週一,12月20 2010 19:16

定義和概念

評價這個項目
(5票)

暴露、劑量和反應

毒性 是化學試劑對生物體產生不利影響的內在能力。

異生素 是“異物”的術語,即對生物體來說是異物。 它的對立面是內源性化合物。 異生素包括藥物、工業化學品、天然毒物和環境污染物。

冒險 是在特定環境或情況下實現毒性的可能性。

風險 是特定不利影響發生的概率。 它通常表示為特定人群和特定時間段內病例的百分比。 風險估計可以基於實際案例或基於推斷的未來案例預測。

毒性等級毒性分類 可用於監管目的。 毒性等級是對引起毒性作用的劑量或暴露水平的任意分級。 分級可以是“超毒”、“劇毒”、“中毒”等。 最常見的評級涉及急性毒性。 毒性分類涉及根據最重要的毒性作用將化學品分為一般類別。 這些類別可包括過敏性、神經毒性、致癌性等。 這種分類可以作為警告和信息具有管理價值。

量效關係 是劑量與個體水平效應之間的關係。 劑量的增加可能會增加效果的強度,或者可能導致更嚴重的效果。 可以在整個生物體、細胞或靶分子的水平上獲得劑量效應曲線。 一些毒性作用,如死亡或癌症,沒有分級,而是“全部或無”作用。

量效關係 是劑量與表現出特定效果的個體百分比之間的關係。 隨著劑量的增加,暴露人群中通常會有更多的人受到影響。

毒理學必須建立劑量效應和劑量反應關係。 在醫學(流行病學)研究中,通常用於接受藥物與疾病之間因果關係的標準是效果或反應與劑量成正比。

可以為一種化學品繪製多條劑量反應曲線——每種效果一條。 大多數毒性作用的劑量反應曲線(在大量人群中研究時)呈 S 形。 通常存在未檢測到反應的低劑量範圍; 隨著劑量的增加,反應遵循上升曲線,通常會在 100% 反應時達到平穩狀態。 劑量反應曲線反映了人群中個體之間的差異。 曲線的斜率因化學物質和不同類型的影響而異。 對於某些具有特定作用的化學品(致癌物、引髮劑、誘變劑),在一定劑量範圍內,劑量-反應曲線可能從零劑量開始呈線性。 這意味著不存在閾值,即使是小劑量也存在風險。 高於該劑量範圍,風險可能會以大於線性速率的速率增加。

一天中暴露的變化和一個人一生中暴露的總長度對於結果(反應)可能與平均或平均甚至綜合劑量水平一樣重要。 高峰值暴露可能比更均勻的暴露水平更有害。 某些有機溶劑就是這種情況。 另一方面,對於某些致癌物,實驗表明,將單一劑量分成具有相同總劑量的多次暴露可能更有效地產生腫瘤。

A 劑量 通常表示為進入生物體的異生素的量(單位為 mg/kg 體重)。 劑量可以用不同的(更多或更少的信息)方式表示: 暴露劑量,這是在一定時間段內吸入的污染物的空氣濃度(在工作衛生中通常為八小時),或者 保留 or 吸收劑量 (在工業衛生中也稱為 身體負擔),這是在暴露期間或之後的特定時間體內存在的量。 這 組織劑量 是特定組織中物質的量,而 目標劑量 是與關鍵分子結合的物質(通常是代謝物)的量。 目標劑量可以表示為組織中每毫克特定大分子的毫克化學結合。 要應用這一概念,需要有關分子水平毒性作用機制的信息。 目標劑量與毒性作用更確切相關。 暴露劑量或身體負荷可能更容易獲得,但這些與效應的關係不太精確。

在劑量概念中,通常包括時間方面,即使並不總是表達出來。 根據哈伯定律的理論劑量是 D = 克拉, 哪裡 D 是劑量, c 是空氣中異生素的濃度,並且 t 暴露於化學品的持續時間。 如果在靶器官或分子水平上使用此概念,則可以使用特定時間內每毫克組織或分子的量。 時間方面對於理解重複暴露和慢性影響通常比單次暴露和急性影響更重要。

