Imprimir esta página
Terça-feira, 08 Março 2011 21: 20

Biomecânica

Classifique este artigo
(3 votos)

Objetivos e Princípios

A biomecânica é uma disciplina que aborda o estudo do corpo como se fosse apenas um sistema mecânico: todas as partes do corpo são comparadas a estruturas mecânicas e são estudadas como tal. As seguintes analogias podem, por exemplo, ser feitas:

  • ossos: alavancas, membros estruturais
  • carne: volumes e massas
  • juntas: superfícies de apoio e articulações
  • revestimentos de juntas: lubrificantes
  • músculos: motores, molas
  • nervos: mecanismos de controle de feedback
  • órgãos: fontes de alimentação
  • tendões: cordas
  • tecido: molas
  • cavidades do corpo: balões.

 

O principal objetivo da biomecânica é estudar a forma como o corpo produz força e gera movimento. A disciplina baseia-se principalmente em anatomia, matemática e física; disciplinas relacionadas são antropometria (o estudo das medidas do corpo humano), fisiologia do trabalho e cinesiologia (o estudo dos princípios da mecânica e anatomia em relação ao movimento humano).

Ao considerar a saúde ocupacional do trabalhador, a biomecânica ajuda a entender por que algumas tarefas causam lesões e problemas de saúde. Alguns tipos relevantes de efeitos adversos à saúde são tensão muscular, problemas nas articulações, problemas nas costas e fadiga.

Tensões e entorses nas costas e problemas mais sérios envolvendo os discos intervertebrais são exemplos comuns de lesões no local de trabalho que podem ser evitadas. Isso geralmente ocorre devido a uma sobrecarga específica repentina, mas também pode refletir o esforço excessivo do corpo por muitos anos: os problemas podem ocorrer repentinamente ou podem levar tempo para se desenvolver. Um exemplo de problema que se desenvolve com o tempo é o “dedo de costureira”. Uma descrição recente descreve as mãos de uma mulher que, após 28 anos de trabalho em uma fábrica de roupas, além de costurar em seu tempo livre, desenvolveu uma pele endurecida e espessa e uma incapacidade de flexionar os dedos (Poole 1993). (Especificamente, ela sofria de uma deformidade de flexão do dedo indicador direito, nódulos de Heberden proeminentes no dedo indicador e no polegar da mão direita e uma calosidade proeminente no dedo médio direito devido ao atrito constante da tesoura.) Raio-X. filmes de suas mãos mostraram alterações degenerativas graves nas articulações externas dos dedos indicador e médio direitos, com perda de espaço articular, esclerose articular (endurecimento do tecido), osteófitos (crescimentos ósseos na articulação) e cistos ósseos.

A inspeção no local de trabalho mostrou que esses problemas eram devidos à hiperextensão repetida (dobrar-se) da articulação mais externa do dedo. A sobrecarga mecânica e a restrição do fluxo sanguíneo (visível como um branqueamento do dedo) seriam máximas nessas articulações. Esses problemas se desenvolveram em resposta ao esforço muscular repetido em um local diferente do músculo.

A biomecânica ajuda a sugerir maneiras de projetar tarefas para evitar esses tipos de lesões ou melhorar tarefas mal projetadas. As soluções para esses problemas específicos são redesenhar a tesoura e alterar as tarefas de costura para eliminar a necessidade das ações executadas.

Dois princípios importantes da biomecânica são:

    1. Os músculos vêm em pares. Os músculos só podem se contrair, portanto, para qualquer articulação, deve haver um músculo (ou grupo muscular) para movê-lo em uma direção e um músculo (ou grupo muscular) correspondente para movê-lo na direção oposta. A Figura 1 ilustra o ponto para a articulação do cotovelo.
    2. Os músculos se contraem com mais eficiência quando o par muscular está em equilíbrio relaxado. O músculo age de forma mais eficiente quando está na região intermediária da articulação que flexiona. Isso ocorre por dois motivos: primeiro, se o músculo tentar se contrair ao ser encurtado, ele puxará o músculo oposto alongado. Como o último é alongado, ele aplicará uma contraforça elástica que o músculo em contração deve superar. A Figura 2 mostra como a força muscular varia com o comprimento do músculo.

