週三,二月16 2011:00 52

一般和稀釋通風的目的和原則

評價這個項目
(4票)

當要通過對我們所說的整個場所進行通風來控制工地產生的污染物時 一般通風. 使用一般通風意味著接受這樣一個事實,即污染物會在一定程度上分佈在整個工作場所的空間中,因此可能會影響遠離污染源的工人。 因此,全面通風是一種與 局部提取. 局部提取旨在通過盡可能靠近源頭攔截污染物來消除污染物(參見本章其他部分的“室內空氣:控制和清潔方法”)。

任何一般通風系統的基本目標之一是控制體味。 這可以通過每分鐘供應不少於 0.45 立方米,m3/min,每位住戶的新空氣量。 經常吸煙或體力勞動時,所需通風量較大,可超過0.9m3/每人分鐘。

如果通風系統必須克服的唯一環境問題是剛剛描述的那些,那麼最好記住每個空間都通過所謂的“滲透”進行一定程度的“自然”空氣更新,這通過門窗發生,即使它們是關閉的,也可以通過其他穿牆部位發生。 空調手冊通常在這方面提供了充足的信息,但可以說,由於滲透而導致的通風水平至少在每小時 0.25 到 0.5 次更新之間。 工業場所通常每小時會經歷 0.5 到 3 次空氣更新。

當用於控制化學污染物時,一般通風必須僅限於污染物產生量不是很高、毒性相對適中以及工人不在污染源附近執行任務的情況。污染。 如果不遵守這些禁令,就很難獲得對工作環境的充分控制的認可,因為必須使用如此高的更新率,以至於高空氣速度可能會造成不適,而且維持高更新率的成本很高。 因此,不推薦使用一般通風來控制化學物質,除非溶劑的允許濃度超過百萬分之 100。

另一方面,當全面通風的目標是為了保持工作環境的熱特性以符合法律可接受的限製或技術建議(例如國際標準化組織 (ISO) 指南)時,此方法的限制較少。 因此,一般通風更常用於控制熱環境,而不是限制化學污染,但應清楚地認識到其作為局部抽取技術的補充的有用性。

雖然多年來的短語 一般通風稀釋通風 被認為是同義詞,但由於新的一般通風策略,今天情況已不再如此: 置換通風. 儘管稀釋通風和置換通風符合我們上面概述的一般通風的定義,但它們在控制污染的策略上有很大不同。

稀釋通風 目標是將機械引入的空氣盡可能完全地與空間內已有的所有空氣混合,以便給定污染物的濃度在整個過程中盡可能均勻(或使溫度盡可能均勻)盡可能均勻,如果熱控制是期望的目標)。 為了實現這種均勻混合,空氣以相對較高的速度從天花板以氣流的形式註入,這些氣流會產生強烈的空氣循環。 結果是新空氣與空間內已有的空氣高度混合。

置換通風, 在其理想的概念化中,包括將空氣注入空間,使新空氣取代先前存在的空氣而不與之混合。 置換通風是通過將新空氣以低速注入靠近地板的空間,並抽取天花板附近的空氣來實現的。 使用置換通風來控制熱環境的優勢在於,它受益於由於溫度差異本身導致的密度變化所產生的空氣的自然運動。 儘管置換通風已經在工業環境中得到廣泛應用,但關於該主題的科學文獻仍然非常有限,因此對其有效性的評估仍然很困難。

稀釋通氣

稀釋通風系統的設計基於這樣的假設,即污染物的濃度在整個相關空間中是相同的。 這就是化學工程師通常稱為攪拌罐的模型。

如果您假設注入空間的空氣不含污染物,並且在初始時間空間內的濃度為零,則需要了解兩個事實才能計算所需的通風率:空間中產生的污染物的數量以及所尋求的環境濃度水平(假設在整個過程中都是相同的)。

在這些條件下,相應的計算得出以下等式:

哪裡

c(噸) = 污染物在某個時間點的濃度 t

a =污染物產生量(單位時間內的質量)

Q = 供應新空氣的速率(每單位時間的體積)

V = 相關空間的體積。

上式表明濃度在該值時會趨於穩定狀態 /Q,並且它的值越小,它就會越快 質量/電壓,通常稱為“每單位時間的續訂次數”。 雖然有時通風質量指標被認為實際上等於該值,但上述等式清楚地表明其影響僅限於控制 穩定速度 環境條件,但不是出現這種穩定狀態的濃度水平。 這將取決於 僅由 產生的污染物量(a), 以及通風率 (Q).

