Monday, 07 March 2011 18:13

Asbestos: Historical Perspective

Rate this item
(1 Vote)

Several examples of workplace hazards often are quoted to exemplify not only the possible adverse health effects associated with workplace exposures, but also to reveal how a systematic approach to the study of worker populations can uncover important exposure-disease relationships. One such example is that of asbestos. The simple elegance with which the late Dr. Irving J. Selikoff demonstrated the elevated cancer risk among asbestos workers has been documented in an article by Lawrence Garfinkel. It is reprinted here with only slight modification and with the permission of CA-A Cancer Journal for Clinicians (Garfinkel 1984). The tables came from the original article by Dr. Selikoff and co-workers (1964).

Asbestos exposure has become a public health problem of considerable magnitude, with ramifications that extend beyond the immediate field of health professionals to areas served by legislators, judges, lawyers, educators, and other concerned community leaders. As a result, asbestos-related diseases are of increasing concern to clinicians and health authorities, as well as to consumers and the public at large.

Historical Background

Asbestos is a highly useful mineral that has been utilized in diverse ways for many centuries. Archaeological studies in Finland have shown evidence of asbestos fibres incorporated in pottery as far back as 2500 BC. In the 5th century BC, it was used as a wick for lamps. Herodotus commented on the use of asbestos cloth for cremation about 456 BC. Asbestos was used in body armour in the 15th century, and in the manufacture of textiles, gloves, socksand handbags in Russia c. 1720. Although it is uncertain when the art of weaving asbestos was developed, we know that the ancients often wove asbestos with linen. Commercial asbestos production began in Italy about 1850, in the making of paper and cloth.

The development of asbestos mining in Canada and South Africa about 1880 reduced costs and spurred the manufacture of asbestos products. Mining and production of asbestos in the United States, Italy and Russia followed soon after. In the United States, the development of asbestos as pipe insulation increased production and was followed shortly thereafter by other varied uses including brake linings, cement pipes, protective clothing and so forth.

Production in the US increased from about 6,000 tons in 1900 to 650,000 tons in 1975, although by 1982, it was about 300,000 tons and by 1994, production had dropped to 33,000 tons.

It is reported that Pliny the Younger (61-113 AD) commented on the sickness of slaves who worked with asbestos. Reference to occupational disease associated with mining appeared in the 16th century, but it was not until 1906 in England that the first reference to pulmonary fibrosis in an asbestos worker appeared. Excess deaths in workers involved with asbestos manufacturing applications were reported shortly thereafter in France and Italy, but major recognition of asbestos-induced disease began in England in 1924. By 1930, Wood and Gloyne had reported on 37 cases of pulmonary fibrosis.

The first reference to carcinoma of the lung in a patient with “asbestos-silicosis” appeared in 1935. Several other case reports followed. Reports of high percentages of lung cancer in patients who died of asbestosis appeared in 1947, 1949 and 1951. In 1955 Richard Doll in England reported an excess risk of lung cancer in persons who had worked in an asbestos plant since 1935, with an especially high risk in those who were employed more than 20 years.

Clinical Observations

It was against this background that Dr. Irving Selikoff’s clinical observations of asbestos-related disease began. Dr. Selikoff was at that time already a distinguished scientist. His prior accomplishments included the development and first use of isoniazid in the treatment of tuberculosis, for which he received a Lasker Award in 1952.

In the early 1960s, as a chest physician practising in Paterson, New Jersey, he had observed many cases of lung cancer among workers in an asbestos factory in the area. He decided to extend his observations to include two locals of the asbestos insulator workers union, whose members also had been exposed to asbestos fibres. He recognized that there were still many people who did not believe that lung cancer was related to asbestos exposure and that only a thorough study of a total exposed population could convince them. There was the possibility that asbestos exposure in the population could be related to other types of cancer, such as pleural and peritoneal mesothelioma, as had been suggested in some studies, and perhaps other sites as well. Most of the studies of the health effects of asbestos in the past had been concerned with workers exposed in the mining and production of asbestos. It was important to know if asbestos inhalation also affected other asbestos-exposed groups.

Dr. Selikoff had heard of the accomplishments of Dr. E. Cuyler Hammond, then Director of the Statistical Research Section of the American Cancer Society (ACS), and decided to ask him to collaborate in the design and analysis of a study. It was Dr. Hammond who had written the landmark prospective study on smoking and health published a few years earlier.

Dr. Hammond immediately saw the potential importance of a study of asbestos workers. Although he was busily engaged in analysing data from the then new ACS prospective study, Cancer Prevention Study I (CPS I), which he had begun a few years earlier, he readily agreed to a collaboration in his “spare time”. He suggested confining the analysis to those workers with at least 20 years’ work experience, who thus would have had the greatest amount of asbestos exposure.

The team was joined by Mrs. Janet Kaffenburgh, a research associate of Dr. Selikoff’s at Mount Sinai Hospital, who worked with Dr. Hammond in preparing the lists of the men in the study, including their ages and dates of employment and obtaining the data on facts of death and causes from union headquarters records. This information was subsequently transferred to file cards that were sorted literally on the living room floor of Dr. Hammond’s house by Dr. Hammond and Mrs. Kaffenburgh.

Dr. Jacob Churg, a pathologist at Barnert Memorial Hospital Center in Paterson, New Jersey, provided pathologic verification of the cause of death.

Tabe 1. Man-years of experience of 632 asbestos workers exposed to asbestos dust 20 years or longer

Age

Time period

 

1943-47

1948-52

1953-57

1958-62

35–39

85.0

185.0

7.0

11.0

40–44

230.5

486.5

291.5

70.0

45–49

339.5

324.0

530.0

314.5

50–54

391.5

364.0

308.0

502.5

55–59

382.0

390.0

316.0

268.5

60–64

221.0

341.5

344.0

255.0

65–69

139.0

181.0

286.0

280.0

70–74

83.0

115.5

137.0

197.5

75–79

31.5

70.0

70.5

75.0

80–84

5.5

18.5

38.5

23.5

85+

3.5

2.0

8.0

13.5

Total

1,912.0

2,478.0

2,336.5

2,011.0

 

The resulting study was of the type classified as a “prospective study retrospectively carried out”. The nature of the union records made it possible to accomplish an analysis of a long-range study in a relatively short period of time. Although only 632 men were involved in the study, there were 8,737 man-years of exposure to risk (see table 1); 255 deaths occurred during the 20-year period of observation from 1943 through 1962 (see table 2). It is in table 28.17 where the observed number of deaths can be seen invariably to exceed the number expected, demonstrating the association between workplace asbestos exposure and an elevated cancer death rate. 

Table 2. Observed and expected number of deaths among 632 asbestos workers exposed to asbestos dust 20 years or longer

Cause of death

Time period

Total

 

1943-47

1948-52

1953-57

1958-62

1943-62

Total, all causes

Observed (asbestos workers)

28.0

54.0

85.0

88.0

255.0

Expected (US White males)

39.7

50.8

56.6

54.4

203.5

Total cancer, all sites

Observed (asbestos workers)

13.0

17.0

26.0

39.0

95.0

Expected (US White males)

5.7

8.1

13.0

9.7

36.5

Cancer of lung and pleura

Observed (asbestos workers)

6.0

8.0

13.0

18.0

45.0

Expected (US White males)

0.8

1.4

2.0

2.4

6.6

Cancer of stomach, colon and rectum

Observed (asbestos workers)

4.0

4.0

7.0

14.0

29.0

Expected (US White males)

2.0

2.5

2.6

2.3

9.4

Cancer of all other sites combined

Observed (asbestos workers)

3.0

5.0

6.0

7.0

21.0

Expected (US White males)

2.9

4.2

8.4

5.0

20.5

 

Significance of the Work

This paper constituted a turning point in our knowledge of asbestos-related disease and set the direction of future research. The article has been cited in scientific publications at least 261 times since it was originally published. With financial support from the ACS and the National Institutes of Health, Dr. Selikoff and Dr. Hammond and their growing team of mineralogists, chest physicians, radiologists, pathologists, hygienists and epidemiologists continued to explore various facets of asbestos disease.

A major paper in 1968 reported the synergistic effect of cigarette smoking on asbestos exposure (Selikoff, Hammond and Churg 1968). The studies were expanded to include asbestos production workers, persons indirectly exposed to asbestos in their work (shipyard workers, for example) and those with family exposure to asbestos.

In a later analysis, in which the team was joined by Herbert Seidman, MBA, Assistant Vice President for Epidemiology and Statistics of the American Cancer Society, the group demonstrated that even short-term exposure to asbestos resulted in a significant increased risk of cancer up to 30 years later (Seidman, Selikoff and Hammond 1979). There were only three cases of mesothelioma in this first study of 632 insulators, but later investigations showed that 8% of all deaths among asbestos workers were due to pleural and peritoneal mesothelioma.

As Dr. Selikoff’s scientific investigations expanded, he and his co-workers made noteworthy contributions toward reducing exposure to asbestos through innovations in industrial hygiene techniques; by persuading legislators about the urgency of the asbestos problem; in evaluating the problems of disability payments in connection with asbestos disease; and in investigating the general distribution of asbestos particles in water supplies and in the ambient air.

Dr. Selikoff also called the medical and scientific community’s attention to the asbestos problem by organizing conferences on the subject and participating in many scientific meetings. Many of his orientation meetings on the problem of asbestos disease were structured particularly for lawyers, judges, presidents of large corporations and insurance executives.

 

Back

Read 6180 times Last modified on Thursday, 13 October 2011 20:23

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Epidemiology and Statistics References

Ahlbom, A. 1984. Criteria of causal association in epidemiology. In Health, Disease, and Causal Explanations in Medicine, edited by L Nordenfelt and BIB Lindahl. Dordrecht: D Reidel.

American Conference of Government Industrial Hygienists (ACGIH). 1991. Exposure Assessment for Epidemiology and Hazard Control, edited by SM Rappaport and TJ Smith. Chelsea, Mich.:Lewis.

Armstrong, BK, E White, and R Saracci. 1992. Principles of Exposure Measurement in Epidemiology. Oxford: Oxford Univ. Press.

Ashford, NA, CI Spadafor, DB Hattis, and CC Caldart. 1990. Monitoring the Worker for Exposure and Disease. Baltimore: Johns Hopkins Univ. Press.

Axelson, O. 1978. Aspects on confounding in occupational health epidemiology. Scand J Work Environ Health 4:85-89.

—. 1994. Some recent developments in occupational epidemiology. Scand J Work Environ Health 20 (Special issue):9-18.

Ayrton-Paris, JA. 1822. Pharmacologia.

Babbie, E. 1992. The Practice of Social Research. Belmont, Calif.: Wadsworth.

Beauchamp, TL, RR Cook, WE Fayerweather, GK Raabe, WE Thar, SR Cowles, and GH Spivey. 1991. Ethical Guidelines for Epidemiologists. J Clin Epidemiol 44 Suppl. I:151S-169S.

Bell, B. 1876. Paraffin epithelioma of the scrotum. Edinburgh Med J 22:135.

Blondin, O and C Viau. 1992. Benzo(a)pyrene-blood protein adducts in wild woodchucks used as biological sentinels of environmental polycyclic aromatic hydrocarbons contamination. Arch Environ Contam Toxicol 23:310-315.

Buck, C. 1975. Popper’s philosophy for epidemiologists. Int J Epidemiol 4:159-168.

Case, RAM and ME Hosker. 1954. Tumour on the urinary bladder as an occupational disease in the rubber industry in England and Wales. Brit J Prevent Soc Med 8:39-50.

Checkoway, H, NE Pearce, and DJ Crawford-Brown. 1989. Research Methods in Occupational Epidemiology. New York: Oxford Univ. Press.

Clayson, DB. 1962. Chemical Carcinogenesis. London: JA Churchill.

Clayton, D. 1992. Teaching statistical methods in epidemiology. In Epidemiology. What You Should Know and What You Could Do, edited by J Olsen and D Trichopoulos. Oxford: Oxford Univ. Press.

Clayton, D and M Hills. 1993. Statistical Models in Epidemiology. New York: Oxford Univ. Press.

Cornfield, J. 1954. Statistical relationships and proof in medicine. Am Stat 8:19-21.

Council for International Organizations of Medical Sciences (CIOMS). 1991. International Guidelines for Ethical Review of Epidemiologic Studies. Geneva: CIOMS.

Czaja, R and J Blair. 1996. Designing Surveys. Thousand Oaks, Calif: Pine Forge Press.

Doll, R. 1952. The causes of death among gas-workers with special reference to cancer of the lung. Brit J Ind Med 9:180-185.

—. 1955. Mortality from lung cancer in asbestos workers. Brit J Ind Med 12:81-86.

Droz, PO and MM Wu. 1991. Biological monitoring strategies. In Exposure Assessment for Epidemiology and Hazard Control, edited by SM Rappaport and TJ Smith. Chelsea, Mich.: Lewis.

Gamble, J and R Spirtas. 1976. Job classification and utilization of complete work histories in occupational epidemiology. J Med 18:399-404.

Gardner, MJ and DG Altman. 1989. Statistics With Confidence. Confidence Intervals and Statistical Guidelines. London: BMJ Publishing House.

Garfinkel, L. 1984. Classics in oncology; E. Cuyler Hammond, ScD. Ca-Cancer Journal for Clinicians. 38(1): 23-27

Giere, RN. 1979. Understanding Scientific Reasoning. New York: Holt Rinehart & Winston.

Glickman, LT. 1993. Natural exposure studies in pet animals: Sentinels for environmental carcinogens. Vet Can Soc Newslttr 17:5-7.

Glickman, LT, LM Domanski, TG Maguire, RR Dubielzig, and A Churg. 1983. Mesothelioma in pet dogs associated with exposure of their owners to asbestos. Environmental Research 32:305-313.

Gloyne, SR. 1935. Two cases of squamous carcinoma of the lung occurring in asbestosis. Tubercle 17:5-10.

—. 1951. Pneumoconiosis: Histological survey of necropsy material in 1,205 cases. Lancet 1:810-814.

Greenland, S. 1987. Quantitative methods in the review of epidemiological literature. Epidemiol Rev 9:1-30.

—. 1990. Randomization, statistics, and causal inference. Epidemiology 1:421-429.

Harting, FH and W Hesse. 1879. Der Lungenkrebs, die bergkrankheit in den Schneeberger Gruben. Vierteljahrsschr Gerichtl Med Offentl Gesundheitswesen CAPS 30:296-307.

Hayes, RB, JW Raatgever, A de Bruyn, and M Gerin. 1986. Cancer of the nasal cavity and paranasal sinuses, and formaldehyde exposure. Int J Cancer 37:487-492.

Hayes, HM, RE Tarone, HW Casey, and DL Huxsoll. 1990. Excess of seminomas observed in Vietnam service US military working dogs. J Natl Cancer Inst 82:1042-1046.

Hernberg, S. 1992. Introduction to Occupational Epidemiology. Chelsea, Mich.: Lewis.
Hill, AB. 1965. The environment and disease: Association or causation? Proc Royal Soc Med 58:295-300.

Hume, D. 1978. A Treatise of Human Nature. Oxford: Clarendon Press.

Hungerford, LL, HL Trammel, and JM Clark. 1995. The potential utility of animal poisoning data to identify human exposure to environmental toxins. Vet Hum Toxicol 37:158-162.

Jeyaratnam, J. 1994. Transfer of hazardous industries. In Occupational Cancer in Developing Countries, edited by NE Pearce, E Matos, H Vainio, P Boffetta, and M Kogevinas. Lyon: IARC.

Karhausen, LR. 1995. The poverty of Popperian epidemiology. Int J Epidemiol 24:869-874.

Kogevinas, M, P Boffetta, and N Pearce. 1994. Occupational exposure to carcinogens in developing countries. In Occupational Cancer in Developing Countries, edited by NE Pearce, E Matos, H Vainio, P Boffetta, and M Kogevinas. Lyon: IARC.

LaDou, J. 1991. Deadly migration. Tech Rev 7:47-53.

Laurell, AC, M Noriega, S Martinez, and J Villegas. 1992. Participatory research on workers’ health. Soc Sci Med 34:603-613.

Lilienfeld, AM and DE Lilienfeld. 1979. A century of case-control studies: progress? Chron Dis 32:5-13.

Loewenson, R and M Biocca. 1995. Participatory approaches in occupational health research. Med Lavoro 86:263-271.

Lynch, KM and WA Smith. 1935. Pulmonary asbestosis. III Carcinoma of lung in asbestos-silicosis. Am J Cancer 24:56-64.

Maclure, M. 1985. Popperian refutation in epidemiolgy. Am J Epidemiol 121:343-350.

—. 1988. Refutation in epidemiology: Why else not? In Causal Inference, edited by KJ Rothman. Chestnut Hill, Mass.: Epidemiology Resources.

Martin, SW, AH Meek, and P Willeberg. 1987. Veterinary Epidemiology. Des Moines: Iowa State Univ. Press.

McMichael, AJ. 1994. Invited commentary -"Molecular epidemiology": New pathway or new travelling companion? Am J Epidemiol 140:1-11.

Merletti, F and P Comba. 1992. Occupational epidemiology. In Teaching Epidemiology. What You Should Know and What You Could Do, edited by J Olsen and D Trichopoulos. Oxford: Oxford Univ. Press.

Miettinen, OS. 1985. Theoretical Epidemiology. Principles of Occurrence Research in Medicine. New York: John Wiley & Sons.

Newell, KW, AD Ross, and RM Renner. 1984. Phenoxy and picolinic acid herbicides and small-intestinal adenocarcinoma in sheep. Lancet 2:1301-1305.

Olsen, J, F Merletti, D Snashall, and K Vuylsteek. 1991. Searching for Causes of Work-Related Diseases. An Introduction to Epidemiology At the Work Site. Oxford: Oxford Medical Publications, Oxford Univ. Press.

Pearce, N. 1992. Methodological problems of time-related variables in occupational cohort studies. Rev Epidmiol Med Soc Santé Publ 40 Suppl: 43-54.

—. 1996. Traditional epidemiology, modern epidemiology and public health. Am J Public Health 86(5): 678-683.

Pearce, N, E Matos, H Vainio, P Boffetta, and M Kogevinas. 1994. Occupational cancer in developing countries. IARC Scientific Publications, no. 129. Lyon: IARC.

Pearce, N, S De Sanjose, P Boffetta, M Kogevinas, R Saracci, and D Savitz. 1995. Limitations of biomarkers of exposure in cancer epidemiology. Epidemiology 6:190-194.

Poole, C. 1987. Beyond the confidence interval. Am J Public Health 77:195-199.

Pott, P. 1775. Chirurgical Observations. London: Hawes, Clarke & Collins.

Proceedings of the Conference on Retrospective Assessment of Occupational Exposures in Epidemiology, Lyon, 13-15 April, 1994. 1995. Lyon: IARC .

Ramazzini, B. 1705. De Morbis Artificum Diatriva. Typis Antonii Capponi. Mutinae, MDCC. London: Andrew Bell & Others.

Rappaport, SM, H Kromhout, and E Symanski. 1993. Variation of exposure between workers in homogeneous exposure groups. Am Ind Hyg Assoc J 54(11):654-662.

Reif, JS, KS Lower, and GK Ogilvie. 1995. Residential exposure to magnetic fields and risk of canine lymphoma. Am J Epidemiol 141:3-17.

Reynolds, PM, JS Reif, HS Ramsdell, and JD Tessari. 1994. Canine exposure to herbicide-treated lawns and urinary excretion of 2,4-dichlorophenoxyacetic acid. Canc Epidem, Biomark and Prevention 3:233-237.

Robins, JM, D Blevins, G Ritter, and M Wulfsohn. 1992. G-estimation of the effect of prophylaxis therapy for pneumocystis carinii pneumonia on the survival of Aids patients. Epidemiology 3:319-336.

Rothman, KJ. 1986. Modern Epidemiology. Boston: Little, Brown & Co.

Saracci, R. 1995. Epidemiology: Yesterday, today, tomorrow. In Lectures and Current Topics in Epidemiology. Florence: European Educational Programme in Epidemiology.

Schaffner, KF. 1993. Discovery and Explanation in Biology and Medicine. Chicago: Univ. of Chicago Press.

Schlesselman, JJ. 1987. “Proof” of cause and effect in epidemiologic studies: Criteria for judgement. Prevent Med 16:195-210.

Schulte, P. 1989. Interpretation and communcication of the results of medical field investigations. J Occup Med 31:5889-5894.

Schulte, PA, WL Boal, JM Friedland, JT Walker, LB Connally, LF Mazzuckelli, and LJ Fine. 1993. Methodological issues in risk communications to workers. Am J Ind Med 23:3-9.

Schwabe, CW. 1993. The current epidemiological revolution in veterinary medicine. Part II. Prevent Vet Med 18:3-16.

Seidman, H, IJ Selikoff, and EC Hammond. 1979. Short-term asbestos work exposure and long-term observation. Ann NY Acad Sci 330:61-89.

Selikoff, IJ, EC Hammond, and J Churg. 1968. Asbestos exposure, smoking and neoplasia. JAMA 204:106-112.

—. 1964. Asbestos exposure and neoplasia. JAMA 188, 22-26.

Siemiatycki, J, L Richardson, M Gérin, M Goldberg, R Dewar, M Désy, S Campbell, and S Wacholder. 1986. Associations between several sites of cancer and nine organic dusts: Results from an hypothesis-generating case-control study in Montreal, 1979-1983. Am J Epidemiol 123:235-249.

Simonato, L. 1986. Occupational cancer risk in developing countries and priorities for epidemiological research. Presented at International Symposium On Health and Environment in Developing Countries, Haicco.

Smith, TJ. 1987. Exposure asssessment for occupational epidemiology. Am J Ind Med 12:249-268.

Soskolne, CL. 1985. Epidemiological research, interest groups, and the review process. J Publ Health Policy 6(2):173-184.

—. 1989. Epidemiology: Questions of science, ethics, morality and law. Am J Epidemiol 129(1):1-18.

—. 1993. Introduction to misconduct in science and scientific duties. J Expos Anal Environ Epidemiol 3 Suppl. 1:245-251.

Soskolne, CL, D Lilienfeld, and B Black. 1994. Epidemiology in legal proceedings in the United States. In The Identification and Control of Environmental and Occupational Diseases. Advances in Modern Environmental Toxicology: Part 1, edited by MA Mellman and A Upton. Princeton: Princeton Scientific Publishing.

Stellman, SD. 1987. Confounding. Prevent Med 16:165-182.

Suarez-Almazor, ME, CL Soskolne, K Fung, and GS Jhangri. 1992. Empirical assessment of the effect of different summary worklife exposure measures on the estimation of risk in case-referent studies of occupational cancer. Scand J Work Environ Health 18:233-241.

Thrusfield, MV. 1986. Veterinary Epidemiology. London: Butterworth Heinemann.

Trichopoulos, D. 1995. Accomplishments and prospects of epidemiology. In Lectures and Current Topics in Epidemiology. Florence: European Educational Programme in Epidemiology.

Van Damme, K, L Cateleyn, E Heseltine, A Huici, M Sorsa, N van Larebeke, and P Vineis. 1995. Individual susceptibility and prevention of occupational diseases: scientific and ethical issues. J Exp Med 37:91-99.

Vineis, P. 1991. Causality assessment in epidemiology. Theor Med 12:171-181.

Vineis, P. 1992. Uses of biochemical and biological markers in occupational epidemiology. Rev Epidmiol Med Soc Santé Publ 40 Suppl 1: 63-69.

Vineis, P and T Martone. 1995. Genetic-environmental interactions and low-level exposure to carcinogens. Epidemiology 6:455-457.

Vineis, P and L Simonato. 1991. Proportion of lung and bladder cancers in males resulting from occupation: A systematic approach. Arch Environ Health 46:6-15.

Vineis, P and CL Soskolne. 1993. Cancer risk assessment and management: An ethical perspective. J Occup Med 35(9):902-908.

Vineis, P, H Bartsch, N Caporaso, AM Harrington, FF Kadlubar, MT Landi, C Malaveille, PG Shields, P Skipper, G Talaska, and SR Tannenbaum. 1994. Genetically based N-acetyltransferase metabolic polymorphism and low level environmental exposure to carcinogens. Nature 369:154-156.

Vineis, P, K Cantor, C Gonzales, E Lynge, and V Vallyathan. 1995. Occupational cancer in developed and developing countries. Int J Cancer 62:655-660.

Von Volkmann, R. 1874. Ueber Theer-und Russkrebs. Klinische Wochenschrift 11:218.

Walker, AM and M Blettner. 1985. Comparing imperfect measures of exposure. Am J Epidemiol 121:783-790.

Wang, JD. 1991. From conjectures and refutation to the documentation of occupational diseases in Taiwan. Am J Ind Med 20:557-565.

—. 1993. Use of epidemiologic methods in studying diseases caused by toxic chemicals. J Natl Publ Health Assoc 12:326-334.

Wang, JD, WM Li, FC Hu, and KH Fu. 1987. Occupational risk and the development of premalignant skin lesions among paraquat manufacturers. Brit J Ind Med 44:196-200.

Weed, DL. 1986. On the logic of causal inference. Am J Epidemiol 123:965-979.

—. 1988. Causal criteria and popperian refutation. In Causal Inference, edited by KJ Rothman. Chestnut Hill, Mass.: Epidemiology Resources.

Wood, WB and SR Gloyne. 1930. Pulmonary asbestosis. Lancet 1:445-448.

Wyers, H. 1949. Asbestosis. Postgrad Med J 25:631-638.