週一,4月04 2011 18:20

安全控制系統設計原則

評價這個項目
(2票)

人們普遍認為控制系統在使用過程中必須是安全的。 考慮到這一點,大多數現代控制系統的設計如圖 1 所示。

圖 1. 控制系統的一般設計

SAF062F1

使控制系統安全的最簡單方法是在其周圍建造一堵堅不可摧的牆,以防止人員進入或乾擾危險區域。 這樣的系統將非常安全,儘管不切實際,因為不可能獲得訪問權限以執行大多數測試、維修和調整工作。 因為在某些條件下必須允許進入危險區域,所以需要除牆壁、柵欄等之外的保護措施來促進生產、安裝、維修和維護。

 

其中一些保護措施可以部分或全部集成到控制系統中,如下所示:

  • 如果有人進入危險區域,可以通過緊急停止 (ES) 按鈕立即停止運動。
  • 按鈕控制僅在激活按鈕時才允許移動。
  • 雙手控制 (DHC) 只有在雙手同時按下兩個控制元件時才允許移動(從而確保雙手遠離危險區域)。

 

這些類型的保護措施由操作員激活。 然而,由於人類通常是應用程序中的弱點,因此許多功能(例如以下)都是自動執行的:

  • 維修或“示教”期間機器人手臂的運動非常緩慢。 儘管如此,速度仍受到持續監控。 如果由於控制系統故障,自動機械臂的速度在維修或示教期間意外增加,監控系統將啟動並立即終止運動。
  • 提供光柵以防止進入危險區域。 如果光束被中斷,機器將自動停止。

 

控制系統的正常運行是生產最重要的前提。 如果生產功能因控制故障而中斷,那至多是不便但不會造成危險。 如果不執行與安全相關的功能,可能會導致生產損失、設備損壞、人身傷害甚至死亡。 因此,與安全相關的控制系統功能必須比普通控制系統功能更可靠、更安全。 根據歐洲委員會指令 89/392/EEC(機器指南),控制系統的設計和構造必須安全可靠。

控件由許多連接在一起的組件組成,以執行一項或多項功能。 控件被細分為通道。 通道是執行特定功能(例如,啟動、停止、緊急停止)的控件的一部分。 從物理上講,通道是由一串組件(晶體管、二極管、繼電器、門等)創建的,通過這些組件,從一個組件到下一個組件,代表該功能的(主要是電氣)信息從輸入傳輸到輸出。

在為安全相關功能(涉及人的功能)設計控制通道時,必須滿足以下要求:

  • 具有安全相關功能的控制通道中使用的組件必須能夠承受正常使用的嚴酷條件。 一般來說, 他們必須足夠可靠.
  • 邏輯錯誤不得導致危險情況。 一般來說, 與安全相關的通道應具有足夠的故障證明.
  • 外部影響(因素)不應導致安全相關通道的暫時或永久故障。

 

可靠性

可靠性 是控制通道或組件在給定時間段的指定條件下執行所需功能的能力 沒有失敗. (可以使用合適的方法計算特定組件或控制通道的概率。)必須始終為特定時間值指定可靠性。 通常,可靠性可以用圖2中的公式表示。

圖 2. 可靠性公式

SAF062F2

複雜系統的可靠性

系統是由組件構建的。 如果已知組件的可靠性,則可以計算整個系統的可靠性。 在這種情況下,以下適用:

串行系統

總可靠性 R合計 由具有相同可靠性 R 的 N 個組件組成的串聯繫統C 計算如圖 3 所示。

圖 3. 串聯組件的可靠性圖

SAF062F3

總可靠性低於最不可靠組件的可靠性。 隨著串聯組件數量的增加,鏈條的總可靠性會顯著下降。

並行系統

總可靠性 R合計 由具有相同可靠性 R 的 N 個組件組成的並聯繫統C 計算如圖 4 所示。

圖 4. 並聯組件的可靠性圖

SAF062F4

通過並聯兩個或多個組件可以顯著提高總體可靠性。

圖 5 說明了一個實際示例。 請注意,電路將更可靠地關閉電機。 即使繼電器 A 或 B 未能打開其觸點,電機仍會關閉。

圖 5. 圖 4 的實際示例

SAF062F5

如果所有必要的組件可靠性已知且可用,則計算通道的總可靠性很簡單。 對於復雜組件(集成電路、微處理器等),如果製造商未發布必要信息,則總可靠性的計算是困難的或不可能的。

安全指引

當專業人士談論安全並呼籲安全機器時,他們指的是整個機器或系統的安全。 然而,這種安全性過於籠統,並且對於控制設計者而言定義不夠精確。 下面的定義 安全 對控制電路的設計者可能是實用的和有用的:安全是控制系統在規定的限制內,在給定的持續時間內執行所需功能的能力,即使發生預期的故障。 因此,在設計過程中必須明確安全相關通道必須有多“安全”。 (設計者可以開發一個安全的通道,防止第一次故障、任何一次故障、兩次故障等。)此外,執行用於防止事故的功能的通道可能本質上是可靠的,但它沒有不可避免地避免失敗。 以下示例可以最好地解釋這一點:

