Понедељак, КСНУМКС децембар КСНУМКС КСНУМКС: КСНУМКС

Токсикокинетика

Оцените овај артикал
(КСНУМКС гласова)

Људски организам представља сложен биолошки систем на различитим нивоима организације, од молекуларно-ћелијског нивоа до ткива и органа. Организам је отворен систем, који размењује материју и енергију са околином кроз бројне биохемијске реакције у динамичкој равнотежи. Животна средина може бити загађена, или контаминирана разним отровима.

Продор молекула или јона токсиканата из радног или животног окружења у тако снажно координиран биолошки систем може реверзибилно или неповратно пореметити нормалне ћелијске биохемијске процесе, или чак повредити и уништити ћелију (погледајте „Повреде ћелије и ћелијска смрт“).

Пенетрација токсиканата из околине до места његовог токсичног дејства унутар организма може се поделити у три фазе:

  1. Фаза експозиције обухвата све процесе који се одвијају између различитих токсиканата и/или утицаја на њих фактора средине (светлости, температуре, влажности итд.). Може доћи до хемијских трансформација, деградације, биоразградње (од стране микроорганизама) као и дезинтеграције токсичних материја.
  2. Токсикокинетичка фаза обухвата апсорпцију токсиканата у организам и све процесе који прате транспорт телесним течностима, дистрибуцију и акумулацију у ткивима и органима, биотрансформацију у метаболите и елиминацију (излучивање) токсиканата и/или метаболита из организма.
  3. Токсикодинамичка фаза се односи на интеракцију токсичних супстанци (молекула, јона, колоида) са специфичним местима деловања на или унутар ћелија – рецепторима – што на крају производи токсични ефекат.

 

Овде ћемо се фокусирати искључиво на токсикокинетичке процесе у људском организму након излагања токсикантима из околине.

Молекули или јони токсиканата присутни у животној средини продиру у организам преко коже и слузокоже, односно епителних ћелија респираторног и гастроинтестиналног тракта, у зависности од тачке уласка. То значи да молекули и јони токсиканата морају продрети кроз ћелијске мембране ових биолошких система, као и кроз замршени систем ендомембрана унутар ћелије.

Сви токсикокинетички и токсикодинамички процеси одвијају се на молекуларно-ћелијском нивоу. Бројни фактори утичу на ове процесе и они се могу поделити у две основне групе:

  • хемијски састав и физичко-хемијска својства токсиканата
  • структура ћелије посебно својства и функције мембрана око ћелије и њених унутрашњих органела.

 

Физичко-хемијска својства токсичних супстанци

Године 1854. руски токсиколог ЕВ Пеликан започео је студије о односу између хемијске структуре супстанце и њене биолошке активности – однос структурне активности (САР). Хемијска структура директно одређује физичко-хемијске особине, од којих су неке одговорне за биолошку активност.

За дефинисање хемијске структуре као дескриптори се могу изабрати бројни параметри, који се могу поделити у различите групе:

1. Физичко-хемијски:

  • опште - тачка топљења, тачка кључања, притисак паре, константа дисоцијације (пКa)
  • електрични—јонизациони потенцијал, диелектрична константа, диполни момент, однос маса: наелектрисање итд.
  • квантна хемикалија — атомски набој, енергија везе, енергија резонанце, електронска густина, молекуларна реактивност итд.

 

 2. Стерић: запремина молекула, облик и површина, облик подструктуре, молекуларна реактивност итд.
 3. Структурно: број веза број прстенова (у полицикличним једињењима), степен гранања итд.

 

За сваки токсикант потребно је одабрати скуп дескриптора везаних за одређени механизам деловања. Међутим, са токсикокинетичке тачке гледишта, два параметра су од општег значаја за све токсиканте:

  • Нернстов коефицијент расподеле (П) утврђује растворљивост токсичних молекула у двофазном систему октанол (уље)-вода, у корелацији са њиховом липо- или хидросолубилношћу. Овај параметар ће у великој мери утицати на дистрибуцију и акумулацију токсичних молекула у организму.
  • Константа дисоцијације (пКa) дефинише степен јонизације (електролитичке дисоцијације) молекула токсичног средства у наелектрисане катјоне и ањоне при одређеном пХ. Ова константа представља пХ при којем се постиже 50% јонизација. Молекули могу бити липофилни или хидрофилни, али су јони растворљиви искључиво у води телесних течности и ткива. Познавање пКa могуће је израчунати степен јонизације супстанце за сваки пХ помоћу Хендерсон-Хаселбахове једначине.

 

За удахнуту прашину и аеросоле, величина честица, облик, површина и густина такође утичу на њихову токсикокинетику и токсикодинамику.

Структура и својства мембрана

Еукариотска ћелија људских и животињских организама окружена је цитоплазматском мембраном која регулише транспорт супстанци и одржава ћелијску хомеостазу. Ћелијске органеле (нуклеус, митохондрије) такође поседују мембране. Ћелијска цитоплазма је подељена на сложене мембранске структуре, ендоплазматски ретикулум и Голгијев комплекс (ендомембране). Све ове мембране су структурно сличне, али се разликују по садржају липида и протеина.

Структурни оквир мембране је двослојни молекули липида (фосфолипиди, сфинголипиди, холестерол). Окосницу молекула фосфолипида чини глицерол са две његове -ОХ групе естерификоване алифатичним масним киселинама са 16 до 18 атома угљеника, а трећа група естерификована фосфатном групом и азотним једињењем (холин, етаноламин, серин). У сфинголипидима, сфингозин је база.

Молекул липида је амфипатичан јер се састоји од поларне хидрофилне „главе“ (амино алкохол, фосфат, глицерол) и неполарног близаначког „репа“ (масне киселине). Липидни двослој је распоређен тако да хидрофилне главе чине спољашњу и унутрашњу површину мембране, а липофилни репови су растегнути према унутрашњости мембране, која садржи воду, различите јоне и молекуле.

Протеини и гликопротеини се убацују у липидни двослој (интринзични протеини) или су причвршћени за површину мембране (спољни протеини). Ови протеини доприносе структурном интегритету мембране, али могу да делују и као ензими, носачи, зидови пора или рецептори.

Мембрана представља динамичку структуру која се може дезинтегрисати и поново изградити са различитим пропорцијама липида и протеина, у складу са функционалним потребама.

Регулација транспорта супстанци у и из ћелије представља једну од основних функција спољашње и унутрашње мембране.

Неки липофилни молекули пролазе директно кроз липидни двослој. Хидрофилни молекули и јони се транспортују преко пора. Мембране реагују на промене услова отварањем или затварањем одређених пора различитих величина.

Следећи процеси и механизми су укључени у транспорт супстанци, укључујући токсичне материје, кроз мембране:

  • дифузија кроз липидни двослој
  • дифузија кроз поре
  • транспорт носачем (олакшана дифузија).

 

Активни процеси:

  • активни транспорт превозником
  • ендоцитоза (пиноцитоза).

 

радиодифузија

Ово представља кретање молекула и јона кроз липидни двослој или поре из области високе концентрације, или високог електричног потенцијала, у регион ниске концентрације или потенцијала („низбрдо“). Разлика у концентрацији или електричном наелектрисању је покретачка сила која утиче на интензитет флукса у оба смера. У равнотежном стању, прилив ће бити једнак ефлуксу. Брзина дифузије следи Фикеов закон, наводећи да је директно пропорционална расположивој површини мембране, разлици у градијенту концентрације (наелектрисања) и карактеристичном коефицијенту дифузије, и обрнуто пропорционална дебљини мембране.

Мали липофилни молекули лако пролазе кроз липидни слој мембране, према Нернст-овом партиционом коефицијенту.

Велики липофилни молекули, молекули растворљиви у води и јони користиће водене канале пора за свој пролаз. Величина и стереоконфигурација ће утицати на пролаз молекула. За јоне, поред величине, врста наелектрисања ће бити одлучујућа. Протеински молекули зидова пора могу добити позитиван или негативан набој. Уске поре имају тенденцију да буду селективне – негативно наелектрисани лиганди ће дозволити пролаз само за катјоне, а позитивно наелектрисани лиганди ће дозволити пролаз само за ањоне. Са повећањем пречника пора, хидродинамички проток је доминантан, омогућавајући слободан пролаз јона и молекула, према Поисеуиллеовом закону. Ова филтрација је последица осмотског градијента. У неким случајевима јони могу да продру кроз специфичне комплексне молекуле -јонофори—који могу произвести микроорганизми са антибиотским дејством (нонактин, валиномицин, грамацидин, итд.).

Олакшана или катализована дифузија

Ово захтева присуство носача у мембрани, обично протеинског молекула (пермеазе). Носач селективно везује супстанце, налик комплексу супстрат-ензим. Слични молекули (укључујући токсичне материје) могу да се такмиче за одређени носач док се не достигне тачка засићења. Токсиканци могу да се такмиче за носач и када су неповратно везани за њега транспорт је блокиран. Стопа транспорта је карактеристична за сваку врсту превозника. Ако се транспорт врши у оба смера, то се назива размена дифузија.

Активни превоз

За транспорт неких супстанци виталних за ћелију користи се посебан тип носача који се транспортује против градијента концентрације или електричног потенцијала („узбрдо“). Носач је веома стереоспецифичан и може бити засићен.

За транспорт узбрдо потребна је енергија. Неопходна енергија се добија каталитичким цепањем молекула АТП до АДП помоћу ензима аденозин трифосфатазе (АТП-азе).

Токсиканти могу да ометају овај транспорт компетитивном или неконкурентном инхибицијом носиоца или инхибицијом активности АТП-азе.

Ендоцитоза

Ендоцитоза се дефинише као транспортни механизам у коме ћелијска мембрана окружује материјал савијањем и формира везикулу која га транспортује кроз ћелију. Када је материјал течан, процес се назива пиноцитоза. У неким случајевима материјал је везан за рецептор и овај комплекс се транспортује мембранским везикулом. Ову врсту транспорта посебно користе епителне ћелије гастроинтестиналног тракта, ћелије јетре и бубрега.

Апсорпција токсичних супстанци

Људи су изложени бројним отровима присутним у радном и животном окружењу, који у људски организам могу да продру кроз три главна улазна портала:

  • преко респираторног тракта удисањем загађеног ваздуха
  • преко гастроинтестиналног тракта гутањем контаминиране хране, воде и пића
  • кроз кожу дермалним, кожним продирањем.