       

      Figura 1. Os músculos esqueléticos ocorrem em pares para iniciar ou reverter um movimento

       ERG090F1

      Figura 2. A tensão muscular varia com o comprimento do músculo

      ERG090F2

      Em segundo lugar, se o músculo tentar se contrair fora da amplitude média do movimento da articulação, ele operará em desvantagem mecânica. A Figura 3 ilustra a mudança na vantagem mecânica do cotovelo em três posições diferentes.

      Figura 3. Posições ideais para o movimento articular

      ERG090F3

      Um critério importante para o planejamento do trabalho decorre desses princípios: o trabalho deve ser organizado de modo que ocorra com os músculos opostos de cada articulação em equilíbrio relaxado. Para a maioria das articulações, isso significa que a articulação deve estar em sua amplitude média de movimento.

      Esta regra também significa que a tensão muscular será mínima enquanto uma tarefa é executada. Um exemplo de violação da regra é a síndrome de uso excessivo (LER, ou lesão por esforço repetitivo) que afeta os músculos da parte superior do antebraço em operadores de teclado que habitualmente operam com o punho flexionado para cima. Freqüentemente, esse hábito é imposto ao operador pelo design do teclado e da estação de trabalho.

      Aplicações

      A seguir estão alguns exemplos que ilustram a aplicação da biomecânica.

      O diâmetro ideal dos cabos das ferramentas

      O diâmetro de um cabo afeta a força que os músculos da mão podem aplicar a uma ferramenta. A pesquisa mostrou que o diâmetro ideal do cabo depende do uso para o qual a ferramenta é colocada. Para exercer impulso ao longo da linha do cabo, o melhor diâmetro é aquele que permite que os dedos e o polegar assumam uma pegada ligeiramente sobreposta. Isso é cerca de 40 mm. Para exercer torque, um diâmetro de cerca de 50-65 mm é ideal. (Infelizmente, para ambos os propósitos, a maioria dos identificadores é menor que esses valores.)

      O uso de alicate

      Como um caso especial de cabo, a capacidade de exercer força com o alicate depende da separação do cabo, conforme mostrado na figura 4.

      Figura 4. Força de preensão das garras do alicate exercida por usuários masculinos e femininos em função da separação do cabo

       ERG090F4

      postura sentada

      A eletromiografia é uma técnica que pode ser usada para medir a tensão muscular. Em um estudo sobre a tensão no eretor da espinha músculos (das costas) de indivíduos sentados, verificou-se que inclinar-se para trás (com o encosto inclinado) reduziu a tensão nesses músculos. O efeito pode ser explicado porque o encosto suporta mais o peso da parte superior do corpo.

      Estudos de raios-X de indivíduos em uma variedade de posturas mostraram que a posição de equilíbrio relaxado dos músculos que abrem e fecham a articulação do quadril corresponde a um ângulo do quadril de cerca de 135º. Isso é próximo da posição (128º) naturalmente adotada por essa junta em condições de imponderabilidade (no espaço). Na postura sentada, com um ângulo de 90º no quadril, os músculos isquiotibiais que percorrem as articulações do joelho e do quadril tendem a puxar o sacro (a parte da coluna vertebral que se conecta com a pelve) para uma posição vertical. O efeito é remover a lordose natural (curvatura) da coluna lombar; as cadeiras devem ter encostos apropriados para corrigir esse esforço.

      Chave de fenda

      Por que os parafusos são inseridos no sentido horário? A prática provavelmente surgiu no reconhecimento inconsciente de que os músculos que giram o braço direito no sentido horário (a maioria das pessoas são destras) são maiores (e, portanto, mais poderosos) do que os músculos que o giram no sentido anti-horário.

      Observe que os canhotos estarão em desvantagem ao inserir os parafusos manualmente. Cerca de 9% da população é canhota e, portanto, precisará de ferramentas especiais em algumas situações: tesouras e abridores de latas são dois exemplos.

