Poschen, Peter

Poschen, Peter

Address: International Labour Office, Industrial Activities Branch, Bureau 3-85, 4, route des Morillons, 1211 Geneva 22

Country: Switzerland

Phone: 41 22 799 6188

Fax: 41 22 799 7967

E-mail: poschen@ilo.org

Education: MSc, 1980, Freiburg University; PhD, 1987, Freiburg University

Areas of interest: Forestry workforce, safety, training and employment

 

Saturday, 02 April 2011 21:42

General Profile

The printing, commercial photography and reproduction industries are important worldwide in terms of their economic significance. The printing industry is very diverse in technologies and in size of enterprises. However, regardless of size as measured by production volume, the different printing technologies described in this chapter are the most common. In terms of production volume, there are a limited number of large-scale operations, but many small ones. From the economic perspective, the printing industry is one of the largest industries and generates annual revenues of at least US$500 billion worldwide. Similarly, the commercial photography industry is diverse, with a limited number of large-volume and many small-volume operations. Photofinishing volume is about equally divided between the large and small-volume operations. The commercial photographic market generates annual revenues of approximately US$60 billion worldwide, with photofinishing operations comprising approximately 40% of this total. The reproduction industry, which consists of smaller-volume operations with combined annual revenues of about US$27 billion, generates close to 2 trillion copies annually. In addition, reproduction and duplication services on an even smaller scale are provided onsite at most organizations and companies.

Health, environmental and safety issues in these industries are evolving in response to substitutions with potentially less hazardous materials, new industrial hygiene control strategies, and the advent of new technologies, such as the introduction of digital technologies, electronic imaging and computers. Many historically important health and safety issues (e.g., solvents in the printing industry or formaldehyde as a stabilizer in photoprocessing solutions) will not be issues in the future due to material substitution or other risk management strategies. Nevertheless, new health, environmental and safety issues will arise that will have to be addressed by health and safety professionals. This suggests the continued importance of health and environmental monitoring as part of an effective risk management strategy in the printing, commercial photography and reproduction industries.

 

Back

Monday, 14 March 2011 17:51

Skills and Training

Skills, Training and Exposure

In many industries, attention to safety in the design of equipment, workplaces and work methods can go a long way toward reducing occupational safety and health hazards. In the forestry industry, exposure to risks is largely determined by the technical knowledge, skill and experience of the individual worker and the supervisor, and their commitment to a joint effort in planning and performing the work. Training, therefore, is a crucial determinant of health and safety in forestry.

Studies in different countries and for different jobs in forestry all concur that three groups of workers have a disproportionately high accident frequency: the unskilled, often seasonal, workers; the young; and new entrants. In Switzerland, fully 73% of the accidents affect workers with less than one year in forestry; likewise, three-quarters of the accident victims had no or only rudimentary training (Wettman 1992).

Untrained workers also tend to have a much higher workload and higher risk of back injuries because of poor technique (see “Tree planting” in this chapter for an example). If training is critically important both from a safety and a productivity point of view in normal operations, it is absolutely indispensable in high-risk tasks like salvaging windblown timber or firefighting. No personnel should be allowed to participate in such activities unless they have been especially trained.

Training Forest Workers

On-the-job training is still very common in forestry. It is usually very ineffective, because it is a euphemism for imitation or simply trial and error. Any training needs to be based on clearly established objectives and on well-prepared instructors. For new chain-saw operators, for example, a two-week course followed by systematic coaching at the workplace is the bare minimum.

Fortunately, there has been a trend towards longer and well-structured training in industrialized countries, at least for directly employed workers and most new entrants. Various European countries have 2-to-3-year apprenticeships for forest workers. The structure of training systems is described and contacts to schools are listed in FAO/ECE/ILO 1996b. Even in these countries there is, however, a widening gap between the above and problem groups such as self-employed, contractors and their workers, and farmers working in their own forest. Pilot schemes to provide training for these groups have demonstrated that they can be profitable investments, as their cost is more than offset by savings resulting from reductions in accident frequency and severity. In spite of its demonstrated benefits and of some encouraging examples, like the Fiji Logging School, forest worker training is still virtually non-existent in most tropical and subtropical countries.

Forest worker training has to be based on the practical needs of the industry and the trainee. It has to be hands-on, imparting practical skill rather than merely theoretical knowledge. It can be provided through a variety of mechanisms. Schools or training centres have been used widely in Europe with excellent results. They do, however, carry a high fixed cost, need a fairly high annual enrolment to be cost-effective, and are often far from the workplace. In many countries mobile training has, therefore, been preferred. In its simplest form, specially prepared instructors travel to workplaces and offer courses according to programmes that may be standard or modular and adaptable to local needs. Skilled workers with some further training have been used very effectively as part-time instructors. Where demand for training is higher, specially equipped trucks or trailers are used as mobile classrooms and workshops. Designs and sample equipment lists for such units are available (Moos and Kvitzau 1988). For some target groups, such as contractors or farmers, mobile training may be the only way to reach them.

Minimum Competence Standards and Certification

In all countries, minimum standards of skill should be defined for all major jobs, at least in forest harvesting, the most hazardous operation. A very suitable approach to make sure minimum standards are defined and actually met in the industry is skill certification based on testing workers in short theoretical and practical exams. Most schemes place emphasis on standardized tests of workers’ skill and knowledge, rather than on whether these have been acquired through training or long experience. Various certification schemes have been introduced since the mid-1980s. In many cases certification has been promoted by workers’ compensation funds or safety and health directorates, but there have also been initiatives by large forest owners and industry. Standard tests are available for chain-saw and skidder operators (NPTC and SSTS 1992, 1993; Ministry of Skills Development 1989). Experience shows that the tests are transferable without or with only minor amendment. In 1995 for example the ILO and the Zimbabwe Forestry Commission successfully introduced the chain-saw test developed in an ILO logging training project in Fiji.

 

Back

Monday, 14 March 2011 17:10

Psychosocial Factors

As is apparent from articles in this chapter, physical risks in forestry work are rather well documented. By contrast, comparatively little research has focused on psychological and social factors (Slappendel et al. 1993). In a forestry context such factors include: job satisfaction and security; the mental workload; susceptibility and response to stress; coping with perceived risks; work pressure, overtime and fatigue; need to endure adverse environmental conditions; social isolation in work camps with separation from families; work organization; and teamwork.

The health and safety situation in forest work depends on the wide range of factors described in this chapter: stand and terrain conditions; infrastructure; climate; technology; work methods; work organization; economic situation; contracting arrangements; worker accommodation; and education and training. These factors are known to interact and may actually compound to create higher risk or safer working environments (see “Working conditions and safety in forestry work” in this chapter).

These factors also interact with social and psychological ones, in that they influence the status of forest work, the recruitment base and the pool of skills and abilities that becomes available to the sector. In an unfavourable situation the circle of problems depicted in figure 1 can be the result. This situation is unfortunately rather common in developing countries and in segments of the forestry workforce in industrialized countries, in particular among migrant workers.

Figure 1. The circle of problems that may be encountered in forest work.