 

У случају изложености у индустрији, инхалација представља доминантан начин уласка токсичних супстанци, након чега следи дермална пенетрација. У пољопривреди, изложеност пестицидима путем дермалне апсорпције је скоро једнака случајевима комбиноване инхалације и дермалне пенетрације. Општа популација је највише изложена уносом контаминиране хране, воде и пића, затим удисањем и ређе продирањем у кожу.

Апсорпција преко респираторног тракта

Апсорпција у плућима представља главни пут апсорпције бројних токсиканата који се преносе ваздухом (гасови, паре, испарења, магле, димови, прашина, аеросоли, итд.).

Респираторни тракт (РТ) представља идеалан систем за размену гасова који поседује мембрану површине 30м2 (истек) до 100м2 (дубока инспирација), иза које се налази мрежа од око 2,000км капилара. Систем, развијен еволуцијом, смештен је у релативно мали простор (грудна шупљина) заштићен ребрима.

Анатомски и физиолошки РТ се може поделити у три одељка:

  • горњи део РТ, или назофарингеални (НП), почевши од носних носа и протеже се до фаринкса и ларинкса; овај део служи као систем за климатизацију
  • трахео-бронхијално дрво (ТБ), које обухвата бројне цеви различитих величина, које доводе ваздух у плућа
  • плућни одељак (П), који се састоји од милиона алвеола (ваздушних кеса) распоређених у гроздове.

 

Хидрофилне токсиканте лако апсорбује епител назофарингеалног региона. Цео епител НП и ТБ региона прекривен је филмом воде. Липофилни токсиканти се делимично апсорбују у НП и ТБ, али углавном у алвеолама дифузијом кроз алвеоло-капиларне мембране. Брзина апсорпције зависи од вентилације плућа, минутног волумена (протока крви кроз плућа), растворљивости токсичног средства у крви и брзине његовог метаболизма.

У алвеолама се врши размена гасова. Алвеоларни зид се састоји од епитела, интерстицијалног оквира базалне мембране, везивног ткива и капиларног ендотела. Дифузија токсиканата је веома брза кроз ове слојеве, који имају дебљину од око 0.8 μм. У алвеолама, токсикант се из ваздушне фазе преноси у течну фазу (крв). Брзина апсорпције (дистрибуције ваздуха у крв) токсичног супстанца зависи од његове концентрације у алвеоларном ваздуху и Нернстовог партиционог коефицијента за крв (коефицијента растворљивости).

У крви токсикант се може растворити у течној фази једноставним физичким процесима или везати за крвне ћелије и/или састојке плазме према хемијском афинитету или адсорпцијом. Садржај воде у крви је 75% и, стога, хидрофилни гасови и паре показују високу растворљивост у плазми (нпр. алкохоли). Липофилни токсиканти (нпр. бензен) су обично везани за ћелије или макромолекуле као што је беланчевина.

Од самог почетка излагања у плућима одвијају се два супротна процеса: апсорпција и десорпција. Равнотежа између ових процеса зависи од концентрације токсичног супстанца у алвеоларном ваздуху и крви. На почетку излагања концентрација токсичних супстанци у крви је 0, а задржавање у крви је скоро 100%. Са наставком излагања, постиже се равнотежа између апсорпције и десорпције. Хидрофилни токсиканти ће брзо постићи равнотежу, а брзина апсорпције зависи од плућне вентилације, а не од протока крви. Липофилним токсикантима је потребно дуже време да би се постигла равнотежа, а овде проток незасићене крви управља стопом апсорпције.

Таложење честица и аеросола у РТ зависи од физичких и физиолошких фактора, као и од величине честица. Укратко, што је мања честица то ће дубље продрети у РТ.

Релативно константно ниско задржавање честица прашине у плућима особа које су високо изложене (нпр. рудари) сугерише постојање веома ефикасног система за уклањање честица. У горњем делу РТ (трахео-бронхијални) клиренс врши мукоцилијарно ћебе. У плућном делу делују три различита механизма: (1) мукоцилијарна дека, (2) фагоцитоза и (3) директан продор честица кроз алвеоларни зид.

Првих 17 од 23 грана трахео-бронхијалног стабла поседују трепљасте епителне ћелије. Својим потезима ове цилије непрестано померају слузокожу према устима. Честице таложене на овом мукоцилијарном покривачу ће се прогутати у устима (гутање). Мукозни покривач такође покрива површину алвеоларног епитела, крећући се према мукоцилијарном покривачу. Поред тога, специјализоване покретне ћелије — фагоцити — гутају честице и микроорганизме у алвеолама и мигрирају у два могућа правца:

  • према мукоцилијарном покривачу, који их транспортује до уста
  • кроз међућелијске просторе алвеоларног зида до лимфног система плућа; такође честице могу директно продрети овим путем.

 

Апсорпција преко гастроинтестиналног тракта

Токсиканти се могу прогутати у случају случајног гутања, узимања контаминиране хране и пића или гутања честица очишћених од РТ.

Читав нутритивни канал, од једњака до ануса, у основи је изграђен на исти начин. Слузни слој (епител) је подржан везивним ткивом, а затим мрежом капилара и глатких мишића. Површински епител желуца је веома наборан како би се повећала површина апсорпције/секреције. Подручје црева садржи бројне мале избочине (ресице), које су у стању да апсорбују материјал „упумпавањем“. Активна област за апсорпцију у цревима је око 100м2.

У гастроинтестиналном тракту (ГИТ) сви процеси апсорпције су веома активни:

  •  трансћелијски транспорт дифузијом кроз липидни слој и/или поре ћелијских мембрана, као и филтрацијом пора
  •  параћелијска дифузија кроз спојеве између ћелија
  •  олакшану дифузију и активни транспорт
  •  ендоцитоза и механизам пумпања ресица.

 

Неки токсични јони метала користе специјализоване транспортне системе за есенцијалне елементе: талијум, кобалт и манган користе систем гвожђа, док се чини да олово користи систем калцијума.

Многи фактори утичу на брзину апсорпције токсиканата у различитим деловима ГИТ:

  • физичко-хемијске особине токсиканата, посебно Нернстов коефицијент расподеле и константа дисоцијације; за честице је важна величина честица — што је мања, већа је растворљивост
  • количина хране присутна у ГИТ (ефекат разблаживања)
  • време боравка у сваком делу ГИТ (од неколико минута у устима до једног сата у стомаку до много сати у цревима
  • подручје апсорпције и апсорпциони капацитет епитела
  • локални пХ, који регулише апсорпцију дисоцираних токсиканата; у киселом пХ желуца, недисоцирана кисела једињења ће се брже апсорбовати
  • перисталтику (померање црева мишићима) и локални проток крви
  • секрет желуца и црева претвара токсичне супстанце у мање или више растворљиве производе; жуч је емулгатор који производи више растворљивих комплекса (хидротрофија)
  • комбиновано излагање другим токсичним супстанцама, које могу произвести синергистичке или антагонистичке ефекте у процесима апсорпције
  • присуство агенаса за стварање комплекса/хелата
  • деловањем микрофлоре РТ (око 1.5 кг), око 60 различитих врста бактерија које могу да врше биотрансформацију токсиканата.

 

Неопходно је поменути и ентерохепатичну циркулацију. Поларни токсиканти и/или метаболити (глукурониди и други коњугати) се излучују са жучом у дуоденум. Овде ензими микрофлоре врше хидролизу и ослобођени производи се могу реапсорбовати и транспортовати порталном веном у јетру. Овај механизам је веома опасан у случају хепатотоксичних супстанци, омогућавајући њихову привремену акумулацију у јетри.

У случају токсиканата који се биотрансформишу у јетри у мање токсичне или нетоксичне метаболите, гутање може представљати мање опасан улазни улаз. Након апсорпције у ГИТ-у, ови токсиканти ће се транспортовати порталном веном до јетре, где се могу делимично детоксиковати биотрансформацијом.

Апсорпција кроз кожу (дермална, перкутана)

Кожа (1.8 м2 површине код одрасле особе) заједно са слузокожом телесних отвора покрива површину тела. Представља баријеру против физичких, хемијских и биолошких агенаса, одржава интегритет и хомеостазу тела и обавља многе друге физиолошке задатке.

У основи кожа се састоји од три слоја: епидермиса, праве коже (дермис) и поткожног ткива (хиподермис). Са токсиколошке тачке гледишта, епидермис је овде од највећег интереса. Грађен је од много слојева ћелија. Рожната површина спљоштених, мртвих ћелија (стратум цорнеум) је горњи слој, испод којег се налази непрекидни слој живих ћелија (стратум цорнеум цомпацтум), а затим типична липидна мембрана, а затим стратум луцидум, стратум грамулосум и стратум. слузокоже. Липидна мембрана представља заштитну баријеру, али у длакавим деловима коже кроз њу продиру и фоликули длаке и канали знојних жлезда. Према томе, дермална апсорпција се може десити следећим механизмима:

  • трансепидермална апсорпција дифузијом кроз липидну мембрану (баријеру), углавном липофилним супстанцама (органски растварачи, пестициди, итд.) и у малој мери неким хидрофилним супстанцама кроз поре
  • трансфоликуларна апсорпција око стабљике косе у фоликул длаке, заобилазећи мембранску баријеру; ова апсорпција се дешава само у длакавим деловима коже
  • апсорпција преко канала знојних жлезда, који имају површину попречног пресека од око 0.1 до 1% укупне површине коже (релативна апсорпција је у овој пропорцији)
  • апсорпција кроз кожу при механичким, термичким, хемијским повредама или кожним обољењима; овде су слојеви коже, укључујући липидну баријеру, поремећени и отворен је пут за улазак токсичних и штетних агенаса.

 

Брзина апсорпције кроз кожу зависиће од многих фактора:

  • концентрација токсичног супстанци, врста носача (медиј), присуство других супстанци
  • садржај воде у кожи, пХ, температура, локални проток крви, знојење, површина контаминиране коже, дебљина коже
  • анатомске и физиолошке карактеристике коже због пола, старости, индивидуалних варијација, разлика које се јављају у различитим етничким групама и расама итд.

Транспорт токсиканата крвљу и лимфом

Након апсорпције на било ком од ових улазних врата, токсични супстанци ће доспети у крв, лимфу или друге телесне течности. Крв представља главно средство за транспорт токсиканата и њихових метаболита.

