Одштампајте ову страну
Monday, 07 March 2011 15:31

Мирис

Оцените овај артикал
(КСНУМКС гласова)

Три сензорна система су јединствено конструисана да прате контакт са супстанцама из околине: мирис (мирис), укус (слатко, слано, кисело и горко перцепција) и здраво хемијско чуло (детекција иритације или оштрине). Пошто захтевају стимулацију хемикалијама, називају се „хемосензорним“ системима. Поремећаји мириса се састоје од привремених или трајних: потпуни или делимични губитак мириса (аносмија или хипосмија) и паросмије (изопачени мириси дисозмија или фантомски мириси фантосмије) (Мотт и Леополд 1991; Мотт, Грусхка и Сессле 1993). Након излагања хемикалијама, неке особе описују повећану осетљивост на хемијске стимулусе (хиперосмија). Укус је чулни доживљај настао интеракцијом мириса, укуса и иритирајућих компоненти хране и пића, као и текстуре и температуре. Пошто већина укуса потиче од мириса или ароме ингестантиа, оштећење система мириса се често пријављује као проблем са „укусом“.

Хемосензорне притужбе су честе у радном окружењу и могу бити резултат тога што нормални сензорни систем перципира хемикалије из животне средине. Насупрот томе, они такође могу указивати на оштећен систем: неопходан контакт са хемијским супстанцама чини ове сензорне системе јединствено подложним оштећењима. У радном окружењу, ови системи такође могу бити оштећени траумом главе и другим агенсима осим хемикалија (нпр. радијација). Мириси животне средине повезани са загађујућим материјама могу погоршати основна медицинска стања (нпр. астму, ринитис), подстаћи развој аверзије према мирисима или изазвати тип болести повезан са стресом. Доказано је да непријатни мириси смањују перформансе сложених задатака (Схустерман 1992).

Рана идентификација радника са губитком мириса је од суштинског значаја. Одређена занимања, као што су кулинарска уметност, производња вина и индустрија парфема, захтевају добро чуло мириса као предуслов. Многа друга занимања захтевају нормалан мирис за добар рад или самозаштиту. На пример, родитељи или радници у обданишту углавном се ослањају на мирис да би одредили хигијенске потребе деце. Ватрогасци треба да открију хемикалије и дим. Сваки радник који је стално изложен хемикалијама је под повећаним ризиком ако је олфакторна способност слаба.

Олфацтион обезбеђује систем раног упозоравања на многе штетне супстанце у животној средини. Једном када се ова способност изгуби, радници можда неће бити свесни опасних изложености све док концентрација агенса не буде довољно висока да буде иритантна, штетна за респираторна ткива или смртоносна. Правовремено откривање може спречити даље оштећење мириса кроз лечење упале и смањење накнадног излагања. Коначно, ако је губитак трајан и озбиљан, може се сматрати инвалидитетом који захтева обуку за нови посао и/или надокнаду.

Анатомија и физиологија

Олфацтори

Примарни олфакторни рецептори се налазе у деловима ткива, који се називају олфакторни неуроепител, у најсупериорнијем делу носних шупљина (Мотт и Леополд 1991). За разлику од других сензорних система, рецептор је нерв. Један део олфакторне рецепторске ћелије се шаље на површину назалне облоге, а други крај се директно повезује преко дугог аксона са једном од две мирисне сијалице у мозгу. Одавде информације путују у многа друга подручја мозга. Мириси су испарљиве хемикалије које морају да ступе у контакт са олфакторним рецептором да би дошло до перцепције мириса. Молекули мириса су заробљени и затим дифундују кроз слуз да би се причврстили за цилије на крајевима ћелија мирисних рецептора. Још није познато како смо у стању да откријемо више од десет хиљада мириса, разликујемо од чак 5,000 и проценимо различите интензитете мириса. Недавно је откривена мултигенска породица која кодира рецепторе мириса на примарним олфакторним нервима (Ресслер, Сулливан и Буцк 1994). Ово је омогућило истраживање о томе како се мириси откривају и како је систем мириса организован. Сваки неурон може широко реаговати на високе концентрације различитих мириса, али ће реаговати само на један или неколико мириса при ниским концентрацијама. Једном стимулисани, протеини површинских рецептора активирају унутарћелијске процесе који преводе сензорне информације у електрични сигнал (трансдукција). Није познато шта прекида сензорни сигнал упркос континуираној изложености мирису. Пронађени су растворљиви протеини који везују мирисе, али њихова улога није утврђена. Протеини који метаболишу мирисе могу бити укључени или протеини носачи могу транспортовати мирисе или даље од мирисних цилија или ка каталитичком месту унутар мирисних ћелија.