附加效應 由於接觸多種化學品的組合而發生,其中單獨的毒性只是簡單地相互疊加 (1+1=2)。 當化學物質通過相同的機制起作用時,假設它們的作用具有可加性,但實際上並非總是如此。 化學物質之間的相互作用可能會導致抑制(對抗),其效果小於添加單個化學品的效果 (1+1 2) 所預期的效果。 或者,化學物質的組合可能會產生比添加所預期的更顯著的效果(個體之間的反應增加或人群中反應頻率的增加),這被稱為 協同作用 (1+1 >2)。

延遲時間 是第一次暴露和出現可檢測的效果或反應之間的時間。 該術語通常用於致癌作用,其中腫瘤可能在接觸開始後很長時間出現,有時在接觸停止後很長時間出現。

A 劑量閾值 是一個劑量水平,低於該水平不會發生可觀察到的效果。 人們認為某些效應存在閾值,例如急性毒性效應; 但對其他人則不然,例如致癌作用(通過形成 DNA 加合物的引髮劑)。 然而,僅僅在給定人群中沒有反應不應被視為存在閾值的證據。 沒有反應可能是由於簡單的統計現象:在小人群中可能無法檢測到低頻率發生的不利影響。

LD50 (有效劑量)是在動物種群中引起 50% 致死率的劑量。 LD50 在較早的文獻中經常給出作為化學品急性毒性的量度。 LD越高50, 急性毒性越低。 劇毒化學品(低LD50) 據說是 有力的. 急性和慢性毒性之間沒有必然的相關性。 編輯50 (有效劑量)是在 50% 的動物中引起除致死率以外的特定效應的劑量。

諾爾(NOAEL) 指未觀察到(不利)影響水平,或不引起毒性作用的最高劑量。 建立 NOEL 需要多次劑量、大量人口和額外信息,以確保沒有反應不僅僅是一種統計現象。 洛伊爾 是劑量反應曲線上觀察到的最低有效劑量,或引起影響的最低劑量。

A 安全要素 是一個正式的、任意的數字,用它除以從動物實驗中得出的 NOEL 或 LOEL 以獲得人類的暫定允許劑量。 這通常用於食品毒理學領域,但也可用於職業毒理學。 安全係數也可用於將數據從小群體外推到大群體。 安全係數範圍從 100 到103. 安全係數 1,000 通常足以防止不太嚴重的影響(如刺激),而大至 XNUMX 的安全係數可用於非常嚴重的影響(如癌症)。 期限 安全要素 可以更好地替換為術語 保護 因素 甚至, 不確定因素. 後一個術語的使用反映了科學上的不確定性,例如對於特定的化學物質、毒性作用或暴露情況,是否可以將確切的劑量反應數據從動物轉化為人類。

外推法 是從一個物種到另一個物種的數據轉換或從一組劑量反應數據(通常在高劑量範圍內)到沒有數據存在的劑量反應區域的毒性的理論定性或定量估計(風險外推)。 通常必須進行外推以預測觀察範圍之外的毒性反應。 數學模型用於基於對有機體中化學物質行為的理解(毒代動力學模型)或基於對特定生物事件發生的統計概率的理解(基於生物學或機械學的模型)的推斷。 一些國家機構已經開發出複雜的外推模型作為一種正式的方法來預測監管目的的風險。 (參見本章後面對風險評估的討論。)

系統性影響 是遠離吸收途徑的組織中的毒性作用。

靶器官 是暴露後受影響的主要或最敏感的器官。 同一種化學物質通過不同的接觸途徑、劑量率、性別和物種進入人體,可能影響不同的靶器官。 化學物質之間或化學物質與其他因素之間的相互作用也可能影響不同的靶器官。