Крв је орган који циркулише течност, преноси неопходни кисеоник и виталне супстанце до ћелија и уклања отпадне продукте метаболизма. Крв такође садржи ћелијске компоненте, хормоне и друге молекуле укључене у многе физиолошке функције. Крв тече унутар релативно добро затвореног циркулаторног система крвних судова под високим притиском, гурнутог активношћу срца. Због високог притиска долази до цурења течности. Лимфни систем представља дренажни систем, у виду фине мреже малих лимфних капилара танких зидова који се гранају кроз мека ткива и органе.

Крв је мешавина течне фазе (плазма, 55%) и чврстих крвних зрнаца (45%). Плазма садржи протеине (албумини, глобулини, фибриноген), органске киселине (млечна, глутаминска, лимунска) и многе друге супстанце (липиди, липопротеини, гликопротеини, ензими, соли, ксенобиотици итд.). Елементи крвних ћелија укључују еритроците (Ер), леукоците, ретикулоците, моноците и тромбоците.

Токсиканти се апсорбују у облику молекула и јона. Неки токсиканти на пХ вредности крви формирају колоидне честице као трећи облик у овој течности. Молекули, јони и колоиди токсиканата имају различите могућности за транспорт у крви:

  •  да се физички или хемијски везују за елементе крви, углавном Ер
  •  да се физички растворе у плазми у слободном стању
  •  да се везују за једну или више врста протеина плазме, у комплексу са органским киселинама или су везани за друге фракције плазме.

 

Већина токсиканата у крви постоји делимично у слободном стању у плазми и делимично везана за еритроците и састојке плазме. Расподела зависи од афинитета токсиканата према овим састојцима. Сви разломци су у динамичкој равнотежи.

Неки токсиканти се преносе крвним елементима — углавном еритроцитима, врло ретко леукоцитима. Токсиканти се могу адсорбовати на површини Ер, или се могу везати за лиганде строме. Ако продру у Ер могу се везати за хем (нпр. угљен моноксид и селен) или за глобин (Сб111, По210). Неки токсиканти које преноси Ер су арсен, цезијум, торијум, радон, олово и натријум. Хексавалентни хром је искључиво везан за Ер, а тровалентни хром за протеине плазме. За цинк се јавља конкуренција између Ер и плазме. Око 96% олова транспортује Ер. Органска жива је углавном везана за Ер, а неорганска жива се углавном преноси албумином из плазме. Мале фракције берилијума, бакра, телура и уранијума носе Ер.

Већина токсиканата се транспортује плазмом или плазма протеинима. Многи електролити су присутни као јони у равнотежи са недисоцираним молекулима слободним или везаним за фракције плазме. Ова јонска фракција токсиканата је веома дифузна, продире кроз зидове капилара у ткива и органе. Гасови и паре се могу растворити у плазми.

Протеини плазме имају укупну површину од око 600 до 800 км2 понуђен за апсорпцију токсичних материја. Молекули албумина поседују око 109 катјонских и 120 ањонских лиганада на располагању јонима. Многи јони су делимично ношени албумином (нпр. бакар, цинк и кадмијум), као и једињења као што су динитро- и орто-крезоли, нитро- и халогеновани деривати ароматичних угљоводоника и феноли.

Молекули глобулина (алфа и бета) транспортују мале молекуле токсичних супстанци, као и неке металне јоне (бакар, цинк и гвожђе) и колоидне честице. Фибриноген показује афинитет за одређене мале молекуле. Многе врсте веза могу бити укључене у везивање токсиканата за протеине плазме: Ван дер Валсове силе, привлачење наелектрисања, повезаност између поларних и неполарних група, водонични мостови, ковалентне везе.

Липопротеини плазме транспортују липофилне токсиканте као што су ПЦБ. Остале фракције плазме такође служе као транспортно средство. Афинитет токсиканата за протеине плазме сугерише њихов афинитет за протеине у ткивима и органима током дистрибуције.

Органске киселине (млечна, глутаминска, лимунска) формирају комплексе са неким токсичним материјама. Земноалкалне и ретке земље, као и неки тешки елементи у облику катјона, комплексирају се и са органским окси- и амино киселинама. Сви ови комплекси су обично дифузиони и лако се дистрибуирају у ткивима и органима.

Физиолошки хелатни агенси у плазми као што су трансферин и металотионеин се такмиче са органским киселинама и аминокиселинама за катјоне да би формирали стабилне хелате.

Слободни јони који се дифузују, неки комплекси и неки слободни молекули лако се уклањају из крви у ткива и органе. Слободна фракција јона и молекула је у динамичкој равнотежи са везаном фракцијом. Концентрација токсичног супстанца у крви ће регулисати брзину његове дистрибуције у ткива и органе, односно његову мобилизацију из њих у крв.

Расподела токсичних супстанци у организму

Људски организам се може поделити на следеће преграде. (1) унутрашњи органи, (2) кожа и мишићи, (3) масно ткиво, (4) везивно ткиво и кости. Ова класификација се углавном заснива на степену васкуларне (крвне) перфузије у опадајућем редоследу. На пример, унутрашњи органи (укључујући мозак), који представљају само 12% укупне телесне тежине, примају око 75% укупне запремине крви. С друге стране, везивно ткиво и кости (15% укупне телесне тежине) добијају само један проценат укупне запремине крви.

Добро прокрвљени унутрашњи органи углавном постижу највећу концентрацију токсиканата за најкраће време, као и равнотежу између крви и овог одељка. Упијање токсичних супстанци у мање прокрвљена ткива је много спорије, али је задржавање веће и трајање задржавања много дуже (акумулација) због ниске перфузије.

За интрацелуларну дистрибуцију токсиканата од великог су значаја три компоненте: садржај воде, липида и протеина у ћелијама различитих ткива и органа. Горе наведени редослед одељака такође помно прати опадајући садржај воде у њиховим ћелијама. Хидрофилни токсиканти ће се брже дистрибуирати у телесне течности и ћелије са високим садржајем воде, а липофилни токсиканти у ћелије са већим садржајем липида (масно ткиво).

Организам поседује неке баријере које ометају продирање неких група токсичних супстанци, углавном хидрофилних, у одређене органе и ткива, као што су:

  • крвно-мождана баријера (цереброспинална баријера), која ограничава продирање великих молекула и хидрофилних токсиканата у мозак и ЦНС; ова баријера се састоји од блиско спојеног слоја ендотелних ћелија; па кроз њега могу продрети липофилни токсиканти
  • плацентну баријеру, која има сличан ефекат на продирање токсиканата у фетус из крви мајке
  • хистохематолошку баријеру у зидовима капилара, која је пропусна за мале и средње молекуле, и за неке веће молекуле, као и за јоне.

 

Као што је раније наведено, само слободни облици токсиканата у плазми (молекули, јони, колоиди) су доступни за продирање кроз зидове капилара који учествују у дистрибуцији. Ова слободна фракција је у динамичкој равнотежи са везаном фракцијом. Концентрација токсиканата у крви је у динамичкој равнотежи са њиховом концентрацијом у органима и ткивима, управљајући задржавањем (акумулацијом) или мобилизацијом из њих.

Стање организма, функционално стање органа (нарочито неурохуморална регулација), хормонска равнотежа и други фактори играју улогу у дистрибуцији.

Задржавање токсиканата у одређеном одељку је углавном привремено и може доћи до прерасподеле у друга ткива. Задржавање и акумулација се заснива на разлици између стопа апсорпције и елиминације. Трајање задржавања у компартменту изражава се биолошким полуживотом. Ово је временски интервал у коме се 50% токсичног супстанца уклања из ткива или органа и редистрибуира, транслоцира или елиминише из организма.

Процеси биотрансформације настају током дистрибуције и задржавања у различитим органима и ткивима. Биотрансформација производи више поларних, више хидрофилних метаболита, који се лакше елиминишу. Ниска стопа биотрансформације липофилног токсиканта ће генерално узроковати његову акумулацију у компартменту.

Токсиканти се могу поделити у четири главне групе према њиховом афинитету, претежном задржавању и акумулацији у одређеном одељку:

  1. Токсиканти растворљиви у телесним течностима равномерно су распоређени према садржају воде у одељцима. Многи моновалентни катјони (нпр. литијум, натријум, калијум, рубидијум) и неки ањони (нпр. хлор, бром), дистрибуирају се према овом обрасцу.
  2. Липофилни токсиканти показују висок афинитет за органе богате липидима (ЦНС) и ткива (масна, масна).
  3. Токсиканте који формирају колоидне честице затим заробљавају специјализоване ћелије ретикулоендотелног система (РЕС) органа и ткива. Тро- и четворовалентни катјони (лантан, цезијум, хафнијум) су распоређени у ОИЕ ткива и органа.
  4. Токсиканти који показују висок афинитет за кости и везивно ткиво (остеотропни елементи, трагачи за костима) укључују двовалентне катјоне (нпр. калцијум, баријум, стронцијум, радон, берилијум, алуминијум, кадмијум, олово).

 

Акумулација у ткивима богатим липидима

„Стандардни човек“ од 70 кг телесне тежине садржи око 15% телесне тежине у облику масног ткива, повећавајући се са гојазношћу до 50%. Међутим, ова липидна фракција није равномерно распоређена. Мозак (ЦНС) је орган богат липидима, а периферни нерви су обавијени мијелинским омотачем богатим липидима и Швановим ћелијама. Сва ова ткива нуде могућност акумулације липофилних токсиканата.

У овај одељак ће бити распоређени бројни неелектролити и неполарни токсиканти са одговарајућим Нернстовим коефицијентом расподеле, као и бројни органски растварачи (алкохоли, алдехиди, кетони, итд.), хлоровани угљоводоници (укључујући органохлорне инсектициде као што је ДДТ), неки инертни гасови (радон) итд.

Масно ткиво ће акумулирати токсичне супстанце због ниске васкуларизације и ниже стопе биотрансформације. Овде накупљање токсиканата може представљати неку врсту привремене „неутрализације“ због недостатка циљева за токсично дејство. Међутим, потенцијална опасност за организам је увек присутна због могућности мобилизације токсиканата из овог одељка назад у циркулацију.

Таложење токсиканата у мозгу (ЦНС) или липидима богатом ткиву мијелинске овојнице периферног нервног система је веома опасно. Неуротоксиканти се таложе овде директно поред својих мета. Токсиканти задржани у ткиву ендокриних жлезда богатом липидима могу изазвати хормонске поремећаје. Упркос крвно-можданој баријери, у мозак (ЦНС) доспевају бројни неуротоксиканти липофилне природе: анестетици, органски растварачи, пестициди, тетраетил олово, органомеркуријали итд.

Задржавање у ретикулоендотелном систему

У сваком ткиву и органу одређени проценат ћелија је специјализован за фагоцитну активност, захватање микроорганизама, честица, колоидних честица и тако даље. Овај систем се назива ретикулоендотелни систем (РЕС), који се састоји од фиксних ћелија као и покретних ћелија (фагоцита). Ове ћелије су присутне у неактивном облику. Повећање горе наведених микроба и честица ће активирати ћелије до тачке засићења.

Токсиканти у облику колоида ће бити заробљени РЕС органа и ткива. Дистрибуција зависи од величине колоидних честица. За веће честице ће се фаворизовати задржавање у јетри. Са мањим колоидним честицама, мање или више уједначена дистрибуција ће се десити између слезине, коштане сржи и јетре. Чишћење колоида из ОИЕ је веома споро, иако се мале честице чисте релативно брже.

Акумулација у костима

Око 60 елемената се може идентификовати као остеотропни елементи или трагачи за костима.

Остеотропни елементи се могу поделити у три групе:

  1. Елементи који представљају или замењују физиолошке састојке кости. Двадесет таквих елемената је присутно у већим количинама. Остали се појављују у траговима. У условима хроничне изложености, токсични метали као што су олово, алуминијум и жива такође могу ући у минералну матрицу коштаних ћелија.
  2. Земноалкалне и други елементи који формирају катјоне са јонским пречником сличним пречнику калцијума су заменљиви са њим у минералу кости. Такође, неки ањони су заменљиви са ањонима (фосфат, хидроксил) минерала костију.
  3. Елементи који формирају микроколоиде (ретке земље) могу се адсорбовати на површини минерала костију.

 

Скелет стандардног човека чини 10 до 15% укупне телесне тежине, што представља велики потенцијални депо за складиштење остеотропних токсиканата. Кост је високо специјализовано ткиво које се по запремини састоји од 54% минерала и 38% органског матрикса. Минерални матрикс кости је хидроксиапатит, Ца10(ПО4)6(ОХ)2 , у коме је однос Ца према П око 1.5 према један. Површина минерала доступног за адсорпцију је око 100м2 по г кости.

Метаболичка активност костију скелета може се поделити у две категорије:

  • активна, метаболичка кост, у којој су процеси ресорпције и формирања нове кости, или ремоделирања постојеће кости, веома опсежни
  • стабилна кост са ниском стопом ремоделирања или раста.

 

Код фетуса, метаболичка кост одојчади и малог детета (погледајте „доступни скелет“) представља скоро 100% скелета. Са годинама се овај проценат метаболичке кости смањује. Уграђивање токсиканата током излагања јавља се у метаболичкој кости иу одељцима који се спорије окрећу.

Уградња токсиканата у кост се дешава на два начина:

  1. За јоне долази до јонске размене са физиолошки присутним катјонима калцијума, или ањонима (фосфат, хидроксил).
  2. За токсиканте који формирају колоидне честице долази до адсорпције на површини минерала.

 

Реакције јонске размене

Коштани минерал, хидроксиапатит, представља сложен систем јонске размене. Катиони калцијума могу се заменити различитим катјонима. Ањони присутни у кости се такође могу заменити ањонима: фосфат са цитратима и карбонатима, хидроксил са флуором. Јони који нису заменљиви могу да се адсорбују на површини минерала. Када се токсични јони инкорпорирају у минерал, нови слој минерала може покрити површину минерала, закопавајући токсикант у структуру костију. Јонска размена је реверзибилан процес, у зависности од концентрације јона, пХ и запремине течности. Тако, на пример, повећање калцијума у ​​исхрани може смањити таложење токсичних јона у решетки минерала. Поменуто је да се са годинама смањује проценат метаболичке кости, иако се јонска размена наставља. Са старењем долази до ресорпције минерала костију, при чему се густина костију заправо смањује. У овом тренутку, токсични састојци у костима се могу ослободити (нпр. олово).

Око 30% јона уграђених у минерале костију је лабаво везано и може се разменити, ухватити природним хелатним агенсима и излучити, са биолошким полуживотом од 15 дана. Осталих 70% је чвршће везано. Мобилизација и излучивање ове фракције показује биолошки полуживот од 2.5 године и више у зависности од типа кости (процеси ремоделирања).

Хелатни агенси (Ца-ЕДТА, пенициламин, БАЛ, итд.) могу да мобилишу значајне количине неких тешких метала, а њихово излучивање урином је значајно повећано.

Колоидна адсорпција

Колоидне честице се адсорбују као филм на површини минерала (100м2 по г) Ван дер Валсовим силама или хемисорпцијом. Овај слој колоида на минералним површинама прекривен је следећим слојем формираних минерала, а токсиканти су више закопани у структуру костију. Брзина мобилизације и елиминације зависи од процеса ремоделирања.

Акумулација у коси и ноктима

Коса и нокти садрже кератин, са сулхидрил групама које могу да хелирају металне катјоне као што су жива и олово.

Дистрибуција токсиканата унутар ћелије

У последње време дистрибуција токсиканата, посебно неких тешких метала, унутар ћелија ткива и органа постаје значајна. Са техникама ултрацентрифугирања, различите фракције ћелије се могу одвојити да би се одредио њихов садржај металних јона и других токсиканата.

Студије на животињама су откриле да се након продирања у ћелију неки метални јони везују за специфичан протеин, металотионеин. Овај протеин ниске молекуларне тежине присутан је у ћелијама јетре, бубрега и других органа и ткива. Његове сулфхидрилне групе могу да вежу шест јона по молекулу. Повећано присуство металних јона индукује биосинтезу овог протеина. Јони кадмијума су најмоћнији индуктор. Металотионеин служи и за одржавање хомеостазе виталних јона бакра и цинка. Металотионеин може да веже цинк, бакар, кадмијум, живу, бизмут, злато, кобалт и друге катјоне.

Биотрансформација и елиминација токсичних супстанци

Током задржавања у ћелијама различитих ткива и органа, токсични супстанци су изложени ензимима који могу да их биотрансформишу (метаболишу) стварајући метаболите. Постоји много путева за елиминацију токсиканата и/или метаболита: издахнутим ваздухом преко плућа, урином преко бубрега, жучи преко ГИТ, знојем преко коже, пљувачком преко слузокоже уста, млеком преко млечне жлезде, а преко косе и ноктију путем нормалног раста и обнове ћелија.

Елиминација апсорбованог токсичног средства зависи од улазног портала. У плућима одмах почиње процес апсорпције/десорпције и токсични састојци се делимично елиминишу издахнутим ваздухом. Елиминација токсиканата апсорбованих другим путевима уласка је продужена и почиње након транспорта крвљу, а на крају се завршава након дистрибуције и биотрансформације. Током апсорпције постоји равнотежа између концентрација токсичног супстанца у крви и ткивима и органима. Излучивање смањује концентрацију токсичног супстанца у крви и може изазвати мобилизацију токсичног средства из ткива у крв.

Многи фактори могу утицати на брзину елиминације токсичних супстанци и њихових метаболита из тела:

  • физичко-хемијске особине токсиканата, посебно Нернстов коефицијент расподеле (П), константа дисоцијације (пКa), поларитет, молекуларна структура, облик и тежина
  • ниво експозиције и време елиминације после излагања
  • улазни портал
  • расподела у деловима тела, који се разликују по курсу са крвљу и крвном перфузијом
  • брзина биотрансформације липофилних токсиканата у више хидрофилне метаболите
  • опште здравствено стање организма, а посебно органа за излучивање (плућа, бубрези, ГИТ, кожа и др.)
  • присуство других токсиканата који могу ометати елиминацију.

 

Овде разликујемо две групе преграда: (1) тхе систем брзе размене— у овим одељцима, концентрација токсиканата у ткиву је слична оној у крви; и (2) тхе систем споре размене, где је концентрација токсиканата у ткиву већа него у крви због везивања и акумулације — масно ткиво, скелет и бубрези могу привремено да задрже неке токсиканте, нпр. арсен и цинк.

Токсикант се може излучити истовремено на два или више путева излучивања. Међутим, обично је једна рута доминантна.

Научници развијају математичке моделе који описују излучивање одређеног токсиканта. Ови модели се заснивају на кретању из једног или оба одељка (системи размене), биотрансформацији и тако даље.

Елиминација издахнутим ваздухом преко плућа

Елиминација преко плућа (десорпција) је типична за токсиканте високе испарљивости (нпр. органски растварачи). На овај начин ће се брзо елиминисати гасови и паре са малом растворљивошћу у крви, док ће се токсични састојци са високом растворљивошћу у крви елиминисати другим путевима.

Органски растварачи које апсорбује ГИТ или кожа се делимично излучују издахнутим ваздухом при сваком проласку крви кроз плућа, ако имају довољан притисак паре. Алкотест који се користи за осумњичене пијане возаче заснива се на овој чињеници. Концентрација ЦО у издахнутом ваздуху је у равнотежи са садржајем ЦО-Хб у крви. Радиоактивни гас радон се појављује у издахнутом ваздуху услед распада радијума нагомиланог у скелету.

Елиминација токсичног средства издахнутим ваздухом у односу на период после излагања обично се изражава трофазном кривом. Прва фаза представља елиминацију токсиканата из крви, са кратким полуживотом. Друга, спорија фаза представља елиминацију услед размене крви са ткивима и органима (систем брзе размене). Трећа, веома спора фаза је услед размене крви са масним ткивом и скелетом. Ако се токсикант не акумулира у таквим одељцима, крива ће бити двофазна. У неким случајевима је могућа и четворофазна крива.

Одређивање гасова и пара у издахнутом ваздуху у периоду после излагања понекад се користи за процену изложености радника.

Излучивање бубрега

Бубрег је орган специјализован за излучивање бројних токсиканата и метаболита растворљивих у води, одржавајући хомеостазу организма. Сваки бубрег поседује око милион нефрона који могу да врше излучивање. Бубрежна екскреција представља веома сложен догађај који обухвата три различита механизма:

  • гломеруларна филтрација Бовмановом капсулом
  • активни транспорт у проксималном тубулу
  • пасивни транспорт у дисталном тубулу.

 

Излучивање токсичног средства преко бубрега у урину зависи од Нернстовог партиционог коефицијента, константе дисоцијације и пХ урина, величине и облика молекула, брзине метаболизма до хидрофилнијих метаболита, као и здравственог стања бубрега.

Кинетика бубрежног излучивања токсичног супстанца или његовог метаболита може се изразити двофазном, трофазном или четворофазном кривом излучивања, у зависности од дистрибуције одређеног токсиканта у различитим деловима тела који се разликују у брзини размене са крвљу.

Пљувачка

Неки лекови и метални јони могу се излучити кроз слузокожу уста пљувачком — на пример, олово („оловна линија“), жива, арсен, бакар, као и бромиди, јодиди, етил алкохол, алкалоиди и тако даље. Токсиканти се затим гутају и доспевају у ГИТ, где се могу поново апсорбовати или елиминисати фецесом.

Зној

Многи неелектролити могу се делимично елиминисати преко коже знојем: етил алкохол, ацетон, феноли, угљен-дисулфид и хлоровани угљоводоници.

Млеко

Многи метали, органски растварачи и неки органохлорни пестициди (ДДТ) се излучују преко млечне жлезде у мајчино млеко. Овај пут може представљати опасност за дојенчад.

коса

Анализа косе може се користити као индикатор хомеостазе неких физиолошких супстанци. Такође, изложеност неким токсичним супстанцама, посебно тешким металима, може се проценити овом врстом биолошке анализе.

Уклањање токсичних супстанци из тела може се повећати:

  • механичка транслокација путем испирања желуца, трансфузије крви или дијализе
  • стварање физиолошких услова који исхраном мобилишу токсиканте, промена хормонске равнотеже, побољшање бубрежне функције применом диуретика
  • примена агенаса за стварање комплекса (цитрати, оксалати, салицилати, фосфати) или хелатних агенаса (Ца-ЕДТА, БАЛ, АТА, ДМСА, пенициламин); ова метода је индикована само код особа под строгом медицинском контролом. Примена хелатних агенаса се често користи за елиминацију тешких метала из тела изложених радника у току њиховог лечења. Ова метода се такође користи за процену укупног оптерећења тела и нивоа претходне изложености.

 

Одређивање изложености

Одређивање токсиканата и метаболита у крви, издахнутом ваздуху, урину, зноју, фецесу и коси све се више користи за процену изложености људи (тестови изложености) и/или процену степена интоксикације. Стога су границе биолошке изложености (Биолошке МАЦ вредности, Индекси биолошке изложености—БЕИ) недавно успостављене. Ови биолошки тестови показују „унутрашње излагање” организма, односно потпуну изложеност тела у радном и животном окружењу свих улазних врата (видети „Методе токсиколошког испитивања: Биомаркери”).

Комбиновани ефекти због вишеструке експозиције

Људи у радном и/или животном окружењу обично су истовремено или узастопно изложени различитим физичким и хемијским агенсима. Такође, потребно је узети у обзир да неке особе користе лекове, пуше, конзумирају алкохол и храну која садржи адитиве и сл. То значи да се обично јавља вишеструка изложеност. Физички и хемијски агенси могу да интерагују у сваком кораку токсикокинетичких и/или токсикодинамичких процеса, производећи три могућа ефекта:

  1. Независан. Сваки агенс производи другачији ефекат због различитог механизма деловања,
  2. Синергистиц. Комбиновани ефекат је већи него код сваког појединачног агенса. Овде разликујемо два типа: (а) адитивни, где је комбиновани ефекат једнак збиру ефеката које производи сваки агенс посебно и (б) потенцирајући, где је комбиновани ефекат већи од адитива.
  3. Антагонистички. Комбиновани ефекат је мањи од адитива.

 

Међутим, студије о комбинованим ефектима су ретке. Ова врста студије је веома сложена због комбинације различитих фактора и агенаса.

Можемо закључити да када је људски организам изложен два или више токсиканата истовремено или узастопно, потребно је размотрити могућност неких комбинованих ефеката, који могу повећати или смањити брзину токсикокинетичких процеса.

 

Назад

Читати 13702 пута Последња измена у уторак, 14. јуна 2011. у 16:52

" ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

Садржај

Токицологи Референцес

Андерсен, КЕ и ХИ Маибацх. 1985. Тестови за предвиђање контактне алергије на заморцима. Погл. 14 ин Актуелни проблеми у дерматологији. Базел: Каргер.

Асхби, Ј и РВ Теннант. 1991. Дефинитивни односи између хемијске структуре, канцерогености и мутагености за 301 хемикалију коју је тестирао амерички НТП. Мутат Рес КСНУМКС: КСНУМКС-КСНУМКС.

Барлоу, С и Ф Саливан. 1982. Репродуктивне опасности индустријских хемикалија. Лондон: Ацадемиц Пресс.

Барретт, ЈЦ. 1993а. Механизми деловања познатих хуманих канцерогена. Ин Механизми карциногенезе у идентификацији ризика, уредили Х Ваинио, ПН Магее, ДБ МцГрегор и АЈ МцМицхаел. Лион: Међународна агенција за истраживање рака (ИАРЦ).

—. 1993б. Механизми вишестепене карциногенезе и процена ризика од карциногена. Енвирон Хеалтх Персп КСНУМКС: КСНУМКС-КСНУМКС.

Бернстеин, МЕ. 1984. Средства која утичу на репродуктивни систем мушкараца: Ефекти структуре на активност. Друг Метаб Рев КСНУМКС: КСНУМКС-КСНУМКС.

Беутлер, Е. 1992. Молекуларна биологија Г6ПД варијанти и других дефеката црвених крвних зрнаца. Анну Рев Мед КСНУМКС: КСНУМКС-КСНУМКС.

Блоом, АД. 1981. Смернице за репродуктивне студије у изложеним људским популацијама. Вхите Плаинс, Њујорк: Фондација Марцх оф Димес.

Боргхофф, С, Б Схорт и Ј Свенберг. 1990. Биохемијски механизми и патобиологија а-2-глобулинске нефропатије. Анну Рев Пхармацол Токицол КСНУМКС: КСНУМКС.

Бурцхелл, Б, ДВ Неберт, ДР Нелсон, КВ Боцк, Т Иианаги, ПЛМ Јансен, Д Ланцет, ГЈ Мулдер, ЈР Цховдхури, Г Сиест, ТР Тепхли и ПИ Мацкензие. 1991. Суперфамилија гена УПД-глукуронозилтрансферазе: Предложена номенклатура заснована на еволуционој дивергенцији. ДНК Целл Биол КСНУМКС: КСНУМКС-КСНУМКС.

Бурлесон, Г, А Мунсон и Ј Деан. 1995. Савремене методе у имунотоксикологији. Њујорк: Вилеи.

Цапеццхи, М. 1994. Циљана замена гена. Сци Ам КСНУМКС: КСНУМКС-КСНУМКС.

Царнеи, ЕВ. 1994. Интегрисана перспектива развојне токсичности етилен гликола. Реп Токицол КСНУМКС: КСНУМКС-КСНУМКС.

Деан, ЈХ, МИ Лустер, АЕ Мунсон и И Кимбер. 1994. Имунотоксикологија и имунофармакологија. Њујорк: Равен Пресс.

Десцотес, Ј. 1986. Имунотоксикологија лекова и хемикалија. Амстердам: Елсевиер.

Девари, И, Ц Росетте, ЈА ДиДонато, и М Карин. 1993. Активација НФкБ ултраљубичастом светлошћу не зависи од нуклеарног сигнала. Наука КСНУМКС: КСНУМКС-КСНУМКС.

Дикон, РЛ. 1985. Репродуцтиве Токицологи. Њујорк: Равен Пресс.

Дуффус, ЈХ. 1993. Речник појмова који се користе у токсикологији за хемичаре. Пуре Аппл Цхем КСНУМКС: КСНУМКС-КСНУМКС.

Елсенханс, Б, К Сцхуеманн и В Фортх. 1991. Токсични метали: интеракције са есенцијалним металима. У Исхрана, токсичност и рак, приредио ИР Ровланд. Боца-Ратон: ЦРЦ Пресс.

Агенција за заштиту животне средине (ЕПА). 1992. Смернице за процену изложености. Федерал Рег КСНУМКС: КСНУМКС-КСНУМКС.

—. 1993. Принципи процене ризика од неуротоксичности. Федерал Рег КСНУМКС: КСНУМКС-КСНУМКС.

—. 1994. Смернице за процену репродуктивне токсичности. Вашингтон, ДЦ: УС ЕПА: Канцеларија за истраживање и развој.

Фергуссон, ЈЕ. 1990. Тешки елементи. Погл. 15 ин Хемија, утицај на животну средину и ефекти на здравље. Оксфорд: Пергамон.

Гехринг, ПЈ, ПГ Ватанабе и ГЕ Блау. 1976. Фармакокинетичке студије у процени токсиколошке и еколошке опасности хемикалија. Нови концепти Саф Евал 1 (Део 1, Поглавље 8): 195-270.

Голдстеин, ЈА и СМФ де Мораис. 1994. Биохемија и молекуларна биологија човека ЦИП2Ц потпородица. Фармакогенетика КСНУМКС: КСНУМКС-КСНУМКС.

Гонзалез, ФЈ. 1992. Хумани цитокроми П450: Проблеми и изгледи. Трендс Пхармацол Сци КСНУМКС: КСНУМКС-КСНУМКС.

Гонзалез, ФЈ, ЦЛ Цреспи и ХВ Гелбоин. 1991. цДНК-експримирани хумани цитокром П450: Ново доба у молекуларној токсикологији и процјени ризика код људи. Мутат Рес КСНУМКС: КСНУМКС-КСНУМКС.

Гонзалез, ФЈ и ДВ Неберт. 1990. Еволуција суперфамилије гена П450: “ратовање” између животиња и биљака, молекуларни погон и људске генетске разлике у оксидацији лекова. Трендс Генет КСНУМКС: КСНУМКС-КСНУМКС.

Грант, ДМ. 1993. Молекуларна генетика Н-ацетилтрансфераза. Фармакогенетика КСНУМКС: КСНУМКС-КСНУМКС.

Граи, ЛЕ, Ј Остби, Р Сигмон, Ј Феррел, Р Линдер, Р Цоопер, Ј Голдман и Ј Ласкеи. 1988. Развој протокола за процену репродуктивних ефеката токсиканата код пацова. Реп Токицол КСНУМКС: КСНУМКС-КСНУМКС.

Гуенгерицх, ФП. 1989. Полиморфизам цитокрома П450 код људи. Трендс Пхармацол Сци КСНУМКС: КСНУМКС-КСНУМКС.

—. 1993. Ензими цитокрома П450. Ам Сци КСНУМКС: КСНУМКС-КСНУМКС.

Ханш, Ц и А Лео. 1979. Константе супституента за корелационе анализе у хемији и биологији. Њујорк: Вилеи.

Хансцх, Ц и Л Зханг. 1993. Квантитативни односи структуре и активности цитокрома П450. Друг Метаб Рев КСНУМКС: КСНУМКС-КСНУМКС.

Хаиес АВ. 1988. Принципи и методе токсикологије. 2нд ед. Њујорк: Равен Пресс.

Хеинделл, ЈЈ и РЕ Цхапин. 1993. Методе у токсикологији: мушка и женска репродуктивна токсикологија. Вол. 1 и 2. Сан Дијего, Калифорнија: Ацадемиц Пресс.

Међународна агенција за истраживање рака (ИАРЦ). 1992. Сунчево и ултраљубичасто зрачење. Лион: ИАРЦ.

—. 1993. Професионална изложеност фризера и берберина и лична употреба боја за косу: неке боје за косу, козметичке боје, индустријске боје и ароматични амини. Лион: ИАРЦ.

—. 1994а. Преамбула. Лион: ИАРЦ.

—. 1994б. Неке индустријске хемикалије. Лион: ИАРЦ.

Међународна комисија за радиолошку заштиту (ИЦРП). 1965. године. Принципи мониторинга животне средине у вези са руковањем радиоактивним материјалима. Извештај Комитета ИВ Међународне комисије за радиолошку заштиту. Оксфорд: Пергамон.

Међународни програм о хемијској безбедности (ИПЦС). 1991. Принципи и методе за процену нефротоксичности повезане са излагањем хемикалијама, ЕХЦ 119. Женева: СЗО.

—. 1996. Принципи и методе за процену Директна имунотоксичност повезана са излагањем хемикалијама, ЕХЦ 180. Женева: СЗО.

Јохансон, Г и ПХ Наслунд. 1988. Програмирање табела - нови приступ у физиолошки заснованом моделирању токсикокинетике растварача. Токицол Леттерс КСНУМКС: КСНУМКС-КСНУМКС.

Јохнсон, БЛ. 1978. Превенција неуротоксичних болести у радној популацији. Њујорк: Вилеи.

Јонес, ЈЦ, ЈМ Вард, У Мохр и РД Хунт. 1990. Хемопоетски систем, ИЛСИ монографија, Берлин: Спрингер Верлаг.

Калов, В. 1962. Фармокогенетика: наследство и одговор на лекове. Филаделфија: ВБ Саундерс.

—. 1992. Пхармоцогенетицс оф Друг Метаболисм. Њујорк: Пергамон.

Каммуллер, МЕ, Н Блоксма и В Сеинен. 1989. Аутоимуност и токсикологија. Имунска дисрегулација изазвана лековима и хемикалијама. Амстердам: Елсевиер Сциенцес.

Кавајири, К, Ј Ватанабе и СИ Хаиасхи. 1994. Генетски полиморфизам П450 и хуманог рака. Ин Цитохром П450: Биохемија, биофизика и молекуларна биологија, приредио МЦ Лехнер. Париз: Џон Либи Евротекст.

Кехрер, ​​ЈП. 1993. Слободни радикали као посредници оштећења и болести ткива. Црит Рев Токицол КСНУМКС: КСНУМКС-КСНУМКС.

Келлерман, Г, ЦР Схав и М Луитен-Келлерман. 1973. Индуцибилност арил хидрокарбонске хидроксилазе и бронхогени карцином. Нови Енгл Ј Мед КСНУМКС: КСНУМКС-КСНУМКС.

Кхера, КС. 1991. Хемијски изазване промене хомеостазе мајке и хистологија концептуса: њихов етиолошки значај у феталним аномалијама пацова. Тератологија КСНУМКС: КСНУМКС-КСНУМКС.

Киммел, ЦА, ГЛ Киммел и В Франкос. 1986. Радионица групе за међуагенцијску регулаторну везу о процени ризика од репродуктивне токсичности. Енвирон Хеалтх Персп КСНУМКС: КСНУМКС-КСНУМКС.

Класен, ЦД, МО Амдур и Ј Доул (ур.). 1991. Казаретова и Доулова токсикологија. Њујорк: Пергамон Пресс.

Крамер, ХЈ, ЕЈХМ Јансен, МЈ Зеилмакер, ХЈ ван Кранен и ЕД Кроесе. 1995. Квантитативне методе у токсикологији за процену доза-одговор код људи. РИВМ-извештај бр. 659101004.

Кресс, С, Ц Суттер, ПТ Стрицкланд, Х Мукхтар, Ј Сцхвеизер и М Сцхварз. 1992. Карциноген-специфични мутациони образац у п53 гену у карциномима сквамозних ћелија коже миша изазваним ултраљубичастим Б зрачењем. Цанцер Рес КСНУМКС: КСНУМКС-КСНУМКС.

Кревски, Д, Д Гаилор, М Сзиазковицз. 1991. Приступ екстраполацији малих доза без модела. Енв Х Перс КСНУМКС: КСНУМКС-КСНУМКС.

Лавтон, МП, Т Црестеил, АА Елфарра, Е Ходгсон, Ј Озолс, РМ Пхилпот, АЕ Реттие, ДЕ Виллиамс, ЈР Цасхман, ЦТ Долпхин, РН Хинес, Т Кимура, ИР Пхиллипс, ЛЛ Поулсен, ЕА Схепхаре и ДМ Зиеглер. 1994. Номенклатура за фамилију гена монооксигеназе која садржи флавин код сисара заснована на идентитетима секвенци аминокиселина. Арцх Биоцхем Биопхис КСНУМКС: КСНУМКС-КСНУМКС.

Левалтер, Ј и У Кораллус. 1985. Коњугати крвних протеина и ацетилација ароматичних амина. Нова сазнања о биолошком мониторингу. Инт Арцх Оццуп Енвирон Хеалтх КСНУМКС: КСНУМКС-КСНУМКС.

Мајно, Г и ја Јорис. 1995. Апоптоза, онкоза и некроза: преглед ћелијске смрти. Ам Ј Патхол КСНУМКС: КСНУМКС-КСНУМКС.

Маттисон, ДР и ПЈ Тхомфорд. 1989. Механизам деловања репродуктивних токсиканата. Токицол Патхол КСНУМКС: КСНУМКС-КСНУМКС.

Меиер, УА. 1994. Полиморфизми цитокрома П450 ЦИП2Д6 као фактор ризика у карциногенези. У Цитохром П450: Биохемија, биофизика и молекуларна биологија, приредио МЦ Лехнер. Париз: Џон Либи Евротекст.

Моллер, Х, Х Ваинио и Е Хеселтине. 1994. Квантитативна процена и предвиђање ризика у Међународној агенцији за истраживање рака. Цанцер Рес 54:3625-3627.

Мооленаар, РЈ. 1994. Стандардне претпоставке у процени ризика од карциногена које користе регулаторне агенције. Регул Токицол Пхармацол КСНУМКС: КСНУМКС-КСНУМКС.

Мосер, ВЦ. 1990. Приступи скринингу неуротоксичности: функционална батерија за посматрање. Ј Ам Цолл Токицол КСНУМКС: КСНУМКС-КСНУМКС.

Национални истраживачки савет (НРЦ). 1983. Процена ризика у савезној влади: управљање процесом. Вашингтон, ДЦ: НАС Пресс.

—. 1989. Биолошки маркери у репродуктивној токсичности. Вашингтон, ДЦ: НАС Пресс.

—. 1992. Биолошки маркери у имунотоксикологији. Подкомитет за токсикологију. Вашингтон, ДЦ: НАС Пресс.

Неберт, ДВ. 1988. Гени који кодирају ензиме који метаболишу лекове: Могућа улога у болести код људи. Ин Фенотипске варијације у популацијама, уредили АД Воодхеад, МА Бендер и РЦ Леонард. Нев Иорк: Пленум Публисхинг.

—. 1994. Ензими који метаболишу лек у транскрипцији модулисаној лигандом. Биоцхем Пхармацол КСНУМКС: КСНУМКС-КСНУМКС.

Неберт, ДВ и ВВ Вебер. 1990. Пхармацогенетицс. Ин Принципи деловања лекова. Основе фармакологије, уредили ВБ Пратт и ПВ Таилор. Њујорк: Черчил-Ливингстон.

Неберт, ДВ и ДР Нелсон. 1991. Номенклатура гена П450 заснована на еволуцији. У Методе ензимологије. Цитохром П450, уредили МР Ватерман и ЕФ Јохнсон. Орландо, Флорида: Ацадемиц Пресс.

Неберт, ДВ и РА МцКиннон. 1994. Цитохром П450: Еволуција и функционална разноликост. Прог Лив Дис КСНУМКС: КСНУМКС-КСНУМКС.

Неберт, ДВ, М Адесник, МЈ Цоон, РВ Естаброок, ФЈ Гонзалез, ФП Гуенгерицх, ИЦ Гунсалус, ЕФ Јохнсон, Б Кемпер, В Левин, ИР Пхиллипс, Р Сато и МР Ватерман. 1987. Суперфамилија гена П450: Препоручена номенклатура. ДНК Целл Биол КСНУМКС: КСНУМКС-КСНУМКС.

Неберт, ДВ, ДР Нелсон, МЈ Цоон, РВ Естаброок, Р. Феиереисен, И Фујии-Курииама, ФЈ Гонзалез, ФП Гуенгерицх, ИЦ Гунсалас, ЕФ Јохнсон, ЈЦ Лопер, Р Сато, МР Ватерман и ДЈ Вакман. 1991. Суперфамилија П450: ажурирање нових секвенци, мапирања гена и препоручене номенклатуре. ДНК Целл Биол КСНУМКС: КСНУМКС-КСНУМКС.

Неберт, ДВ, ДД Петерсен и А Пуга. 1991. Полиморфизам хуманог АХ локуса и рак: Индуцибилност ЦИП1А1 и других гена продуктима сагоревања и диоксином. Фармакогенетика КСНУМКС: КСНУМКС-КСНУМКС.