Делови олфакторних рецептора који се директно повезују са мозгом су фини нервни филаменти који путују кроз плочу кости. Локација и деликатна структура ових филамената чини их подложним повредама од смицања од удараца у главу. Такође, пошто је олфакторни рецептор нерв, физички долази у контакт са мирисима и повезује се директно са мозгом, супстанце које улазе у олфакторне ћелије могу да путују дуж аксона у мозак. Због континуираног излагања агенсима који оштећују ћелије олфакторних рецептора, олфакторна способност би могла бити изгубљена рано у животном веку да није било критичног атрибута: нерви олфакторних рецептора су способни за регенерацију и могу се заменити, под условом да ткиво није потпуно уништена. Међутим, ако је оштећење система централније, нерви се не могу обновити.

Здрав хемијски разум

Обични хемијски смисао се покреће стимулацијом мукозних, вишеструких, слободних нервних завршетака петог (тригеминалног) кранијалног нерва. Он опажа иритирајућа својства удахнутих супстанци и покреће рефлексе дизајниране да ограниче изложеност опасним агенсима: кијање, лучење слузи, смањење брзине дисања или чак задржавање даха. Јаки знакови упозорења приморавају да се иритација уклони што је пре могуће. Иако је оштрина супстанци различита, углавном се мирис супстанце детектује пре него што иритација постане очигледна (Рутх 1986). Међутим, када се открије иритација, мала повећања концентрације појачавају иритацију више него осећај мириса. Опорост се може изазвати било физичким или хемијским интеракцијама са рецепторима (Цометто-Муниз и Цаин 1991). Упозоравајућа својства гасова или пара имају тенденцију да корелирају са њиховом растворљивошћу у води (Схустерман 1992). Чини се да аносмици захтевају веће концентрације оштрих хемикалија за детекцију (Цометто-Муниз и Цаин 1994), али прагови детекције нису повишени са годинама (Стевенс и Цаин 1986).

Толеранција и адаптација

Перцепција хемикалија може бити промењена претходним сусретима. Толеранција се развија када излагање смањи одговор на накнадно излагање. Адаптација се дешава када стални или брзо поновљени стимулус изазове опадајући одговор. На пример, краткотрајна изложеност растварачу значајно, али привремено, смањује способност детекције растварача (Гагнон, Мерглер и Лапаре 1994). Адаптација се такође може десити када је дошло до продужене изложености ниским концентрацијама или брзо, са неким хемикалијама, када су присутне изузетно високе концентрације. Ово последње може довести до брзе и реверзибилне олфакторне „парализе“. Опорост носа обично показује мање прилагођавања и развоја толеранције од мирисних сензација. Мешавине хемикалија такође могу да промене перципирани интензитет. Генерално, када су мириси помешани, перципирани интензитет мириса је мањи него што би се очекивало додавањем два интензитета заједно (хипоадитивност). Опорост носа, међутим, генерално показује адитивност са излагањем више хемикалија, и сумирање иритације током времена (Цометто-Муниз и Цаин 1994). Са одорантима и иритантима у истој мешавини, мирис се увек доживљава као мање интензиван. Због толеранције, адаптације и хипоадитивности, мора се пазити да се избегне ослањање на ове сензорне системе за мерење концентрације хемикалија у околини.