      Um estudo de pessoas usando chaves de fenda em uma tarefa de montagem revelou uma relação mais sutil entre um movimento específico e um problema de saúde específico. Verificou-se que quanto maior o ângulo do cotovelo (mais reto o braço), mais as pessoas tinham inflamação no cotovelo. A razão para este efeito é que o músculo que gira o antebraço (o bíceps) também puxa a cabeça do rádio (osso do antebraço) para o capítulo (cabeça arredondada) do úmero (osso do braço). O aumento da força no ângulo maior do cotovelo causou maior força de atrito no cotovelo, com consequente aquecimento da articulação, levando à inflamação. No ângulo mais alto, o músculo também teve que puxar com maior força para efetuar a ação de parafuso, então uma força maior foi aplicada do que seria necessária com o cotovelo em cerca de 90º. A solução foi aproximar a tarefa dos operadores para reduzir o ângulo do cotovelo para cerca de 90º.

      Os casos acima demonstram que uma compreensão adequada da anatomia é necessária para a aplicação da biomecânica no local de trabalho. Os projetistas de tarefas podem precisar consultar especialistas em anatomia funcional para antecipar os tipos de problemas discutidos. (O ergonomista de bolso (Brown e Mitchell 1986) com base na pesquisa eletromiográfica, sugere muitas maneiras de reduzir o desconforto físico no trabalho.)

      Manuseio manual de materiais

      O termo manuseio manual inclui levantar, abaixar, empurrar, puxar, carregar, mover, segurar e conter, e abrange uma grande parte das atividades da vida profissional.

      A biomecânica tem relevância direta óbvia para o trabalho de manuseio manual, uma vez que os músculos devem se mover para realizar tarefas. A questão é: quanto trabalho físico se pode razoavelmente esperar que as pessoas façam? A resposta depende das circunstâncias; há realmente três perguntas que precisam ser feitas. Cada um tem uma resposta baseada em critérios cientificamente pesquisados:

        1. Quanto pode ser manuseado sem danos ao corpo (na forma, por exemplo, de tensão muscular, lesão no disco ou problemas nas articulações)? Isso é chamado de critério biomecânico.
        2. Quanto pode ser manuseado sem sobrecarregar os pulmões (respirar com dificuldade a ponto de ofegar)? Isso é chamado de critério fisiológico.
        3. Quanto as pessoas se sentem capazes de lidar confortavelmente? Isso é chamado de critério psicofísico.

             

            Há uma necessidade desses três critérios diferentes porque há três reações amplamente diferentes que podem ocorrer nas tarefas de elevação: se o trabalho durar o dia todo, a preocupação será como a pessoa sente sobre a tarefa — o critério psicofísico; se a força a ser aplicada for grande, a preocupação seria que músculos e articulações fiquem não sobrecarregado ao ponto de dano - o critério biomecânico; e se o taxa de trabalho for muito grande, então pode muito bem ultrapassar o critério fisiológico, ou a capacidade aeróbica da pessoa.

            Muitos fatores determinam a extensão da carga colocada no corpo por uma tarefa de movimentação manual. Todos eles sugerem oportunidades de controle.

            Postura e Movimentos

            Se a tarefa exigir que uma pessoa torça ou estenda uma carga para a frente, o risco de lesões é maior. A estação de trabalho geralmente pode ser reprojetada para evitar essas ações. Mais lesões nas costas ocorrem quando o levantamento começa no nível do solo em comparação com o nível do meio da coxa, e isso sugere medidas de controle simples. (Isso também se aplica ao levantamento de peso.)

            A carga.

            A própria carga pode influenciar o manuseio devido ao seu peso e localização. Outros fatores, como sua forma, sua estabilidade, seu tamanho e seu escorregadio podem afetar a facilidade de uma tarefa de manuseio.

            Organização e ambiente.

            A forma como o trabalho é organizado, tanto fisicamente quanto ao longo do tempo (temporalmente), também influencia o manejo. É melhor distribuir o fardo de descarregar um caminhão em uma área de entrega entre várias pessoas por uma hora, em vez de pedir a um trabalhador que passe o dia todo na tarefa. O ambiente influencia o manuseio - pouca luz, pisos bagunçados ou irregulares e manutenção inadequada podem fazer com que uma pessoa tropece.

            Fatores pessoais.