當給定空間的空氣受到污染但沒有產生新的污染物量時,一段時間內濃度降低的速度由以下表達式給出:

哪裡 QV 具有上述含義, t1t2 分別是初始時間和最終時間 c1c2 是初始濃度和最終濃度。

在初始濃度不為零 (Constance 1983; ACGIH 1992) 的情況下,可以找到用於計算的表達式,其中註入空間的空氣並非完全沒有污染物(因為要減少空氣中冬季部分的加熱成本例如,被回收利用),或者產生的污染物量隨時間變化的地方。

如果我們忽略過渡階段並假設已經達到穩定狀態,則該方程表明通風率相當於 空調LIM,其中 cLIM 是在給定空間中必須保持的濃度值。 該值將由法規或作為輔助規範由技術建議確定,例如美國政府工業衛生學家會議 (ACGIH) 的閾值限值 (TLV),建議通風率按以下公式計算

哪裡 acLIM 具有已經描述的含義並且 K 是安全係數。 的價值 K 必鬚根據給定空間中空氣混合物的功效、溶劑的毒性(較小的 cLIM 是,值越大 K 將是),以及工業衛生學家認為相關的任何其他情況。 ACGIH 除其他外,引用了過程的持續時間、操作週期和工人在污染物排放源方面的通常位置、這些源的數量及其在給定空間中的位置、季節性自然通風量的變化和通風設備功能功效的預期降低作為其他確定標準。

在任何情況下,使用上述公式需要對值的合理準確的了解 a K 應該使用它,因此我們在這方面提出了一些建議。

產生的污染物的數量通常可以通過產生污染物的過程中消耗的某些材料的數量來估算。 因此,在溶劑的情況下,使用的量將很好地指示在環境中可以發現的最大量。

如上所述,值 K 應根據給定空間中空氣混合物的功效來確定。 因此,該值將更小,與在給定空間內的任何點找到相同污染物濃度的估計有多好成正比。 反過來,這將取決於空氣在通風空間內的分佈方式。

根據這些標準,最小值 K 當空氣以分佈式方式註入空間時(例如,通過使用增壓室),以及當空氣的注入和抽取位於給定空間的兩端時,應該使用。 另一方面,較高的價值 K 當間歇性供應空氣並在靠近新空氣入口的位置抽取空氣時,應使用這種方法(圖 1)。

圖 1. 有兩個送風口的室內空氣流通示意圖

IEN030F1

應該注意的是,當空氣被注入給定空間時——尤其是在高速情況下——產生的氣流會對周圍的空氣產生相當大的拉力。 然後,這種空氣與水流混合併使其減速,同時產生可測量的湍流。 因此,這個過程會導致空間中已有的空氣與註入的新空氣強烈混合,從而產生內部氣流。 預測這些電流,即使是一般預測,也需要大量經驗(圖 2)。

圖 2. 進氣和排氣位置的建議 K 係數

IEN030F2

為了避免工人因承受相對高速的氣流而導致的問題,空氣通常通過擴散格柵注入,這些格柵的設計方式有助於新空氣與已經存在的空氣快速混合空間。 通過這種方式,空氣高速移動的區域盡可能小。

剛剛描述的氣流效應不會在空氣逸出或通過門、窗、抽氣口或其他開口抽出的點附近產生。 空氣從各個方向到達抽氣格柵,因此即使距離它們相對較近,空氣運動也不容易被感知為氣流。

無論如何,在處理空氣分配時,重要的是要牢記工作站的便利性,盡可能讓新空氣在到達污染源之前到達工作人員。

當給定空間中存在重要的熱源時,空氣的運動將在很大程度上受對流的影響,對流是由於密度較大的冷空氣與較輕的暖空氣之間的密度差異造成的。 在這種空間中,氣流組織的設計者不能忘記這些熱源的存在,否則氣流的運動可能會與預測的大相徑庭。

另一方面,化學污染的存在不會以可測量的方式改變空氣的密度。 雖然在純淨狀態下,污染物的密度可能與空氣的密度非常不同(通常大得多),但考慮到工作場所實際存在的濃度,空氣和污染物的混合物的密度與空氣中的密度沒有顯著差異純淨空氣的密度。

此外,應該指出的是,在應用這種通風方式時最常犯的錯誤之一是只為空間提供抽氣機,而沒有預先考慮足夠的空氣攝入量。 在這些情況下,抽氣式通風機的效率會降低,因此實際抽氣率遠低於計劃。 結果是給定空間中污染物的環境濃度高於最初計算的濃度。