FOR130F1

The social and psychological profile of the forestry workforce and the selection process that leads to it are likely to play a major role in determining the impact of stress and risk situations. They have probably not received enough attention in forestry. Traditionally, forest workers have come from rural areas and have considered work in the forest as much a way of life as an occupation. It has often been the independent, outdoors nature of the work that attracted them. Modern forest operations often no longer fit such expectations. Even for those whose personal profiles matched the demands of the job rather well when they started, the rapid technological and structural change in forestry work since the early 1980s has created major difficulties. Workers unable to adapt to mechanization and an existence as an independent contractor are often marginalized. To reduce the incidence of such mismatches, the Laboratory of Ergonomics at the University of Concepción in Chile has developed a strategy                                                                                                                         for forest worker selection, taking into account the needs of the                                                                                                                         industry, social aspects and psychological criteria.

Moreover, many new entrants still come ill-prepared to the job. On-the-job training, which is often no more than trial and error, is still common. Even where training systems are well developed, the majority of workers may have no formal training. In Finland, for example, forest machine operators have been trained for almost 30 years and a total of over 2,500 graduated. Nonetheless, in the late 1980s, 90% of the contractors and 75% of the operators had received no formal training.

Social and psychological factors are likely to play a major role in determining the impact of risk and stress. Psychological factors featured prominently among the causes given by forest workers in Germany for accidents they suffered. About 11% of the accidents were attributed to stress and another third to fatigue, routine, risk taking and lack of experience. Internal cognitive models may play a significant role in the creation of risk situations leading to logging accidents, and that their study can make an important contribution to prevention.

Risk

Promising work on risk perception, assessment and risk taking in forestry has been done in Finland. The findings suggest that workers develop internal models about their jobs which lead to the development of automatic or semi-automatic routines. The theory of internal models describes the normal activity of a forest worker, like chain-saw or forest machine operation, the changes introduced through experience, the reasons for these and the creation of risk situations (Kanninen 1986). It has helped to provide a coherent explanation for many accidents and to make proposals for their prevention.

According to the theory, internal models evolve at successive levels through experience. Kanninen (1986) has suggested that in chain-saw operations the motion-control model is the lowest in the hierarchy of such models, followed by a tree handling model and a work-environment model. According to the theory, risks develop when the forest worker’s internal model deviates from the objective requirements of the situation. The model may not be sufficiently developed, it may contain inherent risk factors, it may not be used at a particular time (e.g., because of fatigue) or there may be no model that fits an unfamiliar situation—say, a windfall. When one of these situations occurs, it is likely to result in an accident.

The development and use of models is influenced by experience and training, which may explain the contradictory findings of studies on risk perception and assessment in the review by Slappendel et al. (1993). Forest workers generally consider risk-taking to be part of their job. Where this is a pronounced tendency, risk compensation can undermine efforts to improve work safety. In such situations workers will adjust their behaviour and return to what they accept as a level of risk. This may, for example, be part of the explanation for the limited effectiveness of personal protective equipment (PPE). Knowing that they are protected by cut-proof trousers and boots, workers go faster, work with the machine closer to their body and take short cuts in violation of safety regulations that they think “take too long to follow”. Typically, risk compensation seems to be partial. There are probably differences among individuals and groups in the workforce. Reward factors are probably important to trigger risk compensation. Rewards could be reduced discomfort (such as when not wearing warm protective clothing in a hot climate) or financial benefits (such as in piece-rate systems), but social recognition in a “macho” culture is also a conceivable motive. Worker selection, training and work organization should attempt to minimize incentives for risk compensation.

Mental Workload and Stress

Stress may be defined as the psychological pressure on an individual created by a perceived mismatch between that individual’s capacity and perceived demands of the job. Common stressors in forestry include high work speed; repetitive and boring work; heat; work over- or underloads in unbalanced work crews; young or old workers trying to achieve sufficient earnings on low piece-rates; isolation from workmates, family and friends; and a lack of privacy in camps. They can also include a low general social status of forest workers, and conflicts between loggers and the local population or environmental groups. On balance, the transformation of forest work that sharply increased productivity also pushed up stress levels and reduced overall welfare in forest work (see figure 2).

Figure 2.  Simplified scheme of cause-and-effect relations in contracting operations.

FOR130F2

Two types of workers are particularly prone to stress: harvester operators and contractors. The operator of a sophisticated harvester is in a multiple-stress situation, because of the short work cycles, the quantity of information that needs to be absorbed and the large number of fast decisions that need to be made. Harvesters are significantly more demanding than more traditional machines like skidders, loaders and forwarders. In addition to machine handling, the operator is usually also responsible for machine maintenance, planning and skid track design as well as bucking, scaling and other quality aspects that are closely monitored by the company and that have a direct impact on pay. This is particularly true in thinnings, as the operator typically works alone and makes decisions that are irreversible. In a study of thinning with harvesters, Gellerstedt (1993) analysed the mental load and concluded that the operator’s mental capacity is the limiting factor for productivity. Operators who were not able to cope with the load were unable to take enough micropauses during the work cycles and developed neck and shoulder problems as a result. Which of these complex decisions and tasks is perceived as most demanding varies considerably among individuals, depending on factors like background, previous work experience and training (Juntunen 1993, 1995).

Added strain may result from the rather common situation in which the operator is also the machine owner, working as a small contractor. This implies a high financial risk, often in the form of a loan involving up to US$1 million, in what often is a very volatile and competitive market. Working weeks often exceed 60 hours for this group. Studies of such contractors show that the ability to withstand stress is a significant factor (Lidén 1995). In one of Lidén’s studies in Sweden, as many as 54% of machine contractors were considering leaving the job—first, because it interfered too much with their family life; second, for health reasons; third, because it involved too much work; and, fourth, because it was not profitable. Researchers and contractors themselves consider resilience to stress as a precondition for a contractor to be able to stay in business without developing serious health complaints.

Where the selection process works, the group may show few mental health complaints (Kanninen 1986). In many situations, however, and not only in Scandinavia, the lack of alternatives locks contractors into this sector, where they are exposed to higher health and safety risks than individuals whose personal profile is more in line with that of the job. Good cabins and further improvement in their design, particularly of controls, and measures taken by the individual, such as regular short breaks and physical exercise, can go some way towards reducing such problems. The theory of internal models could be used to improve training to increase the operator-contractors’ readiness and ability to cope with ever more demanding machine operation. That would help lower the level of “background stress”. New forms of work organization in teams involving task variety and job rotation are probably the most difficult to put into practice, but are also the potentially most effective strategy.

 

Back

Sunday, 13 March 2011 19:03

General Profile

In 1993, the worldwide production of electricity was 12.3 trillion kilowatt hours (United Nations 1995). (A kilowatt hour is the amount of electricity needed to light ten 100-watt bulbs for 1 hour.) One can judge the magnitude of this endeavour by considering data from the United States, which alone produced 25% of the total energy. The US electric utility industry, a mix of public and privately owned entities, generated 3.1 trillion kilowatt hours in 1993, using more than 10,000 generating units (US Department of Energy 1995). The portion of this industry that is owned by private investors employs 430,000 people in electric operations and maintenance, with revenues of US$200 billion annually.

