Среда, март КСНУМКС КСНУМКС КСНУМКС: КСНУМКС

Топљење и прерада бакра, олова и цинка

Оцените овај артикал
(КСНУМКС гласова)

Адаптирано из ЕПА 1995.

Бакар

Бакар се копа иу отвореним и подземним рудницима, у зависности од квалитета руде и природе лежишта руде. Руда бакра обично садржи мање од 1% бакра у облику сулфидних минерала. Када се руда извуче изнад земље, она се дроби и меље до финоће у праху, а затим се концентрише за даљу прераду. У процесу концентровања, млевена руда се муља са водом, додају се хемијски реагенси и ваздух се дува кроз суспензију. Мехурићи ваздуха се везују за минерале бакра и затим се скидају са врха флотационих ћелија. Концентрат садржи између 20 и 30% бакра. Јаловина, или минерали из руде, падају на дно ћелија и уклањају се, одводњавају помоћу згушњивача и транспортују се као суспензија у јаловиште ради одлагања. Сва вода која се користи у овој операцији, из згушњивача за одводњавање и јаловишта, се обнавља и рециклира назад у процес.

Бакар се може производити пирометалуршки или хидрометалуршки у зависности од врсте руде која се користи као пуњење. Концентрати руде, који садрже бакар сулфид и минерале гвожђе сулфида, обрађују се пирометалуршким процесима да би се добили бакарни производи високе чистоће. Оксидне руде, које садрже минерале оксида бакра који се могу појавити у другим деловима рудника, заједно са другим оксидованим отпадним материјалима, третирају се хидрометалуршким процесима како би се добили производи бакра високе чистоће.

Претварање бакра из руде у метал се остварује топљењем. Током топљења концентрати се суше и упућују у једну од неколико различитих врста пећи. Тамо се сулфидни минерали делимично оксидују и топе да би се добио слој мат, мешани бакар-гвожђе сулфид и шљака, горњи слој отпада.

Мат се даље обрађује претварањем. Шљака се извлачи из пећи и складишти или одбацује у гомиле шљаке на лицу места. Мала количина шљаке се продаје за железнички баласт и за пескарење. Трећи производ процеса топљења је сумпор диоксид, гас који се сакупља, пречишћава и претвара у сумпорну киселину за продају или за употребу у операцијама хидрометалуршког лужења.

Након топљења, бакарни мат се доводи у претварач. Током овог процеса бакарни мат се сипа у хоризонталну цилиндричну посуду (приближно 10º4 м) опремљену низом цеви. Цеви, познате као туиерес, излазе у цилиндар и користе се за увођење ваздуха у претварач. Креч и силицијум се додају у бакарни мат да би реаговали са оксидом гвожђа који настаје у процесу да би се формирала шљака. У конвертор се може додати и отпадни бакар. Пећ се ротира тако да су фуруне потопљене, а ваздух се удувава у растопљени мат, што доводи до тога да остатак гвожђе сулфида реагује са кисеоником да би се формирао гвожђе оксид и сумпор диоксид. Затим се претварач ротира да би се излила гвоздена силикатна шљака.

Када се сво гвожђе уклони, претварач се окреће назад и добија други удар ваздуха током којег се остатак сумпора оксидује и уклања из бакарног сулфида. Конвертор се затим ротира да би се излио растопљени бакар, који се у овом тренутку назива блистер бакар (тако назван јер ако се дозволи да се у овом тренутку очврсне, имаће неравну површину због присуства гасовитог кисеоника и сумпора). Сумпор диоксид из претварача се сакупља и доводи у систем за пречишћавање гаса заједно са оним из пећи за топљење и претвара у сумпорну киселину. Због свог заосталог садржаја бакра, шљака се рециклира назад у пећ за топљење.

Блистер бакар, који садржи најмање 98.5% бакра, рафинише се у бакар високе чистоће у два корака. Први корак је рафинација ватре, у којој се растопљени блистер бакар сипа у цилиндричну пећ, по изгледу сличну претварачу, где се прво ваздух, а затим природни гас или пропан дувају кроз растоп да би се уклонио последњи сумпор и све преостали кисеоник из бакра. Истопљени бакар се затим сипа у точак за ливење да би се формирале аноде довољно чисте за електрорафинацију.