急性影響 在有限暴露後和暴露後不久(幾小時、幾天)發生,可能是可逆的或不可逆的。

慢性影響 在長時間接觸(數月、數年、數十年)後發生和/或在接觸停止後持續存在。

急性 曝光 是短時間的曝光,而 慢性暴露 是長期(有時是終生)暴露。

公差 當重複暴露導致的反應低於未經預處理的預期反應時,可能會發生對化學物質的反應。

吸收和處置

運輸過程

擴散. 為了進入生物體並到達產生損傷的部位,外來物質必須通過數道屏障,包括細胞及其細胞膜。 大多數有毒物質通過擴散被動地穿過膜。 對於小的水溶性分子,這可能通過水通道發生,或者對於脂溶性分子,通過溶解並擴散通過膜的脂質部分發生。 乙醇是一種水溶性和脂溶性的小分子,可快速擴散穿過細胞膜。

弱酸和弱鹼的擴散. 弱酸和弱鹼可以很容易地以非離子化、脂溶性形式通過膜,而電離形式的極性太強而無法通過。 這些物質的電離程度取決於 pH 值。 如果跨膜存在 pH 梯度,它們將因此積聚在一側。 弱酸和弱鹼的尿液排泄高度依賴於尿液 pH 值。 胎兒或胚胎的 pH 值略高於母體的 pH 值,導致胎兒或胚胎中略微積累弱酸。

促進擴散. 膜中的載體可以促進物質的通過。 促進擴散類似於酶過程,因為它是蛋白質介導的、高度選擇性的和可飽和的。 其他物質可能會抑制異生素的促進運輸。

主動運輸. 一些物質主動跨細胞膜轉運。 這種運輸由載體蛋白介導,過程類似於酶。 主動運輸類似於促進擴散,但它可能會在濃度梯度下發生。 它需要能量輸入,代謝抑製劑可以阻斷該過程。 大多數環境污染物不是主動運輸的。 一個例外是腎臟中酸性代謝物的活躍腎小管分泌和重吸收。

吞噬作用 是一個過程,其中巨噬細胞等特殊細胞吞噬顆粒以進行後續消化。 這種運輸過程很重要,例如,對於去除肺泡中的顆粒。

大流量. 物質也隨著呼吸時呼吸系統中空氣的運動,以及血液、淋巴液或尿液的運動在體內運輸。

過濾。 由於靜水壓或滲透壓,水大量流過內皮細胞的孔隙。 任何足夠小的溶質都會與水一起過濾。 在所有組織的毛細血管床中都會發生一定程度的過濾,但在腎小球中原尿的形成中尤為重要。

吸收

吸收是將環境中的物質吸收到生物體中。 該術語通常不僅包括進入屏障組織,還包括進一步轉運到循環血液中。

肺吸收. 肺部是空氣中的小顆粒、氣體、蒸汽和氣溶膠沉積和吸收的主要途徑。 對於水溶性高的氣體和蒸氣,很大一部分吸收發生在鼻子和呼吸樹中,但對於水溶性較低的物質,它主要發生在肺泡中。 肺泡的表面積很大(約 100m2 在人類中)。 此外,擴散屏障極小,只有兩層薄薄的細胞層,從肺泡空氣到全身血液循環的距離在微米量級。 這使得肺不僅在交換氧氣和二氧化碳方面非常有效,而且在交換其他氣體和蒸汽方面也非常有效。 一般來說,穿過肺泡壁的擴散非常快,不會限制攝取。 相反,吸收率取決於流量(肺通氣量、心輸出量)和溶解度(血液:空氣分配係數)。 另一個重要因素是代謝消除。 這些因素對肺部吸收的相對重要性因物質不同而有很大差異。 體力活動會導致肺通氣量和心輸出量增加,並降低肝血流量(從而降低生物轉化率)。 對於許多吸入物質,這會導致肺部吸收顯著增加。

經皮吸收. 皮膚是一個非常有效的屏障。 除了其調節體溫的作用外,它還旨在保護機體免受微生物、紫外線輻射和其他有害物質的侵害,並防止水分過度流失。 真皮中的擴散距離大約為十分之一毫米。 此外,角蛋白層對大多數物質的擴散具有非常高的抵抗力。 然而,某些物質可能會發生顯著的皮膚吸收而導致中毒,例如有機磷殺蟲劑和有機溶劑等高毒脂溶性物質。 接觸液體物質後可能會發生明顯吸收。 蒸氣的經皮吸收對於蒸氣壓極低且對水和皮膚具有高親和力的溶劑可能很重要。