例如1

圖 6 中所示的示例是執行所需安全功能的安全相關控制通道。 第一個組件可以是一個開關,用於監控例如通往危險區域的通道門的位置。 最後一個組件是電機,它驅動危險區域內的移動機械部件。

圖 6. 執行所需安全功能的安全相關控制通道

SAF062F6

在這種情況下所需的安全功能是雙重的:如果門關閉,電機可能會運行。 如果門打開,則必須關閉電機。 了解可靠性 R1 到R6, 可以計算可靠性 R早期的。 設計者應該使用可靠的組件,以保持整個控制系統足夠高的可靠性(即,在設計中應該考慮到即使在 20 年內該功能仍然可以執行的可能性)。 因此,設計人員必須完成兩項任務:(1) 電路必須執行所需的功能,以及 (2) 組件和整個控制通道的可靠性必須足夠。

現在應該問以下問題:即使系統發生故障(例如,如果繼電器觸點粘住或組件發生故障),上述通道是否會執行所需的安全功能? 答案是不”。 原因是僅由串聯連接的組件組成並使用靜態信號的單個控制通道對於一次故障是不安全的。 通道只能具有一定的可靠性,這保證了功能被執行的可能性。 在這種情況下,安全始終意味著 故障相關.

例如2

如果控制通道既可靠又安全,則必須如圖 7 所示修改設計。所示示例是一個安全相關的控制通道,由兩個完全獨立的子通道組成。

圖 7. 具有兩個完全獨立子通道的安全相關控制通道

SAF062F7

這種設計對於第一次故障(以及同一子通道中可能的進一步故障)是安全的,但對於可能發生在兩個不同子通道中(同時或不同時間)的兩次故障是不安全的,因為沒有故障檢測電路。 因此,最初兩個子通道都以高可靠性工作(參見並行系統),但在第一次故障後只有一個子通道將工作,可靠性降低。 如果在仍在工作的子通道中發生第二次故障,則兩者都將失效,並且將不再執行安全功能。

例如3

圖 8 中所示的示例是一個安全相關的控制通道,由兩個完全獨立的子通道組成,它們相互監控。

圖 8. 一個安全相關的控制通道,帶有兩個相互監控的完全獨立的子通道

SAF062F8

這種設計是故障安全的,因為在發生任何故障後,只有一個子通道將不起作用,而另一個子通道仍然可用並將執行安全功能。 此外,該設計具有故障檢測電路。 如果由於故障,兩個子通道無法以相同方式工作,則“異或”電路將檢測到這種情況,結果機器將自動關閉。 這是設計機器控制的最佳方法之一——設計與安全相關的子通道。 它們對一次故障是安全的,同時提供足夠的可靠性,因此同時發生兩次故障的可能性微乎其微。

冗餘

顯然,設計者可以通過多種方法提高可靠性和/或安全性(防止故障)。 前面的示例說明瞭如何通過各種解決方案實現功能(即,門關閉,電機可以運行;門打開,電機必須停止)。 有些方法非常簡單(一個子通道),而另一些方法則比較複雜(兩個相互監督的子通道)。 (見圖 9。)

圖 9. 有或沒有故障檢測的冗餘系統的可靠性

SAF062F9

與簡單電路和/或組件相比,複雜電路和/或組件存在一定的冗餘。 冗餘 可以定義如下: (1) 冗餘是指存在比簡單實現所需功能所需的更多的手段(組件、通道、更高的安全係數、額外的測試等); (2) 冗餘顯然不會“改善”功能,無論如何都會執行。 冗餘隻會提高可靠性和/或安全性。

一些安全專業人士認為,冗餘隻是系統的兩倍或三倍等。 這是一個非常有限的解釋,因為冗餘可以被更廣泛和靈活地解釋。 冗餘可能不僅包含在硬件中; 它也可能包含在軟件中。 提高安全係數(例如,更強的繩索而不是更弱的繩索)也可以被視為一種冗餘形式。

,一個主要出現在熱力學和天文學中的術語,可以定義如下:一切都傾向於衰變。 因此,可以肯定的是,無論使用何種技術,所有組件、子系統或系統總有一天會出現故障。 這意味著沒有 100% 可靠和/或安全的系統、子系統或組件。 根據結構的複雜性,所有這些都或多或少是可靠和安全的。 不可避免地較早或較晚發生的故障證明了熵的作用。

設計人員應對熵的唯一方法是冗餘,這是通過 (a) 為組件引入更多可靠性和 (b) 在整個電路架構中提供更多安全性來實現的。 只有充分提高所需功能在所需時間段內執行的概率,設計人員才能在某種程度上抵禦熵。