У електрорафинацији, бакарне аноде се стављају у електролитичке ћелије и међусобно се постављају са почетним листовима бакра, или катодама, у кади са раствором бакар сулфата. Када се једносмерна струја прође кроз ћелију, бакар се раствара из аноде, транспортује кроз електролит и поново се таложи на почетним листовима катоде. Када се катоде нагомилају до довољне дебљине, уклањају се из електролитичке ћелије и на њихово место се ставља нови сет почетних листова. Чврсте нечистоће у анодама падају на дно ћелије као муљ где се на крају сакупљају и обрађују за опоравак племенитих метала као што су злато и сребро. Овај материјал је познат као анодна слуз.

Катоде уклоњене из електролитичке ћелије су примарни производ произвођача бакра и садрже 99.99% бакра. Они се могу продати млиновима за жичану шипку као катоде или даље прерађивати у производ који се зове шипка. У производњи шипке, катоде се топе у осовинској пећи и растопљени бакар се сипа на ливени точак да би се формирала шипка погодна за ваљање у непрекидну шипку пречника 3/8 инча. Овај штапни производ се шаље у млинове жице где се екструдира у различите величине бакарне жице.

У хидрометалуршком процесу, оксидоване руде и отпадни материјали се излужују сумпорном киселином из процеса топљења. Изводи се лужење на лицу места, или у посебно припремљеним гомилама дистрибуцијом киселине преко врха и омогућавањем да процури кроз материјал где се сакупља. Тло испод јастучића за испирање је обложено киселином отпорном, непропусном пластиком како би се спречило да течност за испирање контаминира подземне воде. Када се сакупе раствори богати бакром, они се могу обрадити било којим од два процеса—поступком цементације или процесом екстракције растварача/електропроцесом (СКСЕВ). У процесу цементације (који се данас ретко користи), бакар у киселом раствору се одлаже на површину старог гвожђа у замену за гвожђе. Када је довољно бакра цементирано, гвожђе богато бакром се ставља у топионицу заједно са концентратима руде за добијање бакра пирометалуршким путем.

У процесу СКСЕВ, раствор за излуживање (ПЛС) се концентрише екстракцијом растварачем, који екстрахује бакар, али не и нечистоће метала (гвожђе и друге нечистоће). Органски раствор напуњен бакром се затим одваја од процедне воде у резервоару за таложење. Сумпорна киселина се додаје у бремениту органску смешу, која одваја бакар у електролитички раствор. Процедна вода, која садржи гвожђе и друге нечистоће, враћа се у операцију лужења где се њена киселина користи за даље испирање. Раствор траке богат бакром се пропушта у електролитичку ћелију познату као ћелија за победнике. Ћелија за електропобедништво се разликује од ћелије за електрорафинацију по томе што користи трајну, нерастворљиву аноду. Бакар у раствору се затим ставља на почетну катоду на исти начин као што је на катоди у ћелији за електрорафинацију. Електролит осиромашен бакром се враћа у процес екстракције растварачем где се користи за уклањање више бакра из органског раствора. Катоде произведене у процесу електро-рафинирања се затим продају или праве у шипке на исти начин као и оне произведене у процесу електрорафинирања.

Ћелије за електроликовање се такође користе за припрему почетних листова и за процесе електрорафинирања и за процесе електроличења тако што се бакар нанесе на катоде од нерђајућег челика или титанијума, а затим се скине обложени бакар.

Опасности и њихова превенција

Главне опасности су излагање рудној прашини током прераде и топљења руде, испарења метала (укључујући бакар, олово и арсен) током топљења, сумпор диоксид и угљен моноксид током већине операција топљења, бука од операција дробљења и млевења и из пећи, топлотни стрес од пећи и сумпорна киселина и електричне опасности током електролитских процеса.

Мере предострожности укључују: ЛЕВ за прашину током операција преноса; локални одвод и вентилација за разблаживање сумпор-диоксида и угљен-моноксида; програм контроле буке и заштите слуха; заштитна одећа и штитници, паузе за одмор и течности за топлотни стрес; и ЛЕВ, ППЕ и електричне мере предострожности за електролитичке процесе. Заштита за дисање се обично носи за заштиту од прашине, испарења и сумпор-диоксида.

Табела 1 наводи загађиваче животне средине за различите кораке топљења и рафинације бакра.