Electricity is generated in plants which utilize fossil fuel (petroleum, natural gas or coal) or use nuclear energy or hydropower. In 1990, for example, 75% of France’s electrical power came from nuclear power stations. In 1993, 62% of the electricity generated worldwide came from fossil fuels, 19% from hydropower, and 18% from nuclear power. Other reusable sources of energy such as wind, solar, geothermal or biomass account for only a small proportion of world electric production. From generating stations, electricity is then transmitted over interconnected networks or grids to local distribution systems and on through to the consumer.

The workforce that makes all of this possible tends to be primarily male and to possess a high degree of technical skill and knowledge of “the system”. The tasks that these workers undertake are quite diverse, having elements in common with the construction, manufacturing, materials handling, transportation and communications industries. The next few articles describe some of these operations in detail. The articles on electric maintenance standards and environmental concerns also highlight major US government regulatory initiatives that affect the electric utility industry.

 

Back

Saturday, 12 March 2011 16:50

Wood Harvesting

The present article draws heavily on two publications: FAO 1996 and FAO/ILO 1980. This article is an overview; numerous other references are available. For specific guidance on preventive measures, see ILO 1998.

Wood harvesting is the preparation of logs in a forest or tree plantation according to the requirements of a user, and delivery of logs to a consumer. It includes the cutting of trees, their conversion into logs, extraction and long distance transport to a consumer or processing plant. The terms forest harvesting, wood harvesting or logging are often used synonymously. Long-distance transport and the harvesting of non-wood forest products are dealt with in separate articles in this chapter.

Operations

While many different methods are used for wood harvesting, they all involve a similar sequence of operations:

  • tree felling: severing a tree from the stump and bringing it down
  • topping and debranching (delimbing): cutting off the unusable tree crown and the branches
  • debarking: removing the bark from the stem; this operation is often done at the processing plant rather than in the forest; in fuelwood harvesting it is not done at all
  • extraction: moving the stems or logs from the stump to a place close to a forest road where they can be sorted, piled and often stored temporarily, awaiting long distance transport
  • log making/cross-cutting (bucking): cutting the stem to the length specified by the intended use of the log
  • scaling: determining the quantity of logs produced, usually by measuring volume (for small dimension timber also by weight; the latter is common for pulpwood; weighing is done at the processing plant in that case)
  • sorting, piling and temporary storage: logs are usually of variable dimensions and quality, and are therefore classified into assortments according to their potential use as pulpwood, sawlogs and so on, and piled until a full load, usually a truckload, has been assembled; the cleared area where these operations, as well as scaling and loading, take place is called a “landing”
  • loading: moving the logs onto the transport medium, typically a truck, and attaching the load.

 

These operations are not necessarily carried out in the above sequence. Depending on the forest type, the kind of product desired and the technology available, it may be more advantageous to carry out an operation either earlier (i.e., closer to the stump) or later (i.e., at the landing or even at the processing plant). One common classification of harvesting methods is based on distinguishing between:

  • full-tree systems, where trees are extracted to the roadside, the landing or the processing plant with the full crown
  • short-wood systems, where topping, debranching and cross-cutting is done close to the stump (logs are usually not longer than 4 to 6 m)
  • tree-length systems, where tops and branches are removed before extraction.

 

The most important group of harvesting methods for industrial wood is based on tree length. Short-wood systems are standard in northern Europe and also common for small-dimension timber and fuelwood in many other parts of the world. Their share is likely to increase. Full-tree systems are the least common in industrial wood harvesting, and are used in only a limited number of countries (e.g., Canada, the Russian Federation and the United States). There they account for less than 10% of volume. The importance of this method is diminishing.

For work organization, safety analysis and inspection, it is useful to conceive of three distinct work areas in a wood harvesting operation:

  1. the felling site or stump
  2. the forest terrain between the stump and the forest road
  3. the landing.

 

It is also worthwhile to examine whether the operations take place largely independently in space and time or whether they are closely related and interdependent. The latter is often the case in harvesting systems where all steps are synchronized. Any disturbance thus disrupts the entire chain, from felling to transport. These so-called hot-logging systems can create extra pressure and strain if not carefully balanced.

The stage in the life cycle of a forest during which wood harvesting takes place, and the harvesting pattern, will affect both the technical process and its associated hazards. Wood harvesting occurs either as thinning or as final cut. Thinning is the removal of some, usually undesirable, trees from a young stand to improve the growth and quality of the remaining trees. It is usually selective (i.e., individual trees are removed without creating major gaps). The spatial pattern generated is similar to that in selective final cutting. In the latter case, however, the trees are mature and often large. Even so, only some of the trees are removed and a significant tree cover remains. In both cases orientation on the worksite is difficult because remaining trees and vegetation block the view. It can be very difficult to bring trees down because their crowns tend to be intercepted by the crowns of remaining trees. There is a high risk of falling debris from the crowns. Both situations are difficult to mechanize. Thinning and selective cutting therefore require more planning and skill to be done safely.

The alternative to selective felling for final harvest is the removal of all trees from a site, called “clear cutting”. Clearcuts can be small, say 1 to 5 hectares, or very large, covering several square kilometres. Large clearcuts are severely criticized on environmental and scenic grounds in many countries. Whatever the pattern of the cut, harvesting old growth and natural forest usually involves greater risk than harvesting younger stands or human-made forests because trees are large and have tremendous inertia when falling. Their branches may be intertwined with the crowns of other trees and climbers, causing them to break off branches of other trees as they fall. Many trees are dead or have internal rot which may not be apparent until late in the felling process. Their behaviour during felling is often unpredictable. Rotten trees may break off and fall in unexpected directions. Unlike green trees, dead and dry trees, called snags in North America, fall quickly.

Technological developments

Technological development in wood harvesting has been very rapid over the second half of the 20th century. Average productivity has been soaring in the process. Today, many different harvesting methods are in use, sometimes side by side in the same country. An overview of systems in use in Germany in the mid-1980s, for example, describes almost 40 different configurations of equipment and methods (Dummel and Branz 1986).

While some harvesting methods are technologically far more complex than others, no single method is inherently superior. The choice will usually depend on the customer specifications for the logs, on forest conditions and terrain, on environmental considerations, and often decisively on cost. Some methods are also technically limited to small and medium-size trees and relatively gentle terrain, with slopes not exceeding 15 to 20°.

Cost and performance of a harvesting system can vary over a wide range, depending on how well the system fits the conditions of the site and, equally important, on the skill of the workers and how well the operation is organized. Hand tools and manual extraction, for example, make perfect economic and social sense in countries with high unemployment, low labour and high capital cost, or in small-scale operations. Fully mechanized methods can achieve very high daily outputs but involve large capital investments. Modern harvesters under favourable conditions can produce upwards of 200 m3 of logs per 8-hour day. A chain-saw operator is unlikely to produce more than 10% of that. A harvester or big cable yarder costs around US$500,000 compared to US$1,000 to US$2,000 for a chain-saw and US$200 for a good quality cross-cut handsaw.