胃腸吸收 意外或故意攝入後發生。 最初吸入並沉積在呼吸道中的較大顆粒可能在粘膜纖毛運輸到咽部後被吞嚥。 實際上,所有可溶性物質都能在胃腸道中有效吸收。 腸道的低 pH 值可能有助於吸收,例如金屬。

其他路線. 在毒性測試和其他實驗中,為方便起見,通常會使用特殊的給藥途徑,儘管這些途徑很少見,而且通常與職業環境無關。 這些途徑包括靜脈內 (IV)、皮下 (sc)、腹膜內 (ip) 和肌內 (im) 注射。 通常,物質通過這些途徑以更高的速度和更完全地被吸收,尤其是在靜脈注射後。 這會導致持續時間短但濃度高的峰值,可能會增加劑量的毒性。

分銷

物質在生物體內的分佈是一個動態過程,它取決於攝取和消除率,以及流向不同組織的血流及其對物質的親和力。 水溶性、不帶電荷的小分子、單價陽離子和大多數陰離子很容易擴散,最終會在體內達到相對均勻的分佈。

分佈容積 是給定時間體內某種物質的量除以當時血液、血漿或血清中的濃度。 該值作為物理體積沒有意義,因為許多物質在生物體中分佈不均勻。 小於 XNUMX l/kg 體重的分佈容積表明優先分佈在血液(或血清或血漿)中,而高於 XNUMX 的值表明脂溶性物質優先分佈於外周組織,例如脂肪組織。

積累 是一種物質在組織或器官中的積累,其水平高於血液或血漿中的水平。 它也可以指隨著時間的推移在生物體中逐漸積累。 許多異生素是高度脂溶性的,往往會積聚在脂肪組織中,而另一些則對骨骼具有特殊的親和力。 例如,骨中的鈣可被鉛、鍶、鋇和鐳的陽離子交換,骨中的羥基可被氟化物交換。

障礙. 大腦、睾丸和胎盤中的血管具有特殊的解剖學特徵,可以抑制蛋白質等大分子的通過。 這些功能通常被稱為血腦、血睾丸和血胎盤屏障,可能給人一種錯誤印象,即它們會阻止任何物質通過。 這些屏障對於可以通過細胞膜擴散的異生素來說幾乎沒有重要性。

血液結合. 物質可能與紅細胞或血漿成分結合,或在血液中未結合。 一氧化碳、砷、有機汞和六價鉻對紅細胞有很高的親和力,而無機汞和三價鉻則對血漿蛋白有較高的親和力。 許多其他物質也與血漿蛋白結合。 只有未結合的部分可用於過濾或擴散到消除器官中。 因此,血液結合可能會增加在生物體中的停留時間,但會減少靶器官的吸收。

消除

消除 是體內某種物質的消失。 消除可能涉及從體內排泄或轉化為特定測量方法未捕獲的其他物質。 消失率可用消除率常數、生物半衰期或清除率來表示。

濃度-時間曲線. 血液(或血漿)濃度隨時間變化的曲線是描述異生素攝取和處置的便捷方式。

曲線下面積 (AUC) 是血液(血漿)濃度隨時間的積分。 當不存在代謝飽和和其他非線性過程時,AUC 與物質的吸收量成正比。

生物半場 (或半條命) 是暴露結束後將有機體中的量減少到一半所需的時間。 由於通常難以評估物質的總量,因此使用血液(血漿)中的濃度等測量值。 應謹慎使用半衰期,因為它可能會發生變化,例如,隨劑量和暴露時間長短而變化。 此外,許多物質具有復雜的衰變曲線和多個半衰期。

生物利用度 是進入體循環的給藥劑量的分數。 在沒有系統前清除的情況下,或 首過代謝,分數是一。 在口服暴露中,系統前清除可能是由於胃腸道內容物、腸壁或肝臟內的新陳代謝。 首過代謝會減少物質的全身吸收,反而增加代謝物的吸收。 這可能會導致不同的毒性模式。