Олфакторни поремећаји

Општи појмови

Мирис је поремећен када мириси не могу да дођу до олфакторних рецептора или када је мирисно ткиво оштећено. Оток у носу од ринитиса, синуситиса или полипа може спречити доступност мириса. Оштећење може настати са: запаљењем у носним шупљинама; уништавање олфакторног неуроепитела различитим агенсима; траума главе; и преношење агенаса преко олфакторних нерава у мозак са накнадном повредом мирисног дела централног нервног система. Професионалне средине садрже различите количине потенцијално штетних агенаса и услова (Амооре 1986; Цометто-Муниз и Цаин 1991; Схустерман 1992; Сцхиффман и Нагле 1992). Недавно објављени подаци од 712,000 испитаника Натионал Геограпхиц Смелл Сурвеи сугеришу да рад у фабрици нарушава мирис; мушки и женски радници у фабрици пријавили су лошије чуло мириса и показали смањени мирис током тестирања (Цорвин, Лоури и Гилберт 1995). Конкретно, изложеност хемикалијама и трауме главе су чешће пријављивани него радници у другим радним срединама.

Када се сумња на професионални олфакторни поремећај, идентификација узрочника може бити тешка. Садашње знање је углавном изведено из малих серија и извештаја о случајевима. Важно је да се у неколико студија помиње преглед носа и синуса. Већина се ослања на историју пацијента за олфакторни статус, а не на тестирање олфакторног система. Додатни отежавајући фактор је висока преваленција поремећаја мириса који нису повезани са радом у општој популацији, углавном због вирусних инфекција, алергија, полипа у носу, синуситиса или трауме главе. Неки од њих су, међутим, чешћи у радном окружењу и о њима ће се овде детаљно говорити.

Ринитис, синуситис и полипоза

Појединци са олфакторним поремећајем морају се прво проценити на ринитис, назалне полипе и синуситис. Процењује се да 20% становништва Сједињених Држава, на пример, има алергије на горњим дисајним путевима. Изложеност животној средини може бити неповезана, изазвати упалу или погоршати основни поремећај. Ринитис је повезан са губитком мириса у радном окружењу (Велцх, Бирцхалл и Стаффорд 1995). Неке хемикалије, као што су изоцијанати, анхидриди киселина, соли платине и реактивне боје (Цолеман, Холлидаи анд Деарман 1994), и метали (Немери 1990) могу бити алергени. Такође постоје значајни докази да хемикалије и честице повећавају осетљивост на нехемијске алергене (Русзнак, Девалиа и Давиес 1994). Токсични агенси мењају пропустљивост назалне слузокоже и омогућавају већи продор алергена и појачавају симптоме, што отежава разликовање ринитиса услед алергија и ринитиса услед излагања токсичним или честицама. Ако се покаже запаљење и/или опструкција у носу или синусима, лечењем је могућ повратак нормалне олфакторне функције. Опције укључују локалне кортикостероидне спрејеве, системске антихистаминике и деконгестиве, антибиотике и полипектомију/хирургију синуса. Ако запаљење или опструкција није присутна или третман не обезбеди побољшање олфакторне функције, мирисно ткиво је можда трајно оштећено. Без обзира на узрок, особа мора бити заштићена од будућег контакта са штетном супстанцом или може доћи до даљег оштећења олфакторног система.

Повреда главе

Траума главе може да промени мирис кроз (1) повреду носа са ожиљцима на олфакторном неуроепителу, (2) повреду носа са механичком опструкцијом мириса, (3) сечење мирисних филамената и (4) модрице или уништење дела мозак одговоран за мирисне сензације (Мотт и Леополд 1991). Иако траума представља ризик у многим радним окружењима (Цорвин, Лоури и Гилберт 1995), изложеност одређеним хемикалијама може повећати овај ризик.