Табела 1. Улази у процесне материјале и излази загађења за топљење и рафинацију бакра

Процес

Унос материјала

Емисије у ваздух

Процесни отпад

Остали отпад

Концентрација бакра

Руда бакра, вода, хемијски реагенси, згушњивачи

 

Флотацијске отпадне воде

Јаловина која садржи отпадне минерале као што су кречњак и кварц

Испирање бакра

Концентрат бакра, сумпорна киселина

 

Неконтролисана процедна вода

Отпад који се излужује на гомиле

Топљење бакра

Концентрат бакра, силицијумски флукс

Сумпор диоксид, честице које садрже арсен, антимон, кадмијум, олово, живу и цинк

 

Муљ/муљ, шљака која садржи гвожђе сулфиде, силицијум диоксид

Конверзија бакра

Бакар мат, отпадни бакар, силицијумски флукс

Сумпор диоксид, честице које садрже арсен, антимон, кадмијум, олово, живу и цинк

 

Муљ/муљ, шљака која садржи гвожђе сулфиде, силицијум диоксид

Електролитичка рафинација бакра

Блистер бакар, сумпорна киселина

   

Слузи који садрже нечистоће као што су злато, сребро, антимон, арсен, бизмут, гвожђе, олово, никл, селен, сумпор и цинк

 

Довести

Примарни процес производње олова састоји се од четири корака: синтеровање, топљење, дроссинг и пирометалуршка рафинација. За почетак, сировина која се састоји углавном од концентрата олова у облику оловног сулфида се убацује у машину за синтеровање. Могу се додати и друге сировине укључујући гвожђе, силицијум диоксид, кречњак, кокс, соду, пепео, пирит, цинк, каустик и честице прикупљене из уређаја за контролу загађења. У машини за синтеровање оловна сировина је подвргнута ударима топлог ваздуха који сагоревају сумпор, стварајући сумпор-диоксид. Материјал од оловног оксида који постоји након овог процеса садржи око 9% своје тежине у угљенику. Синтер се затим доводи заједно са коксом, разним рециклираним материјалима и материјалима за чишћење, кречњаком и другим агенсима за флуксирање у високу пећ за редукцију, где угљеник делује као гориво и топи или топи оловни материјал. Истопљено олово тече до дна пећи где се формирају четири слоја: „спеисс“ (најлакши материјал, у основи арсен и антимон); "мат" (бакар сулфид и други сулфиди метала); шљака високе пећи (првенствено силикати); и олово у полугама (98% олова, по тежини). Сви слојеви се затим одводе. Шпејс и мат се продају топионицама бакра за добијање бакра и племенитих метала. Шљака високе пећи која садржи цинк, гвожђе, силицијум и креч се складишти у гомилама и делимично се рециклира. Емисије сумпор оксида се стварају у високим пећима из малих количина заосталог оловног сулфида и оловних сулфата у извору за синтеровање.

Грубо олово из високе пећи обично захтева прелиминарну обраду у котлићима пре него што се подвргне операцијама рафинације. Током бацања, полуга се меша у котлићу за отпатке и хлади се на тачно изнад тачке смрзавања (370 до 425°Ц). Шљунак, који се састоји од оловног оксида, заједно са бакром, антимоном и другим елементима, плута на врх и очвршћава се изнад растопљеног олова.

Шљунак се уклања и убацује у пећ за шљаку ради добијања неоловних корисних метала. Да би се побољшао опоравак бакра, дроссед олово у полугама се третира додавањем материјала који садрже сумпор, цинка и/или алуминијума, снижавајући садржај бакра на приближно 0.01%.

Током четвртог корака, полуга олова се рафинише пирометалуршким методама како би се уклонили сви преостали материјали који се не могу продати (нпр. злато, сребро, бизмут, цинк и оксиди метала као што су антимон, арсен, калај и оксид бакра). Олово се рафинише у котлићу од ливеног гвожђа у пет фаза. Прво се уклањају антимон, калај и арсен. Затим се додаје цинк и уклања се злато и сребро у цинкову шљаку. Затим се олово рафинише вакуумским уклањањем (дестилацијом) цинка. Рафинација се наставља додатком калцијума и магнезијума. Ова два материјала се комбинују са бизмутом и формирају нерастворљиво једињење које се уклања из котлића. У завршном кораку каустична сода и/или нитрати се могу додати у олово да би се уклонили сви преостали трагови металних нечистоћа. Рафинирано олово ће имати чистоћу од 99.90 до 99.99% и може се мешати са другим металима да би се формирале легуре или се може директно ливети у облике.

Опасности и њихова превенција

Главне опасности су излагање рудној прашини током прераде и топљења руде, испарења метала (укључујући олово, арсен и антимон) током топљења, сумпор диоксид и угљен моноксид током већине операција топљења, бука од операција млевења и дробљења и из пећи и топлотни стрес из пећи.