風險評估

潛在風險越大,所需的可靠性和/或安全性(針對故障)就越高(反之亦然)。 以下兩個案例說明了這一點:

案例1

固定在註塑機中的模具由門保護。 如果門關閉,機器可以工作,如果門打開,所有危險動作都必須停止。 在任何情況下(即使在安全相關通道發生故障的情況下)都不得發生任何運動,尤其是那些操作工具的運動。

案例2

在氣動壓力下組裝小型塑料部件的自動控制裝配線的入口由一扇門保護。 如果打開這扇門,就必須停止生產線。

情況1,如果門監控系統發生故障,工具意外關閉,可能會造成嚴重傷害。 在情況2中,如果門監控系統發生故障,則可能造成輕微傷害或輕微傷害。

很明顯,在第一種情況下,必須引入更多的冗餘以獲得防止極端高風險所需的可靠性和/或安全性(防止故障)。 事實上,根據歐洲標準EN 201,注塑機門的監控系統必須具有三個通道; 其中兩個是電氣的,相互監督,其中一個主要配備液壓系統和測試電路。 所有這三個監督功能都與同一扇門有關。

相反,在案例 2 中描述的應用程序中,由具有正向動作的開關激活的單個通道適合於風險。

控制類別

由於上述所有考慮通常都基於信息論,因此適用於所有技術,因此控制系統是否基於電子、機電、機械、液壓或氣動組件(或它們的混合)並不重要,或其他一些技術。 一方面是設計師的創造力,另一方面是經濟問題,是影響關於如何實現安全相關通道的幾乎無數解決方案的主要因素。

為防止混淆,設置某些排序標準是實用的。 用於執行安全相關功能的機器控制中最典型的通道結構分類如下:

  • 可靠性
  • 失敗時的行為
  • 故障披露時間。

 

它們的組合(並未顯示所有可能的組合)如表 1 所示。

表 1. 機器控制中用於安全相關功能的一些可能的電路結構組合

標準(問題)

基本攻略

 

通過提高可靠性(故障的發生是否轉移到可能遙遠的未來?)

通過合適的電路結構(架構),故障將至少被檢測到(類別 2)或故障對通道的影響將被消除(類別 3)或故障將被立即披露(類別 4)

 

分類

 

這個解決方案基本上是錯誤的

B

1

2

3

4

電路元件能否承受預期的影響; 它們是根據最先進的技術建造的嗎?

沒有

Permium Partner

Permium Partner

Permium Partner

Permium Partner

Permium Partner

是否使用了久經考驗的組件和/或方法?

沒有

沒有

Permium Partner

Permium Partner

Permium Partner

Permium Partner

能否自動檢測故障?

沒有

沒有

沒有

Permium Partner

Permium Partner

Permium Partner

故障是否會阻止安全相關功能的執​​行?

Permium Partner

Permium Partner

Permium Partner

Permium Partner

沒有

沒有

何時會檢測到故障?

決不

決不

決不

早(最遲在不長於一個機器週期的區間結束時)

立即(當信號失去動態
字符)

   

在消費品中

用於機器

 

適用於特定機器及其安全相關控制系統的類別大多在新的歐洲標準 (EN) 中指定,除非國家當局、用戶和製造商相互同意應適用另一個類別。 然後,設計人員開發了一個滿足要求的控制系統。 例如,管理控制通道設計的考慮因素可能包括以下內容:

  • 組件必須能夠承受預期的影響。 (是/否)
  • 它們的建造應符合最先進的標準。 (是/否)
  • 使用久經考驗的組件和方法。 (是/否)
  • 失敗 必須檢測. (是/否)
  • 即使發生故障,安全功能也會執行嗎? (是/否)
  • 何時會檢測到故障? (從不、早期、立即)

 

這個過程是可逆的。 使用相同的問題,可以確定現有的、以前開發的控制通道屬於哪一類。

類別示例

B類

主要用於消費品的控制通道組件必須能夠承受預期的影響,並根據最先進的技術進行設計。 一個設計良好的開關可以作為一個例子。

八類佈線系統

使用久經考驗的組件和方法是類別 1 的典型做法。類別 1 的示例是具有正向動作的開關(即,需要強制打開觸點)。 該開關採用堅固的部件設計,由相對較大的力啟動,因此僅在觸點斷開時才具有極高的可靠性。 儘管觸點粘連甚至焊接,這些開關仍會打開。 (注意:晶體管和二極管等元件不被視為經過充分試驗的元件。)圖 10 將用作類別 1 控制的圖示。

圖 10. 具有正向動作的開關

SAF62F10

該通道採用正動作開關S。 接觸器 K 由指示燈 L 監控。操作員通過指示燈 L 提示常開 (NO) 觸點粘住。接觸器 K 具有強制導向觸點。 (注意:與通常的繼電器或接觸器相比,具有強制引導觸點的繼電器或接觸器具有由絕緣材料製成的特殊籠子,因此如果常閉(NC)觸點閉合,則必須打開所有 NO 觸點,反之反之亦然。這意味著通過使用 NC 觸點,可以進行檢查以確定工作觸點沒有粘在一起或焊接在一起。)