Губитак мириса јавља се код 5% до 30% пацијената са траумом главе и може настати без икаквих других абнормалности нервног система. Зачепљење носа мирисима може се хируршки поправити, осим ако није дошло до значајних интраназалних ожиљака. Иначе, не постоји третман за поремећаје мириса који су резултат трауме главе, иако је могуће спонтано побољшање. Може доћи до брзог почетног побољшања како се оток смањи у области повреде. Ако су олфакторни филаменти ошишани, може доћи до поновног раста и постепеног побољшања мириса. Иако се ово дешава код животиња у року од 60 дана, побољшања код људи пријављена су чак седам година након повреде. Паросмије које се развијају док се пацијент опоравља од повреде могу указивати на поновни раст олфакторног ткива и најављивати повратак неке нормалне функције мириса. Паросмије које се јављају у време повреде или убрзо након тога су вероватније због оштећења можданог ткива. Оштећење мозга се неће поправити само од себе и не би се очекивало побољшање способности мириса. Повреда фронталног режња, дела мозга који је саставни део емоција и размишљања, може бити чешћа код пацијената са траумама главе са губитком мириса. Резултирајуће промене у социјализацији или обрасцима размишљања могу бити суптилне, иако штетне за породицу и каријеру. Формално неуропсихијатријско тестирање и лечење могу, стога, бити индиковани код неких пацијената.

Агенси животне средине

Агенси из животне средине могу да добију приступ олфакторном систему било кроз крвоток или удахнути ваздух и пријављено је да изазивају губитак мириса, паросмију и хиперосмију. Одговорни агенси укључују метална једињења, металну прашину, неметална неорганска једињења, органска једињења, дрвну прашину и супстанце присутне у различитим радним окружењима, као што су металуршки и производни процеси (Амооре 1986; Сцхиффман и Нагле 1992. (табела 1). Повреда се може јавити и након што је дошло до повреда). акутне и хроничне изложености и могу бити реверзибилне или иреверзибилне, у зависности од интеракције између осетљивости домаћина и штетног агенса. Важни атрибути супстанце укључују биоактивност, концентрацију, иритативни капацитет, дужину излагања, брзину клиренса и потенцијални синергизам са другим хемикалијама. осетљивост варира у зависности од генетске позадине и старости Постоје полне разлике у мирису, хормонској модулацији метаболизма мириса и разлике у специфичним аносмијама Употреба дувана, алергије, астма, статус ухрањености, постојећа болест (нпр. Сјогренов синдром), физички напор код време излагања, обрасци назалног протока ваздуха и вероватно психо друштвени фактори утичу на индивидуалне разлике (Броокс 1994). Отпорност периферног ткива на повреде и присуство функционалних олфакторних нерава могу променити осетљивост. На пример, акутна, тешка изложеност могла би да десеткује олфакторни неуроепител, ефикасно спречавајући ширење токсина у централном делу. Супротно томе, дуготрајна изложеност на ниском нивоу може омогућити очување функционалног периферног ткива и спор, али сталан транзит штетних супстанци у мозак. Кадмијум, на пример, има полувреме елиминације од 15 до 30 година код људи, а његови ефекти могу бити очигледни тек годинама након излагања (Хастингс 1990).

Табела 1. Средства/процеси повезани са олфакторним абнормалностима

Агент

Поремећај мириса

Препорука

Ацеталдехид
Ацетати, бутил и етил
Сирћетна киселина
Ацетон
Ацетопхеноне
Ацид цхлориде
Киселине (органске и неорганске)
Паре акрилата, метакрилата
Алум
Алуминијумске паре
Амонијак
Ангинин
арсен
пепео (спаљивач)
Асфалт (оксидован)

H
Х или А
H
Х, П
Ниско нормално
H
H
Смањена ИД мириса
H
H
H
H
H
H
Ниско нормално

2
3
2
2
2
2
2
1
2
2
КСНУМКС, КСНУМКС
1
2
4
2

Бензалдехид
Бензен
Петрол
Бензоеве киселине
Бензол
Пудерски прах
Бром
Бутил ацетат
Бутилен гликол

H
Испод просека
Х / А
H
Х / А
H
H
Х / А
H

2
2
1
2
1
2
2
1
2

Једињења кадмијума, прашина, оксиди


Угљен-дисулфид
Угљен моноксид
Угљен тетрахлорид
Цемент
Прашина од креде
Прашина од кестеновог дрвета
хлор
Хлорометани
Хлоровиниларсин хлориди
Хром (соли и оплата)
Хромат
Хроматне соли
Хромна киселина
Испарења хрома
Пушење цигарета
Угаљ (бункер за угаљ)
Испарења катрана
Кокс
Бакар (и сумпорна киселина)
Бакарни арсенит
Испарења бакра
Памук, плетена фабрика
Испарења креозота
Уља за сечење (машинска обрада)
Цијаниди