優惠促銷 是每單位時間完全清除某種物質的血液(血漿)體積。 例如,為了與腎臟清除率區分開來,通常添加前綴 total、metabolic 或 blood(plasma)。

固有遊隙 是內源性酶轉化物質的能力,也以每單位時間的體積表示。 如果器官的內在清除率遠低於血流量,則新陳代謝被認為是容量受限的。 相反,如果內在清除率遠高於血流量,則代謝受流量限制。

排泄

排泄是物質及其生物轉化產物從生物體中排出。

在尿液和膽汁中排泄. 腎臟是最重要的排泄器官。 有些物質,尤其是高分子量的酸,會隨膽汁排出體外。 一小部分膽汁排泄物可能在腸中被重吸收。 這個流程, 腸肝循環, 對於結合物在腸內水解後的結合物質來說很常見。

其他排泄途徑. 一些物質,如有機溶劑和分解產物,如丙酮,具有足夠的揮發性,以至於相當一部分可能會在吸入後通過呼氣排出體外。 小的水溶性分子和脂溶性分子很容易通過胎盤分泌到胎兒體內,並分泌到哺乳動物的乳汁中。 對於母親來說,哺乳可以是持久性脂溶性化學物質在數量上很重要的排泄途徑。 後代可能在懷孕期間和哺乳期間通過母親二次接觸。 水溶性化合物可能在一定程度上通過汗液和唾液排出體外。 這些路線通常不太重要。 然而,由於產生併吞咽了大量唾液,唾液排泄可能有助於化合物的重吸收。 某些金屬(例如汞)通過與頭髮中角蛋白的巰基永久結合而排出體外。

毒代動力學模型

數學模型是理解和描述外來物質吸收和處置的重要工具。 大多數模型是隔室的,即有機體由一個或多個隔室表示。 隔室是化學和物理理論體積,其中假設物質均勻且瞬時分佈。 簡單的模型可以表示為指數項的總和,而更複雜的模型需要計算機上的數值程序來求解。 模型可以細分為兩類,描述性和生理性。

In 描述的 模型,通過改變模型參數甚至模型結構本身的數值來擬合測量數據。 模型結構通常與有機體的結構關係不大。 描述性方法的優點是所做的假設很少,並且不需要額外的數據。 描述性模型的一個缺點是它們在外推方面的用處有限。

生理模型 由生理學、解剖學和其他獨立數據構成。 然後通過與實驗數據的比較來改進和驗證該模型。 生理模型的一個優點是它們可以用於外推目的。 例如,身體活動對吸入物質的吸收和處置的影響可以根據通氣和心輸出量的已知生理調整來預測。 生理模型的一個缺點是它們需要大量的獨立數據。

生物轉化

生物轉化 是導致體內外來化合物(異生素)代謝轉化的過程。 這個過程通常被稱為異生素的代謝。 作為一般規則,新陳代謝將脂溶性異生素轉化為可以有效排泄的大的水溶性代謝物。

肝臟是生物轉化的主要場所。 從腸道攝取的所有異生素都通過單個血管運送到肝臟(門脈). 如果少量攝入,異物可能在到達全身循環和其他器官之前在肝臟中完全代謝(首過效應)。 吸入的異生素通過全身循環分佈到肝臟。 在那種情況下,只有一小部分劑量在到達其他器官之前在肝臟中被代謝。

肝細胞含有多種氧化異生素的酶。 這種氧化通常會激活化合物——它變得比母體分子更具反應性。 在大多數情況下,氧化代謝物在第二階段被其他酶進一步代謝。 這些酶將代謝物與內源性底物結合,使分子變得更大、極性更強。 這有利於排泄。

代謝異生素的酶也存在於肺和腎等其他器官中。 在這些器官中,它們可能在某些異生素的代謝中發揮特定和重要的作用。 在一個器官中形成的代謝物可能在第二個器官中進一步代謝。 腸道中的細菌也可能參與生物轉化。