為了避免這個問題,應該考慮如何將空氣引入空間。 推薦的做法是使用吸入式通風機和抽氣式通風機。 通常,提取速率應大於注入速率,以便允許通過窗戶和其他開口滲透。 此外,宜使空間保持微負壓,以防止產生的污染物飄散到未被污染的區域。

排量通風

如上所述,通過置換通風,人們尋求最大限度地減少新空氣與給定空間中先前發現的空氣的混合,並嘗試將系統調整為稱為活塞流的模型。 這通常是通過在給定空間中以低速和低海拔引入空氣並在天花板附近抽出來實現的; 與稀釋通風相比,這有兩個優點。

首先,它可以降低空氣更新率,因為污染集中在空間的天花板附近,那裡沒有工人呼吸。 這 平均 給定空間中的濃度將高於 cLIM 我們之前提到過的值,但這並不意味著工人面臨更高的風險,因為在給定空間的佔用區域內,污染物的濃度將等於或低於 cLIM.

此外,當通風的目標是控制熱環境時,置換通風可以將比稀釋通風系統所需的暖空氣引入給定空間。 這是因為抽取的暖空氣的溫度比空間佔用區域的溫度高幾度。

置換通風的基本原理由 Sandberg 提出,他在 1980 世紀 1981 年代初期提出了一個通用理論,用於分析封閉空間中污染物濃度不均勻的情況。 這使我們能夠克服稀釋通風的理論局限性(假設在整個給定空間內濃度均勻),並為實際應用開闢了道路(Sandberg XNUMX)。

儘管置換通風在一些國家被廣泛使用,特別是在斯堪的納維亞半島,但很少有研究發表在實際安裝中比較不同方法的功效。 這無疑是因為在真實工廠中安裝兩種不同的通風系統存在實際困難,並且因為對這些類型的系統進行實驗分析需要使用示踪劑。 示踪是通過向通風氣流中添加示踪氣體,然後測量空間內不同點和抽取空氣中的氣體濃度來完成的。 這種檢查可以推斷空氣在空間內的分佈情況,然後比較不同通風系統的功效。

在實際現有裝置中進行的少數可用研究不是結論性的,除了關於採用置換通風的系統提供更好的空氣更新的事實。 然而,在這些研究中,人們往往對結果持保留態度,因為這些結果尚未通過對工作場所環境污染水平的測量得到證實。

 

上一頁

更多內容 15660 最後修改於 13 年 2011 月 21 日星期四 28:XNUMX

" 免責聲明:國際勞工組織不對本門戶網站上以英語以外的任何其他語言呈現的內容負責,英語是原始內容的初始製作和同行評審所使用的語言。自此以來,某些統計數據尚未更新百科全書第 4 版的製作(1998 年)。”

內容

室內環境控制參考

美國政府工業衛生學家會議 (ACGIH)。 1992. 工業通風——推薦實踐手冊。 第 21 版。 俄亥俄州辛辛那提:ACGIH。

美國供暖、製冷和空調工程師協會 (ASHRAE)。 1992. 用於去除顆粒物的一般通風中使用的空氣淨化器設備的測試方法。 亞特蘭大:ASHRAE。

巴圖林,VV。 1972. 工業通風基礎知識。 紐約:佩加蒙。

Bedford, T 和 FA Chrenko。 1974. 通風和加熱的基本原理。 倫敦:香港劉易斯。

歐洲標準化中心 (CEN)。 1979. 用於一般通風的空氣過濾器的測試方法。 Eurovent 4/5。 安特衛普:歐洲標準委員會。

英國特許建築服務學會。 1978. 設計環境標準。 :特許建築服務學會。

歐洲共同體理事會 (CEC)。 1992. 建築物通風要求指南。 盧森堡:歐共體。

康斯坦斯,JD。 1983. 控製廠內空氣污染物。 系統設計和計算。 紐約:Marcel Dekker。

方格,寶。 1988. 引入 olf 和 decipol 單位來量化人類在室內和室外感知到的空氣污染。 能量構建 12:7-19。

—. 1989. 室內空氣質量的新舒適方程式。 ASHRAE 雜誌 10:33-38。

國際勞工組織(勞工組織)。 1983. 職業健康與安全百科全書,L Parmeggiani 編輯。 第三版。 日內瓦:國際勞工組織。

美國國家職業安全與健康研究所 (NIOSH)。 1991. 建築空氣質量:建築業主和設施經理指南。 俄亥俄州辛辛那提:NIOSH。

Sandberg, M. 1981。什麼是通風效率? 構建環境 16:123-135。

世界衛生組織 (WHO)。 1987. 歐洲空氣質量指南。 歐洲系列,第 23 期。哥本哈根:世界衛生組織區域出版物。