八類佈線系統

類別 2 提供故障的自動檢測。 必須在每次危險動作之前生成自動故障檢測。 只有在測試呈陽性時才能進行運動; 否則機器將停止。 自動故障檢測系統用於光柵以證明它們仍在工作。 原理如圖 1 所示。

圖 11. 包含故障檢測器的電路

SAF62F11

通過向輸入註入脈衝來定期(或偶爾)測試該控制系統。 在一個正常工作的系統中,這個脈衝將被傳輸到輸出並與來自測試發生器的脈衝進行比較。 當兩種衝動都存在時,系統顯然有效。 否則,如果沒有輸出脈衝,系統就失敗了。

八類佈線系統

之前已在本文安全部分的示例 3 下描述了電路,圖 8。

要求——即自動故障檢測和執行安全功能的能力,即使在任何地方發生一個故障——可以通過雙通道控制結構和兩個通道的相互監督來實現。

僅對於機器控制,必須調查危險故障。 需要注意的是有兩種故障:

  • 非危險品 故障是指在故障發生後通過關閉電機而使機器進入“安全狀態”的故障。
  • 危險的 故障是指在故障發生後導致機器處於“不安全狀態”的故障,因為電機無法關閉或電機意外啟動。

八類佈線系統

類別 4 通常用於在輸入端應用動態、連續變化的信號。 輸出裝置上存在動態信號 運行 (“1”),並且沒有動態信號意味著 停止 (“0”)。

對於此類電路,通常在任何組件出現故障後,動態信號將不再在輸出端可用。 (注意:輸出端的靜態電位無關緊要。)此類電路可稱為“故障安全”。 所有故障將立即披露,而不是在第一次更改後(如第 3 類電路)。

關於控制類別的進一步評論

表 1 是為常用機器控制開發的,僅顯示基本電路結構; 根據機器指令,應該在一個機器週期內只發生一次故障的假設下進行計算。 這就是為什麼在兩個同時發生故障的情況下不必執行安全功能的原因。 假定將在一個機器週期內檢測到故障。 機器將停止,然後進行維修。 然後控制系統再次啟動,完全可操作,沒有故障。

設計者的第一個意圖應該是不允許出現“常設”故障,這些故障在一個週期內不會被檢測到,因為它們以後可能會與新出現的故障(故障累積)結合在一起。 這種組合(持續故障和新故障)甚至會導致 3 類電路發生故障。

儘管採用了這些策略,但有可能在同一機器週期內同時發生兩個獨立的故障。 這是非常不可能的,特別是如果使用了高度可靠的組件。 對於非常高風險的應用程序,應使用三個或更多子通道。 這種理念基於這樣一個事實,即平均故障間隔時間比機器週期長得多。

然而,這並不意味著該表不能進一步擴展。 表 1 基本上和結構上與 EN 2-954 中使用的表 1 非常相似。 但是,它不會嘗試包含太多排序標準。 這些要求是根據嚴格的邏輯法則定義的,因此只能得到明確的答案(是或否)。 這允許對提交的電路(安全相關通道)進行更準確的評估、分類和分類,最後但並非最不重要的一點是,顯著提高評估的可重複性。

如果風險可以分為不同的風險級別,然後在風險級別和類別之間建立明確的聯繫,這將是理想的,而這一切都與所使用的技術無關。 然而,這並非完全可能。 在創建類別後的早期,很明顯即使使用相同的技術,也無法充分回答各種問題。 哪個更好:非常可靠且設計良好的第 1 類組件,還是滿足第 3 類要求但可靠性較差的系統?

要解釋這一困境,必須區分兩種品質:可靠性和安全性(防止故障)。 它們沒有可比性,因為這兩種品質具有不同的特徵:

  • 具有最高可靠性的組件具有令人不快的特徵,即在發生故障時(即使極不可能)功能將停止執行。
  • 類別 3 系統即使在發生一次故障的情況下仍會執行功能,但在同時發生兩種故障時並不安全(可能重要的是是否使用了足夠可靠的組件)。

考慮到上述情況,最好的解決方案(從高風險的角度來看)可能是使用高度可靠的組件並對其進行配置,以便電路能夠安全應對至少一次(最好是多次)故障。 很明顯,這樣的解決方案不是最經濟的。 實際上,優化過程主要是所有這些影響和考慮的結果。

實際使用這些類別的經驗表明,設計一個始終只使用一個類別的控制系統幾乎是不可能的。 兩個甚至三個部分的組合,每個部分屬於不同的類別,是典型的,如以下示例所示:

許多安全光柵設計為 4 類,其中一個通道使用動態信號。 在這個系統的末端通常有兩個相互監督的子通道,它們使用靜態信號。 (這滿足類別 3 的要求。)