異生素的代謝物可以通過腎臟或膽汁排出體外。 它們也可以通過肺部呼出,或與體內的內源性分子結合。

生物轉化和毒性之間的關係是複雜的。 生物轉化可視為生存的必要過程。 它通過防止有害物質在體內積累來保護機體免受毒性。 然而,在生物轉化過程中可能會形成反應性中間代謝產物,這些產物具有潛在的危害性。 這稱為代謝激活。 因此,生物轉化也可能誘發毒性。 未結合的氧化中間代謝物可以結合併破壞細胞結構。 例如,如果異生代謝物與 DNA 結合,則可以誘導突變(參見“遺傳毒理學”)。 如果生物轉化系統過載,可能會發生必需蛋白質或脂質膜的大量破壞。 這會導致細胞死亡(參見“細胞損傷和細胞死亡”)。

代謝 是一個經常與生物轉化互換使用的詞。 它表示體內酶催化的化學分解或合成反應。 來自食物的營養素、內源性化合物和異生素都在體內代謝。

代謝激活 是指反應性較低的化合物轉化為反應性較高的分子。 這通常發生在第 1 階段反應期間。

代謝失活 是指活性或毒性分子轉化為活性較低的代謝物。 這通常發生在第 2 階段反應期間。 在某些情況下,失活的代謝物可能會被重新激活,例如通過酶促裂解。

第一階段反應 指異生物質代謝的第一步。 它通常意味著化合物被氧化。 氧化通常使化合物更易溶於水並促進進一步反應。

細胞色素P450酶 是一組在第一階段反應中優先氧化異生素的酶。 不同的酶專門用於處理具有某些特徵的特定組的異生素。 內源性分子也是底物。 細胞色素 P1 酶由異生素以特定方式誘導。 獲得細胞色素 P450 的誘導數據可以提供有關先前暴露性質的信息(參見“毒性反應的遺傳決定因素”)。

第一階段反應 指異生物質代謝的第二步。 它通常意味著氧化化合物與內源性分子結合(偶聯)。 該反應進一步增加了水溶性。 許多共軛代謝物通過腎臟主動排泄。

轉移酶 是一組催化相 2 反應的酶。 它們將異生素與穀胱甘肽、氨基酸、葡萄醣醛酸或硫酸鹽等內源性化合物結合。

穀胱甘肽 是一種內源性分子,一種三肽,在第 2 相反應中與異生素結合。 它存在於所有細胞中(並以高濃度存在於肝細胞中),通常可以防止被激活的異生素。 當穀胱甘肽耗盡時,活化的外源性代謝物與蛋白質、脂質或 DNA 之間可能會發生毒性反應。

感應 表示參與生物轉化的酶作為對外來物暴露的反應而增加(在活性或數量上)。 在某些情況下,酶活性可在幾天內增加幾倍。 誘導通常是平衡的,因此第一階段和第二階段的反應同時增加。 這可能導致更快速的生物轉化並可以解釋耐受性。 相反,不平衡的誘導可能會增加毒性。

抑制 如果兩種異生素被同一種酶代謝,就會發生生物轉化。 兩種底物必須競爭,通常優選其中一種底物。 在那種情況下,第二底物不被代謝,或僅被緩慢代謝。 與誘導一樣,抑製作用可能會增加也可能會降低毒性。

氧氣活化 可以由某些異生素的代謝物觸發。 它們可能會在活性氧的產生下自動氧化。 這些氧衍生物質,包括超氧化物、過氧化氫和羥基自由基,可能會破壞細胞中的 DNA、脂質和蛋白質。 氧活化也參與炎症過程。

遺傳變異性 在編碼第一階段和第二階段酶的許多基因中可以看到個體之間的差異。 遺傳變異性可以解釋為什麼某些人比其他人更容易受到異生素的毒性影響。

 

上一頁

更多內容 11183 最後修改於 26 年 2022 月 19 日星期二 27:XNUMX
更多此類別中: 毒代動力學 »

" 免責聲明:國際勞工組織不對本門戶網站上以英語以外的任何其他語言呈現的內容負責,英語是原始內容的初始製作和同行評審所使用的語言。自此以來,某些統計數據尚未更新百科全書第 4 版的製作(1998 年)。”

內容