Мере предострожности укључују: ЛЕВ за прашину током операција преноса; локални одвод и вентилација за разблаживање сумпор-диоксида и угљен-моноксида; програм контроле буке и заштите слуха; и заштитна одећа и штитници, паузе за одмор и течности за топлотни стрес. Заштита за дисање се обично носи за заштиту од прашине, испарења и сумпор-диоксида. Биолошко праћење олова је неопходно.

Табела 2 наводи загађиваче животне средине за различите кораке топљења и рафинације олова.

Табела 2. Улази у процесне материјале и излази загађења за топљење и рафинацију олова

Процес

Унос материјала

Емисије у ваздух

Процесни отпад

Остали отпад

Синтеровање олова

Оловна руда, гвожђе, силицијум, кречњачки флукс, кокс, сода, пепео, пирит, цинк, каустик, врећаста прашина

Сумпор диоксид, честице које садрже кадмијум и олово

   

Топљење олова

Оловни синтер, кокс

Сумпор диоксид, честице које садрже кадмијум и олово

Отпадне воде за испирање биљака, вода за гранулацију шљаке

Шљака која садржи нечистоће као што су цинк, гвожђе, силицијум диоксид и креч, чврсте материје од површинских захвата

Одлагање олова

Олово у полугама, сода пепео, сумпор, врећаста прашина, кокс

   

Шљака која садржи нечистоће као што је бакар, чврсте материје површинских наталожених

Рафинирање олова

Оловна полуга

     

 

цинк

Концентрат цинка се производи одвајањем руде, која може садржати само 2% цинка, од отпадне стене дробљењем и флотацијом, процес који се обично изводи на локацији рударства. Концентрат цинка се затим редукује у метални цинк на један од два начина: или пирометалуршки дестилацијом (ретортирање у пећи) или хидрометалуршки електро-вађењем. Ово последње чини око 80% укупне рафинације цинка.

Четири фазе прераде се генерално користе у хидрометалуршкој рафинацији цинка: калцинација, лужење, пречишћавање и електро-вађење. Калцинирање, или печење, је процес на високој температури (700 до 1000 °Ц) који претвара концентрат цинк сулфида у нечисти цинк оксид који се зове калцин. Типови печења укључују више ложишта, суспензију или флуидизовани слој. Генерално, калцинација почиње мешањем материјала који садрже цинк са угљем. Ова смеша се затим загрева, или пржи, да би испарио цинк оксид који се затим помера из реакционе коморе са резултујућом гасном струјом. Струја гаса се усмерава у простор за врело (филтер) где се цинк оксид хвата у прашину из вреће.

Сви процеси калцинације стварају сумпор-диоксид, који се контролише и претвара у сумпорну киселину као нуспроизвод процеса који се може продати.

Електролитичка обрада десулфуризованог калцина састоји се од три основна корака: лужење, пречишћавање и електролиза. Излуживање се односи на растварање заробљеног калцина у раствору сумпорне киселине да би се формирао раствор цинк сулфата. Калцин се може испрати једном или два пута. У методи двоструког лужења, калцин се раствара у благо киселом раствору да би се уклонили сулфати. Калцин се затим испира други пут у јачем раствору који раствара цинк. Овај други корак лужења је заправо почетак трећег корака пречишћавања јер многе нечистоће гвожђа испадају из раствора као и цинк.

Након испирања, раствор се пречишћава у две или више фаза додавањем цинкове прашине. Раствор се пречишћава док прашина тера штетне елементе да се таложе тако да се могу филтрирати. Пречишћавање се обично врши у великим резервоарима за мешање. Процес се одвија на температурама у распону од 40 до 85°Ц и притисцима у распону од атмосферских до 2.4 атмосфере. Елементи добијени током пречишћавања укључују бакар као колач и кадмијум као метал. Након пречишћавања раствор је спреман за последњи корак, електро-победу.

Електронско добијање цинка се одвија у електролитичкој ћелији и укључује покретање електричне струје из аноде од легуре олова и сребра кроз водени раствор цинка. Овај процес пуни суспендовани цинк и тера га да се таложи на алуминијумску катоду која је уроњена у раствор. Сваких 24 до 48 сати, свака ћелија се гаси, катоде обложене цинком се уклањају и испиру, а цинк се механички уклања са алуминијумских плоча. Концентрат цинка се затим топи и лијева у инготе и често има чак 99.995% чистоће.

Електролитичке топионице цинка садрже чак неколико стотина ћелија. Део електричне енергије се претвара у топлоту, што повећава температуру електролита. Електролитичке ћелије раде на температурама од 30 до 35°Ц при атмосферском притиску. Током електро-освајања, део електролита пролази кроз расхладне торњеве да би смањио своју температуру и да би испарио воду коју сакупља током процеса.