根據 EN 50100,此類光柵被歸類為 類型 4 電敏保護裝置, 儘管它們由兩部分組成。 不幸的是,對於如何命名由兩個或多個部分組成的控制系統,每個部分屬於另一個類別,還沒有達成一致。

可編程電子系統 (PES)

用於創建表 1 的原則,當然有一定的限制,通常也適用於 PES。

PES-only系統

在使用 PES 進行控制時,信息通過大量組件從傳感器傳輸到激活器。 除此之外,它甚至“通過”軟件。 (見圖 12)。

圖 12. PES 系統電路

SAF62F14

儘管現代 PES 非常可靠,但可靠性沒有處理安全功能所需的那麼高。 除此之外,通常的 PES 系統不夠安全,因為它們在發生故障時不會執行與安全相關的功能。 因此,不允許在沒有任何附加措施的情況下使用 PES 來處理安全功能。

極低風險應用:具有一個 PES 和附加措施的系統

當使用單個 PES 進行控制時,系統由以下主要部分組成:

輸入部分

傳感器的可靠性和 PES 的輸入可以通過將它們加倍來提高。 這樣的雙系統輸入配置可以由軟件進一步監督,以檢查兩個子系統是否正在傳遞相同的信息。 因此可以檢測到輸入部分的故障。 這幾乎與類別 3 所要求的理念相同。但是,由於監督是通過軟件完成的並且只有一次,因此這可能被命名為 3-(或不如 3 可靠)。

中部

這部分雖然不能很好的翻倍,但是可以測試一下。 開機時(或運行期間),可以對整個指令集進行檢查。 在相同的時間間隔內,還可以通過合適的位模式檢查內存。 如果進行此類檢查沒有失敗,則 CPU 和內存這兩個部分顯然工作正常。 中間部分具有第 4 類(動態信號)的某些典型特徵和第 2 類的其他典型特徵(以適當的時間間隔定期進行測試)。 問題是,儘管這些測試範圍廣泛,但它們並不能真正完成,因為 one-PES 系統本身就不允許進行這些測試。

輸出部分

與輸入類似,輸出(包括激活器)也可以加倍。 兩個子系統都可以針對相同的結果進行監督。 將檢測到故障並執行安全功能。 但是,存在與輸入部分相同的弱點。 因此,在這種情況下選擇類別 3。

在圖 13 中,繼電器具有相同的功能 A B. 控制觸點 a b, 然後通知兩個輸入系統兩個繼電器是否在做同樣的工作(除非其中一個通道發生故障)。 監督由軟件再次完成。

圖 13. 帶有故障檢測系統的 PES 電路

SAF62F13

整個系統可以被描述為類別 3-/4/2/3- 如果正確和廣泛地完成。 然而,不能完全消除上述系統的弱點。 事實上,改進後的 PES 僅在風險相當低的情況下才用於與安全相關的功能(Hölscher 和 Rader 1984)。

使用一個 PES 的中低風險應用程序

今天幾乎每台機器都配備了 PES 控制單元。 為了解決可靠性不足和通常對故障安全性不足的問題,通常採用以下設計方法:

  • 在電梯等相對簡單的機器中,功能分為兩組: (1) 與安全無關的功能由 PES 處理; (2) 安全相關功能組合在一條鏈(安全電路)中並在 PES 外部處理(見圖 14)。

 

圖 14. 停止類別 0 的最新技術水平

SAF62F15

  • 上面給出的方法不適用於更複雜的機器。 原因之一是此類解決方案通常不夠安全。 對於中等風險的應用,解決方案應滿足類別 3 的要求。圖 15 和圖 16 顯示了此類設計的一般概念。

 

圖 15. 停止類別 1 的最新技術水平

SAF62F16

 

圖 16. 停止類別 2 的最新技術水平

SAF62F17

高風險應用:具有兩個(或更多)PES 的系統

除了複雜性和費用外,沒有其他因素會阻止設計人員使用完全雙倍的 PES 系統,例如 Siemens Simatic S5-115F、3B6 Typ CAR-MIL 等。 這些通常包括兩個具有同質軟件的相同 PES,並假設使用“久經考驗”的 PES 和“久經考驗”的編譯器(一個久經考驗的 PES 或編譯器可以被認為在 3 年或更長時間的許多實際應用中表明系統性故障已明顯消除)。 雖然這些雙PES系統沒有單PES系統的弱點,但這並不意味著雙PES系統可以解決所有問題。 (見圖 17)。

圖 17. 具有兩個 PES 的複雜系統

SAF62F18

系統故障

系統故障可能由規格、設計和其他原因中的錯誤引起,並且可能存在於硬件和軟件中。 雙 PES 系統適用於安全相關應用。 這樣的配置允許檢測隨機硬件故障。 通過硬件多樣性,例如使用兩種不同類型或兩個不同製造商的產品,可以揭示系統硬件故障(在兩個 PES 中發生相同硬件系統故障的可能性很小)。

