Monday, 21 March 2011 15:29

Health Problems and Disease Patterns

Written by
Rate this item
(0 votes)

Teachers comprise a large and growing segment of the workforce in many countries. For example, over 4.2 million workers were classified as preschool through high school teachers in the United States in 1992. In addition to classroom teachers, other professional and technical workers are employed by schools, including custodial and maintenance workers, nurses, food service workers and mechanics.

Teaching has not traditionally been regarded as an occupation that entails exposure to hazardous substances. Consequently, few studies of occupationally related health problems have been carried out. Nevertheless, school teachers and other school personnel may be exposed to a wide variety of recognized physical, chemical, biological and other occupational hazards.

Indoor air pollution is an important cause of acute illnesses in teachers. A major source of indoor air pollution is inadequate maintenance of heating, ventilation and air conditioning systems (HVAC). Contamination of HVAC systems can cause acute respiratory and dermatological illnesses. Newly constructed or renovated school buildings release chemicals, dusts and vapours into the air. Other sources of indoor air pollution are roofing, insulation, carpets, drapes and furniture, paint, caulk and other chemicals. Unrepaired water damage, as from roof leakage, can lead to the growth of micro-organisms in building materials and ventilation systems and the release of bioaerosols that affect the respiratory systems of teachers and students alike. Contamination of school buildings by micro-organisms can cause severe health conditions such as pneumonia, upper respiratory infections, asthma and allergic rhinitis.

Teachers who specialize in certain technical fields may be exposed to specific occupational hazards. For example, arts and craft teachers frequently encounter a variety of chemicals, including organic solvents, pigments and dyes, metals and metal compounds, minerals and plastics (Rossol 1990). Other art materials cause allergic reactions. Exposure to many of these materials is strictly regulated in the industrial workplace but not in the classroom. Chemistry and biology teachers work with toxic chemicals such as formaldehyde and other biohazards in school laboratories. Shop teachers work in dusty environments and may be exposed to high levels of wood dust and cleaning materials, as well as high noise levels.

Teaching is an occupation that is often characterized by a high degree of stress, absenteeism and burnout. There are many sources of teacher stress, which may vary with grade level. They include administrative and curriculum concerns, career advancement, student motivation, class size, role conflict and job security. Stress may also arise from dealing with children’s misbehaviours and possibly violence and weapons in schools, in addition to physical or environmental hazards such as noise. For example, desirable classroom sound levels are 40 to 50 decibels (dB) (Silverstone 1981), whereas in one survey of several schools, classroom sound levels averaged between 59 and 65 dB (Orloske and Leddo 1981). Teachers who are employed in second jobs after work or during the summer may be exposed to additional workplace hazards that can affect performance and health. The fact that the majority of teachers are women (three-fourths of all teachers in the United States are women) raises the question of how the dual role of worker and mother may affect women’s health. However, despite perceived high levels of stress, the rate of cardiovascular disease mortality in teachers was lower than in other occupations in several studies (Herloff and Jarvholm 1989), which could be due to lower prevalence of smoking and less consumption of alcohol.

There is a growing concern that some school environments may include cancer-causing materials such as asbestos, electromagnetic fields (EMF), lead, pesticides, radon and indoor air pollution (Regents Advisory Committee on Environmental Quality in Schools 1994). Asbestos exposure is a special concern among custodial and maintenance workers. A high prevalence of abnormalities associated with asbestos-related diseases has been documented in school custodians and maintenance employees (Anderson et al. 1992). The airborne concentration of asbestos has been reported higher in certain schools than in other buildings (Lee et al. 1992).

Some school buildings were built near high-voltage transmission power lines, which are sources of EMF. Exposure to EMF also comes from video display units or exposed wiring. Excess exposure to EMF has been linked to the incidence of leukaemia as well as breast and brain cancers in some studies (Savitz 1993). Another source of concern is exposure to pesticides that are applied to control the spread of insect and vermin populations in schools. It has been hypothesized that pesticide residues measured in adipose tissue and serum of breast cancer patients may be related to the development of this disease (Wolff et al. 1993).