Х / А


Х / А
A
H
H
H
A
H
Ниско нормално
H
H
Поремећај мириса
A
H
H
Смањена ИД
H
H
Х или А
Поремећај мириса
H
H
H
Абнормал УПСИТ
Испод просека
H

1 ; Бар-Села и др. 1992; Роуз, Хејвуд и Костанцо 1992
1
2
2
4
1
1
2
2
2
2; 4
1
2
2
2
1
4
2
4
Савов 1991
2
2
4
5
2
2

Дихромати

H

2

Етил ацетат

Етил етар

Етилен оксид

Х / А
H
Смањен мирис

1
2
Госселин, Смитх и
Хоџ 1984

Лан
Брашно, млин за брашно
Флуориди
Једињења флуора
Формалдехид
Мириси
Фурфурал

H
H
Х или А
H
H
Испод просека
H

2
4
3
2
1, 2 ; Цхиа ет ал. 1992
2
2

зрно

Х или А

4

Халогена једињења
Тврдо дрво
Хидразин
Ароматични угљоводонични растварач
комбинације (нпр. толуен, ксилен, етил
бензен)
Хлороводоник
Водоник цијанид
Водоник флуорид
Водоник селенид
Хидроген сулфид

H
A
Х / А
Смањен УПСИТ, Х


H
A
H
Х / А
Х или А

2
2
1
5 ; Хотз ет ал. 1992


2
2
2
1
5; Гвидоти 1994

Иодоформ
Гвожђе карбонил
Изоцијанати

H
H
H

2
1
2

Довести
креч
Лие

H
H
H

4
2
2

Производња магнета
Испарења мангана
Ментол
Меркур
N-Метилформимино-метил естар

H
H
H
Ниско нормално
A

2
2
2 ; Наус 1968
2
2

Никлова прашина, хидроксид, облагање и рафинација
Никл хидроксид
Никлање
Рафинација никла (електролитичка)
Азотна киселина
Нитро једињења
Азот-диоксид

Х / А
A
Ниско нормално
A
H
H
H

1;4; Бар-Села и др. 1992
2
2
2
2
2
2

Уље пеперминта
Органофосфати
Осмијум тетроксид
Озон

Х / А
мирис белог лука; Х или А
H
Привремени Х

1
КСНУМКС; КСНУМКС
2
3

Боја (олово)
Боја (на бази растварача)

Фабрика папира, амбалаже
Паприка
Павинол (шивење)
Пентахлоропхенол
Мешавина бибера и крезола
Нана
Парфеми (концентровани)
Пестициди
Нафта
Фенилендиамин
Фосгене
Фосфор оксихлорид
поташа
штампање

Ниско нормално
Х или А

Могуће Х
H
Ниско нормално
A
Х / А
Х или А
H

Х или А
Х или А
H
H
Х / А
H
Ниско нормално

2
Виесландер, Норбацк
и Едлинг 1994
4
2
2
2
1
3
2
5
3
2
2
1
1
2

Вулканизација гуме

H

2

Једињења селена (испарљива)
Селен диоксид
Силиконски диоксид
Сребро нитрат
Посребрење
Солвентс


Зачини
Производња челика
Једињења сумпора
Сумпор диоксид
Сумпорна киселина

H
H
H
H
Испод нормале
Х, П, Ниско нормално


H
Ниско нормално
H
H
H

2
2
4
2
2
1; Ахлстром, Берглунд и Берглунд 1986; Сцхвартз ет ал. 1991; Болла и др. 1995
4
2
2
2
1; Петерсен и Гормсен 1991

Таннинг
Тетрабромоетан
тетрахлоретан
Испарења калаја
Дуван
трихлоретан
Триклоретилен

H
Паросмија, Х или А
H
H
H
H
Х / А

2
5
2
2
КСНУМКС; КСНУМКС
2
2

Ванадијумске паре
Лакови

H
H

2
2

Отпадне воде

Ниско нормално

2

Цинк (паре, хромат) и производња

Ниско нормално

2

Х = хипосмија; А = аносмија; П = паросмија; ИД = способност идентификације мириса

1 = Мот и Леополд 1991. 2 = Амооре 1986. 3 = Сцхиффман и Нагле 1992. 4 = Наус 1985. 5 = Цаллендар ет ал. 1993.