軟體

軟件是安全考慮中的一個新元素。 軟件要么正確要么不正確(關於故障)。 一旦正確,軟件就不會立即變得不正確(與硬件相比)。 目的是消除軟件中的所有錯誤或至少識別它們。

有多種方法可以實現這一目標。 一個是 驗證 程序的錯誤(第二個人試圖在隨後的測試中發現錯誤)。 另一種可能性是 多樣 軟件,其中兩個不同的程序,由兩個程序員編寫,解決同一個問題。 如果結果相同(在一定範圍內),則可以假定兩個程序部分都是正確的。 如果結果不同,則認為存在錯誤。 (注意, 建築 硬件的自然也必須考慮。)

總結

使用 PES 時,通常需要考慮以下相同的基本注意事項(如前幾節所述)。

  • 一個沒有任何冗餘的控制系統可以劃為 B 類。一個帶有附加措施的控制系統可以是 1 類甚至更高,但不高於 2 類。
  • A two-part control system with mutual comparison of results may be allocated to Category 3. A two-part control system with mutual comparison of results and more or less diversity may be allocated to Category 3, 適用於較高風險的應用。

一個新的因素是,對於具有 PE​​S 的系統,即使是軟件也應該從正確性的角度進行評估。 軟件,如果正確,是 100% 可靠的。 在技​​術發展的這個階段,最好的和已知的技術解決方案可能不會被使用,因為限制因素仍然是經濟的。 此外,各種專家組正在繼續制定 PES(例如 EC、EWICS)的安全應用標準。 儘管已經有各種標準可用(VDE0801、IEC65A 等),但這個問題是如此廣泛和復雜,以至於沒有一個可以被視為最終標準。

 

返回

更多內容 11791 最後修改於 31 年 2011 月 16 日星期三 05:XNUMX

" 免責聲明:國際勞工組織不對本門戶網站上以英語以外的任何其他語言呈現的內容負責,英語是原始內容的初始製作和同行評審所使用的語言。自此以來,某些統計數據尚未更新百科全書第 4 版的製作(1998 年)。”

內容

安全應用參考

Arteau、J、A Lan 和 JF Corveil。 1994. 在鋼結構安裝中使用水平生命線。 國際墜落防護研討會論文集,加利福尼亞州聖地亞哥(27 年 28 月 1994 日至 XNUMX 日)。 多倫多:國際防墜落協會。

Backström, T. 1996。自動化生產中的事故風險和安全保護。 博士論文。 Arbete och Hälsa 1996:7。 索爾納:國家工作生活研究所。

Backström、T 和 L Harms-Ringdahl。 1984. 控制系統和工作事故的統計研究。 J 佔用帳戶6:201–210。

Backström、T 和 M Döös。 1994. 自動化生產事故背後的技術缺陷。 在敏捷製造的進展中,由 PT Kidd 和 W Karwowski 編輯。 阿姆斯特丹:IOS 出版社。

—. 1995. 先進製造技術產業工傷事故比較。 Int J Hum Factors Manufac。 5(3)。 267–282。

—. 在新聞。 導致職業事故的機器故障的技術起源。 國際人體工程學雜誌。

—. 接受出版。 不同設備和不同職業群體的自動化事故的絕對和相對頻率。 J Saf 水庫

Bainbridge, L. 1983。自動化的諷刺。 自動化 19:775–779。

貝爾,R 和 D Reinert。 1992. 安全相關控制系統的風險和系統完整性概念。 安全科學 15:283–308。

Bouchard, P. 1991。Échafaudages。 指南系列 4。蒙特利爾:CSST。

國家事務局。 1975. 職業安全與健康標準。 物料搬運設備和拖拉機的翻車保護結構,第 1926、1928 節。華盛頓特區:國家事務局。

科貝特,JM。 1988. 以人為本的 AMT 開發中的人體工程學。 應用人體工程學十九:19—35。

卡爾弗、C 和 C 康諾利。 1994. 防止建築中的致命墜落。 Saf Health 1994 年 72 月:75-XNUMX。

德國工業標準 (DIN)。 1990. Grundsätze für Rechner in Systemen mit Sicherheitsauffgaben。 DIN V VDE 0801。柏林:Beuth Verlag。

—. 1994. Grundsätze für Rechner in Systemen mit Sicherheitsauffgaben Änderung A 1. DIN V VDE 0801/A1。 柏林:Beuth Verlag。

—. 1995a. Sicherheit von Maschinen—Druckempfindliche Schutzeinrichtungen [機器安全—壓敏防護設備]。 DIN prEN 1760。柏林:Beuth Verlag。

—. 1995b。 Rangier-Warneinrichtungen-Anforderungen und Prüfung [商用車輛 - 倒車時的障礙物檢測 - 要求和測試]。 DIN 標準 75031。1995 年 XNUMX 月。