            As habilidades pessoais de manuseio, a idade da pessoa e as roupas usadas também podem influenciar os requisitos de manuseio. Educação para treinamento e levantamento são necessários tanto para fornecer as informações necessárias quanto para dar tempo para o desenvolvimento das habilidades físicas de manuseio. Os mais jovens correm mais riscos; por outro lado, os idosos têm menos força e menos capacidade fisiológica. Roupas apertadas podem aumentar a força muscular necessária em uma tarefa, pois as pessoas se esforçam contra o pano apertado; exemplos clássicos são o uniforme de enfermeira e o macacão justo quando as pessoas trabalham acima de suas cabeças.

            Limites de peso recomendados

            Os pontos mencionados acima indicam que é impossível afirmar um peso que seja “seguro” em todas as circunstâncias. (Os limites de peso tendem a variar de país para país de maneira arbitrária. Os estivadores indianos, por exemplo, já foram “autorizados” a levantar 110 kg, enquanto seus equivalentes na antiga República Democrática Popular da Alemanha foram “limitados” a 32 kg .) Os limites de peso também tendem a ser muito grandes. Os 55 kg sugeridos em muitos países agora são considerados muito grandes com base em evidências científicas recentes. O Instituto Nacional de Segurança e Saúde Ocupacional (NIOSH) nos Estados Unidos adotou 23 kg como limite de carga em 1991 (Waters et al. 1993).

            Cada tarefa de levantamento precisa ser avaliada por seus próprios méritos. Uma abordagem útil para determinar um limite de peso para uma tarefa de levantamento é a equação desenvolvida pelo NIOSH:

            RWL = LC x HM x VM x DM x AM x CM x FM

            Onde

            RWL = limite de peso recomendado para a tarefa em questão

            HM = a distância horizontal do centro de gravidade da carga até o ponto médio entre os tornozelos (mínimo 15 cm, máximo 80 cm)

            VM = a distância vertical entre o centro de gravidade da carga e o piso no início da elevação (máximo 175 cm)

            DM = curso vertical do elevador (mínimo 25 cm, máximo 200 cm)

            AM = fator de assimetria – o ângulo em que a tarefa se desvia diretamente na frente do corpo

            CM = multiplicador de acoplamento – a capacidade de obter um bom controle sobre o item a ser levantado, que é encontrado em uma tabela de referência

            FM = multiplicadores de frequência – a frequência do levantamento.

            Todas as variáveis ​​de comprimento na equação são expressas em unidades de centímetros. Deve-se notar que 23 kg é o peso máximo que o NIOSH recomenda para elevação. Isso foi reduzido de 40 kg depois que a observação de muitas pessoas fazendo muitas tarefas de levantamento revelou que a distância média do corpo no início do levantamento é de 25 cm, não os 15 cm assumidos em uma versão anterior da equação (NIOSH 1981 ).

            Índice de levantamento.

            Comparando o peso a ser levantado na tarefa e o RWL, um índice de levantamento (LI) pode ser obtido pela relação:

            LI=(peso a ser manuseado)/RWL.

            Portanto, o uso particularmente valioso da equação NIOSH é a colocação de tarefas de levantamento em ordem de gravidade, usando o índice de levantamento para definir prioridades de ação. (A equação tem várias limitações, no entanto, que precisam ser compreendidas para sua aplicação mais eficaz. Veja Waters et al. 1993).

            Estimando a Compressão Espinhal Imposta pela Tarefa

            O software de computador está disponível para estimar a compressão espinhal produzida por uma tarefa de movimentação manual. Os Programas de Previsão de Força Estática 2D e 3D da Universidade de Michigan (“Backsoft”) estimam a compressão da coluna vertebral. As entradas necessárias para o programa são:

            • a postura em que a atividade de manipulação é realizada
            • a força exercida
            • a direção do esforço de força
            • o número de mãos que exercem a força
            • o percentil da população em estudo.

             

            Os programas 2D e 3D diferem porque o software 3D permite cálculos aplicados a posturas em três dimensões. A saída do programa fornece dados de compressão da coluna vertebral e lista a porcentagem da população selecionada que seria capaz de realizar a tarefa específica sem exceder os limites sugeridos para seis articulações: tornozelo, joelho, quadril, primeiro disco sacro lombar, ombro e cotovelo. Este método também tem uma série de limitações que precisam ser totalmente compreendidas para extrair o máximo valor do programa.

             

            Voltar

            Leia 13359 vezes Última modificação na sexta-feira, 15 Novembro 2019 15: 48