Специфични поремећаји мириса су као што је наведено у наведеним чланцима.

 

Носни пролази се вентилирају са 10,000 до 20,000 литара ваздуха дневно, који садржи различите количине потенцијално штетних агенаса. Горњи дисајни путеви скоро потпуно апсорбују или чисте високо реактивне или растворљиве гасове и честице веће од 2 мм (Еванс и Хастингс 1992). На срећу, постоји низ механизама за заштиту од оштећења ткива. Носна ткива су обогаћена крвним судовима, нервима, специјализованим ћелијама са цилијама способним за синхроно кретање и жлездама које производе слуз. Одбрамбене функције укључују филтрацију и чишћење честица, чишћење гасова растворљивих у води и рану идентификацију штетних агенаса кроз мирис и откривање иританата на слузокожи који могу покренути аларм и уклонити особу од даљег излагања (Витек 1993). Ниски нивои хемикалија се апсорбују у слоју слузи, уклањају се функционалним цилијама (мукоцилијарни клиренс) и гутају. Хемикалије се могу везати за протеине или се брзо метаболисати у мање штетне производе. Многи метаболички ензими налазе се у носној слузокожи и олфакторним ткивима (Боннефои, Монтицелло и Морган 1991; Сцхиффман и Нагле 1992; Еванс ет ал. 1995). Олфакторни неуроепител, на пример, садржи ензиме цитокрома П-450 који играју главну улогу у детоксикацији страних супстанци (Гресхам, Молгаард и Смитх 1993). Овај систем може заштитити примарне олфакторне ћелије и такође детоксиковати супстанце које би иначе ушле у централни нервни систем преко мирисних нерава. Такође постоје неки докази да нетакнути олфакторни неуроепител може спречити инвазију неких организама (нпр. криптокока; видети Лима и Витал 1994). На нивоу олфакторне луковице могу постојати и заштитни механизми који спречавају централни транспорт токсичних супстанци. На пример, недавно је показано да олфакторна луковица садржи металотионеине, протеине који имају заштитни ефекат против токсина (Цхоудхури ет ал. 1995).

Прекорачење заштитних капацитета може изазвати погоршање циклуса повреда. На пример, губитак олфакторне способности зауставља рано упозорење на опасност и омогућава континуирано излагање. Повећање протока крви у носу и пропустљивости крвних судова изазива отицање и опструкцију мириса. Цилијална функција, неопходна и за мукоцилијарни клиренс и за нормалан мирис, може бити поремећена. Промена клиренса ће повећати време контакта између штетних агенаса и назалне слузокоже. Абнормалности интраназалне слузи мењају апсорпцију мириса или иритантних молекула. Надјачавање способности метаболизма токсина омогућава оштећење ткива, повећану апсорпцију токсина и могуће повећану системску токсичност. Оштећено епително ткиво је подложније накнадном излагању. Постоје и директнији ефекти на олфакторне рецепторе. Токсини могу променити брзину обртања ћелија мирисних рецептора (обично 30 до 60 дана), повредити липиде у ћелијској мембрани рецептора или променити унутрашње или спољашње окружење рецепторских ћелија. Иако може доћи до регенерације, оштећено олфакторно ткиво може испољити трајне промене атрофије или замене мирисног ткива нечулним ткивом.