Döös、M 和 T Backström。 1993. 自動化物料搬運事故描述。 在工作中的材料處理和信息處理的人體工程學中,由 WS Marras、W Karwowski、JL Smith 和 L Pacholski 編輯。 華沙:泰勒和弗朗西斯。

—. 1994. 作為事故風險的生產乾擾。 在敏捷製造的進展中,由 PT Kidd 和 W Karwowski 編輯。 阿姆斯特丹:IOS 出版社。

歐洲經濟共同體 (EEC)。 1974、1977、1979、1982、1987。關於輪式農林拖拉機防翻車結構的理事會指令。 布魯塞爾:歐洲經濟共同體。

—. 1991. 理事會關於近似成員國機械相關法律的指令。 (91/368/EEC) 盧森堡:EEC。

埃瑟頓、JR 和 ML 邁爾斯。 1990. NIOSH 的機器安全研究和未來方向。 Int J Ind Erg 6:163–174。

Freund、E、F Dierks 和 J Roßmann。 1993. Unterschungen zum Arbeitsschutz bei Mobilen Rototern und Mehrrobotersystemen [移動機器人和多機器人系統的職業安全測試]。 多特蒙德:Schriftenreihe der Bundesanstalt für Arbeitsschutz。

Goble, W. 1992。評估控制系統的可靠性。 紐約:美國儀器協會。

Goodstein, LP、HB Anderson 和 SE Olsen(編輯)。 1988. 任務、錯誤和心智模型。 倫敦:泰勒和弗朗西斯。

格里夫,CI。 1988. 跌倒的原因和預防。 在國際墜落防護研討會上。 奧蘭多:國際防墜落協會。

健康與安全執行官。 1989. 健康與安全統計 1986–87。 僱用 Gaz 97(2)。

Heinrich、HW、D Peterson 和 N Roos。 1980. 工業事故預防。 第 5 版紐約:麥格勞-希爾。

Hollnagel、E 和 D 伍茲。 1983. 認知系統工程:新瓶裝新酒。 Int J Man Machine Stud 18:583–600。

Hölscher、H 和 J Rader。 1984. Mikrocomputer in der Sicherheitstechnik。 萊茵:Verlag TgV-Reinland。

Hörte、S-Å 和 P Lindberg。 1989. 瑞典先進製造技術的傳播和實施。 工作文件第 198:16 號。 創新科技學院。

國際電工委員會 (IEC)。 1992. 122 標準草案:工業安全相關係統應用中的計算機軟件。 IEC 65(秒)。 日內瓦:IEC。

—. 1993. 123 標準草案:電氣/電子/可編程電子系統的功能安全; 通用方面。 第 1 部分,一般要求 日內瓦:IEC。

國際勞工組織(勞工組織)。 1965. 農業工作中的安全與健康。 日內瓦:國際勞工組織。

—. 1969. 林業工作中的安全與健康。 日內瓦:國際勞工組織。

—. 1976. 拖拉機的安全構造和操作。 國際勞工組織行為守則。 日內瓦:國際勞工組織。

國際標準化組織 (ISO)。 1981. 農林輪式拖拉機。 防護結構。 靜態測試方法和驗收條件。 ISO 5700。日內瓦:ISO。

—. 1990. 質量管理和質量保證標準:ISO 9001 在軟件開發、供應和維護中的應用指南。 ISO 9000-3。 日內瓦:國際標準化組織。

—. 1991. 工業自動化系統 - 集成製造系統的安全性 - 基本要求 (CD 11161)。 TC 184/WG 4。日內瓦:國際標準化組織。

—. 1994. 商用車——倒車時的障礙物檢測裝置——要求和測試。 技術報告 TR 12155。日內瓦:ISO。

Johnson, B. 1989。容錯數字系統的設計和分析。 紐約:艾迪生韋斯利。

Kidd, P. 1994。基於技能的自動化製造。 在先進製造系統的組織和管理中,由 W Karwowski 和 G Salvendy 編輯。 紐約:威利。

諾爾頓,RE。 1986. 危險和可操作性研究簡介:指導詞法。 溫哥華,不列顛哥倫比亞省:化學。

Kuivanen, R. 1990。柔性製造系統中乾擾對安全的影響。 在混合自動化系統 II 的人體工程學中,由 W Karwowski 和 M Rahimi 編輯。 阿姆斯特丹:愛思唯爾。

Laeser、RP、WI McLaughlin 和 DM Wolff。 1987. Fernsteurerung und Fehlerkontrolle von Voyager 2. Spektrum der Wissenshaft (1):S. 60–70。

Lan, A, J Arteau 和 JF Corbeil。 1994. 防止從地上廣告牌跌落。 國際墜落防護研討會,加利福尼亞州聖地亞哥,27 年 28 月 1994 日至 XNUMX 日。國際墜落防護協會會議記錄。