Common Methods, Equipment and Hazards

Felling and preparation for extraction

This stage includes felling and removal of crown and branches; it may include debarking, cross-cutting and scaling. It is one of the most hazardous industrial occupations. Hand tools and chain-saws or machines are used in felling and debranching trees and crosscutting trees into logs. Hand tools include cutting tools such as axes, splitting hammers, bush hooks and bush knives, and hand saws such as cross-cut saws and bow saws. Chain-saws are widely used in most countries. In spite of major efforts and progress by regulators and manufacturers to improve chain-saws, they remain the single most dangerous type of machine in forestry. Most serious accidents and many health problems are associated with their use.

The first activity to be carried out is felling, or severing the tree from the stump as close to the ground as conditions permit. The lower part of the stem is typically the most valuable part, as it contains a high volume, and has no knots and an even wood texture. It should therefore not split, and no fibre should be torn out from the butt. Controlling the direction of the fall is important, not only to protect the tree and those to be left standing, but also to protect the workers and to make extraction easier. In manual felling, this control is achieved by a special sequence and configuration of cuts.

The standard method for chain-saws is depicted in figure 1. After determining the felling direction (1) and clearing the tree’s base and escape routes, sawing starts with the undercut (2), which should penetrate approximately one-fifth to one-quarter of the diameter into the tree. The opening of the undercut should be at an angle of about 45°. The oblique cut (3) is made prior to the horizontal cut (4), which must meet the oblique cut in a straight line facing the felling direction at a 90o angle. If stumps are liable to tear splinters from the tree, as is common with softer woods, the undercut should be terminated with small lateral cuts (5) on both sides of the hinge (6). The back cut (7) must also be horizontal . It should be made 2.5 to 5 cm higher than the base of the undercut. If the tree’s diameter is smaller than the guide bar, the back cut can be made in a single movement (8). Otherwise, the saw must be moved several times (9). The standard method is used for trees with more than 15 cm butt diameter. The standard technique is modified if trees have one-side crowns, are leaning in one direction or have a diameter more than twice the length of the chain-saw blade. Detailed instructions are included in FAO/ILO (1980) and many other training manuals for chain-saw operators.

Figure 1.  Chain-saw felling: Sequence of cuts.

FOR020F4

Using standard methods, skilled workers can fell a tree with a high degree of precision. Trees that have symmetrical crowns or those leaning a little in a direction other than the intended direction of fall may not fall at all or may fall at an angle from the intended direction. In these cases, tools such as felling levers for small trees or hammers and wedges for big trees need to be used to shift the tree’s natural centre of gravity in the desired direction.

Except for very small trees, axes are not suitable for felling and cross-cutting. With handsaws the process is relatively slow and errors can be detected and repaired. With chain-saws cuts are fast and the noise blocks out the signals from the tree, such as the sound of breaking fibre before it falls. If the tree does start to fall but is intercepted by other trees, a “hang-up” results, which is extremely dangerous, and must be dealt with immediately and professionally. Turning hooks and levers for smaller trees and manual or tractor-mounted winches for larger trees are used to bring hung-up trees down effectively and safely.

Hazards involved with felling include falling or rolling trees; falling or snapping branches; cutting tools; and noise, vibration and exhaust gases with chain-saws. Windfall is especially hazardous with wood and partially severed root systems under tension; hung-up trees are a frequent cause of severe and fatal accidents. All workers involved in felling should have received specific training. Tools for felling and for dealing with hung-up trees need to be onsite. Hazards associated with cross-cutting include the cutting tools as well as snapping wood and rolling stems or bolts, particularly on slopes.

Once a tree has been brought down, it is usually topped and debranched. In the majority of cases, this is still done with hand tools or chain-saws at the stump. Axes can be very effective for debranching. Where possible, trees are felled across a stem already on the ground. This stem thus serves as a natural workbench, raising the tree to be debranched to a more convenient height and allowing for complete debranching without having to turn the tree. The branches and the crown are cut from the stem and left on the site. The crowns of large, broad-leaved trees may have to be cut into smaller pieces or pulled aside because they would otherwise obstruct extraction to the roadside or landing.

Hazards involved with debranching include cuts with tools or chain-saws; high risk of chain-saw kick-back (see figure 2); snapping branches under tension; rolling logs; trips and falls; awkward work postures; and static work load if poor technique is used.

Figure 2. Chain-saw Kick-back.

FOR020F5

In mechanized operations, the directional fall is achieved by holding the tree with a boom mounted on a sufficiently heavy base machine, and cutting the stem with a shear, circular saw or chain-saw integrated into the boom. To do this, the machine has to be driven rather close to the tree to be felled. The tree is then lowered into the desired direction by movements of the boom or of the base of the machine. The most common types of machines are feller-bunchers and harvesters.

Feller-bunchers are mostly mounted on machines with tracks, but they can also be equipped with tyres. The felling boom usually allows them to fell and collect a number of small trees (a bunch), which is then deposited along a skid trail. Some have a clam bunk to collect a load. When feller-bunchers are used, topping and debranching are usually done by machines at the landing.

 

With good machine design and careful operation, accident risk with feller-bunchers is relatively low, except when chain-saw operators work along with the machine. Health hazards, such as vibration, noise, dust and fumes, are significant, since base machines often are not built for forestry purposes. Feller-bunchers should not be used on excessive slopes, and the boom should not be overloaded, as felling direction becomes uncontrollable.

Harvesters are machines which integrate all felling operations except debarking. They usually have six to eight wheels, hydraulic traction and suspension, and articulated steering. They have booms with a reach of 6 to 10 m when loaded. A distinction is made between one-grip and two-grip harvesters. One-grip harvesters have one boom with a felling head fitted with devices for felling, debranching, topping and cross-cutting. They are used for small trees up to 40 cm butt diameter, mostly in thinnings but increasingly also in final cutting. A two-grip harvester has separate felling and processing heads. The latter is mounted on the base machine rather than on the boom. It can handle trees up to a stump diameter of 60 cm. Modern harvesters have an integrated, computer-assisted measuring device that can be programmed to make decisions about optimum cross-cutting depending on the assortments needed.

Harvesters are the dominant technology in large-scale harvesting in northern Europe, but presently account for a rather small share of harvesting worldwide. Their importance is, however, likely to rise fast as second growth, human-made forests and plantations become more important as sources of raw material.

Accident rates in harvester operation are typically low, though accident risk rises when chain-saw operators work along with harvesters. Maintenance of harvesters is hazardous; repairs are always under high work pressure, increasingly at night; there is high risk of slipping and falling, uncomfortable and awkward working postures, heavy lifting, contact with hydraulic oils and hot oils under pressure. The biggest hazards are static muscle tension and repetitive strain from operating controls and psychological stress.