Неберт, ДВ, А Пуга и В Василиоу. 1993. Улога Ах рецептора и диоксином индуцибилне [Ах] генске батерије у токсичности, канцеру и трансдукцији сигнала. Анн НИ Ацад Сци КСНУМКС: КСНУМКС-КСНУМКС.

Нелсон, ДР, Т Каматаки, ДЈ Вакман, ФП Гуенгерицх, РВ Естаброок, Р Феиереисен, ФЈ Гонзалез, МЈ Цоон, ИЦ Гунсалус, О Готох, ДВ Неберт и К Окуда. 1993. Суперфамилија П450: ажурирање нових секвенци, мапирања гена, приступних бројева, раних тривијалних назива ензима и номенклатуре. ДНК Целл Биол КСНУМКС: КСНУМКС-КСНУМКС.

Ницхолсон, ДВ, А Алл, НА Тхорнберри, ЈП Ваилланцоурт, ЦК Динг, М Галлант, И Гареау, ПР Гриффин, М Лабелле, ИА Лазебник, НА Мандаи, СМ Рају, МЕ Смулсон, ТТ Иамин, ВЛ Иу и ДК Миллер. 1995. Идентификација и инхибиција ИЦЕ/ЦЕД-3 протеазе неопходне за апоптозу сисара. Природа КСНУМКС: КСНУМКС-КСНУМКС.

Нолан, РЈ, ВТ Стотт и ПГ Ватанабе. 1995. Токсиколошки подаци у процени хемијске безбедности. Погл. 2 ин Патти'с Индустриал Хигиене анд Токицологи, уредили Љ Цраллеи, ЛВ Цраллеи и ЈС Бус. Њујорк: Џон Вили и синови.

Нордберг, ГФ. 1976. Ефекат и однос доза-одговор токсичних метала. Амстердам: Елсевиер.

Канцеларија за процену технологије (ОТА). 1985. Репродуктивне опасности на радном месту. Документ бр. ОТА-БА-266. Вашингтон, ДЦ: Државна штампарија.

—. 1990. Неуротоксичност: идентификација и контрола отрова нервног система. Документ бр. ОТА-БА-436. Вашингтон, ДЦ: Државна штампарија.

Организација за економску сарадњу и развој (ОЕЦД). 1993. УС ЕПА/ЕЦ Јоинт Пројецт Он тхе Евалуатион оф (Куантитативе) Струцтуре Ацтивити Релатионсхипс. Париз: ОЕЦД.

Парк, ЦН и НЦ Хавкинс. 1993. Преглед технологије; преглед процене ризика од рака. Токицол Метходс КСНУМКС: КСНУМКС-КСНУМКС.

Пеасе, В, Ј Ванденберг и ВК Хоопер. 1991. Упоређивање алтернативних приступа успостављању регулаторних нивоа за репродуктивне токсичне супстанце: ДБЦП као студија случаја. Енвирон Хеалтх Персп КСНУМКС: КСНУМКС-КСНУМКС.

Прпи ƒ -Маји ƒ , Д, С Телишман и С Кези ƒ . 6.5. Ин витро студија о интеракцији олова и алкохола и инхибицији дехидратазе еритроцита делта-аминолевулинске киселине код човека. Сцанд Ј Ворк Енвирон Хеалтх КСНУМКС: КСНУМКС-КСНУМКС.

Реитз, РХ, РЈ Нолан и АМ Сцхуманн. 1987. Развој вишеврстних, вишеструких фармакокинетичких модела за метилен хлорид и 1,1,1-трихлоретан. Ин Фармакокинетика и процена ризика, вода за пиће и здравље. Васхингтон, ДЦ: Натионал Ацадеми Пресс.

Роитт, И, Ј Бростофф и Д Мале. 1989. Имунологија. Лондон: Говер Медицал Публисхинг.

Сато, А. 1991. Ефекат фактора средине на фармакокинетичко понашање пара органског растварача. Анн Оццуп Хиг КСНУМКС: КСНУМКС-КСНУМКС.

Силбергелд, ЕК. 1990. Развијање формалних метода процене ризика за неуротоксичне супстанце: Процена стања технике. Ин Напредак неуробихејвиоралне токсикологије, уредили БЛ Јохнсон, ВК Ангер, А Дурао и Ц Ксинтарас. Цхелсеа, Мицх.: Левис.

Спенцер, ПС и ХХ Сцхаумберг. 1980. Експериментална и клиничка неуротоксикологија. Балтимор: Виллиамс & Вилкинс.

Свеенеи, АМ, МР Меиер, ЈХ Ааронс, ЈЛ Миллс и РЕ ЛеПорте. 1988. Евалуација метода за проспективну идентификацију раних феталних губитака у студијама епидемиологије животне средине. Ам Ј Епидемиол КСНУМКС: КСНУМКС-КСНУМКС.

Таилор, БА, ХЈ Хеинигер, анд Х Меиер. 1973. Генетичка анализа резистенције на оштећење тестиса изазвано кадмијумом код мишева. Проц Соц Екп Биол Мед КСНУМКС: КСНУМКС-КСНУМКС.

Телишман, С. 1995. Интеракције есенцијалних и/или токсичних метала и металоида у погледу интериндивидуалних разлика у осетљивости на различите токсиканте и хроничне болести човека. Арх риг рада токсикол КСНУМКС: КСНУМКС-КСНУМКС.

Телишман, С, А Пинент, и Д Прпи ƒ -Маји ƒ . 6.5. Интерференција олова у метаболизму цинка и интеракција олова и цинка код људи као могуће објашњење очигледне индивидуалне осетљивости на олово. У Тешки метали у животној средини, уредили РЈ Аллан и ЈО Нриагу. Единбург: ЦЕП Цонсултантс.

Телишман, С, Д Прпи ƒ -Маји ƒ , и С Кези ƒ . 6.5. Ин виво студија о интеракцији олова и алкохола и инхибицији дехидратазе еритроцита делта-аминолевулинске киселине код човека. Сцанд Ј Ворк Енвирон Хеалтх КСНУМКС: КСНУМКС-КСНУМКС.

Тилсон, ХА и ПА Цабе. 1978. Стратегије за процену неуробихејвиоралних последица фактора средине. Енвирон Хеалтх Персп КСНУМКС: КСНУМКС-КСНУМКС.

Трамп, БФ и АУ Арстила. 1971. Повреда ћелије и смрт ћелије. Ин Принципи патобиологије, уредили МФ ЛаВиа и РБ Хилл Јр. Нев Иорк: Окфорд Унив. Притисните.

Трамп, БФ и ИК Березески. 1992. Улога цитосолног Ца2 + код повреде ћелија, некрозе и апоптозе. Цурр Опин Целл Биол КСНУМКС: КСНУМКС-КСНУМКС.

—. 1995. Повреда ћелија посредована калцијумом и ћелијска смрт. ФАСЕБ Ј КСНУМКС: КСНУМКС-КСНУМКС.

Трамп, БФ, ИК Березески и А Осорнио-Варгас. 1981. Ћелијска смрт и процес болести. Улога ћелијског калцијума. У Ћелијска смрт у биологији и патологији, уредили ИД Бовен и РА Лоцксхин. Лондон: Цхапман & Халл.

Вос, ЈГ, М Иоунес и Е Смитх. 1995. Алергијска преосетљивост изазвана хемикалијама: Препоруке за превенцију објављене у име Регионалне канцеларије Светске здравствене организације за Европу. Боца Ратон, ФЛ: ЦРЦ Пресс.

Вебер, ВВ. 1987. Гени ацетилатора и одговор на лекове. Њујорк: Окфорд Унив. Притисните.

Светска здравствена организација (СЗО). 1980. Препоручена ограничења на основу здравља у професионалној изложености тешким металима. Серија техничких извештаја, бр. 647. Женева: СЗО.

—. 1986. Принципи и методе за процену неуротоксичности повезане са излагањем хемикалијама. Критеријуми здравља животне средине, бр.60. Женева: СЗО.

—. 1987. Смернице за квалитет ваздуха за Европу. Еуропеан Сериес, Но. 23. Копенхаген: Регионалне публикације СЗО.

—. 1989. Речник појмова о хемијској безбедности за употребу у ИПЦС публикацијама. Женева: СЗО.

—. 1993. Извођење водећих вредности за границе изложености засноване на здрављу. Критеријуми здравља животне средине, необрађени нацрт. Женева: СЗО.

Виллие, АХ, ЈФР Керр и АР Цуррие. 1980. Ћелијска смрт: значај апоптозе. Инт Рев Цитол КСНУМКС: КСНУМКС-КСНУМКС.

@РЕФС ЛАБЕЛ = Остала релевантна очитавања

Алберт, РЕ. 1994. Процена ризика од карциногена у Агенцији за заштиту животне средине САД. Црит. Рев. Токицол КСНУМКС: КСНУМКС-КСНУМКС.

Албертс, Б, Д Браи, Ј Левис, М Рафф, К Робертс и ЈД Ватсон. 1988. Молекуларна биологија ћелије. Нев Иорк: Гарланд Публисхинг.

Ариенс, ЕЈ. 1964. Молецулар Пхармацологи. Вол.1. Нев Иорк: Ацадемиц Пресс.

Ариенс, ЕЈ, Е Мутсцхлер и АМ Симонис. 1978. Аллгемеине Токицологие [Општа токсикологија]. Штутгарт: Георг Тхиеме Верлаг.

Асхби, Ј и РВ Теннант. 1994. Предвиђање карциногености глодара за 44 хемикалије: резултати. Мутагенеза КСНУМКС: КСНУМКС-КСНУМКС.

Асхфорд, НА, ЦЈ Спадафор, ДБ Хаттис и ЦЦ Цалдарт. 1990. Праћење радника због изложености и болести. Балтимор: Јохнс Хопкинс Унив. Притисните.

Балабуха, НС и ГЕ Фрадкин. 1958. Накопление радиоактивних елементов в организме И их виведение. Москва: Медгиз.

Баллс, М, Ј Бридгес и Ј Соутхее. 1991. Животиње и алтернативе у токсикологији садашњи статус и будући изгледи. Нотингем, УК: Фонд за замену животиња у медицинским експериментима.

Берлин, А, Ј Деан, МХ Драпер, ЕМБ Смитх и Ф Спреафицо. 1987. Иммунотокицологи. Дордрехт: Мартинус Најхоф.

Боихоус, А. 1974. Дишу. Њујорк: Грун & Стратон.