Langer、HJ 和 W Kurfürst。 1985. Einsatz von Sensoren zur Absicherung des Rückraumes von Großfahrzeugen [使用傳感器保護大型車輛後面的區域]。 FB 605. 多特蒙德:Schriftenreihe der bundesanstalt für Arbeitsschutz。

利文森,NG。 1986. 軟件安全:原因、內容和方式。 ACM 計算機調查 (2):S。 129–163。

田納西州麥克馬納斯。 Nd 密閉空間。 手稿。

Microsonic 有限公司。 1996. 公司通訊。 德國多特蒙德:Microsonic。

Mester、U、T Herwig、G Dönges、B Brodbeck、HD Bredow、M Behrens 和 U Ahrens。 1980. Gefahrenschutz durch passive Infrarot-Sensoren (II) [通過紅外傳感器防止危害]。 FB 243. 多特蒙德:Schriftenreihe der bundesanstalt für Arbeitsschutz。

Mohan, D 和 R Patel。 1992. 更安全的農業設備設計:人體工程學和流行病學的應用。 Int J Ind Erg 10:301–310。

美國消防協會 (NFPA)。 1993. NFPA 306:船舶氣體危害控制。 馬薩諸塞州昆西:NFPA。

美國國家職業安全與健康研究所 (NIOSH)。 1994. 密閉空間中的工人死亡。 美國俄亥俄州辛辛那提:DHHS/PHS/CDCP/NIOSH Pub。 第 94-103 號。 美國國家職業安全與健康研究所。

紐曼,PG。 1987. N 個最佳(​​或最差)計算機相關風險案例。 IEEE T Syst Man Cyb。 紐約:S.11–13。

—. 1994. 說明公眾使用計算機系統和相關技術的風險。 軟件工程師筆記 SIGSOFT 19,No. 1:16–29。

職業安全與健康管理局 (OSHA)。 1988. OSHA 死亡事故/災難調查報告中發現的與焊接和切割相關的部分職業死亡事故。 華盛頓特區:OSHA。

經濟合作與發展組織(經合組織)。 1987. 農用拖拉機官方測試標準規範。 巴黎:經合組織。

Organisme professionel de prévention du bâtiment et des travaux publics (OPPBTP)。 1984. Les équipements individuels de protection contre les chutes de hauteur。 布洛涅-比蘭古,法國:OPPBTP。

Rasmussen, J. 1983。技能、規則和知識:議程、標誌和符號,以及人類績效模型中的其他區別。 IEEE 交易系統、人和控制論。 SMC13(3):257–266。

Reason, J. 1990。人為錯誤。 紐約:劍橋大學出版社。

Reese、CD 和 GR Mills。 1986. 受限空間死亡的創傷流行病學及其在干預/預防中的應用。 在不斷變化的工作和勞動力性質中。 俄亥俄州辛辛那提:NIOSH。

Reinert、D 和 G Reuss。 1991. Sicherheitstechnische Beurteilung 和 Prüfung mikrozessorgesteuerter
Sicherheitseinrichtungen。 在 BIA 手冊中。 Sicherheitstechnisches Informations-und Arbeitsblatt 310222。比勒費爾德:Erich Schmidt Verlag。

汽車工程師協會 (SAE)。 1974. 工業設備的操作員保護。 SAE 標準 j1042。 美國沃倫代爾:SAE。

—. 1975. 翻車保護性能標準。 SAE 推薦做法。 SAE 標準 j1040a。 美國沃倫代爾:SAE。

Schreiber, P. 1990。Entwicklungsstand bei Rückraumwarneinrichtungen [後方區域警告裝置的發展狀況]。 Technische Überwachung, Nr. 4,四月,S. 161。

施賴伯、P 和 K 庫恩。 1995. Informationstechnologie in der Fertigungstechnik [生產技術中的信息技術,聯邦職業安全與健康研究所繫列]。 FB 717. 多特蒙德:Schriftenreihe der bundesanstalt für Arbeitsschutz。

Sheridan, T. 1987。監督控制。 在人為因素手冊中,由 G. Salvendy 編輯。 紐約:威利。

Springfeldt, B. 1993。職業安全規則和措施對傷害的影響。 自動工作解決方案的優勢。 斯德哥爾摩:皇家理工學院,工作科學系。

Sugimoto, N. 1987。機器人安全技術的主題和問題。 在自動化和機器人技術的職業安全與健康中,由 K Noto 編輯。 倫敦:泰勒和弗朗西斯。 175.

Sulowski, AC(編輯)。 1991. 防墜落基礎知識。 加拿大多倫多:國際防墜落協會。

Wehner, T. 1992。Sicherheit als Fehlerfreundlichkeit。 奧普拉登:西德意志出版社。

子墨龍、B、L杜達。 1992. 先進製造系統中的人為錯誤減少策略。 在人機交互中,由 M Rahimi 和 W Karwowski 編輯。 倫敦:泰勒和弗朗西斯。