Extraction

Extraction involves moving the stems or logs from the stump to a landing or roadside where they can be processed or piled into assortments. Extraction can be very heavy and hazardous work. It can also inflict substantial environmental damage to the forest and its regeneration, to soils and to watercourses. The major types of extraction systems commonly recognized are:

  • ground-skidding systems: The stems or logs are dragged on the ground by machines, draught animals or humans.
  • forwarders: The stems or logs are carried on a machine (in the case of fuelwood, also by humans).
  • cable systems: The logs are conveyed from the stump to the landing by one or more suspended cables.
  • aerial systems: Helicopters or balloons are used to airlift the logs.

 

Ground skidding, by far the most important extraction system both for industrial wood and fuelwood, is usually done with wheeled skidders specially designed for forestry operations. Crawler tractors and, especially, farm tractors can be cost effective in small private forests or for the extraction of small trees from tree plantations, but adaptations are needed to protect both the operators and the machines. Tractors are less robust, less well balanced and less protected than purpose-built machines. As with all machines used in forestry, hazards include over-turning, falling objects, penetrating objects, fire, whole-body vibration and noise. All-wheel drive is preferable, and a minimum of 20% of the machine weight should be maintained as load on the steered axle during operation, which may require attaching additional weight to the front of the machine. The engine and transmission may need extra mechanical protection. Minimum engine power should be 35 kW for small-dimension timber; 50 kW is usually adequate for normal-size logs.

Grapple skidders drive directly to the individual or the pre-bunched stems, lift the front end of the load and drag it to the landing. Skidders with cable winches can operate from skid roads. Their loads are usually assembled through chokers, straps, chains or short cables that are attached to individual logs. A choker setter prepares the logs to be hooked up and, when the skidder returns from the landing, a number of chokers is attached to the main line and winched into the skidder. Most skidders have an arch onto which the front end of the load can be lifted to reduce friction during skidding. When skidders with powered winches are used, good communication between crew members through two-way radios or optical or acoustic signals is essential. Clear signals need to be agreed upon; any signal that is not understood means “Stop!”. Figure 3  shows proposed hand signals for skidders with powered winches.

Figure 3.  International conventions for hand signals to be used for skidders with powered winches.

FOR020F6

As a rule of thumb, ground skidding equipment should not be used on slopes of more than 15°. Crawler tractors may be used to extract large trees from relatively steep terrain, but they can cause substantial damage to soils if used carelessly. For environmental and safety reasons, all skidding operations should be suspended during exceptionally wet weather.

Extraction with draught animals is an economically viable option for small logs, particularly in thinning operations. Skidding distances must be short (typically 200 m or less) and slopes gentle. It is important to use appropriate harnesses providing maximum pulling power, and devices like skidding pans, sulkies or sledges that reduce skidding resistance.

Manual skidding is increasingly rare in industrial logging but continues to be practised in subsistence logging, particularly for fuelwood. It is limited to short distances and usually downhill, making use of gravity to move logs. While logs are typically small, this is very heavy work and can be hazardous on steep slopes. Efficiency and safety can be increased by using hooks, levers and other hand tools for lifting and pulling logs. Chutes, traditionally made from timber but also available as polyethylene half-tubes, can be an alternative to manual ground skidding of short logs in steep terrain.

Forwarders are extraction machines that carry a load of logs completely off the ground, either within their own frame or on a trailer. They usually have a mechanical or hydraulic crane for self-loading and unloading of logs. They tend to be used in combination with mechanized felling and processing equipment. The economic extraction distance is 2 to 4 times that of ground-skidders. Forwarders work best when logs are approximately uniform in size.

Accidents involving forwarders are typically similar to those of tractors and other forestry machines: overturning, penetrating and falling objects, electric power lines and maintenance problems. Health hazards include vibration, noise and hydraulic oils.

Using human beings to carry loads is still done for short logs like pulpwood or pit props in some industrial harvesting, and is the rule in fuelwood harvesting. Loads carried often exceed all recommended limits, particularly for women, who are often responsible for fuelwood gathering. Training in proper techniques that would avoid extreme strain on the spine and using devices like back packs that give a better weight distribution would ease their burden.

Cable extraction systems are fundamentally different from other extraction systems in that the machine itself does not travel. Logs are conveyed with a carriage moving along suspended cables. The cables are operated by a winching machine, also referred to as a yarder or hauler. The machine is installed either at the landing or at the opposite end of the cableway, often on a ridgetop. The cables are suspended above the ground on one or more “spar” trees, which may either be trees or steel towers. Many different types of cable systems are in use. Skylines or cable cranes have a carriage that can be moved along the mainline, and the cable can be released to allow lateral pulling of logs to the line, before they are lifted and forwarded to the landing. If the system permits full suspension of the load during hauling, soil disturbance is minimal. Because the machine is fixed, cable systems can be used in steep terrain and on wet soils. Cable systems in general are substantially more expensive than ground skidding and require careful planning and skilled operators.

Hazards occur during installation, operation and dismantling of the cable system, and include mechanical impact by deformation of the cabin or stand; breaking of cables, anchors, spars or supports; inadvertent or uncontrollable movements of cables, carriages, chokers and loads; and squeezes, abrasions and so on from moving parts. Health hazards include noise, vibration and awkward working postures.

Aerial extraction systems are those which fully suspend logs in the air throughout the extraction process. The two types currently in use are balloon systems and helicopters, but only helicopters are widely used. Helicopters with a lifting capacity of about 11 tonnes are commercially available. The loads are suspended under the helicopter on a tether line (also called “tagline”). The tether lines are typically between 30 and 100 m long, depending both upon topography and the height of trees above which the helicopter must hover. The loads are attached with long chokers and are flown to the landing, where the chokers are released by remote control from the aircraft. When large logs are being extracted, an electrically operated grapple system may be used instead of chokers. Round-trip times are typically two to five minutes. Helicopters have a very high direct cost, but can also achieve high production rates and reduce or eliminate the need for expensive road construction. They also cause low environmental impact. In practice their use is limited to high-value timber in otherwise inaccessible regions or other special circumstances.

Because of the high production rates required to make the use of such equipment economical, the number of workers employed on helicopter operations is much larger than for other systems. This is true for landings, but also for workers in cutting operations. Helicopter logging can create major safety problems, including fatalities, if precautions are disregarded and crews ill prepared.

Log making and loading

Log making, if it takes place at the landing, is mostly done by chain-saw operators. It can also be carried out by a processor (i.e., a machine that delimbs, tops and cuts to length). Scaling is mostly done manually using measuring tape. For sorting and piling, logs are usually handled by machines like skidders, which use their front blade to push and lift logs, or by grapple loaders. Helpers with hand tools like levers often assist the machine operators. In fuelwood harvesting or where small logs are involved, loading onto trucks is usually done manually or by using a small winch. Loading large logs manually is very arduous and dangerous; these are usually handled by grapple or knuckle boom loaders. In some countries the logging trucks are equipped for self-loading. The logs are secured on the truck by lateral supports and cables that can be pulled tight.

In manual loading of timber, physical strain and workloads are extremely high. In both manual and mechanized loading, there is danger of getting hit by moving logs or equipment. Mechanized loading hazards include noise, dust, vibration, high mental workload, repetitive strain, overturning, penetrating or falling objects and hydraulic oils.

