Lunedi, Febbraio 28 2011 20: 21

Solventi organici

Vota questo gioco
(Voto 1)

Introduzione

I solventi organici sono volatili e generalmente solubili nel grasso corporeo (lipofili), sebbene alcuni di essi, ad esempio metanolo e acetone, siano anche solubili in acqua (idrofili). Sono stati ampiamente impiegati non solo nell'industria ma anche nei prodotti di consumo, come vernici, inchiostri, diluenti, sgrassanti, agenti per la pulizia a secco, smacchiatori, repellenti e così via. Sebbene sia possibile applicare il monitoraggio biologico per rilevare gli effetti sulla salute, ad esempio effetti sul fegato e sui reni, ai fini della sorveglianza sanitaria dei lavoratori che sono professionalmente esposti a solventi organici, è preferibile utilizzare invece il monitoraggio biologico per " monitoraggio dell'esposizione” al fine di proteggere la salute dei lavoratori dalla tossicità di questi solventi, poiché si tratta di un approccio sufficientemente sensibile da fornire avvertimenti ben prima che si verifichino effetti sulla salute. Anche lo screening dei lavoratori per l'elevata sensibilità alla tossicità dei solventi può contribuire alla protezione della loro salute.

Riassunto di tossicocinetica

I solventi organici sono generalmente volatili in condizioni standard, sebbene la volatilità vari da solvente a solvente. Pertanto, la principale via di esposizione negli ambienti industriali è attraverso l'inalazione. Il tasso di assorbimento attraverso la parete alveolare dei polmoni è molto più alto di quello attraverso la parete del tubo digerente e un tasso di assorbimento polmonare di circa il 50% è considerato tipico per molti solventi comuni come il toluene. Alcuni solventi, ad esempio il solfuro di carbonio e l'N,N-dimetilformammide allo stato liquido, possono penetrare nella pelle umana intatta in quantità tali da risultare tossici.

Quando questi solventi vengono assorbiti, una parte viene espirata nel respiro senza alcuna biotrasformazione, ma la maggior parte viene distribuita negli organi e nei tessuti ricchi di lipidi per effetto della loro lipofilia. La biotrasformazione avviene principalmente nel fegato (e anche in altri organi in misura minore) e la molecola del solvente diventa più idrofila, tipicamente mediante un processo di ossidazione seguito da coniugazione, per essere escreta attraverso il rene nelle urine come metabolita(i) ). Una piccola parte può essere eliminata immodificata nelle urine.

Pertanto, tre materiali biologici, urina, sangue e respiro esalato, sono disponibili per il monitoraggio dell'esposizione ai solventi da un punto di vista pratico. Un altro fattore importante nella selezione dei materiali biologici per il monitoraggio dell'esposizione è la velocità di scomparsa della sostanza assorbita, per la quale l'emivita biologica, ovvero il tempo necessario a una sostanza per ridursi a metà della sua concentrazione originaria, è un parametro quantitativo. Ad esempio, i solventi scompaiono dal respiro espirato molto più rapidamente dei corrispondenti metaboliti dalle urine, il che significa che hanno un'emivita molto più breve. All'interno dei metaboliti urinari, l'emivita biologica varia a seconda della velocità con cui il composto progenitore viene metabolizzato, quindi il tempo di campionamento in relazione all'esposizione è spesso di fondamentale importanza (vedi sotto). Una terza considerazione nella scelta di un materiale biologico è la specificità della sostanza chimica target da analizzare in relazione all'esposizione. Ad esempio, l'acido ippurico è un indicatore di esposizione al toluene utilizzato da tempo, ma non solo è formato naturalmente dall'organismo, ma può anche essere derivato da fonti non professionali come alcuni additivi alimentari e non è più considerato un affidabile marker quando l'esposizione al toluene è bassa (meno di 50 cm3/m3). In generale, i metaboliti urinari sono stati ampiamente utilizzati come indicatori di esposizione a vari solventi organici. Il solvente nel sangue viene analizzato come misura qualitativa dell'esposizione perché di solito rimane nel sangue per un tempo più breve ed è più indicativo dell'esposizione acuta, mentre il solvente nel respiro esalato è difficile da usare per la stima dell'esposizione media perché la concentrazione nel respiro diminuisce così rapidamente dopo la cessazione dell'esposizione. Il solvente nelle urine è un candidato promettente come misura dell'esposizione, ma necessita di ulteriore convalida.

Test di esposizione biologica per solventi organici

Nell'applicare il monitoraggio biologico per l'esposizione ai solventi, il tempo di campionamento è importante, come indicato sopra. La tabella 1 mostra i tempi di campionamento raccomandati per i comuni solventi nel monitoraggio dell'esposizione professionale quotidiana. Quando si deve analizzare il solvente stesso, occorre prestare attenzione a prevenire possibili perdite (ad es. evaporazione nell'aria ambiente) e contaminazione (ad es. dissoluzione dall'aria ambiente nel campione) durante il processo di manipolazione del campione. Nel caso in cui i campioni debbano essere trasportati in un laboratorio distante o conservati prima dell'analisi, è necessario prestare attenzione per evitare perdite. Il congelamento è raccomandato per i metaboliti, mentre la refrigerazione (ma non il congelamento) in un contenitore ermetico senza intercapedine (o più preferibilmente, in una fiala con spazio di testa) è raccomandata per l'analisi del solvente stesso. Nell'analisi chimica, il controllo di qualità è essenziale per ottenere risultati affidabili (per i dettagli, vedere l'articolo "Garanzia di qualità" in questo capitolo). Nel riportare i risultati, dovrebbe essere rispettata l'etica (vedi cap Problemi etici altrove nel Enciclopedia).

Tabella 1. Alcuni esempi di sostanze chimiche bersaglio per il monitoraggio biologico e tempo di campionamento

Solvente

Bersaglio chimico

Urina/sangue

Tempo di campionamento1

Disolfuro di carbonio

Acido 2-tiotiazolidina-4-carbossilico

Urina

Th F

N,N-Dimetil-formammide

N-Metilformammide

Urina

Lun Ma Mer Gio F

2-etossietanolo e suo acetato

Acido etossiacetico

Urina

Th F (fine dell'ultimo turno di lavoro)

Esano

2,4-esanedione

Esano

Urina

Sangue

Lun Ma Mer Gio F

conferma dell'esposizione

Metanolo

Metanolo

Urina

Lun Ma Mer Gio F

Styrene

Acido mandelico

Acido fenilgliossilico

Styrene

Urina

Urina

Sangue

Th F

Th F

conferma dell'esposizione

toluene

Acido ippurico

o-Cresolo

toluene

toluene

Urina

Urina

Sangue

Urina

Mar W Th F

Mar W Th F

conferma dell'esposizione

Mar W Th F

tricloroetilene

Acido tricloroacetico

(TCA)

Triclorocomposti totali (somma di TCA e tricloroetanolo libero e coniugato)

tricloroetilene

Urina

Urina

Sangue

Th F

Th F

conferma dell'esposizione

Xilene2

Acidi metilippurici

Xilene

Urina

Sangue

Mar W Th F

Mar W Th F

1 Fine del turno di lavoro se non diversamente specificato: i giorni della settimana indicano i giorni di campionamento preferiti.
2 Tre isomeri, separatamente o in qualsiasi combinazione.

Fonte: Riassunto da OMS 1996.

 

Per molti solventi sono state stabilite numerose procedure analitiche. I metodi variano a seconda della sostanza chimica target, ma la maggior parte dei metodi recentemente sviluppati utilizza la gascromatografia (GC) o la cromatografia liquida ad alta prestazione (HPLC) per la separazione. Si consiglia l'uso di un campionatore automatico e di un elaboratore di dati per un buon controllo di qualità nell'analisi chimica. Quando si deve analizzare un solvente stesso nel sangue o nelle urine, l'applicazione della tecnica dello spazio di testa in GC (GC dello spazio di testa) è molto conveniente, specialmente quando il solvente è abbastanza volatile. La tabella 2 delinea alcuni esempi dei metodi stabiliti per i comuni solventi.

Tabella 2. Alcuni esempi di metodi analitici per il monitoraggio biologico dell'esposizione a solventi organici

Solvente

Bersaglio chimico

Sangue/urina

Metodo analitico

Disolfuro di carbonio

2-tiotiazolidina-4-
acido carbossilico

Urina

Cromatografo liquido ad alte prestazioni con rilevamento ultravioletto

(UV-HPLC)

N, N-Dimetilformammide

N-metilformammide

Urina

Gascromatografo con rivelazione termoionica a fiamma (FTD-GC)

2-etossietanolo e suo acetato

Acido etossiacetico

Urina

Estrazione, derivatizzazione e gascromatografo con rivelazione a ionizzazione di fiamma (FID-GC)

Esano

2,4-esanedione

Esano

Urina

Sangue

Estrazione, (idrolisi) e FID-GC

FID-GC nello spazio di testa

Metanolo

Metanolo

Urina

FID-GC nello spazio di testa

Styrene

Acido mandelico

Acido fenilgliossilico

Styrene

Urina

Urina

Sangue

Dissalazione e UV-HPLC

Dissalazione e UV-HPLC

Spazio di testa FID-GC

toluene

Acido ippurico

o-Cresolo

toluene

toluene

Urina

Urina

Sangue

Urina

Dissalazione e UV-HPLC

Idrolisi, estrazione e FID-GC

Spazio di testa FID-GC

Spazio di testa FID-GC

tricloroetilene

Acido tricloroacetico
(TCA)

Tricloro-composti totali (somma di TCA e tricloroetanolo libero e coniugato)

tricloroetilene

Urina

Urina

Sangue

Colorimetria o esterificazione e gascromatografo con rilevamento a cattura elettronica (ECD-GC)

Ossidazione e colorimetria, o idrolisi, ossidazione, esterificazione e ECD-GC

Spazio di testa ECD-GC

Xilene

Acidi metilippurici (tre isomeri, separatamente o in combinazione)

Urina

Spazio di testa FID-GC

Fonte: Riassunto da OMS 1996.

Valutazione

Una relazione lineare degli indicatori di esposizione (elencati nella tabella 2) con l'intensità dell'esposizione ai solventi corrispondenti può essere stabilita sia attraverso un'indagine sui lavoratori esposti professionalmente ai solventi, sia attraverso l'esposizione sperimentale di volontari umani. Di conseguenza, l'ACGIH (1994) e il DFG (1994), ad esempio, hanno stabilito l'indice di esposizione biologica (BEI) e il valore di tolleranza biologica (BAT), rispettivamente, come i valori nei campioni biologici che sono equivalenti al valore occupazionale limite di esposizione per le sostanze chimiche disperse nell'aria, ovvero rispettivamente il valore limite di soglia (TLV) e la concentrazione massima sul posto di lavoro (MAK). È noto, tuttavia, che il livello della sostanza chimica target nei campioni ottenuti da persone non esposte può variare, riflettendo, ad esempio, le usanze locali (ad esempio, il cibo) e che possono esistere differenze etniche nel metabolismo dei solventi. È quindi auspicabile stabilire valori limite attraverso lo studio della popolazione locale interessata.

Nella valutazione dei risultati, l'esposizione non professionale al solvente (ad esempio, tramite l'uso di prodotti di consumo contenenti solventi o l'inalazione intenzionale) e l'esposizione a sostanze chimiche che danno origine agli stessi metaboliti (ad esempio, alcuni additivi alimentari) dovrebbero essere accuratamente escluse. Nel caso in cui vi sia un ampio divario tra l'intensità dell'esposizione al vapore ei risultati del monitoraggio biologico, la differenza può indicare la possibilità di assorbimento cutaneo. Il fumo di sigaretta sopprime il metabolismo di alcuni solventi (p. es., il toluene), mentre l'assunzione acuta di etanolo può sopprimere il metabolismo del metanolo in maniera competitiva.

 

Di ritorno

Leggi 9749 volte Ultima modifica giovedì 13 ottobre 2011 20:21

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti al monitoraggio biologico

Alcini, D, M Maroni, A Colombi, D Xaiz, V Foà. 1988. Valutazione di un metodo europeo standardizzato per la determinazione dell'attività della colinesterasi nel plasma e negli eritrociti. Med Lavoro 79(1):42-53.

Alessio, L, A Berlin, e V Foà. 1987. Fattori di influenza diversi dall'esposizione sui livelli degli indicatori biologici. In Occupational and Environmental Chemical Hazards, a cura di V Foà, FA Emmett, M ​​Maroni e A Colombi. Chichester: Wiley.

Alessio, L, L Apostoli, L Minoia, E Sabbioni. 1992. Da macro a micro-dosi: valori di riferimento per metalli tossici. In Scienza dell'Ambiente Totale, a cura di L Alessio, L Apostoli, L Minoia, e E Sabbioni. New York: Scienza Elsevier.

Conferenza americana degli igienisti industriali governativi (ACGIH). 1997. Valori limite di soglia 1996-1997 per sostanze chimiche e agenti fisici e indici di esposizione biologica. Cincinnati, Ohio: ACGIH.

—. 1995. Valori limite di soglia 1995-1996 per sostanze chimiche e agenti fisici e indici di esposizione biologica. Cincinnati, Ohio: ACGIH.

Augustinsson, KB. 1955. La normale variazione dell'attività della colinesterasi del sangue umano. Acta Physiol Scand 35:40-52.

Barquet, A, C Morgade e CD Pfaffenberger. 1981. Determinazione di pesticidi e metaboliti organoclorurati nell'acqua potabile, nel sangue umano, nel siero e nel tessuto adiposo. J Toxicol Environ Health 7:469-479.

Berlino, A, RE Yodaiken e BA Henman. 1984. Valutazione degli agenti tossici sul posto di lavoro. Ruoli del monitoraggio ambientale e biologico. Atti del Seminario Internazionale tenutosi a Lussemburgo dall'8 al 12 dicembre. 1980. Lancaster, Regno Unito: Martinus Nijhoff.

Bernard, A e R Lauwerys. 1987. Principi generali per il monitoraggio biologico dell'esposizione a sostanze chimiche. In Biological Monitoring of Exposure to Chemicals: Organic Compounds, a cura di MH Ho e KH Dillon. New York: Wiley.

Brugnone, F, L Perbellini, E Gaffuri, P Apostoli. 1980. Biomonitoraggio dell'esposizione ai solventi industriali dell'aria alveolare dei lavoratori. Int Arch Occup Environ Health 47:245-261.

Bullock, DG, NJ Smith e TP Whitehead. 1986. Valutazione di qualità esterna di analisi di piombo in sangue. Clin Chem 32:1884-1889.

Canossa, MI, SOL Angiuli, SOL Garasto, LA Buzzoni, MI De Rosa. 1993. Indicatori di dose nei lavoratori agricoli esposti al mancozeb. Med Lavoro 84(1):42-50.

Catenacci, G, F Barbieri, M Bersani, A Ferioli, D Cottica, and M Maroni. 1993. Monitoraggio biologico dell'esposizione umana all'atrazina. Lettere tossicologiche 69:217-222.

Chalermchaikit, T, LJ Felice e MJ Murphy. 1993. Determinazione simultanea di otto rodenticidi anticoagulanti nel siero del sangue e nel fegato. J Tossico anale 17:56-61.

Colosio, C, F Barbieri, M Bersani, H Schlitt, and M Maroni. 1993. Indicatori di esposizione professionale al pentaclorofenolo. B Ambiente Contam Tox 51:820-826.

Commissione delle Comunità Europee (CEC). 1983. Indicatori biologici per la valutazione dell'esposizione umana ai prodotti chimici industriali. In EUR 8676 EN, a cura di L Alessio, A Berlin, R Roi, e M Boni. Lussemburgo: CEC.

—. 1984. Indicatori biologici per la valutazione dell'esposizione umana ai prodotti chimici industriali. In EUR 8903 EN, a cura di L Alessio, A Berlin, R Roi, e M Boni. Lussemburgo: CEC.

—. 1986. Indicatori biologici per la valutazione dell'esposizione umana ai prodotti chimici industriali. In EUR 10704 EN, a cura di L Alessio, A Berlin, R Roi, e M Boni. Lussemburgo: CEC.

—. 1987. Indicatori biologici per la valutazione dell'esposizione umana ai prodotti chimici industriali. In EUR 11135 EN, a cura di L Alessio, A Berlin, R Roi, e M Boni. Lussemburgo: CEC.

—. 1988a. Indicatori biologici per la valutazione dell'esposizione umana a sostanze chimiche industriali. In EUR 11478 EN, a cura di L Alessio, A Berlin, R Roi e M Boni. Lussemburgo: CEC.

—. 1988b. Indicatori per la valutazione dell'esposizione e degli effetti biologici di sostanze chimiche genotossiche. EUR 11642 Lussemburgo: CEC.

—. 1989. Indicatori biologici per la valutazione dell'esposizione umana ai prodotti chimici industriali. In EUR 12174 EN, a cura di L Alessio, A Berlin, R Roi, e M Boni. Lussemburgo: CEC.

Cranmer, M. 1970. Determinazione del p-nitrofenolo nell'urina umana. B Environ Contam Tox 5:329-332.

Dale, WE, A Curley e C Cueto. 1966. Insetticidi clorurati estraibili con esano nel sangue umano. Vita Sci 5:47-54.

Dawson, JA, DF Heath, JA Rose, EM Thain e JB Ward. 1964. L'escrezione da parte dell'uomo del fenolo derivato in vivo dal 2-isopropossifenil-N-metilcarbammato. Toro OMS 30:127-134.

DeBernardis, MJ e WA Wargin. 1982. Determinazione cromatografica liquida ad alte prestazioni di carbaril e 1 naftolo nei fluidi biologici. J Chromatogr 246:89-94.

Deutsche Forschungsgemeinschaft (DFG). 1996. Concentrazioni massime sul posto di lavoro (MAK) e valori di tolleranza biologica (CBAT) per i materiali di lavoro. Rapporto n.28.VCH. Weinheim, Germania: Commissione per le indagini sui rischi per la salute dei composti chimici nell'area di lavoro.

—. 1994. Elenco dei valori MAK e BAT 1994. Weinheim, Germania: VCH.

Dillon, HK e MH Ho. 1987. Monitoraggio biologico dell'esposizione ai pesticidi organofosforati. In Biological Monitoring of Exposure to Chemicals: Organic Compounds, a cura di HK Dillon e MH Ho. New York: Wiley.

Drapper, WM. 1982. Una procedura multiresiduo per la determinazione e la conferma di residui di erbicidi acidi nell'urina umana. J Agricul Food Chem 30:227-231.

Eadsforth, CV, PC Bragt e NJ van Sittert. 1988. Studi sull'escrezione della dose umana con insetticidi piretroidi cipermetrina e alfacipermetrina: rilevanza per il monitoraggio biologico. Xenobiotica 18:603-614.

Ellman, GL, KD Courtney, V Andres e RM Featherstone. 1961. Una nuova e rapida determinazione colorimetrica dell'attività dell'acetilcolinesterasi. Biochem Pharmacol 7:88-95.

Gauge, JC. 1967. Il significato delle misurazioni dell'attività della colinesterasi nel sangue. Residuo Ap 18:159-167.

Esecutivo per la salute e la sicurezza (HSE). 1992. Monitoraggio biologico per le esposizioni chimiche sul posto di lavoro. Nota orientativa EH 56. Londra: HMSO.

Agenzia internazionale per la ricerca sul cancro (IARC). 1986. Monografie IARC sulla valutazione dei rischi cancerogeni per l'uomo - Un aggiornamento delle monografie IARC (selezionate) dai volumi da 1 a 42. Supplemento 6: effetti genetici e correlati; Supplemento 7: Valutazione complessiva della cancerogenicità. Lione: IARC.

—. 1987. Metodo per la rilevazione di agenti dannosi per il DNA negli esseri umani: applicazioni nell'epidemiologia e nella prevenzione del cancro. IARC Scientific Publications, No.89, a cura di H Bartsch, K Hemminki e IK O'Neill. Lione: IARC.

—. 1992. Meccanismi di carcinogenesi nell'identificazione del rischio. IARC Scientific Publications, No.116, a cura di H Vainio. Lione: IARC.

—. 1993. Addotti del DNA: identificazione e significato biologico. IARC Scientific Publications, No.125, a cura di K Hemminki. Lione: IARC.

Kolmodin-Hedman, B, A Swensson e M Akerblom. 1982. Esposizione occupazionale ad alcuni piretroidi sintetici (permetrina e fenvalerato). Arch Toxicol 50:27-33.

Kurttio, P, T Vartiainen, e K Savolainen. 1990. Monitoraggio ambientale e biologico dell'esposizione ai fungicidi etilenebisditiocarbammato e all'etilenetiourea. Br J Ind Med 47:203-206.

Lauwerys, R e P Hoet. 1993. Esposizione chimica industriale: linee guida per il monitoraggio biologico. Boca Raton: Lewis.

Leggi, ERJ. 1991. Diagnosi e trattamento dell'avvelenamento. In Handbook of Pesticide Toxicology, a cura di WJJ Hayes e ERJ Laws. New York: stampa accademica.

Lucas, AD, AD Jones, MH Goodrow e SG Saiz. 1993. Determinazione dei metaboliti dell'atrazina nell'urina umana: sviluppo di un biomarcatore di esposizione. Chem Res Toxicol 6:107-116.

Maroni, M, A Ferioli, A Fait, F Barbieri. 1992. Messa a punto del rischio tossicologico per l'uomo connesso alla produzione ed uso di antiparassitari. Precedente Oggi 4:72-133.

Reid, SJ e RR Watt. 1981. Un metodo per la determinazione dei residui di diaklyl fosfato nelle urine. J Tossico anale 5.

Richter, E. 1993. Pesticidi organofosforati: uno studio epidemiologico multinazionale. Copenaghen: Programma di salute sul lavoro e Ufficio regionale dell'OMS per l'Europa.

Shafik, MT, DE Bradway, HR Enos e AR Yobs. 1973a. Esposizione umana a pesticidi organofosforici: una procedura modificata per l'analisi cromatografica gas-liquido dei metaboliti alchilfosfati nelle urine. J Agricul Food Chem 21:625-629.

Shafik, MT, HC Sullivan e HR Enos. 1973b. Procedura multiresiduo per alogeni e nitrofenoli: misurazioni dell'esposizione a pesticidi biodegradabili che producono questi composti come metaboliti. J Agricul Food Chem 21:295-298.

Summers, Los Angeles. 1980. Gli erbicidi Bipyridylium. Londra: stampa accademica.

Tordoir, WF, M Maroni e F He. 1994. Sorveglianza sanitaria dei lavoratori dei pesticidi: un manuale per i professionisti della salute sul lavoro. Tossicologia 91.

Ufficio di valutazione della tecnologia degli Stati Uniti. 1990. Monitoraggio genetico e screening sul posto di lavoro. OTA-BA-455. Washington, DC: ufficio stampa del governo degli Stati Uniti.

van Sittert, NJ e EP Dumas. 1990. Studio sul campo sull'esposizione e gli effetti sulla salute di un pesticida organofosfato per il mantenimento della registrazione nelle Filippine. Med Lavoro 81:463-473.

van Sittert, New Jersey e WF Tordoir. 1987. Aldrin e dieldrin. In Biological Indicators for the Assessment of Human Exposure to Industrial Chemicals, a cura di L Alessio, A Berlin, M Boni e R Roi. Lussemburgo: CEC.

Verberk, MM, DH Brouwer, EJ Brouer e DP Bruyzeel. 1990. Effetti sulla salute dei pesticidi nella cultura dei bulbi da fiore in Olanda. MedLavoro 81(6):530-541.

Westgard, JO, PL Barry, MR Hunt e T Groth. 1981. Un diagramma di Shewhart a più regole per il controllo di qualità nella chimica clinica. Clin Chem 27:493-501.

Whitehead, TP. 1977. Controllo di qualità in chimica clinica. New York: Wiley.

Organizzazione Mondiale della Sanità (OMS). 1981. Valutazione esterna della qualità dei laboratori sanitari. Rapporti e studi EURO 36. Copenaghen: Ufficio regionale dell'OMS per l'Europa.

—. 1982a. Indagine sul campo sull'esposizione ai pesticidi, protocollo standard. Documento. N. VBC/82.1 Ginevra: OMS.

—. 1982b. Limiti raccomandati basati sulla salute nell'esposizione professionale ai pesticidi. Serie di rapporti tecnici, n. 677. Ginevra: OMS.

—. 1994. Linee guida sul monitoraggio biologico dell'esposizione chimica sul posto di lavoro. vol. 1. Ginevra: OMS.