Опасности и њихова превенција

Главне опасности су излагање рудној прашини током обраде и топљења руде, испарења метала (укључујући цинк и олово) током рафинације и печења, сумпор-диоксида и угљен-моноксида током већине операција топљења, бука од операција дробљења и млевења и из пећи, топлотни стрес од пећи и сумпорна киселина и електричне опасности током електролитских процеса.

Мере предострожности укључују: ЛЕВ за прашину током операција преноса; локални одвод и вентилација за разблаживање сумпор-диоксида и угљен-моноксида; програм контроле буке и заштите слуха; заштитна одећа и штитници, паузе за одмор и течности за топлотни стрес; и ЛЕВ, ППЕ и електричне мере предострожности за електролитичке процесе. Заштита за дисање се обично носи за заштиту од прашине, испарења и сумпор-диоксида.

Табела 3 наводи загађиваче животне средине за различите кораке у топљењу и рафинацији цинка.

Табела 3. Улази у процесне материјале и излази загађења за топљење и рафинацију цинка

Процес

Унос материјала

Емисије у ваздух

Процесни отпад

Остали отпад

Калцинирање цинка

Руда цинка, кокс

Сумпор диоксид, честице које садрже цинк и олово

 

Муљ за издувавање киселих биљака

Испирање цинка

Калцин цинка, сумпорна киселина, кречњак, истрошени електролит

 

Отпадне воде које садрже сумпорну киселину

 

Пречишћавање цинка

Раствор цинкове киселине, цинкова прашина

 

Отпадне воде које садрже сумпорну киселину, гвожђе

Бакарна торта, кадмијум

Цинк елецтровиннинг

Цинк у сумпорној киселини/воденом раствору, аноде од легуре олова и сребра, катоде алуминијума, баријум карбонат или стронцијум, колоидни адитиви

 

Разблажена сумпорна киселина

Слуз/муљ електролитичких ћелија

 

Назад

Читати 22723 пута Последња измена среда, 10 август 2011 23:11

" ОДРИЦАЊЕ ОД ОДГОВОРНОСТИ: МОР не преузима одговорност за садржај представљен на овом веб порталу који је представљен на било ком другом језику осим енглеског, који је језик који се користи за почетну производњу и рецензију оригиналног садржаја. Одређене статистике нису ажуриране од продукција 4. издања Енциклопедије (1998).“

Садржај

Референце за прераду метала и металопрерађивачку индустрију

Буоницоре, АЈ и ВТ Давис (ур.). 1992. Инжењерски приручник за загађење ваздуха. Њујорк: Ван Ностранд Реинхолд/Асоцијација за управљање ваздухом и отпадом.

Агенција за заштиту животне средине (ЕПА). 1995. Профил индустрије обојених метала. ЕПА/310-Р-95-010. Вашингтон, ДЦ: ЕПА.

Међународно удружење за истраживање рака (ИАРЦ). 1984. Монографије о процени канцерогених ризика за људе. Вол. 34. Лион: ИАРЦ.

Јохнсон А, ЦИ Моира, Л МацЛеан, Е Аткинс, А Дибуницо, Ф Цхенг и Д Енарсон. 1985. Респираторне абнормалности код радника у индустрији гвожђа и челика. Брит Ј Инд Мед 42:94–100.

Кроненберг РС, ЈЦ Левин, РФ Додсон, ЈГН Гарциа и ДЕ Гриффитх. 1991. Болест узрокована азбестом код запослених у челичани и фабрици стаклених боца. Анн НИ Ацад Сци. 643:397–403.

Ландриган, ПЈ, МГ Цхерниацк, ФА Левис, ЛР Цатлетт и РВ Хорнунг. 1986. Силикоза у ливници сивог гвожђа. Перзистентност древне болести. Сцанд Ј Ворк Енвирон Хеалтх 12:32–39.

Национални институт за безбедност и здравље на раду (НИОСХ). 1996. Критеријуми за препоручени стандард: професионална изложеност течностима за обраду метала. Синсинати, ОХ: НИОСХ.

Палхета, Д и А Таилор. 1995. Жива у еколошким и биолошким узорцима из области рудника злата у Амазонској регији у Бразилу. Наука о тоталној животној средини 168:63-69.

Тхомас, ПР и Д Цларке. 1992. Вибрација белог прста и Дупуитренова контрактура: да ли су повезани? Оцкуп Мед 42(3):155–158.