Standards and Regulations

At present most international safety standards applicable to forestry machinery are general—for example, roll-over protection. However, work is under way on specialized standards at the International Organization for Standardization (ISO). (See the article “Rules, legislation, regulations and codes of forest practice” in this chapter.)

Chain-saws are one of the few pieces of forestry equipment for which specific international regulations on safety features exist. Various ISO norms are relevant. They were incorporated and supplemented in 1994 in European Norm 608, Agricultural and forest machinery: Portable chain-saws—Safety. This standard contains detailed indications on design features. It also stipulates that manufacturers are required to provide comprehensive instructions and information on all aspects of operator/user maintenance and the safe use of the saw. This is to include safety clothing and personal protective equipment requirements as well as the need for training. All saws sold within the European Union have to be marked “Warning, see instruction handbook”. The standard lists the items to be included in the handbook.

Forestry machines are less well covered by international standards, and there is often no specific national regulation about required safety features. Forestry machines may also have significant ergonomic deficiencies. These play a major role in the development of serious health complaints among operators. In other cases, machines have a good design for a particular worker population, but are less suitable when imported into countries where workers have different body sizes, communication routines and so on. In the worst case machines are stripped of essential safety and health features to reduce prices for exports.

In order to guide testing organizations and those responsible for machine acquisition, specialized ergonomic checklists have been developed in various countries. Checklists usually address the following machine characteristics:

  • access and exit areas like steps, ladders and doors
  • cabin space and position of controls
  • seat, arms, back and footrest of operator’s chair
  • visibility when performing main operations
  • “worker-machine interface”: type and arrangement of indicators and controls of machine functions
  • physical environment, including vibration noise, gases and climatic factors
  • safety, including roll-over, penetrating objects, fire and so on
  • maintenance.

 

Specific examples of such checklists can be found in Golsse (1994) and Apud and Valdés (1995). Recommendations for machines and equipment as well as a list of existing ILO standards are included in ILO 1998.

 

Back

Saturday, 12 March 2011 16:38

General Profile

Forestry—A Definition

For the purposes of the present chapter, forestry is understood to embrace all the fieldwork required to establish, regenerate, manage and protect forests and to harvest their products. The last step in the production chain covered by this chapter is the transport of raw forest products. Further processing, such as into sawnwood, furniture or paper is dealt with in the Lumber, Woodworking and Pulp and paper industries chapters in this Encyclopaedia.

The forests may be natural, human-made or tree plantations. Forest products considered in this chapter are both wood and other products, but emphasis is on the former, because of its relevance for safety and health.

Evolution of the Forest Resource and the Sector

The utilization and management of forests are as old as the human being. Initially forests were almost exclusively used for subsistence: food, fuelwood and building materials. Early management consisted mostly of burning and clearing to make room for other land uses—in particular, agriculture, but later also for settlements and infrastructure. The pressure on forests was aggravated by early industrialization. The combined effect of conversion and over-utilization was a sharp reduction in forest area in Europe, the Middle East, India, China and later in parts of North America. Presently, forests cover about one-quarter of the land surface of the earth.

The deforestation process has come to a halt in industrialized countries, and forest areas are actually increasing in these countries, albeit slowly. In most tropical and subtropical countries, however, forests are shrinking at a rate of 15 to 20 million hectares (ha), or 0.8%, per year. In spite of continuing deforestation, developing countries still account for about 60% of the world forest area, as can be seen in table 1. The countries with the largest forest areas by far are the Russian Federation, Brazil, Canada and the United States. Asia has the lowest forest cover in terms of percentage of land area under forest and hectares per capita.

Table 1.  Forest area by region (1990).

Region                                  

  Area (million hectares)         

 % total   

Africa

536

16

North/Central America

531

16

South America

898

26

Asia

463

13

Oceania

88

3

Europe

140

4

Former USSR

755

22

Industrialized (all)

 1,432

42

Developing (all)

 2,009

58

World

 3,442

100

Source: FAO 1995b.

Forest resources vary significantly in different parts of the world. These differences have a direct impact on the working environment, on the technology used in forestry operations and on the level of risk associated with them. Boreal forests in northern parts of Europe, Russia and Canada are mostly made up of conifers and have a relatively small number of trees per hectare. Most of these forests are natural. Moreover, the individual trees are small in size. Because of the long winters, trees grow slowly and wood increment ranges from less than 0.5 to 3 m3/ha/y.

The temperate forests of southern Canada, the United States, Central Europe, southern Russia, China and Japan are made up of a wide range of coniferous and broad-leaved tree species. Tree densities are high and individual trees can be very large, with diameters of more than 1 m and tree height of more than 50 m. Forests may be natural or human-made (i.e., intensively managed with more uniform tree sizes and fewer tree species). Standing volumes per hectare and increment are high. The latter range typically from 5 to greater than 20 m3/ha/y.

Tropical and subtropical forests are mostly broad-leaved. Tree sizes and standing volumes vary greatly, but tropical timber harvested for industrial purposes is typically in the form of large trees with big crowns. Average dimensions of harvested trees are highest in the tropics, with logs of more than 2 m3 being the rule. Standing trees with crowns routinely weigh more than 20 tonnes before felling and debranching. Dense undergrowth and tree climbers make work even more cumbersome and dangerous.

An increasingly important type of forest in terms of wood production and employment is tree plantations. Tropical plantations are thought to cover about 35 million hectares, with about 2 million hectares added per year (FAO 1995). They usually consist of only one very fast growing species. Increment mostly ranges from 15 to 30 m3/ha/y. Various pines (Pinus spp.) and eucalyptus (Eucalyptus spp.) are the most common species for industrial uses. Plantations are managed intensively and in short rotations (from 6 to 30 years), while most temperate forests take 80, sometimes up to 200 years, to mature. Trees are fairly uniform, and small to medium in size, with approximately 0.05 to 0.5 m3/tree. There is typically little undergrowth.

Prompted by wood scarcity and natural disasters like landslides, floods and avalanches, more and more forests have come under some form of management over the last 500 years. Most industrialized countries apply the “sustained yield principle”, according to which present uses of the forest may not reduce its potential to produce goods and benefits for later generations. Wood utilization levels in most industrialized countries are below the growth rates. This is not true for many tropical countries.

Economic Importance

Globally, wood is by far the most important forest product. World roundwood production is approaching 3.5 billion m3 annually. Wood production grew by 1.6% a year in the 1960s and 1970s and by 1.8% a year in the 1980s, and is projected to increase by 2.1% a year well into the 21st century, with much higher rates in developing countries than in industrialized ones.

Industrialized countries’ share of world roundwood production is 42% (i.e., roughly proportional to the share of forest area). There is, however, a major difference in the nature of the wood products harvested in industrialized and in developing countries. While in the former more than 85% consists of industrial roundwood to be used for sawnwood, panel or pulp, in the latter 80% is used for fuelwood and charcoal. This is why the list of the ten biggest producers of industrial roundwood in figure 1 includes only four developing countries. Non-wood forest products are still very significant for subsistence in many countries. They account for only 1.5% of traded unprocessed forest products, but products like cork, rattan, resins, nuts and gums are major exports in some countries.