Олфакторни нерви обезбеђују директну везу са централним нервним системом и могу послужити као пут за улазак разних егзогених супстанци, укључујући вирусе, раствараче и неке метале (Еванс и Хастингс 1992). Овај механизам може допринети неким од деменција повезаних са мирисом (Монтеагудо, Цассиди и Фолб 1989; Боннефои, Монтицелло и Морган 1991) кроз, на пример, централно преношење алуминијума. Интраназално, али не интраперитонеално или интрахеално, примењени кадмијум се може открити у ипсилатералној олфакторној сијалици (Еванс и Хастингс 1992). Постоје додатни докази да се супстанце могу преферентно апсорбовати у олфакторно ткиво без обзира на место почетног излагања (нпр. системско у односу на инхалацију). Жива је, на пример, пронађена у високим концентрацијама у олфакторној регији мозга код субјеката са зубним амалгамима (Сиблеруд 1990). На електроенцефалографији, мирисна сијалица показује осетљивост на многе атмосферске загађиваче, као што су ацетон, бензол, амонијак, формалдехид и озон (Бокина ет ал. 1976). Због утицаја неких угљоводоничних растварача на централни нервни систем, изложене особе можда неће лако препознати опасност и удаљити се од опасности, чиме се продужава излагање. Недавно су Цаллендер и колеге (1993) добили 94% учесталости абнормалних СПЕЦТ скенирања, који процењују регионални церебрални проток крви, код субјеката са изложеношћу неуротоксинима и високом учесталошћу поремећаја олфакторне идентификације. Локација абнормалности на СПЕЦТ скенирању била је у складу са дистрибуцијом токсина кроз олфакторне путеве.

Место повреде унутар олфакторног система разликује се код различитих агенаса (Цометто-Муниз и Цаин 1991). На пример, етил акрилат и нитроетан селективно оштећују мирисно ткиво док је респираторно ткиво у носу очувано (Миллер ет ал. 1985). Формалдехид мења конзистенцију, а сумпорна киселина пХ назалне слузи. Многи гасови, соли кадмијума, диметиламин и дим цигарета мењају функцију цилијара. Диетил етар изазива цурење неких молекула из спојева између ћелија (Сцхиффман и Нагле 1992). Растварачи, као што су толуен, стирен и ксилен мењају мирисне цилије; такође се чини да се преносе у мозак преко олфакторног рецептора (Хотз ет ал. 1992). Водоник-сулфид не само да иритира слузокожу, већ је и високо неуротоксичан, ефикасно лишава ћелије кисеоника и изазива брзу парализу олфакторног нерва (Гуидотти 1994). Никл директно оштећује ћелијске мембране и такође омета заштитне ензиме (Еванс ет ал. 1995). Сматра се да растворени бакар директно омета различите фазе трансдукције на нивоу олфакторног рецептора (Винберг ет ал. 1992). Живин хлорид се селективно дистрибуира у олфакторно ткиво и може ометати функцију неурона кроз промену нивоа неуротрансмитера (Лаксхмана, Десирају и Рају 1993). Након убризгавања у крвоток, пестициде преузима назална слузокожа (Бриттебо, Хогман и Брандт 1987) и могу изазвати зачепљење носа. Међутим, мирис белог лука примећен код органофосфорних пестицида није због оштећеног ткива, већ због детекције бутилмеркаптана.

Иако пушење може упалити слузницу носа и смањити способност мириса, оно такође може пружити заштиту од других штетних агенаса. Хемикалије у диму могу индуковати микросомалне ензимске системе цитокрома П450 (Гресхам, Молгаард и Смитх 1993), који би убрзали метаболизам токсичних хемикалија пре него што могу да повреде олфакторни неуроепител. Насупрот томе, неки лекови, на пример трициклични антидепресиви и лекови против маларије, могу инхибирати цитокром П450.

Губитак мириса након излагања прашини од дрвета и плоча од влакана (Инноценти ет ал. 1985; Холмстром, Росен и Вилхелмссон 1991; Мотт и Леополд 1991) може бити узрокован различитим механизмима. Алергијски и неалергијски ринитис може довести до опструкције мириса или упале. Промене слузокоже могу бити озбиљне, документована је дисплазија (Боисен и Солберг 1982) и може доћи до аденокарцинома, посебно у пределу етмоидних синуса у близини олфакторног неуроепитела. Карцином повезан са тврдим дрветом може бити повезан са високим садржајем танина (Инноценти ет ал. 1985). Пријављена је немогућност ефикасног чишћења носне слузи и може бити повезана са повећаном учесталошћу прехладе (Андерсен, Андерсен и Солгаард 1977); резултирајућа вирусна инфекција може додатно оштетити олфакторни систем. Губитак мириса такође може бити последица хемикалија повезаних са обрадом дрвета, укључујући лакове и мрље. Плоче од влакана средње густине садрже формалдехид, познати иритант респираторног ткива који нарушава мукоцилијарно клиренс, узрокује губитак мириса и повезан је са високом инциденцом рака усне шупљине, носа и ждрела (Цоунцил он Сциентифиц Аффаирс 1989), а све то може допринети разумевање губитака мириса изазваних формалдехидом.