Брандау, Р и БХ Липполд. 1982. Дермална и трансдермална апсорпција. Штутгарт: Виссенсцхафтлицхе Верлагсгеселлсцхафт.

Брусицк, ДЈ. 1994. Методе за процену генетског ризика. Боца Ратон: Левис Публисхерс.

Буррелл, Р. 1993. Хумана имунолошка токсичност. Мол Аспецтс Мед КСНУМКС: КСНУМКС-КСНУМКС.

Цастелл, ЈВ и МЈ Гомез-Лецхон. 1992. Ин витро алтернативе животињској фармако-токсикологији. Мадрид, Шпанија: Фармаиндустриа.

Цхапман, Г. 1967. Телесне течности и њихове функције. Лондон: Едвард Арнолд.

Комисија за биолошке маркере Националног истраживачког савета. 1987. Биолошки маркери у истраживању здравља животне средине. Енвирон Хеалтх Персп КСНУМКС: КСНУМКС-КСНУМКС.

Цраллеи, Љ, ЛВ Цраллеи и ЈС Бус (ур.). 1978. Патти'с Индустриал Хигиене анд Токицологи. Њујорк: Витеи.

Даиан, АД, РФ Хертел, Е Хеселтине, Г Казантис, ЕМ Смитх и МТ Ван дер Венне. 1990. Имунотоксичност метала и имунотоксикологија. Нев Иорк: Пленум Пресс.

Ђурић, Д. 1987. Молекуларно-ћелијски аспекти професионалне изложености токсичним хемикалијама. Ин Део 1 Токсикокинетика. Женева: СЗО.

Дуффус, ЈХ. 1980. Енвиронментал Токицологи. Лондон: Едвард Арнолд.

ЕЦОТОЦ. 1986. Однос структуре и активности у токсикологији и екотоксикологији, Монографија бр.8. Брисел: ЕЦОТОЦ.

Фортх, В, Д Хенсцхлер и В Руммел. 1983. Пхармакологие унд Токикологие. Манхајм: Библио- грапхисцхе Институт.

Фразиер, ЈМ. 1990. Научни критеријуми за валидацију ин витро токсичности тестова. ОЕЦД Монографија о животној средини, бр. 36. Париз: ОЕЦД.

—. 1992. Ин витро токсичност—примена за процену безбедности. Њујорк: Марсел Декер.

Гад, СЦ. 1994. Ин витро токсикологија. Њујорк: Равен Пресс.

Гадаскина, ИД. 1970. Зхирораиа ткан И иади [Масна ткива и токсиканти]. Ин Актуални проблеми у професионалној токсикологији, приредио НВ Лазарев. Лењинград: Министарство здравља РСФСР.

Гаилор, ДВ. 1983. Употреба фактора сигурности за контролу ризика. Ј Токицол Енвирон Хеалтх КСНУМКС: КСНУМКС-КСНУМКС.

Гибсон, ГГ, Р Хуббард и ДВ Парке. 1983. Иммунотокицологи. Лондон: Ацадемиц Пресс.

Голдберг, АМ. 1983-1995. Алтернативе ин Токицологи. Вол. 1-12. Њујорк: Мери Ен Либерт.

Грандјеан, П. 1992. Индивидуална осетљивост на токсичност. Токицол Леттерс КСНУМКС / КСНУМКС: КСНУМКС-КСНУМКС.

Ханке, Ј и ЈК Пиотровски. 1984. Биоцхемицзне подстави токсикологии [Биохемијске основе токсикологије]. Варшава: ПЗВЛ.

Хатцх, Т и П бруто. 1954. године. Плућно таложење и задржавање инхалираних аеросола. Нев Иорк: Ацадемиц Пресс.

Здравствени савет Холандије: Комитет за процену карциногености хемијских супстанци. 1994. Процена ризика од канцерогених хемикалија у Холандији. Регул Токицол Пхармацол КСНУМКС: КСНУМКС-КСНУМКС.

Холандија, ВЦ, РЛ Клајн и АХ Бригс. 1967. Молекулаере Пхармакологие.

Хуфф, ЈЕ. 1993. Хемикалије и рак код људи: Први докази код експерименталних животиња. Енвирон Хеалтх Персп КСНУМКС: КСНУМКС-КСНУМКС.

Класен, ЦД и ДЛ Еатон. 1991. Принципи токсикологије. Погл. 2 ин Казаретова и Доулова токсикологија, уредник ЦД Клаасен, МО Амдур и Ј Доул. Њујорк: Пергамон Пресс.

Коссовер, ЕМ. 1962. године. Молецулар Биоцхемистри. Нев Иорк: МцГрав-Хилл.

Кундиев, ИИ. 1975. године.Вссавание пестицидов цхерез козсу И профилактика отравлении [Апсорпција пестицида кроз кожу и превенција интоксикације]. Кијев: Здоровиа.

Кустов, ВВ, ЛА Тиунов, и ЈА Васиљев. 1975. године. Комвинование деиствие промисхлених иадов [Комбиновани ефекти индустријских токсиканата]. Москва: Медицина.

Лауверис, Р. 1982. Токицологие индустриелле ет интокицатионс профессионеллес. Парис: Массон.

Ли, АП и РХ Хефлицх. 1991. Генетиц Токицологи. Боца Ратон: ЦРЦ Пресс.

Лоевеи, АГ и П Сиекевитз. 1969. Структура и функције ћелије. Њујорк: Холт, Рајнхарт и Винстон.

Лоомис, ТА. 1976. Ессентиалс оф Токицологи. Филаделфија: Леа & Фебигер.

Менделсон, МЛ и РЈ Албертини. 1990. Мутација и животна средина, делови АЕ. Њујорк: Вилеи Лисс.

Метзлер, ДЕ. 1977. Биохемија. Нев Иорк: Ацадемиц Пресс.

Миллер, К, ЈЛ Турк, анд С Ницклин. 1992. Принципи и пракса имунотоксикологије. Оксфорд: Блацквеллс Сциентифиц.

Министарство за међународну трговину и индустрију. 1981. Приручник о постојећим хемијским супстанцама. Токио: Цхемицал Даили Пресс.

—. 1987. Захтев за одобрење хемикалија по Закону о контроли хемијских супстанци. (на јапанском и енглеском). Токио: Кагаку Когио Ниппо Пресс.

Монтагна, В. 1956. Структура и функција коже. Нев Иорк: Ацадемиц Пресс.

Мооленаар, РЈ. 1994. Процена ризика од карциногена: међународно поређење. Регул Токицол Пхармацол КСНУМКС: КСНУМКС-КСНУМКС.

Национални истраживачки савет. 1989. Биолошки маркери у репродуктивној токсичности. Вашингтон, ДЦ: НАС Пресс.

Неуман, ВГ и М Неуман. 1958. Хемијска динамика коштаних минерала. Чикаго: Унив. часописа Цхицаго Пресс.

Невцомбе, ДС, НР Росе и ЈЦ Блоом. 1992. Цлиницал Иммунотокицологи. Њујорк: Равен Пресс.

Пацхецо, Х. 1973. Ла пхармацологие молецулаире. Париз: Прессе Университаире.

Пиотровски, ЈК. 1971. Примена метаболичке и екскреторне кинетике на проблеме индустријске токсикологије. Вашингтон, ДЦ: Министарство здравља, образовања и социјалне заштите САД.

—. 1983. Биохемијске интеракције тешких метала: Металотионеин. Ин Здравствени ефекти комбинованог излагања хемикалијама. Копенхаген: Регионална канцеларија СЗО за Европу.

Процеедингс оф Арнолд О. Бецкман/ИФЦЦ Цонференце оф Енвиронментал Токицологи Биомаркерс оф Цхемицал Екпосуре. 1994. Цлин Цхем 40(7Б).

Русселл, ВМС и РЛ Бурцх. 1959. године. Принципи хумане експерименталне технике. Лондон: Метхуен & Цо. Прештампано од стране Универзитетске федерације за добробит животиња, 1993.

Рицрофт, РЈГ, Т Менне, ПЈ Фросцх и Ц Бенезра. 1992. Уџбеник контактног дерматитиса. Берлин: Спрингер-Верлаг.

Сцхуберт, Ј. 1951. Процена радиоелемената код изложених особа. Нуклеоника КСНУМКС: КСНУМКС-КСНУМКС.

Схелби, МД и Е Зеигер. 1990. Активност хуманих канцерогена у тестовима цитогенетике салмонеле и коштане сржи глодара. Мутат Рес КСНУМКС: КСНУМКС-КСНУМКС.

Стоне, Р. 1995. Молекуларни приступ ризику од рака. Наука КСНУМКС: КСНУМКС-КСНУМКС.

Теисингер, Ј. 1984. Екпоситионтест ин дер Индустриетокикологие [Тестови изложености у индустријској токсикологији]. Берлин: ВЕБ Верлаг Волк унд Гесундхеит.

амерички конгрес. 1990. Генетски мониторинг и скрининг на радном месту, ОТА-БА-455. Вашингтон, ДЦ: Штампарија владе САД.

ВЕБ. 1981. Клеине Ензиклопаедие: Лебен [Живот]. Лајпциг: ВЕБ Библиограпхисцхе Институт.

Веил, Е. 1975. Елементс де токицологие индустриелле [Елементи индустријске токсикологије]. Париз: Массон ет Цие.

Светска здравствена организација (СЗО). 1975. Методе коришћене у СССР-у за утврђивање безбедних нивоа токсичних супстанци. Женева: СЗО.

КСНУМКС. Принципи и методе за процену токсичности хемикалија, 1. део. Критеријуми здравља животне средине, бр.6. Женева: СЗО.

—. 1981. Комбинована изложеност хемикалијама, привремени документ бр.11. Копенхаген: Регионална канцеларија СЗО за Европу.

—. 1986. Принципи токсикокинетичких студија. Критеријуми здравља животне средине, бр. 57. Женева: СЗО.

Иофтреи, ЈМ и ФЦ Цоуртице. 1956. године. Лимфатика, лимфа и лимфоидно ткиво. Цамбридге: Харвард Унив. Притисните.

Закутинскии, ДИ. 1959. године. Проблеми токсикологије радиоактивних материја. Москва: Медгиз.

Зурло, Ј, Д Рудацилле и АМ Голдберг. 1993. Животиње и алтернативе у тестирању: историја, наука и етика. Њујорк: Мери Ен Либерт.