Figure 1.  Ten biggest producers of industrial roundwood, 1993 (former USSR 1991).

FOR010F1

Worldwide, the value of production in forestry was US$96,000 million in 1991, compared to US$322,000 million in downstream forest-based industries. Forestry alone accounted for 0.4% of world GDP. The share of forestry production in GDP tends to be much higher in developing countries, with an average of 2.2%, than in industrialized ones, where it represents only 0.14% of GDP. In a number of countries forestry is far more important than the averages suggest. In 51 countries the forestry and forest-based industries sector combined generated 5% or more of the respective GDP in 1991.

In several industrialized and developing countries, forest products are a significant export. The total value of forestry exports from developing countries increased from about US$7,000 million in 1982 to over US$19,000 million in 1993 (1996 dollars). Large exporters among industrialized countries include Canada, the United States, Russia, Sweden, Finland and New Zealand. Among tropical countries Indonesia (US$5,000 million), Malaysia (US$4,000 million), Chile and Brazil (about US$2,000 million each) are the most important.

While they cannot be readily expressed in monetary terms, the value of non-commercial goods and benefits generated by forests may well exceed their commercial output. According to estimates, some 140 to 300 million people live in or depend on forests for their livelihood. Forests are also home to three-quarters of all species of living beings. They are a significant sink of carbon dioxide and serve to stabilize climates and water regimes. They reduce erosion, landslides and avalanches, and produce clean drinking water. They are also fundamental for recreation and tourism.

Employment

Figures on wage employment in forestry are difficult to obtain and can be unreliable even for industrialized countries. The reasons are the high share of the self-employed and farmers, who do not get recorded in many cases, and the seasonality of many forestry jobs. Statistics in most developing countries simply absorb forestry into the much larger agricultural sector, with no separate figures available. The biggest problem, however, is the fact that most forestry work is not wage employment, but subsistence. The main item here is the production of fuelwood, particularly in developing countries. Bearing these limitations in mind, figure 2 below provides a very conservative estimate of global forestry employment.

Figure 2.  Employment in forestry (full-time equivalents).

FOR010F2

World wage employment in forestry is in the order of 2.6 million, of which about 1 million is in industrialized countries. This is a fraction of the downstream employment: wood industries and pulp and paper have at least 12 million employees in the formal sector. The bulk of forestry employment is unpaid subsistence work—some 12.8 million full-time equivalents in developing and some 0.3 million in industrialized countries. Total forestry employment can thus be estimated at some 16 million person years. This is equivalent to about 3% of world agricultural employment and to about 1% of total world employment.

 

In most industrialized countries the size of the forestry workforce has been shrinking. This is a result of a shift from seasonal to full-time, professional forest workers, compounded by rapid mechanization, particularly of wood harvesting. Figure 3 illustrates the enormous differences in productivity in major wood-producing countries. These differences are to some extent due to natural conditions, silvicultural systems and statistical error. Even allowing for these, significant gaps persist. The transformation in the workforce is likely to continue: mechanization is spreading to more countries, and new forms of work organization, namely team work concepts, are boosting productivity, while harvesting levels remain by and large constant. It should be noted that in many countries seasonal and part-time work in forestry are unrecorded, but remain very common among farmers and small woodland owners. In a number of developing countries the industrial forestry workforce is likely to grow as a result of more intensive forest management and tree plantations. Subsistence employment, on the other hand, is likely to decline gradually, as fuelwood is slowly replaced by other forms of energy.

Figure 3Countries with highest wage employment in forestry and industrial roundwood production (late 1980s to early 1990s).

FOR010F3

Characteristics of the Workforce

Industrial forestry work has largely remained a male domain. The proportion of women in the formal workforce rarely exceeds 10%. There are, however, jobs that tend to be predominantly carried out by women, such as planting or tending of young stands and raising seedlings in tree nurseries. In subsistence employment women are a majority in many developing countries, because they are usually responsible for fuelwood gathering.

The largest share of all industrial and subsistence forestry work is related to the harvesting of wood products. Even in human-made forests and plantations, where substantial silvicultural work is required, harvesting accounts for more than 50% of the workdays per hectare. In harvesting in developing countries the ratios of supervisor/technician to foremen and to workers are 1 to 3 and 1 to 40, respectively. The ratio is smaller in most industrialized countries.

Broadly, there are two groups of forestry jobs: those related to silviculture and those related to harvesting. Typical occupations in silviculture include tree planting, fertilization, weed and pest control, and pruning. Tree planting is very seasonal, and in some countries involves a separate group of workers exclusively dedicated to this activity. In harvesting, the most common occupations are chain-saw operation, in tropical forests often with an assistant; choker setters who attach cables to tractors or skylines pulling logs to roadside; helpers who measure, move, load or debranch logs; and machine operators for tractors, loaders, cable cranes, harvesters and logging trucks.

There are major differences between segments of the forestry workforce with respect to the form of employment, which have a direct bearing on their exposure to safety and health hazards. The share of forest workers directly employed by the forest owner or industry has been declining even in those countries where it used to be the rule. More and more work is done through contractors (i.e., relatively small, geographically mobile service firms employed for a particular job). The contractors may be owner-operators (i.e., single-person firms or family businesses) or they have a number of employees. Both the contractors and their employees often have very unstable employment. Under pressure to cut costs in a very competitive market, contractors sometimes resort to illegal practices such as moonlighting and hiring undeclared immigrants. While the move to contracting has in many cases helped to cut costs, to advance mechanization and specialization as well as to adjust the workforce to changing demands, some traditional ailments of the profession have been aggravated through the increased reliance on contract labour. These include accident rates and health complaints, both of which tend to be more frequent among contract labour.

Contract labour has also contributed to further increasing the high rate of turnover in the forestry workforce. Some countries report rates of almost 50% per year for those changing employers and more than 10% per year leaving the forestry sector altogether. This aggravates the skill problem already looming large among much of the forestry workforce. Most skill acquisition is still by experience, usually meaning trial and error. Lack of structured training, and short periods of experience due to high turnover or seasonal work, are major contributing factors to the significant safety and health problems facing the forestry sector (see the article “Skills and training” [FOR15AE] in this chapter).

The dominant wage system in forestry by far continues to be piece-rates (i.e., remuneration solely based on output). Piece-rates tend to lead to a rapid pace of work and are widely believed to increase the number of accidents. There is, however, no scientific evidence to back this contention. One undisputed side effect is that earnings fall once workers have reached a certain age because their physical abilities decline. In countries where mechanization plays a major role, time-based wages have been on the increase, because the work rhythm is largely determined by the machine. Various bonus wage systems are also in use.

Forestry wages are generally well below the industrial average in the same country. Workers, the self-employed and contractors often try to compensate by working 50 or even 60 hours per week. Such situations increase strain on the body and the risk of accidents because of fatigue.