The large proportion of teachers who are women has led to concerns about possible breast cancer risks. Unexplained increased breast cancer rates have been found in several studies. Using death certificates collected in 23 states in the United States between 1979 and 1987, the proportionate mortality ratios (PMRs) for breast cancer were 162 for White teachers and 214 for Black teachers (Rubin et al. 1993). Increased PMRs for breast cancer were also reported among teachers in New Jersey and in the Portland-Vancouver area (Rosenman 1994; Morton 1995). While these increases in observed rates have so far not been linked either to specific environmental factors or to other known risk factors for breast cancer, they have given rise to heightened breast cancer awareness among some teachers’ organizations, resulting in screening and early detection campaigns.

 

Back

Additional Info

Read 1886 times Last modified on Wednesday, 29 June 2011 09:02

" DISCLAIMER: The ILO does not take responsibility for content presented on this web portal that is presented in any language other than English, which is the language used for the initial production and peer-review of original content. Certain statistics have not been updated since the production of the 4th edition of the Encyclopaedia (1998)."

Contents

Preface
Part I. The Body
Part II. Health Care
Part III. Management & Policy
Part IV. Tools and Approaches
Part V. Psychosocial and Organizational Factors
Part VI. General Hazards
Part VII. The Environment
Part VIII. Accidents and Safety Management
Part IX. Chemicals
Part X. Industries Based on Biological Resources
Part XI. Industries Based on Natural Resources
Part XII. Chemical Industries
Part XIII. Manufacturing Industries
Part XIV. Textile and Apparel Industries
Part XV. Transport Industries
Part XVI. Construction
Part XVII. Services and Trade
Education and Training Services
Emergency and Security Services
Entertainment and the Arts
Health Care Facilities and Services
Hotels and Restaurants
Office and Retail Trades
Personal and Community Services
Public and Government Services
Transport Industry and Warehousing
Part XVIII. Guides

Education and Training Services References

Abdo, R and H Chriske. 1990. HAV-Infektionsrisiken im Krankenhaus, Altenheim und Kindertagesstätten. In Arbeitsmedizin im Gesundheitsdienst, Bd. V, edited by F Hofmann and U Stößel. Stuttgart: Gentner Verlag.

Anderson, HA, LP Hanrahan, DN Higgins, and PG Sarow. 1992. A radiographic survey of public school building maintenance and custodial employees. Environ Res 59:159–66.

Clemens, R, F Hofmann, H Berthold, G Steinert et al. 1992. Prävalenz von Hepatitis A, B und C bei ewohern einer Einrichtung für geistig Behinderte. Sozialpädiatrie 14:357–364.

Herloff, B and B Jarvholm. 1989. Teachers, stress, and mortality. Lancet 1:159–160.

Lee, RJ, DR Van Orden, M Corn, and KS Crump. 1992. Exposure to airborne asbestos in buildings. Regul Toxicol Pharmacol 16: 93-107.

Morton, WE. 1995. Major differences in breast cancer risks among occupations. J Occup Med 37:328–335.

National Research Council. 1993. Prudent Practices in the Laboratory: Handling and Disposal of Chemicals. Washington, DC: National Academy Press.

Orloske, AJ and JS Leddo. 1981. Environmental effects on children’s hearing: How can school systems cope. J Sch Health 51:12–14.

Polis, M et al. 1986. Transmission of Giardia lamblia from a day care center to a community. Am J Public Hlth 76:1,142–1,144.

Qualley, CA. 1986. Safety in the Artroom. Worcester, MA: Davis Publications.

Regents Advisory Committee on Environmental Quality in Schools. 1994. Report to the New York State Board of Regents on the Environmental Quality of Schools. Albany: University of the State of New York, State Education Department.

Rosenman, KD. 1994. Causes of mortality in primary and secondary school teachers. Am J Indust Med 25:749–58.

Rossol, M. 1990. The Artist’s Complete Health and Safety Guide. New York: Allworth Press.

Rubin, CH, CA Burnett, WE Halperin, and PJ Seligman. 1993. Occupation as a risk identifier for breast cancer. Am J Public Health 83:1,311–1,315.

Savitz, DA. 1993. Overview of epidemiologic research on electric and magnetic fields and cancer. Am Ind Hyg Assoc J 54:197–204.

Silverstone, D. 1981. Considerations for listening and noise distractions. In Designing Learning Environments, edited by PJ Sleeman and DM Rockwell. New York: Longman, Inc.

Wolff, MS, PG Toniolo, EW Lee, M Rivera, and N Dubin. 1993. Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst 85:648–652.

Women’s Occupational Health Resource Center. 1987. Women’s Occupational Health Resource Center News 8(2): 3-4.