићи релативно равномерну дистрибуцију у телу.

Обим дистрибуције је количина супстанце у телу у датом тренутку, подељена са концентрацијом у крви, плазми или серуму у том тренутку. Вредност нема значење као физичка запремина, јер многе супстанце нису равномерно распоређене у организму. Волумен дистрибуције мањи од једног л/кг телесне тежине указује на преференцијалну дистрибуцију у крви (или серуму или плазми), док вредност изнад једне указује на преференцију периферних ткива као што је масно ткиво за супстанце растворљиве у масти.

Акумулација је накупљање супстанце у ткиву или органу до виших нивоа него у крви или плазми. Такође се може односити на постепено накупљање током времена у организму. Многи ксенобиотици су високо растворљиви у мастима и имају тенденцију да се акумулирају у масном ткиву, док други имају посебан афинитет за кости. На пример, калцијум у костима се може заменити за катјоне олова, стронцијума, баријума и радијума, а хидроксилне групе у костима могу се заменити за флуор.

Барриерс. Крвни судови у мозгу, тестисима и плаценти имају посебне анатомске карактеристике које инхибирају пролаз великих молекула попут протеина. Ове карактеристике, које се често називају крвно-мозак, крвно-тестиси и крвно-плаценте баријере, могу дати лажан утисак да спречавају пролаз било које супстанце. Ове баријере су од мале или никакве важности за ксенобиотике који могу да дифундују кроз ћелијске мембране.

Везивање крви. Супстанце могу бити везане за црвена крвна зрнца или компоненте плазме, или се могу појавити невезане у крви. Угљенмоноксид, арсен, органска жива и хексавалентни хром имају висок афинитет према црвеним крвним зрнцима, док неорганска жива и тровалентни хром преферирају протеине плазме. Бројне друге супстанце се такође везују за протеине плазме. Само невезана фракција је доступна за филтрацију или дифузију у елиминационе органе. Везивање крви стога може повећати време задржавања у организму, али смањити узимање у циљним органима.

Елиминација

Елиминација је нестанак супстанце у телу. Елиминација може укључивати излучивање из тела или трансформацију у друге супстанце које нису обухваћене специфичном методом мерења. Брзина нестанка се може изразити константом брзине елиминације, биолошким полувремену или клиренсом.

Крива концентрација-време. Крива концентрације у крви (или плазми) у односу на време је погодан начин за описивање уноса и диспозиције ксенобиотика.

Површина испод кривине (АУЦ) је интеграл концентрације у крви (плазми) током времена. Када су метаболичка засићеност и други нелинеарни процеси одсутни, АУЦ је пропорционална апсорбованој количини супстанце.

Биолошко полувреме (или полуживот) је време потребно након завршетка излагања да се количина у организму смањи на половину. Пошто је често тешко проценити укупну количину супстанце, користе се мерења као што је концентрација у крви (плазми). Полувреме треба користити са опрезом, јер се може променити, на пример, са дозом и дужином излагања. Поред тога, многе супстанце имају сложене криве распадања са неколико полувремена.

биолошка расположивост је део примењене дозе који улази у системску циркулацију. У недостатку предсистемског клиренса, или метаболизам првог проласка, разломак је један. При оралној изложености пресистемски клиренс може бити последица метаболизма у гастроинтестиналном садржају, зиду црева или јетри. Метаболизам првог пролаза ће смањити системску апсорпцију супстанце и уместо тога повећати апсорпцију метаболита. Ово може довести до другачијег обрасца токсичности.

зазор је запремина крви (плазме) у јединици времена потпуно очишћене од супстанце. Да би се разликовао од бубрежног клиренса, на пример, често се додаје префикс тотал, метаболички или крв (плазма).

Унутрашњи клиренс је капацитет ендогених ензима да трансформишу супстанцу, а такође се изражава у запремини у јединици времена. Ако је унутрашњи клиренс у органу много мањи од протока крви, каже се да је метаболизам ограничен капацитетом. Супротно томе, ако је унутрашњи клиренс много већи од протока крви, метаболизам је ограничен протоком.

Излучивање

Излучивање је излазак супстанце и њених производа биотрансформације из организма.