Пријављено је да терапија зрачењем изазива олфакторне абнормалности (Мотт и Леополд 1991), али је мало информација доступно о професионалном излагању. Очекује се да ће ткиво које се брзо регенерише, као што су ћелије рецептора мириса, бити рањиво. Мишеви изложени зрачењу у свемирском лету показали су абнормалности ткива мириса, док је остатак носне слузнице остао нормалан (Сцхиффман и Нагле 1992).

Након излагања хемикалијама, неки појединци описују повећану осетљивост на мирисе. „Вишеструка хемијска осетљивост” или „еколошка болест” су ознаке које се користе за описивање поремећаја које карактерише „преосетљивост” на различите хемикалије из животне средине, често у ниским концентрацијама (Цуллен 1987; Миллер 1992; Белл 1994). До сада, међутим, нису доказани нижи прагови за мирисе.

Непрофесионални узроци олфакторних проблема

Старење и пушење смањују олфакторну способност. Вирусно оштећење горњих дисајних путева, идиопатско („непознато“), траума главе и болести носа и синуса су четири водећа узрока проблема са мирисом у Сједињеним Државама (Мотт и Леополд 1991) и морају се сматрати делом диференцијална дијагноза код сваког појединца који има могућу изложеност животној средини. Урођене неспособности за откривање одређених супстанци су честе. На пример, 40 до 50% популације не може да открије андростерон, стероид који се налази у зноју.

Тестирање хемосензације

Психофизика је мерење одговора на примењени сензорни стимулус. Често се користе „Прагови“ тестови, тестови који одређују минималну концентрацију која се може поуздано уочити. Могу се добити одвојени прагови за детекцију мириса и идентификацију мириса. Супратхресхолд тестови процењују способност система да функционише на нивоима изнад прага и такође пружају корисне информације. Задаци дискриминације, који показују разлику између супстанци, могу изазвати суптилне промене у сензорним способностима. Задаци идентификације могу дати различите резултате од задатака прага код исте особе. На пример, особа са повредом централног нервног система може бити у стању да открије мирисе на уобичајеним нивоима прага, али можда неће моћи да идентификује уобичајене мирисе.

резиме

Носни пролази се вентилирају са 10,000 до 20,000 литара ваздуха дневно, који може бити контаминиран потенцијално опасним материјама у различитом степену. Мирисни систем је посебно осетљив на оштећења због неопходног директног контакта са испарљивим хемикалијама за перцепцију мириса. Губитак мириса, толеранција и адаптација спречавају препознавање близине опасних хемикалија и могу допринети локалним повредама или системској токсичности. Рана идентификација олфакторних поремећаја може подстаћи заштитне стратегије, обезбедити одговарајући третман и спречити даља оштећења. Професионални поремећаји мириса могу се манифестовати као привремена или трајна аносмија или хипосмија, као и искривљена перцепција мириса. Идентификујући узроци које треба узети у обзир на радном месту укључују ринитис, синуситис, трауму главе, изложеност зрачењу и повреде ткива од металних једињења, металне прашине, неметалних неорганских једињења, органских једињења, дрвне прашине и супстанци присутних у металуршким и производним процесима. Супстанце се разликују по месту интерференције са олфакторним системом. Моћни механизми за хватање, уклањање и детоксикацију страних назалних супстанци служе за заштиту олфакторне функције и спречавају ширење штетних агенаса у мозак из олфакторног система. Прекорачење заштитних капацитета може изазвати погоршање циклуса повреда, што на крају доводи до веће тежине оштећења и проширења места повреде, и претварање привремених реверзибилних ефеката у трајна оштећења.

 

Назад

Читати 8526 пута Последња измена у уторак, 11. октобра 2011. 21:04