Organized labour and trade unions are rather rare in the forestry sector. The traditional problems of organizing geographically dispersed, mobile, sometimes seasonal workers have been compounded by the fragmentation of the workforce into small contractor firms. At the same time, the number of workers in categories that are typically unionized, such as those directly employed in larger forest enterprises, is falling steadily. Labour inspectorates attempting to cover the forestry sector are faced with problems similar in nature to those of trade union organizers. As a result there is very little inspection in most countries. In the absence of institutions whose mission is to protect worker rights, forest workers often have little knowledge of their rights, including those laid down in existing safety and health regulations, and experience great difficulties in exercising such rights.

Health and Safety Problems

The popular notion in many countries is that forestry work is a 3-D job: dirty, difficult and dangerous. A host of natural, technical and organizational factors contribute to that reputation. Forestry work has to be done outdoors. Workers are thus exposed to the extremes of weather: heat, cold, snow, rain and ultraviolet (UV) radiation. Work even often proceeds in bad weather and, in mechanized operations, it increasingly continues at night. Workers are exposed to natural hazards such as broken terrain or mud, dense vegetation and a series of biological agents.

Worksites tend to be remote, with poor communication and difficulties in rescue and evacuation. Life in camps with extended periods of isolation from family and friends is still common in many countries.

The difficulties are compounded by the nature of the work—trees may fall unpredictably, dangerous tools are used and often there is a heavy physical workload. Other factors like work organization, employment patterns and training also play a significant role in increasing or reducing hazards associated with forestry work. In most countries the net result of the above influences are very high accident risks and serious health problems.

Fatalities in Forest Work

In most countries forest work is one of the most dangerous occupations, with great human and financial losses. In the United States accident insurance costs amount to 40% of payroll.

A cautious interpretation of the available evidence suggests that accident trends are more often upward than downward. Encouragingly, there are countries that have a long-standing record in bringing down accident frequencies (e.g., Sweden and Finland). Switzerland represents the more common situation of increasing, or at best stagnating, accident rates. The scarce data available for developing countries indicate little improvement and usually excessively high accident levels. A study of safety in pulpwood logging in plantation forests in Nigeria, for example, found that on average a worker had 2 accidents per year. Between 1 in 4 and 1 in 10 workers suffered a serious accident in a given year (Udo 1987).

A closer inspection of accidents reveals that harvesting is far more hazardous than other forest operations (ILO 1991). Within forest harvesting, tree felling and cross-cutting are the jobs with the most accidents, particularly serious or fatal ones. In some countries, such as in the Mediterranean area, firefighting can also be a major cause of fatalities, claiming up to 13 lives a year in Spain in some years (Rodero 1987). Road transport can also account for a large share of serious accidents, particularly in tropical countries.

The chain-saw is clearly the single most dangerous tool in forestry, and the chain-saw operator the most exposed worker. The situation depicted in figure 4 for a territory of Malaysia is found with minor variations in most other countries as well. In spite of increasing mechanization, the chain-saw is likely to remain the key problem in industrialized countries. In developing countries, its use can be expected to expand as plantations account for an increasing share of the wood harvest.

Figure 4.  Distribution of logging fatalities among jobs, Malaysia (Sarawak), 1989.

FOR010F4

Virtually all parts of the body can be injured in forest work, but there tends to be a concentration of injuries to the legs, feet, back and hands, in roughly that order. Cuts and open wounds are the most common type of injury in chain-saw work while bruises dominate in skidding, but there are also fractures and dislocations.

Two situations under which the already high risk of serious accidents in forest harvesting multiplies severalfold are “hung-up” trees and wind-blown timber. Windblow tends to produce timber under tension, which requires specially adapted cutting techniques (for guidance see FAO/ECE/ILO 1996a; FAO/ILO 1980; and ILO 1998). Hung-up trees are those that have been severed from the stump but did not fall to the ground because the crown became entangled with other trees. Hung-up trees are extremely dangerous and referred to as “widow-makers” in some countries, because of the high number of fatalities they cause. Aid tools, such as turning hooks and winches, are required to bring such trees down safely. In no case should it be permitted that other trees be felled onto a hung-up one in the hope of bringing it down. This practice, known as “driving” in some countries, is extremely hazardous.

Accident risks vary not only with technology and exposure due to the job, but with other factors as well. In almost all cases for which data are available, there is a very significant difference between segments of the workforce. Full-time, professional forest workers directly employed by a forest enterprise are far less affected than farmers, self-employed or contract labour. In Austria, farmers seasonally engaged in logging suffer twice as many accidents per million cubic metres harvested as professional workers (Sozialversicherung der Bauern 1990), in Sweden, even four times as many. In Switzerland, workers employed in public forests have only half as many accidents as those employed by contractors, particularly where workers are hired only seasonally and in the case of migrant labour (Wettmann 1992).

The increasing mechanization of tree harvesting has had very positive consequences for work safety. Machine operators are well protected in guarded cabins, and accident risks have dropped very significantly. Machine operators experience less than 15% of the accidents of chain-saw operators to harvest the same amount of timber. In Sweden operators have one-quarter of the accidents of professional chain-saw operators.

Growing Occupational Disease Problems

The reverse side of the mechanization coin is an emerging problem of neck and shoulder strain injuries among machine operators. These can be as incapacitating as serious accidents.

The above problems add to the traditional health complaints of chain-saw operators—namely, back injuries and hearing loss. Back pain due to physically heavy work and unfavourable working postures is very common among chain-saw operators and workers doing manual loading of logs. There is a high incidence of premature loss of working capacity and of early retirement among forest workers as a result. A traditional ailment of chain-saw operators that has largely been overcome in recent years through improved saw design is vibration-induced “white finger” disease.

The physical, chemical and biological hazards causing health problems in forestry are discussed in the following articles of this chapter.

Special Risks for Women

Safety risks are by and large the same for men and women in forestry. Women are often involved in planting and tending work, including the application of pesticides. However, women who have smaller body size, lung volume, heart and muscles may have a work capacity on average that is about one-third lower than that of men. Correspondingly, legislation in many countries limits the weight to be lifted and carried by women to about 20 kg (ILO 1988), although such sex-based differences in exposure limits are illegal in many countries. These limits are often exceeded by women working in forestry. Studies in British Columbia, where separate standards do not apply, among planting workers showed full loads of plants carried by men and women to average 30.5 kg, often in steep terrain with heavy ground cover (Smith 1987).

Excessive loads are also common in many developing countries where women work as fuelwood carriers. A survey in Addis Ababa, Ethiopia, for example, found that an estimated 10,000 women and children eke out a livelihood from hauling fuelwood into town on their backs (see figure 5 ). The average bundle weighs 30 kg and is carried over a distance of 10 km. The work is highly debilitating and results in numerous serious health complaints, including frequent miscarriages (Haile 1991).

Figure 5.  Woman fuelwood carrier, Addis Ababa, Ethiopia.

FOR010F5

The relationship between the specific working conditions in forestry, workforce characteristics, form of employment, training and other similar factors and safety and health in the sector has been a recurrent theme of this introductory article. In forestry, even more than in other sectors, safety and health cannot be analysed, let alone promoted, in isolation. This theme will also be the leitmotiv for the remainder of the chapter.

 

 

Back

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents