Friday, 25 March 2011 04:47

Ergonomics Standards

Rate this item
(4 votes)

Introduction

Ergonomics standards can take many forms, such as regulations which are promulgated on a national level, or guidelines and standards instituted by international organizations. They play an important role in improving the usability of systems. Design and performance standards give managers confidence that the systems they buy will be capable of being used productively, efficiently, safely and comfortably. They also provide users with a benchmark by which to judge their own working conditions. In this article we focus on the International Organization for Standardization (ISO) ergonomics standard 9241 (ISO 1992) because it provides important, internationally recognized, criteria for selecting or designing VDU equipment and systems. ISO carries out its work through a series of technical committees, one of which is ISO TC 159 SC4 Ergonomics of Human System Interaction Committee, which is responsible for ergonomics standards for situations in which human beings and technological systems interact. Its members are representatives of the national standards bodies of member countries and meetings involve national delegations in discussing and voting on resolutions and technical documents. The primary technical work of the committee takes place in eight Working Groups (WGs), each of which has responsibility for different work items listed in figure 1. This sub-committee has developed ISO 9241.

Figure 1. Technical Working Groups of the Ergonomics of Human System Interaction Technical Committee (ISO TC 159 SC4). ISO 9241: Five working groups broke down the “parts” of the standard to those listed below. This illustration shows the correspondence between the parts of the standard and the various aspects of the workstation with which they are concerned

 VDU100F1The work of the ISO has major international importance. Leading manufacturers pay great heed to ISO specifications. Most producers of VDUs are international corporations. It is obvious that the best and most effective solutions to workplace design problems from the international manufacturers’ point of view should be agreed upon internationally. Many regional authorities, such as the European Standardization Organization (CEN) have adopted ISO standards wherever appropriate. The Vienna Agreement, signed by the ISO and CEN, is the official instrument which ensures effective collaboration between the two organizations. As different parts of ISO 9241 are approved and published as international standards, they are adopted as European standards and become part of EN 29241. Since CEN standards replace national standards in the European Union (EU) and the European Free Trade Agreement (EFTA) Member States, the significance of ISO standards in Europe has grown, and, in turn, has also increased pressure on the ISO to efficiently produce standards and guidelines for VDUs.

User performance standards

An alternative to product standards is to develop user performance standards. Thus, rather than specify a product feature such as character height which it is believed will result in a legible display, standards makers develop procedures for testing directly such characteristics as legibility. The standard is then stated in terms of the user performance required from the equipment and not in terms of how that is achieved. The performance measure is a composite including speed and accuracy and the avoidance of discomfort.

User performance standards have a number of advantages; they are

  • relevant to the real problems experienced by users
  • tolerant of developments in the technology
  • flexible enough to cope with interactions between factors.

 

However, user performance standards can also suffer a number of disadvantages. They cannot be totally complete and scientifically valid in all cases, but do represent reasonable compromises, which require significant time to obtain the agreement of all the parties involved in standards-setting.

Coverage and Use of ISO 9241

The VDU ergonomics requirements standard, ISO 9241, provides detail on ergonomic aspects of products, and on assessing the ergonomic properties of a system. All references to ISO 9241 also apply to EN 29241. Some parts provide general guidance to be considered in the design of equipment, software and tasks. Other parts include more specific design guidance and requirements relevant to current technology, since such guidance is useful to designers. In addition to product specifications, ISO 9241 emphasizes the need to specify factors affecting user performance, including how to assess user performance in order to judge whether or not a system is appropriate to the context in which it will be used.

ISO 9241 has been developed with office-based tasks and environments in mind. This means that in other specialized environments some acceptable deviation from the standard may be needed. In many cases, this adaptation of the office standard will achieve a more satisfactory result than the “blind” specification or testing of an isolated standard specific to a given situation. Indeed, one of the problems with VDU ergonomics standards is that the technology is developing faster than standards makers can work. Thus it is quite possible that a new device may fail to meet the strict requirements in an existing standard because it approaches the need in question in a way radically different from any that were foreseen when the original standard was written. For example, early standards for character quality on a display assumed a simple dot matrix construction. Newer more legible fonts would have failed to meet the original requirement because they would not have the specified number of dots separating them, a notion inconsistent with their design.

Unless standards are specified in terms of the performance to be achieved, the users of ergonomics standards must allow suppliers to meet the requirement by demonstrating that their solution provides equivalent or superior performance to achieve the same objective.

The use of the ISO 9241 standard in the specification and procurement process places display screen ergonomics issues firmly on management’s agenda and helps to ensure proper consideration of these issues by both procurer and supplier. The standard is therefore a useful part of the responsible employer’s strategy for protecting the health, safety and productivity of display screen users.

General issues

ISO 9241 Part 1 General introduction explains the principles underlying the multipart standard. It describes the user performance approach and provides guidance on how to use the standard and on how conformance to parts of ISO 9241 should be reported.

ISO 9241 Part 2 Guidance on task requirements provides guidance on job and task design for those responsible for planning VDU work in order to enhance the efficiency and the well-being of individual users by applying practical ergonomic knowledge to the design of office VDU tasks. Objectives and characteristics of task design are also discussed (see figure 2) and the standard describes how task requirements may be identified and specified within individual organizations and can be incorporated into the organization’s system design and implementation process.

Figure 2. Guidance and task requirements

VDU100F2


 

 

Case Study: Display Screen Equipment Directive (90/270/EEC)

The Display Screen Directive is one in a series of “daughter”directives dealing with specific aspects of health and safety. The directives form part of the European Union’s programme for promoting health and safety in the single market. The “parent” or “Framework” Directive (89/391/EEC) sets out the general principles of the Community’s approach to Health and Safety. These common principles include the avoidance of risk, where possible, by eliminating the source of the risk and the encouragement of collective protective measures instead of individual protective measures.

Where risk is unavoidable, it must be properly evaluated by people with the relevant skills and measures must be taken which are appropriate to the extent of the risk. Thus if the assessment shows that the level of risk is slight, informal measures may be entirely adequate. However, where significant risk is identified, then stringent measures must be taken. The Directive itself only placed obligations on Member States of the EU, not on individual employers or manufacturers. The Directive required Member States to transpose the obligations into appropriate national laws, regulations and administrative provisions. These in turn place obligations on employers to ensure a minimum level of health and safety for display screen users.

The main obligations are for employers to:

  • Assess the risks arising from the use of display screen workstations and take steps to reduce any risks identified.
  • Ensure that new workstations (“first put into service after 1st January 1993”) meet the minimum ergonomics requirements set out in an Annex to the Directive. Existing workstations have a further four years to meet the minimum requirements, provided that they are not posing a risk to their users.
  • Inform users about the results of the assessments, the actions the employer is taking and their entitlements under the Directive.
  • Plan display screen work to provide regular breaks or changes of activity.
  • Offer eye tests before display screen use, at regular intervals and if they are experiencing visual problems. If the tests show that they are necessary and normal glasses cannot be used, then special glasses must be provided.
  • Provide appropriate health and safety training for users before display screen use or whenever the workstation is “substantially modified”.

 

The intention behind the Display Screen Directive is to specify how workstations should be used rather than how products should be designed. The obligations therefore fall on employers, not on manufacturers of workstations. However, many employers will ask their suppliers to reassure them that their products “conform”. In practice, this means little since there are only a few, relatively simple design requirements in the Directive. These are contained in the Annex (not given here) and concern the size and reflectance of the work surface,the adjustability of the chair, the separation of the keyboard and the clarity of the displayed image.


 

 

 

Hardware and environmental ergonomics issues

Display screen

ISO 9241 (EN 29241) Part 3 Visual display requirements specifies the ergonomic requirements for display screens which ensure that they can be read comfortably, safely and efficiently to perform office tasks. Although it deals specifically with displays used in offices, the guidance is appropriate to specify for most applications which require general purpose displays. A user performance test which, once approved, can serve as the basis for performance testing and will become an alternate route to compliance for VDUs.

ISO 9241 Part 7 Display requirements with reflections. The purpose of this part is to specify methods of measurement of glare and reflections from the surface of display screens, including those with surface treatments. It is aimed at display manufacturers who wish to ensure that anti-reflection treatments do not detract from image quality.

ISO 9241 Part 8 Requirements for displayed colours. The purpose of this part is to deal with the requirements for multicolour displays which are largely in addition to the monochrome requirements in Part 3, requirements for visual display in general.

Keyboard and other input devices

ISO 9241 Part 4 Keyboard requirements requires that the keyboard should be tiltable, separate from the display and easy to use without causing fatigue in the arms or hands. This standard also specifies the ergonomic design characteristics of an alphanumeric keyboard which may be used comfortably, safely and efficiently to perform office tasks. Again, although Part 4 is a standard to be used for office tasks, it is appropriate to most applications which require general purpose alphanumeric keyboards. Design specifications and an alternative performance test method of compliance are included.

ISO 9241 Part 9 Requirements for non-keyboard input devices specifies the ergonomic requirements from such devices as the mouse and other pointing devices which may be used in conjunction with a visual display unit. It also includes a performance test.

Workstations

ISO 9241 Part 5 Workstation layout and postural requirements facilitates efficient operation of the VDU and encourages the user to adopt a comfortable and healthy working posture. The requirements for a healthy, comfortable posture are discussed. These include:

  • the location of frequently used equipment controls, displays and work surfaces within easy reach
  • the opportunity to change position frequently
  • the avoidance of excessive, frequent and repetitive movements with extreme extension or rotation of the limbs or trunk
  • support for the back allowing an angle of 90 degrees to 110 degrees between back and thighs.

 

The characteristics of the workplace which promote a healthy and comfortable posture are identified and design guidelines given.

Working environments

ISO 9241 Part 6 Environmental requirements specifies the ergonomic requirements for the visual display unit working environment which will provide the user with comfortable, safe and productive working conditions. It covers the visual, acoustic and thermal environments. The objective is to provide a working environment which should facilitate efficient operation of the VDU and provide the user with comfortable working conditions.

The characteristics of the working environment which influence efficient operation and user comfort are identified, and design guidelines presented. Even when it is possible to control the working environment within strict limits, individuals will differ in their judgements of its acceptability, partly because individuals vary in their preferences and partly because different tasks may require quite different environments. For example, users who sit at VDUs for prolonged periods are far more sensitive to draughts than users whose work involves moving about an office and only working at the VDU intermittently.

VDU work often restricts the opportunities that individuals have for moving about in an office and so some individual control over the environment is highly desirable. Care must be taken in common work areas to protect the majority of users from extreme environments which may be preferred by some individuals.

Software ergonomics and dialogue design

ISO 9241 Part 10 Dialogue principles presents ergonomic principles which apply to the design of dialogues between humans and information systems, as follows:

  • suitability for the task
  • self-descriptiveness
  • controllability
  • conformity with user expectations
  • error tolerance
  • suitability for individualization
  • suitability for learning.

 

The principles are supported by a number of scenarios which indicate the relative priorities and importance of the different principles in practical applications. The starting point for this work was the German DIN 66234 Part 8 Principles of Ergonomic Dialogue Design for Workplaces with Visual Display Units.

ISO 9241 Part 11 Guidance on usability specification and measures helps those involved in specifying or measuring usability by providing a consistent and agreed framework of the key issues and parameters involved. This framework can be used as part of an ergonomic requirements specification and it includes descriptions of the context of use, the evaluation procedures to be carried out and the criterion measures to be satisfied when the usability of the system is to be evaluated.

ISO 9241 Part 12 Presentation of information provides guidance on the specific ergonomics issues involved in representing and presenting information in a visual form. It includes guidance on ways of representing complex information, screen layout and design and the use of windows. It is a useful summary of the relevant materials available among the substantial body of guidelines and recommendations which already exist. The information is presented as guidelines without any need for formal conformance testing.

ISO 9241 Part 13 User guidance provides manufacturers with, in effect, guidelines on how to provide guidelines to users. These include documentation, help screens, error handling systems and other aids that are found in many software systems. In assessing the usability of a product in practice, real users should take into account the documentation and guidance provided by the supplier in the form of manuals, training and so on, as well as the specific characteristics of the product itself.

ISO 9241 Part 14 Menu dialogues provides guidance on the design of menu-based systems. It applies to text-based menus as well as to pull-down or pop-up menus in graphical systems. The standard contains a large number of guidelines developed from the published literature and from other relevant research. In order to deal with the extreme variety and complexity of menu-based systems, the standard employs a form of “conditional compliance”. For each guideline, there are criteria to help establish whether or not it is applicable to the system in question. If it is determined that the guidelines are applicable, criteria to establish whether or not the system meets those requirements are provided.

ISO 9241 Part 15 Command dialogues provides guidance for the design of text-based command dialogues. Dialogues are the familiar boxes which come onto the screen and query the VDU user, such as in a search command. The software creates a “dialogue” in which the user must supply the term to be found, and any other relevant specifications about the term, such as its case or format.

ISO 9241 Part 16 Direct manipulation dialogues deals with the design of direct manipulation dialogues and WYSIWYG (What You See Is What You Get) dialogue techniques, whether provided as the sole means of dialogue or combined with some other dialogue technique. It is envisaged that the conditional compliance developed for Part 14 may be appropriate for this mode of interaction also.

ISO 9241 Part 17 Form-filling dialogues is in the very early stages of development.

 

Back

Read 12913 times Last modified on Thursday, 13 October 2011 21:33

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Visual Display Units References

Akabri, M and S Konz. 1991. Viewing distance for VDT work. In Designing For Everyone, edited by Y Queinnec and F Daniellou. London: Taylor & Francis.

Apple Computer Co. 1987. Apple Human Interface Guidelines. The Apple Desktop Interface. Waltham, Mass.: Addison-Wesley.

Amick, BC and MJ Smith. 1992. Stress, computer-based work monitoring and measuring systems: A conceptual overview. Appl Ergon 23(1):6-16.

Bammer, G. 1987. How technologic change can increase the risk of repetitive motions injuries. Seminars Occup Med 2:25-30.

—. 1990. Review of current knowledge -Musculoskeletal problems. In Work With Display Units 89: Selected Papers from the Work with Display Units Conference, September 1989, Montreal, edited by L Berlinguet and D Berthelette. Amsterdam: North Holland.

Bammer, G and B Martin. 1988. The arguments about RSI: An examination. Community Health Stud 12:348-358.

—. 1992. Repetition strain injury in Australia: Medical knowledge, social movement and de facto partisanship. Social Prob 39:301-319.

Bastien, JMC and DL Scapin. 1993. Ergonomic criteria for the evaluation of human-computer interfaces. Technical Report no. 156, Programme 3 Artificial Intelligence, cognitive systems, and man-machine interaction. France: INRIA.

Berg, M. 1988. Skin problems in workers using visual display terminals: A study of 201 patients. Contact Dermat 19:335-341.

—-. 1989. Facial skin complaints and work at visual display units. Epidemiological, clinical and histopathological studies. Acta Derm-Venereol Suppl. 150:1-40.

Berg, M, MA Hedblad, and K Erkhardt. 1990. Facial skin complaints and work at visual display units: A histopathological study. Acta Derm-Venereol 70:216-220.

Berg, M, S Lidén, and O Axelson. 1990. Skin complaints and work at visual display units: An epidemiological study of office employees. J Am Acad Dermatol 22:621-625.

Berg, M, BB Arnetz, S Lidén, P Eneroth, and A Kallner. 1992. Techno-stress, a psychophysiological study of employees with VDU-associated skin complaints. J Occup Med 34:698-701.

Bergqvist, U. 1986. Pregnancy and VDT work -An evaluation of the state of the art. In Work With Display Units 86: Selected Papers from the International Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

Bikson, TK. 1987. Understanding the implementation of office technology. In Technology and the Transformation of White-Collar Work, edited by RE Kraut. Hillsdale, NJ: Erlbaum Associates.

Bjerkedal, T and J Egenaes. 1986. Video display terminals and birth defects. A study of pregnancy outcomes of employees of the Postal-Giro-Center, Oslo, Norway. In Work With Display Units 86: Selected Papers from the Interantional Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

Blackwell, R and A Chang. 1988. Video display terminals and pregnancy. A review. Brit J Obstet Gynaec 95:446-453.

Blignault, I. 1985. Psychosocial aspects of occupational overuse disorders. Master of Clinical Psychology Thesis, Department of Psychology, The Australian National University, Canberra ACT.

Boissin, JP, J Mur, JL Richard, and J Tanguy. 1991. Study of fatigue factors when working on a VDU. In Designing for Everyone, edited by Y Queinnec and F Daniellou. London: Taylor & Francis.

Bradley, G. 1983. Effects of computerization on work environment and health: From a perspective of equality between sexes. Occup Health Nursing :35-39.

—. 1989. Computers and the Psychological Environment. London: Taylor & Francis.
Bramwell, RS and MJ Davidson. 1994. Visual display units and pregnancy outcome: A prospective study. J Psychosom Obstet Gynecol 14(3):197-210.

Brandt, LPA and CV Nielsen. 1990. Congenital malformations among children of women working with video display terminals. Scand J Work Environ Health 16:329-333.

—. 1992. Fecundity and the use of video display terminals. Scand J Work Environ Health 18:298-301.

Breslow, L and P Buell. 1960. Mortality and coronary heart disease and physical activity on work in California. J Chron Dis 11:615-626.

Broadbeck, FC, D Zapf, J Prumper, and M Frese. 1993. Error handling in office work with computers: A field study. J Occup Organ Psychol 66:303-317.

Brown, CML. 1988. Human-Computer Interface Guidelines. Norwood, NJ: Ablex.

Bryant, HE and EJ Love. 1989. Video display terminal use and spontaneous abortion risk. Int J Epidemiol 18:132-138.

Çakir, A. 1981. Belastung und Beanspruching bei Biuldschirmtätigkeiten. In Schriften zur Arbeitspychologie, edited by M Frese. Bern: Huber.

Çakir, A, D Hart, and TFM Stewart. 1979. The VDT Manual. Darmstadt: Inca-Fiej Research Association.

Carayon, P. 1993a. Job design and job stress in office workers. Ergonomics 36:463-477.

—. 1993b. Effect of electronic performance monitoring on job design and worker stress: A review of the literature and conceptual model. Hum Factors 35(3):385-396.

Carayon-Sainfort, P. 1992. The use of computers in offices: Impact on task characteristics and worker stress. Int J Hum Comput Interact 4:245-261.

Carmichael, AJ and DL Roberts. 1992. Visual display units and facial rashes. Contact Dermat 26:63-64.

Carroll, JM and MB Rosson. 1988. Paradox of the active user. In Interfacing Thought. Cognitive Aspects of Human-Computer Interaction, edited by JM Carroll. Cambridge: Bradford.

Cohen, ML, JF Arroyo, GD Champion, and CD Browne. 1992. In search of the pathogenesis of refractory cervicobrachial pain syndrome. A deconstruction of the RSI phenomenon. Med J Austral 156:432-436.

Cohen, S and N Weinstein. 1981. Nonauditory effects of noise on behavior and health. J Soc Issues 37:36-70.

Cooper, CL and J Marshall. 1976. Occupational sources of stress: A review of the literature relating to coronary heart disease and mental ill health. J Occup Psychol 49:11-28.

Dainoff, MG. 1982. Occupational Stress Factors in VDT Operation: A Review of Empirical Research in Behavior and Information Technology. London: Taylor & Francis.

Desmarais, MC, L Giroux, and L Larochelle. 1993. An advice-giving interface based on plan-recognition and user-knowledge assessment. Int J Man Mach Stud 39:901-924.

Dorard, G. 1988. Place et validité des tests ophthalmologiques dans l’étude de la fatigue visuelle engendrée par le travail sur écran. Grenoble: Faculté de médecine, Univ. de Grenoble.

Egan, DE. 1988. Individual differences in human-computer interaction. In Handbook of Human-Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Ellinger, S, W Karmaus, H Kaupen-Haas, KH Schäfer, G Schienstock, and E Sonn. 1982. 1982 Arbeitsbedingungen, gesundheitsverhalten und rheumatische Erkrankungen. Hamburg: Medizinische Soziologie, Univ. Hamburg.

Ericson, A and B Källén. 1986. An epidemiological study of work with video screens and pregnancy outcome: II. A case-control study. Am J Ind Med 9:459-475.

Frank, AL. 1983. Effects of Health Following Occupational Exposure to Video Display Terminals. Lexington, Ky: Department of Preventive Medicine and Environmental Health.

Frese, M. 1987. Human-computer interaction in the office. In International Review of Industrial and Organizational Psychology, edited by CL Cooper. New York: Wiley.

Frölén, H and N-M Svedenstål. 1993. Effects of pulsed magnetic fields on the developing mouse embryo. Biolelectromagnetics 14:197-204.

Fry, HJH. 1992. Overuse syndrome and the Overuse concept. Discussion Papers On the Pathology of Work-Related Neck and Upper Limb Disorders and the Implications for Treatment, edited by G Bammer. Working paper No. 32. Canberra: NCEPH, Australian National Univ.

Gaines, BR and MLG Shaw. 1986. From timesharing to the sixth generation: The development of human-computer interaction. Part I. Int J Man Mach Stud 24:1-27.

Gardell, B. 1971. Alienation and mental health in the modern industrial environment. In Society, Stress, and Disease, edited by L Levi. Oxford: OUP.

Goldhaber, MK, MR Polen, and RA Hiatt. 1988. The risk of miscarriage and birth defects among women who use visual display terminals during pregnancy. Am J Ind Med 13:695-706.

Gould, JD. 1988. How to design usable systems. In Handbook of Human Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Gould, JD and C Lewis. 1983. Designing for usability—Key principles and what designers think. In Proceedings of the 1983 CHI Conference On Human Factors in Computing Systems, 12 December, Boston. New York: ACM.

Grandjean, E. 1987. Ergonomics in Computerized Offices. London: Taylor & Francis.

Hackman, JR and GR Oldham. 1976. Motivation through the design of work: Test of a theory. Organ Behav Hum Perform 16:250-279.

Hagberg, M, Å Kilbom, P Buckle, L Fine, T Itani, T Laubli, H Riihimaki, B Silverstein, G Sjogaard, S Snook, and E Viikari-Juntura. 1993. Strategies for prevention of work-related musculo-skeletal disorders. Appl Ergon 24:64-67.

Halasz, F and TP Moran. 1982. Analogy considered harmful. In Proceedings of the Conference On Human Factors in Computing Systems. Gaithersburg, Md.: ACM Press.

Hartson, HR and EC Smith. 1991. Rapid prototyping in human-computer interface development. Interact Comput 3(1):51-91.

Hedge, A, WA Erickson, and G Rubin. 1992. Effects of personal and occupational factors on sick building syndrome reports in air-conditioned offices. In Stress and Well-Being At Work-Assessments and Interventions for Occcupational Mental Health, edited by JC Quick, LR Murphy, and JJ Hurrell Jr. Washington, DC: American Psychological Association.

Helme, RD, SA LeVasseur, and SJ Gibson. 1992. RSI revisited: Evidence for psychological and physiological differences from an age, sex and occupation matched control group. Aust NZ J Med 22:23-29.

Herzberg, F. 1974. The wise old Turk. Harvard Bus Rev (Sept./Oct.):70-80.

House, J. 1981. Work Stress and Social Support. Reading, Mass.: Addison-Wesley.

Hutchins, EL. 1989. Metaphors for interactive systems. In The Structure of Multimodal Dialogue, edited by DG Bouwhuis, MM Taylor, and F Néel. Amsterdam: North Holland.

Huuskonen, H, J Juutilainen, and H Komulainen. 1993. Effects of low-frequency magnetic fields on fetal development in rats. Biolelectromagnetics 14(3):205-213.

Infante-Rivard, C, M David, R Gauthier, and GE Rivard. 1993. Pregnancy loss and work schedule during pregnancy. Epidemiology 4:73-75.

Institut de recherche en santé et en sécurité du travail (IRSST). 1984. Rapport du groupe de travail sur les terminaux è écran de visualisation. Montréal: IRSST.

International Business Machines Corp. (IBM). 1991a. Systems Application Architecture. Common User Access Guide-Advanced Interface Design Reference. White Plains, NY.: IBM.

—. 1991b. Systems Application Architecture. Common User Access Guide to User Interface Design. White Plains, NY.: IBM.

International Labour Organization (ILO). 1984. Automation, Work Organisation and Occupational Stress. Geneva: ILO.

—. 1986. Special issue on visual display units. Cond Work Dig .

—. 1989. Working with Visual Display Units. Occupational Safety and Health Series, No. 61. Geneva: ILO.

—. 1991. Worker’s privacy. Part I: Protection of personal data. Cond Work Dig 10:2.

International Organization for Standardization (ISO). 1992. Ergonomic Requirements for Office Work With Visual Display Terminals (VDTs). ISO Standard 9241.Geneva: ISO.

Johansson, G and G Aronsson. 1984. Stress reactions in computerized administrative work. J Occup Behav 5:159-181.

Juliussen, E and K Petska-Juliussen. 1994. The Seventh Annual Computer Industry 1994-1995 Almanac. Dallas: Computer Industry Almanac.

Kalimo, R and A Leppanen. 1985. Feedback from video display terminals, performance control and stress in text preparation in the printing industry. J Occup Psychol 58:27-38.

Kanawaty, G. 1979. Introduction to Work Study. Geneva: ILO.

Karasek, RA, D Baker, F Marxer, A Ahlbom, and R Theorell. 1981. Job decision latitude, job demands, and cardiovascular disease. In Machine-Pacing and Occupational Stress, edited by G Salvendy and MJ Smith. London: Taylor & Francis.

Karat, J. 1988. Software evaluation methodologies. In Handbook of Human-Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Kasl, SV. 1978. Epidemiological contributions to the study of work stress. In Stress At Work, edited by CL Cooper and R Payne. New York: Wiley.

Koh, D, CL Goh, J Jeyaratnam, WC Kee, and CN Ong. 1991. Dermatologic complaints among visual display unit operators and office workers. Am J Contact Dermatol 2:136-137.

Kurppa, K, PC Holmberg, K Rantala, T Nurminen, L Saxén, and S Hernberg. 1986. Birth defects, course of pregnancy, and work with video display units. A Finnish case-referent study. In Work With Display Units 86: Selected Papers from the International Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

Läubli, T, H Nibel, C Thomas, U Schwanninger, and H Krueger. 1989. Merits of periodic visual screening tests in VDU operators. In Work With Computers, edited by MJ Smith and G Salvendy. Amsterdam: Elsevier Science.

Levi, L. 1972. Stress and Distress in Response to Psychosocial Stimuli. New York: Pergamon Press.

Lewis, C and DA Norman. 1986. Designing for error. In User Centered System: New Perspectives On Human-Computer Interation, edited by DA Norman and SW Draper. Hillsdale, NJ.: Erlbaum Associates.

Lidén, C. 1990. Contact allergy: A cause of facial dermatitis among visual display unit operators. Am J Contact Dermatol 1:171-176.

Lidén, C and JE Wahlberg. 1985. Work with video display terminals among office employees. Scand J Work Environ Health 11:489-493.

Lindbohm, M-L, M Hietanen, P Kygornen, M Sallmen, P von Nandelstadh, H Taskinen, M Pekkarinen, M Ylikoski, and K Hemminki. 1992. Magnetic fields of video display terminals and spontaneous abortion. Am J Epidemiol 136:1041-1051.

Lindström, K. 1991. Well-being and computer-mediated work of various occupational groups in banking and insurance. Int J Hum Comput Interact 3:339-361.

Mantei, MM and TJ Teorey. 1989. Incorporating behavioral techniques into the systems development life cycle. MIS Q September:257-274.

Marshall, C, C Nelson, and MM Gardiner. 1987. Design guidelines. In Applying Cognitive Psychology to User-Interface Design, edited by MM Gardiner and B Christie. Chichester, UK: Wiley.

Mayhew, DJ. 1992. Principles and Guidelines in Software User Interface Design. Englewood Cliffs, NJ.: Prentice Hall.

McDonald, AD, JC McDonald, B Armstrong, N Cherry, AD Nolin, and D Robert. 1988. Work with visual display units in pregnancy. Brit J Ind Med 45:509-515.

McGivern, RF and RZ Sokol. 1990. Prenatal exposure to a low-frequency electromagnetic field demasculinizes adult scent marking behavior and increases accessory sex organ weights in rats. Teratology 41:1-8.

Meyer, J-J and A Bousquet. 1990. Discomfort and disability glare in VDT operators. In Work With Display Units 89, edited by L Berlinguet and D Berthelette. Amsterdam: Elsevier Science.

Microsoft Corp. 1992. The Windows Interface: An Application Design Guide. Redmond, Wash.: Microsoft Corp.

Monk, TH and DI Tepas. 1985. Shift work. In Job Stress and Blue Collar Work, edited by CL Cooper and MJ Smith. New York: Wiley.

Moran, TP. 1981. The command language grammar: A representation for the user interface of interaction computer systems. Int J Man Mach Stud 15:3-50.

—-. 1983. Getting into a system: External-internal task mapping analysis. In Proceedings of the 1983 CHI Conference On Human Factors in Computing Systems, 12-15 December, Boston. New York: ACM.

Moshowitz, A. 1986. Social dimensions of office automation. Adv Comput 25:335-404.

Murray, WE, CE Moss, WH Parr, C Cox, MJ Smith, BFG Cohen, LW Stammerjohn, and A Happ. 1981. Potential Health Hazards of Video Display Terminals. NIOSH Research Report 81-129. Cincinnati, Ohio: National Institute for Occupational Safety and Health (NIOSH).

Nielsen, CV and LPA Brandt. 1990. Spontaneous abortion among women using video display terminals. Scand J Work Environ Health 16:323-328.

—-. 1992. Fetal growth, preterm birth and infant mortality in relation to work with video display terminals during pregnancy. Scand J Work Environ Health 18:346-350.

Nielsen, J. 1992. The usability engineering life cycle. Computer (Mar.):12-22.

—-. 1993. Iterative user-interface design. Computer (Nov.):32-41.

Nielsen, J and RL Mack. 1994. Usability Inspection Methods. New York: Wiley.

Numéro spécial sur les laboratoires d’utilisabilité. 1994. Behav Inf Technol.

Nurminen, T and K Kurppa. 1988. Office employment, work with video display terminals, and course of pregnancy. Reference mothers’ experience from a Finnish case-referent study of birth defects. Scand J Work Environ Health 14:293-298.

Office of Technology Assessment (OTA). 1987. The Electronic Supervisor: New Technology, New Tensions. Washington, DC: US Government Printing Office.

Open Software Foundation. 1990. OSF/Motif Style Guide. Englewood Cliffs, NJ: Prentice Hall.

Ostberg, O and C Nilsson. 1985. Emerging technology and stress. In Job Stress and Blue Collar Work, edited by CL Cooper and MJ Smith. New York: Wiley.

Piotrkowski, CS, BFG Cohen, and KE Coray. 1992. Working conditions and well-being among women office workers. Int J Hum Comput Interact 4:263-282.

Pot, F, P Padmos, and A Brouwers. 1987. Determinants of the VDU operator’s well-being. In Work With Display Units 86. Selected Papers from the International Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

Preece, J, Y Rogers, H Sharp, D Benyon, S Holland, and T Carey. 1994. Human Computer Interaction. Reading, Mass.: Addison-Wesley.

Quinter, J and R Elvey. 1990. The neurogenic hypothesis of RSI. Discussion Papers On the Pathology of Work-Related Neck and Upper Limb Disorders and the Implications for Treatment, edited by G Bammer. Working paper No. 24. Canberra: NCEPH, Australian National Univ.

Rasmussen, J. 1986. Information Processing and Man-Machine Interaction. An Approach to Cognitive Engineering. New York: North Holland.

Ravden, SJ and GI Johnson. 1989. Evaluating Usability of Human-Computer Interfaces: A Practical Approach. West Sussex, UK: E Horwood.

—. 1992. Systems Application Architecture: Common Communications Support. Englewood Cliffs, NJ: Prentice Hall.

Reed, AV. 1982. Error correcting strategies and human interaction with computer systems. In Proceedings of the Conference On Human Factors in Computing Systems Gaithersburg, Md.: ACM.

Rey, P and A Bousquet. 1989. Visual strain of VDT operators: The right and the wrong. In Work With Computers, edited by G Salvendy and MJ Smith. Amsterdam: Elsevier Science.

—. 1990. Medical eye examination strategies for VDT operators. In Work With Display Units 89, edited by L Berlinguet and D Berthelette. Amsterdam: Elsevier Science.

Rheingold, HR. 1991. Virtual Reality. New York: Touchstone.

Rich, E. 1983. Users are individuals: Individualizing user models. Int J Man Mach Stud 18:199-214.

Rivas, L and C Rius. 1985. Effects of chronic exposure to weak electromagnetic fields in mice. IRCS Med Sci 13:661-662.

Robert, J-M. 1989. Learning a computer system by unassisted exploration. An example: The Macintosh. In MACINTER II Man-Computer Interaction Research, edited by F Klix, N Streitz, Y Warren, and H Wandke. Amsterdam: Elsevier.

Robert, J-M and J-Y Fiset. 1992. Conception et évaluation ergonomiques d’une interface pour un logiciel d’aide au diagnostic: Une étude de cas. ICO printemps-été:1-7.

Roman, E, V Beral, M Pelerin, and C Hermon. 1992. Spontaneous abortion and work with visual display units. Brit J Ind Med 49:507-512.

Rubino, GF. 1990. Epidemiologic survey of ocular disorders: The Italian multicentric research. In Work With Display Units 89, edited by L Berlinguet and D Berthelette. Amsterdam: Elsevier Science.

Rumelhart, DE and DA Norman. 1983. Analogical processes in learning. In Cognitive Skills and Their Acquisition, edited by JR Anderson. Hillsdale, NJ: Lawrence Erlbaum.

Ryan, GA and M Bampton. 1988. Comparison of data process operators with and without upper limb symptoms. Community Health Stud 12:63-68.

Ryan, GA, JH Mullerworth, and J Pimble. 1984. The prevalence of repetition strain injury in data process operators. In Proceedings of the 21st Annual Conference of the Ergonomics Society of Australia and New Zealand. Sydney.

Sainfort, PC. 1990. Job design predictors of stress in automated offices. Behav Inf Technol 9:3-16.

—-. 1991. Stress, job control and other job elements: A study of office workers. Int J Ind Erg 7:11-23.

Salvendy, G. 1992. Handbook of Industrial Engineering. New York: Wiley.

Salzinger, K and S Freimark. 1990. Altered operant behavior of adult rats after perinatal exposure to a 60-Hz electromagnetic field. Biolelectromagnetics 11:105-116.

Sauter, SL, CL Cooper, and JJ Hurrell. 1989. Job Control and Worker Health. New York: Wiley.

Sauter, SL, MS Gottlieb, KC Jones, NV Dodson, and KM Rohrer. 1983a. Job and health implications of VDT use: Initial results of the Wisconsin-NIOSH study. Commun ACM 26:284-294.

Sauter, SL, MS Gottlieb, KM Rohrer, and NV Dodson. 1983b. The Well-Being of Video Display Terminal Users. An Exploratory Study. Cincinnati, Ohio: NIOSH.

Scapin, DL. 1986. Guide ergonomique de conception des interfaces homme-machine. Rapport de recherche no. 77. Le Chesnay, France: INRIA.

Schnorr, TM, BA Grajewski, RW Hornung, MJ Thun, GM Egeland, WE Murray, DL Conover, and WE Halperin. 1991. Video display terminals and the risk of spontaneous abortion. New Engl J Med 324:727-733.

Shepherd, A. 1989. Analysis and training in information technology tasks. In Task Analysis for Human-Computer Interaction, edited by D Diaper. Chichester: E Horwood.

Shneiderman, B. 1987. Designing the User Interface: Strategies for Effective Human-Computer Interaction. Reading, Mass.: Addison-Wesley.

Sjödren, S and A Elfstrom. 1990. Eye discomfort among 4000 VDU users. In Work With Display
Units 89, edited by L Berlinguet and D Berthelette. Amsterdam: Elsevier Science.

Smith, MJ. 1987. Occupational stress. In Handbook of Ergonomics/Human Factors, edited by G Salvendy. New York: Wiley.

Smith, MJ and BC Amick. 1989. Electronic monitoring at the workplace: Implications for employee control and job stress. In Job Control and Worker Health, edited by S Sauter, J Hurrel, and C Cooper. New York: Wiley.

Smith, MJ, P Carayon, and K Miezio. 1987. VDT technology: Psychosocial and stress concerns. In Work With Display Units, edited by B Knave and PG Widebäck. Amsterdam: Elsevier Science.

Smith, MJ and P Carayon-Sainfort. 1989. A balance theory of job design for stress reduction. Int J Ind Erg 4:67-79.

Smith, MJ, BFG Cohen, LW Stammerjohn, and A Happ. 1981. An investigation of health complaints and job stress in video display operations. Hum Factors 23:387-400.

Smith, MJ, P Carayon, KH Sanders, S-Y Lim, and D LeGrande. 1992a. Electronic performance monitoring, job design and worker stress. Appl Ergon 23:17-27.

Smith, MJ, G Salvendy, P Carayon-Sainfort, and R Eberts. 1992b. Human-computer interaction. In Handbook of Industrial Engineering, edited by G Salvendy. New York: Wiley.

Smith, SL and SL Mosier. 1986. Guidelines for Designing User Interface Software. Report ESD-TR-278. Bedford, Mass.: MITRE.

South Australian Health Commission Epidemiology Branch. 1984. Repetition Strain Symptoms and Working Conditions Among Keyboard Workers Engaged in Data Entry or Word Processing in the South Australian Public Service. Adelaide: South Australian Health Commission.

Stammerjohn, LW, MJ Smith, and BFG Cohen. 1981. Evaluation of work station design factors in VDT operations. Hum Factors 23:401-412.

Stellman, JM, S Klitzman, GC Gordon, and BR Snow. 1985. Air quality and ergonomics in the office: Survey results and methodologic issues. Am Ind Hyg Assoc J 46:286-293.

—-. 1987a. Comparison of well-being among non-machine interactive clerical workers and full-time and part-time VDT users and typists. In Work With Display Units 86. Selected Papers from the International Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

—-. 1987b. Work environment and the well-being of clerical and VDT workers. J Occup Behav 8:95-114.

Strassman, PA. 1985. Information Payoff: The Transformation of Work in the Electronic Age. New York: Free Press.

Stuchly, M, AJ Ruddick, et al. 1988. Teratological assessment of exposure to time-varying magnetic fields. Teratology 38:461-466.

Sun Microsystems Inc. 1990. Open Look. Graphical User Interface Application Style Guidelines. Reading, Mass.: Addison-Wesley.

Swanbeck, G and T Bleeker. 1989. Skin problems from visual display units: Provocation of skin symptoms under experimental conditions. Acta Derm-Venereol 69:46-51.

Taylor, FW. 1911. The Principles of Scientific Management. New York: Norton & Co.

Thimbleby, H. 1990. User Interface Design. Chichester: ACM.

Tikkanen, J and OP Heinonen. 1991. Maternal exposure to chemical and physical factors during pregnancy and cardiovascular malformations in the offspring. Teratology 43:591-600.

Tribukait, B and E Cekan. 1987. Effects of pulsed magnetic fields on embryonic development in mice. In Work With Display Units 86: Selected Papers from the International Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

Wahlberg, JE and C Lidén. 1988. Is the skin affected by work at visual display terminals? Dermatol Clin 6:81-85.

Waterworth, JA and MH Chignell. 1989. A manifesto for hypermedia usability research. Hypermedia 1:205-234.

Westerholm, P and A Ericson. 1986. Pregnancy outcome and VDU work in a cohort of insurance clerks. In Work With Display Units 86. Selected Papers from the International Scientific Conference On Work With Display Units, May 1986, Stockholm, edited by B Knave and PG Widebäck. Amsterdam: North Holland.

Westlander, G. 1989. Use and non-use of VDTs—Organization of terminal work. In Work With Computers: Organizational, Management, Stress and Health Aspects, edited by MJ Smith and G Salvendy. Amsterdam: Elsevier Science.

Westlander, G and E Aberg. 1992. Variety in VDT work: An issue for assessment in work environment research. Int J Hum Comput Interact 4:283-302.

Wickens, C. 1992. Engineering Psychology and Human Performance. New York: Harper Collins.

Wiley, MJ and P Corey. 1992. The effects of continuous exposure to 20-khz sawtooth magnetic fields on the litters of CD-1 mice. Teratology 46:391-398.

Wilson, J and D Rosenberg. 1988. Rapid prototyping for user interface design. In Handbook of Human-Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Windham, GC, L Fenster, SH Swan, and RR Neutra. 1990. Use of video display terminals during pregnancy and the risk of spontaneous abortion, low birthweight, or intrauterine growth retardation. Am J Ind Med 18:675-688.

World Health Organization (WHO). 1987. Visual Display Terminals and Workers’ Health. Geneva: WHO.

—-. 1989. Work with visual display terminals: Psychosocial aspects and health. J Occup Med 31:957-968.

Yang, C-L and P Carayon. 1993. Effects of job demands and job support on worker stress: A study of VDT users. Behav Inf Technol .

Young, JE. 1993. Global Network. Computers in a Sustainable Society. Washington, DC: Worldwatch Paper 115.

Young, RM. 1981. The machine inside the machine: Users’ models of pocket calculators. Int J Man Mach Stud 15:51-85.

Zecca, L, P Ferrario, and G Dal Conte. 1985. Toxicological and teratological studies in rats after exposure to pulsed magnetic fields. Bioelectrochem Bioenerget 14:63-69.

Zuboff, S. 1988. In the Age of the Smart Machine: The Future of Work and Power. New York: Basic Books.