Уторак, КСНУМКС март КСНУМКС КСНУМКС: КСНУМКС

Инфрацрвено зрачење

Оцените овај артикал
(КСНУМКС гласова)

Инфрацрвено зрачење је део спектра нејонизујућег зрачења који се налази између микроталаса и видљиве светлости. То је природни део човековог окружења и стога су му људи изложени у малим количинама у свим областима свакодневног живота – на пример, код куће или током рекреативних активности на сунцу. Међутим, веома интензивна изложеност може бити резултат одређених техничких процеса на радном месту.

Многи индустријски процеси укључују термичко очвршћавање различитих врста материјала. Коришћени извори топлоте или сам загрејан материјал обично ће емитовати тако високе нивое инфрацрвеног зрачења да је велики број радника потенцијално изложен ризику од излагања.

Концепти и количине

Инфрацрвено зрачење (ИР) има таласне дужине у распону од 780 нм до 1 мм. Према класификацији Међународне комисије за осветљење (ЦИЕ), овај опсег је подељен на ИРА (од 780 нм до 1.4 μм), ИРБ (од 1.4 μм до 3 μм) и ИРЦ (од 3 μм до 1 мм). Ова подподела приближно прати карактеристике апсорпције ИР у ткиву зависне од таласне дужине и резултујућих различитих биолошких ефеката.

Количина и временска и просторна дистрибуција инфрацрвеног зрачења описују се различитим радиометријским величинама и јединицама. Због оптичких и физиолошких својстава, посебно ока, обично се прави разлика између малих „тачкастих” извора и „проширених” извора. Критеријум за ово разликовање је вредност угла (α) у радијанима измереног на оку које је подвучено извором. Овај угао се може израчунати као количник, димензија извора светлости DL подељено са даљином гледања r. Проширени извори су они код којих је угао гледања у оку већи од αминута, што је нормално 11 милирадијана. За све проширене изворе постоји удаљеност гледања где је α једнако αминута; на већим удаљеностима гледања, извор се може третирати као тачкасти извор. У заштити од оптичког зрачења најважније величине које се тичу проширених извора су сјај (L, изражено у Вм-КСНУМКСsr-КСНУМКС) И временски интегрисани сјај (Lp у Јм-КСНУМКСsr-КСНУМКС), који описују „сјајност“ извора. За процену ризика по здравље, најрелевантније количине у вези са тачкастим изворима или изложености на таквим удаљеностима од извора где је α< αминута, су зрачење (E, изражено у Вм-КСНУМКС), што је еквивалентно концепту брзине дозе експозиције, и излагање зрачењу (H, у Јм-КСНУМКС), што је еквивалентно концепту дозе изложености.

У неким опсезима спектра, биолошки ефекти услед излагања снажно зависе од таласне дужине. Због тога се морају користити додатне спектрорадиометријске величине (нпр. спектрални сјај, Ll, изражено у Вм-КСНУМКС sr-КСНУМКС nm-КСНУМКС) да одмери физичке вредности емисије извора у односу на применљиви спектар деловања који се односи на биолошки ефекат.

 

Извори и професионална изложеност

Изложеност ИР је резултат различитих природних и вештачких извора. Спектрална емисија из ових извора може бити ограничена на једну таласну дужину (ласер) или може бити распоређена у широком опсегу таласних дужина.

Различити механизми за стварање оптичког зрачења уопште су:

  • термална ексцитација (зрачење црног тела)
  • пражњење гаса
  • појачање светлости стимулисаном емисијом зрачења (ласер), при чему је механизам гасног пражњења од мањег значаја у ИЦ опсегу.

 

Емисија из најважнијих извора који се користе у многим индустријским процесима је резултат термичке побуде и може се апроксимирати коришћењем физичких закона зрачења црног тела ако је позната апсолутна температура извора. Укупна емисија (М, у Вм-КСНУМКС) радијатора црног тела (слика 1) описује Стефан-Болцманов закон:

М(Т) = 5.67 к 10-8T4

и зависи од 4. степена температуре (T, у К) зрачећег тела. Спектрална дистрибуција зрачења је описана Планковим законом зрачења:

и таласна дужина максималне емисије (λМак) је описан према Бечком закону:

λМак = (2.898 к 10-8) / T

Слика 1. Спектрални сјај λМакцрног радијатора на апсолутној температури приказаној у степенима Келвина на свакој кривој

ЕЛФ040Ф1

Многи ласери који се користе у индустријским и медицинским процесима ће емитовати веома високе нивое ИР. Генерално, у поређењу са другим изворима зрачења, ласерско зрачење има неке необичне карактеристике које могу утицати на ризик након излагања, као што је веома кратко трајање импулса или изузетно високо зрачење. Због тога је ласерско зрачење детаљно размотрено на другом месту у овом поглављу.

Многи индустријски процеси захтевају коришћење извора који емитују високе нивое видљивог и инфрацрвеног зрачења, па је стога велики број радника као што су пекари, дувачи стакла, радници у пећима, ливници, ковачи, топионици и ватрогасци потенцијално изложени ризику од излагања. Поред лампи, морају се узети у обзир извори као што су пламен, гасне бакље, ацетиленске бакље, базени растопљеног метала и ужарене металне шипке. Они се сусрећу у ливницама, челичанама и многим другим тешким индустријским постројењима. Табела 1 сумира неке примере ИР извора и њихове примене.

Табела 1. Различити извори ИР, изложеност становништва и приближни нивои изложености

извор

Примена или изложена популација

Излагање

Сунчана светлост

Радници на отвореном, фармери, грађевински радници, поморци, општа јавност

500 Вм-КСНУМКС

Лампе са волфрамовим влакном

Опште становништво и радници
Опште осветљење, сушење мастила и боја

105-КСНУМКС6 Wm-КСНУМКСsr-КСНУМКС

Волфрамове халогене сијалице

(Погледајте лампе са волфрамовим влакном)
Системи за копирање (фиксирање), општи процеси (сушење, печење, скупљање, омекшавање)

50–200 Вм-КСНУМКС (на 50 цм)

Диоде које емитују светлост (нпр. ГаАс диода)

Играчке, потрошачка електроника, технологија преноса података итд.

105 Wm-КСНУМКСsr-КСНУМКС

Ксенонске лучне лампе

Пројектори, соларни симулатори, рефлектори
Камерари у штампарији, радници оптичких лабораторија, забављачи

107 Wm-КСНУМКСsr-КСНУМКС

Растопити гвожђе

Челичане, радници челичане

105 Wm-КСНУМКСsr-КСНУМКС

Низови инфрацрвених лампи

Индустријско грејање и сушење

103 до 8..103 Wm-КСНУМКС

Инфрацрвене лампе у болницама

Инкубатори

100–300 Вм-КСНУМКС

 

Биолошки ефекти

Оптичко зрачење уопште не продире дубоко у биолошко ткиво. Стога су примарни циљеви ИР изложености кожа и око. У већини услова изложености главни механизам интеракције ИР је термални. Само врло кратки импулси које ласери могу произвести, али који се овде не разматрају, такође могу довести до механотермалних ефеката. Не очекује се да ће се ефекти јонизације или кидања хемијских веза појавити код ИР зрачења јер је енергија честица, мања од приближно 1.6 еВ, прениска да би изазвала такве ефекте. Из истог разлога, фотохемијске реакције постају значајне само на краћим таласним дужинама у визуелном и ултраљубичастом подручју. Различити ефекти ИР на здравље зависни од таласне дужине произлазе углавном из оптичких својстава ткива зависних од таласне дужине—на пример, спектралне апсорпције очних медија (слика 2).

Слика 2. Спектрална апсорпција очних медија

ЕЛФ040Ф2

Ефекти на око

У принципу, око је добро прилагођено да се заштити од оптичког зрачења из природног окружења. Поред тога, око је физиолошки заштићено од повреда од јарких извора светлости, као што су сунце или лампе високог интензитета, реакцијом аверзије која ограничава трајање излагања на делић секунде (приближно 0.25 секунди).

ИРА утиче првенствено на ретину, због транспарентности очних медија. Када се директно посматра тачкасти извор или ласерски зрак, својства фокусирања у ИРА региону додатно чине мрежњачу много подложнијом оштећењу него било који други део тела. За кратке периоде експозиције, загревање ириса услед апсорпције видљиве или блиске ИР-е сматра се да игра улогу у развоју замућења у сочиву.

Са повећањем таласне дужине, изнад приближно 1 μм, повећава се апсорпција очних медија. Због тога се сматра да апсорпција ИРА зрачења и сочива и пигментне шаренице игра улогу у формирању замућења сочива. Оштећење сочива се приписује таласним дужинама испод 3 μм (ИРА и ИРБ). За инфрацрвено зрачење таласних дужина дужих од 1.4 μм, очна водица и сочива су посебно снажно упијајући.

У ИРБ и ИРЦ региону спектра, очни медијуми постају непрозирни као резултат снажне апсорпције воде која их чини. Апсорпција у овој регији је првенствено у рожњачи и у очне водице. Преко 1.9 μм, рожњача је заправо једини апсорбер. Апсорпција инфрацрвеног зрачења дуге таласне дужине рожњаче може довести до повећања температуре у оку због топлотне проводљивости. Због брзе стопе обртања површинских ћелија рожњаче, може се очекивати да ће свако оштећење ограничено на спољашњи слој рожњаче бити привремено. У ИРЦ опсегу излагање може изазвати опекотине рожњаче сличне оној на кожи. Међутим, мало је вероватно да ће доћи до опекотина рожњаче због реакције аверзије изазване болним осећајем изазваним јаким излагањем.

Ефекти на кожу

Инфрацрвено зрачење неће продрети дубоко у кожу. Стога, излагање коже веома јаком ИР може довести до локалних термичких ефеката различите тежине, па чак и до озбиљних опекотина. Ефекти на кожу зависе од оптичких својстава коже, као што је дубина продирања зависна од таласне дужине (слика 3. ). Нарочито на дужим таласним дужинама, екстензивно излагање може изазвати висок локални пораст температуре и опекотине. Граничне вредности за ове ефекте зависе од времена, због физичких својстава процеса топлотног транспорта у кожи. Зрачење од 10 кВм-КСНУМКС, на пример, може изазвати бол у року од 5 секунди, док излагање од 2 кВм-КСНУМКС неће изазвати исту реакцију у периодима краћим од приближно 50 секунди.

Слика 3. Дубина продирања у кожу за различите таласне дужине

ЕЛФ040Ф3

Ако се излагање продужава на веома дуге периоде, чак и на вредностима знатно испод прага бола, оптерећење топлотом за људско тело може бити велико. Нарочито ако експозиција покрива цело тело као, на пример, испред челичне талине. Резултат може бити неравнотежа иначе физиолошки добро избалансираног система терморегулације. Праг за толерисање такве изложености зависиће од различитих индивидуалних услова и услова околине, као што су индивидуални капацитет терморегулационог система, стварни метаболизам тела током излагања или температура околине, влажност и кретање ваздуха (брзина ветра). Без икаквог физичког рада, максимална експозиција од 300 Вм-КСНУМКС може се толерисати током осам сати под одређеним условима околине, али се ова вредност смањује на приближно 140 Вм-КСНУМКС током тешког физичког рада.

Стандарди изложености

Биолошки ефекти ИР излагања који зависе од таласне дужине и трајања излагања, неподношљиви су само ако су прекорачени одређени гранични интензитет или вредности дозе. Да би се заштитиле од таквих неподношљивих услова излагања, међународне организације као што су Светска здравствена организација (СЗО), Међународна канцеларија рада (ИЛО), Међународни комитет за нејонизујуће зрачење Међународног удружења за заштиту од зрачења (ИНИРЦ/ИРПА) и његове наследник, Међународна комисија за заштиту од нејонизујућег зрачења (ИЦНИРП) и Америчка конференција владиних индустријских хигијеничара (АЦГИХ) су предложили границе излагања инфрацрвеном зрачењу из кохерентних и некохерентних оптичких извора. Већина националних и међународних сугестија о смерницама за ограничавање изложености људи инфрацрвеном зрачењу су засноване или чак идентичне са предложеним граничним вредностима (ТЛВ) које је објавио АЦГИХ (1993/1994). Ова ограничења су широко призната и често се користе у ситуацијама на послу. Засновани су на актуелним научним сазнањима и намењени су да спрече термичке повреде мрежњаче и рожњаче и да избегну могуће одложене ефекте на очно сочиво.

Ревизија АЦГИХ граница изложености из 1994. је следећа:

1. За заштиту мрежњаче од термичких повреда у случају излагања видљивој светлости, (на пример, у случају снажних извора светлости), спектрални сјај Lλ у В/(м² ср нм) пондерисано према функцији опасности од топлоте мрежњаче Rλ (видети табелу 2) преко интервала таласне дужине Δλ и збирно у опсегу таласних дужина од 400 до 1400 нм, не би требало да пређе:

где t је трајање гледања ограничено на интервале од 10-3 до 10 секунди (то јест, за случајне услове гледања, а не фиксирано гледање), а α је угаони поднапон извора у радијанима израчунат према α = максимално проширење извора/удаљеност до извора Rλ  (табела 2).

2. За заштиту мрежњаче од опасности излагања инфрацрвеним топлотним лампама или било ком ИЦ извору у близини где је одсутан јак визуелни стимуланс, инфрацрвено зрачење у опсегу таласних дужина од 770 до 1400 нм гледано оком (на основу зенице од 7 мм пречник) за продужено трајање услова гледања треба ограничити на:

Ово ограничење се заснива на пречнику зенице од 7 мм јер у овом случају реакција аверзије (затварање ока, на пример) можда неће постојати због одсуства видљиве светлости.

3. Да би се избегли могући одложени ефекти на очно сочиво, као што је одложена катаракта, и да би се рожњача заштитила од прекомерног излагања, инфрацрвено зрачење на таласним дужинама већим од 770 нм треба да буде ограничено на 100 В/м² у периодима дужим од 1,000 с и да:

или на краће периоде.

4. За пацијенте са афакијом, дате су одвојене функције мерења и резултујући ТЛВ за опсег таласних дужина ултраљубичастог и видљивог светла (305–700 нм).

Табела 2. Функција топлотне опасности мрежњаче

Таласна дужина (нм)

Rλ

Таласна дужина (нм)

Rλ

400

1.0

460

8.0

405

2.0

465

7.0

410

4.0

470

6.2

415

8.0

475

5.5

420

9.0

480

4.5

425

9.5

485

4.0

430

9.8

490

2.2

435

10.0

495

1.6

440

10.0

КСНУМКС-КСНУМКС

1.0

445

9.7

КСНУМКС-КСНУМКС

10((700 - λ )/500)

450

9.4

КСНУМКС-КСНУМКС

0.2

455

9.0

   

Извор: АЦГИХ 1996.

Мера

Доступне су поуздане радиометријске технике и инструменти који омогућавају анализу ризика за кожу и око од излагања изворима оптичког зрачења. За карактеризацију конвенционалног извора светлости, генерално је веома корисно мерити сјај. За дефинисање опасних услова излагања из оптичких извора, озраченост и експозиција зрачењу су од већег значаја. Процена широкопојасних извора је сложенија од процене извора који емитују на појединачним таласним дужинама или веома уским опсезима, пошто се спектралне карактеристике и величина извора морају узети у обзир. Спектар одређених лампи се састоји од континуалне емисије у широком опсегу таласних дужина и емисије на одређеним појединачним таласним дужинама (линијама). Значајне грешке се могу унети у репрезентацију тих спектра ако део енергије у свакој линији није правилно додат у континуум.

За процену опасности по здравље вредности изложености се морају мерити преко граничног отвора за који су специфицирани стандарди изложености. Обично се отвор од 1 мм сматра најмањом практичном величином отвора. Таласне дужине веће од 0.1 мм представљају потешкоће због значајних ефеката дифракције које ствара отвор од 1 мм. За овај опсег таласних дужина прихваћен је отвор од 1 цм² (пречник 11 мм), јер су вруће тачке у овом опсегу веће него на краћим таласним дужинама. За процену опасности од мрежњаче, величина отвора је одређена просечном величином зенице и стога је изабран отвор од 7 мм.

Генерално, мерења у оптичком региону су веома сложена. Мере које предузима необучено особље могу довести до неважећих закључака. Детаљан резиме мерних процедура налази се у Слинеи и Волбарсхт (1980).

Заштитне мере

Најефикаснија стандардна заштита од излагања оптичком зрачењу је потпуно затварање извора и свих путева зрачења који могу изаћи из извора. Оваквим мерама, у већини случајева требало би лако да се постигне усклађеност са границама изложености. Тамо где то није случај, примењује се лична заштита. На пример, треба користити доступну заштиту за очи у виду одговарајућих наочара или визира или заштитне одеће. Ако услови рада не дозвољавају примену таквих мера, можда ће бити неопходна административна контрола и ограничен приступ веома интензивним изворима. У неким случајевима смањење или снаге извора или радног времена (рад паузира да се опорави од топлотног стреса), или обоје, може бити могућа мера за заштиту радника.

Zakljucak

Уопштено говорећи, инфрацрвено зрачење из најчешћих извора као што су лампе, или из већине индустријских апликација, неће изазвати никакав ризик за раднике. На неким радним местима, међутим, ИР може изазвати здравствени ризик за радника. Поред тога, убрзано се повећава примена и употреба светиљки посебне намене и у високотемпературним процесима у индустрији, науци и медицини. Ако је изложеност овим применама довољно висока, не могу се искључити штетни ефекти (углавном на око, али и на кожу). Очекује се да ће се повећати значај међународно признатих стандарда излагања оптичком зрачењу. Да бисте заштитили радника од прекомерне изложености, заштитне мере као што су заштита (штитници за очи) или заштитна одећа треба да буду обавезне.

Главни штетни биолошки ефекти који се приписују инфрацрвеном зрачењу су катаракте, познате као катаракте дувача стакла или пећи. Дуготрајно излагање чак и на релативно ниским нивоима изазива топлотни стрес за људско тело. У таквим условима изложености морају се узети у обзир додатни фактори као што су телесна температура и губитак топлоте испаравањем, као и фактори околине.

У индустријским земљама развијени су неки практични водичи за информисање и упућивање радника. Свеобухватан сажетак може се наћи у Слинеи и Волбарсхт (1980).

 

Назад

Читати 22311 пута Последња измена у четвртак, 13. октобар 2011. у 21:31

" ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

Садржај

Радијација: нејонизујуће референце

Аллен, СГ. 1991. Мерења радиофреквентног поља и процена опасности. Ј Радиол Протецт 11:49-62.

Америчка конференција владиних индустријских хигијеничара (АЦГИХ). 1992. Документација за граничне вредности прага. Синсинати, Охајо: АЦГИХ.

—. 1993. Граничне вредности прага за хемијске супстанце и физичке агенсе и индексе биолошке изложености. Синсинати, Охајо: АЦГИХ.

—. 1994а. Годишњи извештај Комисије за граничне вредности АЦГИХ физичких агената. Синсинати, Охајо: АЦГИХ.

—. 1994б. ТЛВ, граничне вредности прага и индекси биолошке изложености за 1994-1995. Синсинати, Охајо: АЦГИХ.

—. 1995. 1995-1996 Граничне вредности за хемијске супстанце и физичке агенсе и индексе биолошке изложености. Синсинати, Охајо: АЦГИХ.

—. 1996. ТЛВс© и БЕИс©. Граничне вредности за хемијске супстанце и физичке агенсе; Индекси биолошке изложености. Синсинати, Охајо: АЦГИХ.

Амерички национални институт за стандарде (АНСИ). 1993. Безбедна употреба ласера. Стандард бр. З-136.1. Њујорк: АНСИ.

Аниолцзик, Р. 1981. Мерења хигијенске процене електромагнетних поља у окружењу дијатермије, заваривача и индукционих грејача. Медицина Праци 32:119-128.

Бассетт, ЦАЛ, СН Митцхелл и СР Гастон. 1982. Третман пулсирајућим електромагнетним пољем код неуједињених прелома и неуспешних артродеза. Ј Ам Мед Ассоц 247:623-628.

Бассетт, ЦАЛ, РЈ Павлук и АА Пилла. 1974. Повећање поправке кости индуктивно спрегнутим електромагнетним пољима. Сциенце 184:575-577.

Бергер, Д, Ф Урбах и РЕ Давиес. 1968. Спектар деловања еритема изазваног ултраљубичастим зрачењем. У Прелиминарном извештају КСИИИ. Цонгрессус Интернатионалис Дерматологиае, Минхен, уредник В Јадассохн и ЦГ Сцхиррен. Њујорк: Спрингер-Верлаг.

Бернхардт, ЈХ. 1988а. Успостављање фреквенцијско зависних граница за електрична и магнетна поља и процена индиректних ефеката. Рад Енвир Биофиз 27:1.

Бернхардт, ЈХ и Р Маттхес. 1992. ЕЛФ и РФ електромагнетни извори. У Заштити од нејонизујућег зрачења, уредник МВ Греене. Ванкувер: УБЦ Пресс.

Бини, М, А Цхеццуцци, А Игнести, Л Милланта, Р Олми, Н Рубино и Р Ванни. 1986. Изложеност радника интензивним РФ електричним пољима која цуре из пластичних заптивача. Ј Мицроваве Повер 21:33-40.

Бухр, Е, Е Суттер и Холандски здравствени савет. 1989. Динамички филтери за заштитне уређаје. У Дозиметрији ласерског зрачења у медицини и биологији, уредник ГЈ Муеллер и ДХ Слинеи. Беллингхам, Васх: СПИЕ.

Завод за радиолошко здравље. 1981. Ан Евалуатион оф Радиатион Емиссион фром Видео Дисплаи Терминалс. Роцквилле, МД: Биро за радиолошко здравље.

Цлеует, А и А Маиер. 1980. Рискуес лиес а л'утилисатион индустриелле дес ласерс. У Институт Натионал де Рецхерцхе ет де Сецурите, Цахиерс де Нотес Доцументаирес, Но. 99 Парис: Институт Натионал де Рецхерцхе ет де Сецурите.

Цоблентз, ВР, Р Стаир и ЈМ Хогуе. 1931. Спектрални еритемски однос коже према ултраљубичастом зрачењу. У Процеедингс оф тхе Натионал Ацадеми оф Сциенцес оф тхе Унитед Статес оф Америца Васхингтон, ДЦ: Натионал Ацадеми оф Сциенцес.

Цоле, ЦА, ДФ Форбес и ПД Давиес. 1986. Спектар деловања за УВ фотокарциногенезу. Пхотоцхем Пхотобиол 43(3):275-284.

Комисија Интернатионале де Л'Ецлаираге (ЦИЕ). 1987. Међународни речник осветљења. Беч: ЦИЕ.

Цуллен, АП, БР Цхоу, МГ Халл и СЕ Јани. 1984. Ултравиолет-Б оштећује ендотел рожњаче. Ам Ј Оптом Пхис Опт 61(7):473-478.

Дуцхене, А, Ј Лакеи и М Репацхоли. 1991. ИРПА смјернице о заштити од нејонизујућег зрачења. Њујорк: Пергамон.

Елдер, ЈА, ПА Цзерки, К Стуцхли, К Ханссон Милд и АР Схеппард. 1989. Радиофреквентно зрачење. У Заштити од нејонизујућег зрачења, коју су уредили МЈ Суесс и ДА Бенвелл-Морисон. Женева: СЗО.

Ериксен, П. 1985. Временски разрешени оптички спектри од паљења лука МИГ заваривањем. Ам Инд Хиг Ассоц Ј 46:101-104.

Еверетт, МА, РЛ Олсен и РМ Саиер. 1965. Ултраљубичасти еритем. Арцх Дерматол 92:713-719.

Фитзпатрицк, ТБ, МА Патхак, ЛЦ Харбер, М Сеији, анд А Кукита. 1974. Сунчева светлост и човек, нормални и абнормални фотобиолошки одговори. Токио: Унив. Токио Пресс.

Форбес, ПД и ПД Давиес. 1982. Фактори који утичу на фотокарциногенезу. Погл. 7 у фотоимунологији, уредили ЈАМ Паррисх, Л Крипке и ВЛ Морисон. Њујорк: Пленум.

Фрееман, РС, ДВ Овенс, ЈМ Кнок и ХТ Худсон. 1966. Релативни енергетски захтеви за еритемски одговор коже на монохроматске таласне дужине ултраљубичастог присутног у сунчевом спектру. Ј Инвест Дерматол 47:586-592.

Грандолфо, М и К Ханссон Милд. 1989. Светска јавна и професионална радиофреквентна и микроталасна заштита. У електромагнетној биоинтеракцији. Механизми, безбедносни стандарди, водичи за заштиту, уредили Г. Францесцхетти, ОП Гандхи и М. Грандолфо. Њујорк: Пленум.

Греене, МВ. 1992. Нејонизујуће зрачење. 2. Међународна радионица о нејонизујућем зрачењу, 10-14. маја, Ванкувер.

Шунка, ВТЈ. 1989. Фотопатологија и природа лезије мрежњаче плаве светлости и скоро УВ зрачења произведене ласерима и другим оптичким изворима. У Ласер Апплицатионс ин Медицине анд Биологи, уредник МЛ Волбарсхт. Њујорк: Пленум.

Хам, ВТ, ХА Муеллер, ЈЈ Руффоло, Д Гуерри ИИИ и РК Гуерри. 1982. Спектар деловања за повреду мрежњаче од скоро ултраљубичастог зрачења код афакичног мајмуна. Ам Ј Опхтхалмол 93(3):299-306.

Ханссон Милд, К. 1980. Професионална изложеност радио-фреквентним електромагнетним пољима. Проц ИЕЕЕ 68:12-17.

Хауссер, КВ. 1928. Утицај таласне дужине у биологији зрачења. Страхлентхерапие 28:25-44.

Институт електротехничких и електронских инжењера (ИЕЕЕ). 1990а. ИЕЕЕ ЦОМАР Положај РФ и микроталаса. Њујорк: ИЕЕЕ.

—. 1990б. ИЕЕЕ ЦОМАР изјава о ставу о здравственим аспектима изложености електричним и магнетним пољима од РФ заптивача и диелектричних грејача. Њујорк: ИЕЕЕ.

—. 1991. ИЕЕЕ стандард за нивое безбедности у погледу излагања људи радиофреквентним електромагнетним пољима од 3 КХз до 300 ГХз. Њујорк: ИЕЕЕ.

Међународна комисија за заштиту од нејонизујућег зрачења (ИЦНИРП). 1994. Смернице о границама излагања статичким магнетним пољима. Хеалтх Пхис 66:100-106.

—. 1995. Смернице за границе излагања људи ласерском зрачењу.

ИЦНИРП изјава. 1996. Здравствена питања везана за употребу ручних радиотелефона и базних предајника. Здравствена физика, 70:587-593.

Међународна електротехничка комисија (ИЕЦ). 1993. ИЕЦ стандард бр. 825-1. Женева: ИЕЦ.

Међународна канцеларија рада (ИЛО). 1993а. Заштита од електричних и магнетних поља фреквенције снаге. Серија о безбедности и здрављу на раду, бр. 69. Женева: ИЛО.

Међународно удружење за заштиту од зрачења (ИРПА). 1985. Смернице за границе излагања људи ласерском зрачењу. Хеалтх Пхис 48(2):341-359.

—. 1988а. Промена: Препоруке за мања ажурирања ИРПА 1985 смерница о границама изложености ласерском зрачењу. Хеалтх Пхис 54(5):573-573.

—. 1988б. Смернице о границама излагања радиофреквентним електромагнетним пољима у фреквенцијском опсегу од 100 кХз до 300 ГХз. Хеалтх Пхис 54:115-123.

—. 1989. Предложена промена смерница ИРПА 1985 о границама изложености ултраљубичастом зрачењу. Хеалтх Пхис 56(6):971-972.

Међународно удружење за заштиту од зрачења (ИРПА) и Међународни комитет за нејонизујуће зрачење. 1990. Привремене смернице о границама излагања електричним и магнетним пољима од 50/60 Хз. Хеалтх Пхис 58(1):113-122.

Колмодин-Хедман, Б, К Хансон Милд, Е Јонсон, МЦ Андерсон и А Ериксон. 1988. Здравствени проблеми у раду машина за заваривање пластике и излагање радиофреквентним електромагнетним пољима. Инт Арцх Оццуп Енвирон Хеалтх 60:243-247.

Краусе, Н. 1986. Изложеност људи статичним и временски променљивим магнетним пољима у технологији, медицини, истраживању и јавном животу: дозиметријски аспекти. У Биолошким ефектима статичких и ЕЛФ-магнетних поља, приредио ЈХ Бернхардт. Минхен: ММВ Медизин Верлаг.

Ловсунд, П и КХ Милд. 1978. Нискофреквентно електромагнетно поље у близини неких индукционих грејача. Стоцкхолм: Стоцкхолм Боард оф Оццупатионал Хеалтх анд Сафети.

Ловсунд, П, ПА Оберг и СЕГ Нилссон. 1982. ЕЛФ магнетна поља у индустрији електрочелика и заваривања. Радио Сци 17(5С):355-385.

Луцкиесх, МЛ, Л Холладаи и АХ Таилор. 1930. Реакција нештављене људске коже на ултраљубичасто зрачење. Ј Оптиц Соц Ам 20:423-432.

МцКинлаи, АФ и Б Диффеи. 1987. Референтни спектар деловања за ултраљубичастим индукованим еритемом на људској кожи. У Изложеност људи ултраљубичастом зрачењу: ризици и прописи, приредили ВФ Пассцхиер и БФМ Бошњаковић. Нев Иорк: Екцерпта медица Дивисион, Елсевиер Сциенце Публисхерс.

МцКинлаи, А, ЈБ Андерсен, ЈХ Бернхардт, М Грандолфо, КА Хоссманн, ФЕ ван Лееувен, К Ханссон Милд, АЈ Свердлов, Л Версцхаеве и Б Веирет. Предлог истраживачког програма Експертске групе Европске комисије. Могући здравствени ефекти у вези са употребом радиотелефона. Необјављени извештај.

Митбриет, ИМ и ВД Маниацхин. 1984. Утицај магнетних поља на поправку кости. Москва, Наука, 292-296.

Национални савет за заштиту од зрачења и мерења (НЦРП). 1981. Радиофреквентна електромагнетна поља. Особине, количине и јединице, биофизичка интеракција и мерења. Бетхесда, МД: НЦРП.

—. 1986. Биолошки ефекти и критеријуми излагања радиофреквентним електромагнетним пољима. Извештај бр. 86. Бетхесда, МД: НЦРП.

Национални одбор за радиолошку заштиту (НРПБ). 1992. Електромагнетна поља и ризик од рака. Вол. 3(1). Чилтон, УК: НРПБ.

—. 1993. Ограничења излагања људи статичким и временски променљивим електромагнетним пољима и зрачењима. Дидкот, УК: НРПБ.

Национални истраживачки савет (НРЦ). 1996. Могући здравствени ефекти изложености стамбеним електричним и магнетним пољима. Вашингтон: НАС Пресс. 314.

Олсен, ЕГ и А Рингволд. 1982. Ендотел рожњаче човека и ултраљубичасто зрачење. Ацта Офтхалмол 60:54-56.

Паррисх, ЈА, КФ Јаеницке, анд РР Андерсон. 1982. Еритем и меланогенеза: Акциони спектри нормалне људске коже. Пхотоцхем Пхотобиол 36(2):187-191.

Пассцхиер, ВФ и БФМ Бошњаковић. 1987. Изложеност људи ултраљубичастом зрачењу: ризици и прописи. Њујорк: Екцерпта Медица Дивисион, Елсевиер Сциенце Публисхерс.

Питтс, ДГ. 1974. Људски ултраљубичасти спектар деловања. Ам Ј Оптом Пхис Опт 51(12):946-960.

Питтс, ДГ и ТЈ Тредици. 1971. Ефекти ултраљубичастог зрачења на око. Ам Инд Хиг Ассоц Ј 32(4):235-246.

Питтс, ДГ, АП Цуллен и ПД Хацкер. 1977а. Очни ефекти ултраљубичастог зрачења од 295 до 365 нм. Инвест Опхтхалмол Вис Сци 16(10):932-939.

—. 1977б. Ултраљубичасти ефекти од 295 до 400 нм у зечјем оку. Синсинати, Охајо: Национални институт за безбедност и здравље на раду (НИОСХ).

Полк, Ц и Е Постов. 1986. ЦРЦ Хандбоок оф Биологицал Еффецтс оф Елецтромагнетиц Фиелдс. Боца Ратон: ЦРЦ Пресс.

Репацхоли, МХ. 1985. Видео терминали за приказ – да ли оператери треба да буду забринути? Аусталас Пхис Енг Сци Мед 8(2):51-61.

—. 1990. Рак од излагања електричним и магнетним пољима од 50760 Хз: велика научна дебата. Аусталас Пхис Енг Сци Мед 13(1):4-17.

Репацхоли, М, А Бастен, В Гебски, Д Ноонан, Ј Финниц и АВ Харрис. 1997. Лимфоми код Е-Пим1 трансгених мишева изложених импулсним електромагнетним пољима од 900 МХз. Радиатион ресеарцх, 147:631-640.

Рилеи, МВ, С Сусан, МИ Петерс и ЦА Сцхвартз. 1987. Ефекти УВБ зрачења на ендотел рожњаче. Цурр Еие Рес 6(8):1021-1033.

Рингволд, А. 1980а. Рожњача и ултраљубичасто зрачење. Ацта Опхтхалмол 58:63-68.

—. 1980б. Очна водица и ултраљубичасто зрачење. Ацта Офтхалмол 58:69-82.

—. 1983. Оштећење епитела рожњаче изазвано ултраљубичастим зрачењем. Ацта Опхтхалмол 61:898-907.

Рингволд, А и М Давангер. 1985. Промене у строми рожњаче кунића изазване УВ зрачењем. Ацта Опхтхалмол 63:601-606.

Рингволд, А, М Давангер и ЕГ Олсен. 1982. Промене ендотела рожњаче после ултраљубичастог зрачења. Ацта Офтхалмол 60:41-53.

Робертс, Њ и СМ Мицхаелсон. 1985. Епидемиолошке студије о изложености људи радиофреквентном зрачењу: критички преглед. Инт Арцх Оццуп Енвирон Хеалтх 56:169-178.

Рои, ЦР, КХ Јоинер, ХП Гиес и МЈ Бангаи. 1984. Мерење електромагнетног зрачења емитованог из терминала за визуелни приказ (ВДТ). Рад Прот Аустрал 2(1):26-30.

Сцотто, Ј, ТР Феарс и ГБ Гори. 1980. Меасурементс оф Ултравиолет Радиатионс ин тхе Унитед Статес анд Цомпарисонс витх Скин Цанцер Дата. Вашингтон, ДЦ: Штампарија владе САД.

Сиенкиевицз, ЗЈ, РД Саундер и ЦИ Ковалцзук. 1991. Биолошки ефекти излагања нејонизујућим електромагнетним пољима и зрачењу. 11 Електрична и магнетна поља екстремно ниске фреквенције. Дидкот, УК: Национални одбор за заштиту од зрачења.

Силверман, Ц. 1990. Епидемиолошке студије рака и електромагнетних поља. У Погл. 17 у Биолошки ефекти и медицинске примене електромагнетне енергије, уредник ОП Гандхи. Енгелвоод Цлиффс, Њ: Прентице Халл.

Слинеи, ДХ. 1972. Заслуге спектра деловања омотача за критеријуме излагања ултраљубичастом зрачењу. Ам Инд Хиг Ассоц Ј 33:644-653.

—. 1986. Физички фактори у катарактогенези: Амбијентално ултраљубичасто зрачење и температура. Инвест Опхтхалмол Вис Сци 27(5):781-790.

—. 1987. Процена изложености сунчевом ултраљубичастом зрачењу имплантата интраокуларног сочива. Ј Цатарацт Рефрацт Сург 13(5):296-301.

—. 1992. Водич за менаџера безбедности за нове филтере за заваривање. Заваривање Ј 71(9):45-47.
Слинеи, ДХ и МЛ Волбарсхт. 1980. Безбедност са ласерима и другим оптичким изворима. Њујорк: Пленум.

Стенсон, С. 1982. Очни налази у пигментозној ксеродерми: Извештај о два случаја. Анн Офтхалмол 14(6):580-585.

Стеренборг, ХЈЦМ и ЈЦ ван дер Леун. 1987. Спектри деловања за туморигенезу ултраљубичастим зрачењем. У Изложеност људи ултраљубичастом зрачењу: ризици и прописи, приредили ВФ Пассцхиер и БФМ Бошњаковић. Њујорк: Екцерпта Медица Дивисион, Елсевиер Сциенце Публисхерс.

Стуцхли, МА. 1986. Изложеност људи статичним и временски променљивим магнетним пољима. Хеалтх Пхис 51(2):215-225.

Стуцхли, МА и ДВ Лецуиер. 1985. Индукционо загревање и излагање руковаоца електромагнетним пољима. Хеалтх Пхис 49:693-700.

—. 1989. Излагање електромагнетним пољима у електролучном заваривању. Хеалтх Пхис 56:297-302.

Сзмигиелски, С, М Биелец, С Липски и Г Соколска. 1988. Имунолошки и рак повезани аспекти изложености микроталасним и радиофреквентним пољима ниског нивоа. У Модерн Биоелецтрицити, уредник АА Марио. Њујорк: Марсел Декер.

Таилор, ХР, СК Вест, ФС Росентхал, Б Муноз, ХС Невланд, Х Аббеи и ЕА Емметт. 1988. Утицај ултраљубичастог зрачења на формирање катаракте. Нев Енгл Ј Мед 319:1429-1433.

Реци, РА. 1983. Инструментација за мерење електромагнетних поља: опрема, калибрације и одабране примене. У Биолошким ефектима и дозиметрији нејонизујућег зрачења, радиофреквенције и микроталасне енергије, приредили М Грандолфо, СМ Мицхаелсон и А Ринди. Њујорк: Пленум.

Урбацх, Ф. 1969. Биолошки ефекти ултраљубичастог зрачења. Њујорк: Пергамон.

Светска здравствена организација (СЗО). 1981. Радиофреквенција и микроталаси. Критеријуми здравља животне средине, бр.16. Женева: СЗО.

—. 1982. Ласери и оптичко зрачење. Енвиронментал Хеалтх Цритериа, Но. 23. Женева: СЗО.

—. 1987. Магнетна поља. Критеријуми здравља животне средине, бр.69. Женева: СЗО.

—. 1989. Заштита од нејонизујућег зрачења. Копенхаген: Регионална канцеларија СЗО за Европу.

—. 1993. Електромагнетна поља 300 Хз до 300 ГХз. Енвиронментал Хеалтх Цритериа, Но. 137. Женева: СЗО.

—. 1994. Ултраљубичасто зрачење. Енвиронментал Хеалтх Цритериа, Но. 160. Женева: СЗО.

Светска здравствена организација (СЗО), Програм Уједињених нација за животну средину (УНЕП) и Међународно удружење за заштиту од зрачења (ИРПА). 1984. Екстремно ниске фреквенције (ЕЛФ). Енвиронментал Хеалтх Цритериа, Но. 35. Женева: СЗО.

Заффанелла, ЛЕ и ДВ ДеНо. 1978. Електростатички и електромагнетски ефекти ултрависоконапонских далековода. Пало Алто, Калифорнија: Институт за истраживање електричне енергије.

Зуцлицх, ЈА и ЈС Цоннолли. 1976. Оштећење ока изазвано скоро ултраљубичастим ласерским зрачењем. Инвест Опхтхалмол Вис Сци 15(9):760-764.