Излучивање у урину и жучи. Бубрези су најважнији органи за излучивање. Неке супстанце, посебно киселине велике молекуларне тежине, излучују се жучом. Део супстанци излучених жучом може се реапсорбовати у цревима. Овај процес, ентерохепатична циркулација, уобичајено је за коњуговане супстанце након цревне хидролизе коњугата.

Други путеви излучивања. Неке супстанце, као што су органски растварачи и продукти распадања као што је ацетон, довољно су испарљиве тако да се знатна фракција може излучити издисајем након удисања. Мали молекули растворљиви у води, као и молекули растворљиви у мастима, лако се излучују у фетус преко плаценте, а код сисара у млеко. За мајку, лактација може бити квантитативно важан пут излучивања упорних хемикалија растворљивих у мастима. Потомство може бити секундарно изложено преко мајке током трудноће, као и током лактације. Једињења растворљива у води могу се донекле излучити знојем и пљувачком. Ове руте су углавном од мањег значаја. Међутим, пошто се ствара и прогута велика количина пљувачке, излучивање пљувачке може допринети реапсорпцији једињења. Неки метали као што је жива се излучују трајним везивањем за сулфхидрилне групе кератина у коси.

Токсикокинетички модели

Математички модели су важни алати за разумевање и описивање уноса и одлагања страних супстанци. Већина модела је компартментална, односно организам је представљен једним или више одељака. Компартмент је хемијски и физички теоријска запремина у којој се претпоставља да се супстанца дистрибуира хомогено и тренутно. Једноставни модели се могу изразити као збир експоненцијалних чланова, док компликованији захтевају нумеричке процедуре на рачунару за њихово решавање. Модели се могу поделити у две категорије, дескриптивне и физиолошке.

In описни модела, прилагођавање измереним подацима се врши променом нумеричких вредности параметара модела или чак саме структуре модела. Структура модела обично нема много везе са структуром организма. Предности дескриптивног приступа су што се прави мало претпоставки и што нема потребе за додатним подацима. Недостатак дескриптивних модела је њихова ограничена корисност за екстраполације.

Физиолошки модели конструисани су на основу физиолошких, анатомских и других независних података. Модел се затим прерађује и потврђује поређењем са експерименталним подацима. Предност физиолошких модела је што се могу користити у сврхе екстраполације. На пример, утицај физичке активности на унос и диспозицију инхалираних супстанци може се предвидети на основу познатих физиолошких прилагођавања вентилације и минутног волумена срца. Недостатак физиолошких модела је што захтевају велику количину независних података.

Биотрансформација

Биотрансформација је процес који доводи до метаболичке конверзије страних једињења (ксенобиотика) у телу. Процес се често назива метаболизам ксенобиотика. Као опште правило, метаболизам претвара ксенобиотике растворљиве у липидима у велике метаболите растворљиве у води који се могу ефикасно излучити.

Јетра је главно место биотрансформације. Сви ксенобиотици који се уносе из црева транспортују се у јетру једним крвним судом (вена порта). Ако се унесе у малим количинама, страна супстанца се може потпуно метаболисати у јетри пре него што дође до опште циркулације и других органа (ефекат првог пролаза). Инхалирани ксенобиотици се дистрибуирају преко опште циркулације до јетре. У том случају се само део дозе метаболише у јетри пре него што стигне до других органа.

Ћелије јетре садрже неколико ензима који оксидирају ксенобиотике. Ова оксидација генерално активира једињење - оно постаје реактивније од матичног молекула. У већини случајева оксидовани метаболит се даље метаболише другим ензимима у другој фази. Ови ензими коњугују метаболит са ендогеним супстратом, тако да молекул постаје већи и поларнији. Ово олакшава излучивање.

Ензими који метаболишу ксенобиотике присутни су и у другим органима као што су плућа и бубрези. У овим органима они могу играти специфичне и квалитативно важне улоге у метаболизму одређених ксенобиотика. Метаболити формирани у једном органу могу се даље метаболисати у другом органу. Бактерије у цревима такође могу учествовати у биотрансформацији.

Метаболити ксенобиотика могу се излучити бубрезима или путем жучи. Такође се могу издахнути кроз плућа или везати за ендогене молекуле у телу.

Однос између биотрансформације и токсичности је сложен. Биотрансформација се може посматрати као неопходан процес за преживљавање. Штити организам од токсичности спречавајући накупљање штетних материја у телу. Међутим, у биотрансформацији се могу формирати реактивни посредни метаболити, који су потенцијално штетни. Ово се зове метаболичка активација. Дакле, биотрансформација такође може изазвати токсичност. Оксидовани, посредни метаболити који нису коњуговани могу се везати и оштетити ћелијске структуре. Ако се, на пример, ксенобиотски метаболит веже за ДНК, може се изазвати мутација (погледајте „Генетичка токсикологија”). Ако је систем биотрансформације преоптерећен, може доћи до масовног уништења есенцијалних протеина или липидних мембрана. Ово може довести до смрти ћелије (погледајте „Повреда ћелије и ћелијска смрт“).

Метаболизам је реч која се често користи наизменично са биотрансформацијом. Означава реакције хемијског распада или синтезе које катализирају ензими у телу. Хранљиве материје из хране, ендогена једињења и ксенобиотици се метаболишу у телу.

Метаболичка активација значи да се мање реактивно једињење претвара у реактивнији молекул. Ово се обично дешава током реакција Фазе 1.

Метаболичка инактивација значи да се активни или токсични молекул претвара у мање активан метаболит. Ово се обично дешава током реакција Фазе 2. У одређеним случајевима инактивирани метаболит може бити реактивиран, на пример ензимским цепањем.

Фаза 1 реакција односи се на први корак у метаболизму ксенобиотика. То обично значи да је једињење оксидовано. Оксидација обично чини једињење растворљивијим у води и олакшава даље реакције.

Ензими цитокром П450 су група ензима који првенствено оксидирају ксенобиотике у реакцијама фазе 1. Различити ензими су специјализовани за руковање специфичним групама ксенобиотика са одређеним карактеристикама. Ендогени молекули су такође супстрати. Ензими цитокрома П450 се индукују ксенобиотицима на специфичан начин. Добијање индукционих података о цитохрому П450 може бити информативно о природи претходних изложености (видети „Генетске детерминанте токсичног одговора”).

Фаза 2 реакција односи се на други корак у метаболизму ксенобиотика. То обично значи да је оксидовано једињење коњуговано са (повезано) са ендогеним молекулом. Ова реакција додатно повећава растворљивост у води. Многи коњуговани метаболити се активно излучују преко бубрега.

Трансферазе су група ензима који катализују реакције фазе 2. Они коњугују ксенобиотике са ендогеним једињењима као што су глутатион, аминокиселине, глукуронска киселина или сулфат.

Глутатион је ендогени молекул, трипептид, који је коњугован са ксенобиотицима у Фази 2 реакција. Присутан је у свим ћелијама (и у ћелијама јетре у високим концентрацијама), и обично штити од активираних ксенобиотика. Када се глутатион исцрпи, може доћи до токсичних реакција између активираних ксенобиотских метаболита и протеина, липида или ДНК.

Индукција значи да су ензими укључени у биотрансформацију повећани (у активности или количини) као одговор на излагање ксенобиотицима. У неким случајевима у року од неколико дана активност ензима може се повећати неколико пута. Индукција је често уравнотежена тако да се реакције фазе 1 и фазе 2 повећавају истовремено. Ово може довести до брже биотрансформације и може објаснити толеранцију. Насупрот томе, неуравнотежена индукција може повећати токсичност.

Инхибитион до биотрансформације може доћи ако се два ксенобиотика метаболишу истим ензимом. Два супстрата морају да се такмиче, а обично се даје предност једном од супстрата. У том случају се други супстрат не метаболише, или се само споро метаболише. Као и код индукције, инхибиција се може повећати, али и смањити токсичност.

Активација кисеоником могу изазвати метаболити одређених ксенобиотика. Они могу аутооксидирати под производњом активираних врста кисеоника. Ове врсте добијене кисеоником, које укључују супероксид, водоник пероксид и хидроксилни радикал, могу оштетити ДНК, липиде и протеине у ћелијама. Активација кисеоника је такође укључена у инфламаторне процесе.

Генетска варијабилност између појединаца се види у многим генима који кодирају ензиме Фазе 1 и Фазе 2. Генетска варијабилност може објаснити зашто су одређене особе подложније токсичним ефектима ксенобиотика од других.

 

Назад

Читати 11157 пута Последња измена у уторак, 26. јула 2022. 19:27
Више у овој категорији: Токсикокинетика »

" ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

Садржај