Mercoledì, Febbraio 16 2011 00: 52

Scopi e principi della ventilazione generale e di diluizione

Vota questo gioco
(4 voti )

Quando gli inquinanti generati in un cantiere devono essere controllati ventilando l'intero locale di cui parliamo ventilazione generale. L'uso della ventilazione generale implica l'accettazione del fatto che l'inquinante si distribuirà in una certa misura attraverso l'intero spazio del cantiere e potrebbe quindi colpire i lavoratori che sono lontani dalla fonte di contaminazione. La ventilazione generale è, quindi, una strategia che è l'opposto di estrazione localizzata. L'estrazione localizzata cerca di eliminare l'inquinante intercettandolo il più vicino possibile alla fonte (vedi “Aria indoor: metodi di controllo e pulizia”, altrove in questo capitolo).

Uno degli obiettivi fondamentali di qualsiasi sistema di ventilazione generale è il controllo degli odori corporei. Ciò può essere ottenuto fornendo non meno di 0.45 metri cubi al minuto, m3/min, di aria nuova per occupante. Quando il fumo è frequente o il lavoro è fisicamente faticoso, il tasso di ventilazione richiesto è maggiore e può superare 0.9 m3/min per persona.

Se gli unici problemi ambientali che il sistema di ventilazione deve superare sono quelli appena descritti, è bene tenere presente che ogni ambiente ha un certo grado di ricambio d'aria “naturale” per mezzo delle cosiddette “infiltrazioni”, che avviene attraverso porte e finestre, anche quando sono chiuse, e attraverso altri siti di penetrazione del muro. I manuali di climatizzazione forniscono solitamente ampie informazioni al riguardo, ma si può affermare che come minimo il livello di ventilazione per infiltrazione sia compreso tra 0.25 e 0.5 rinnovi orari. Un sito industriale sperimenterà comunemente tra 0.5 e 3 rinnovi d'aria all'ora.

Quando utilizzata per controllare gli inquinanti chimici, la ventilazione generale deve essere limitata solo a quelle situazioni in cui le quantità di inquinanti generati non sono molto elevate, dove la loro tossicità è relativamente moderata e dove i lavoratori non svolgono i loro compiti nelle immediate vicinanze della fonte di contaminazione. Se queste ingiunzioni non vengono rispettate, sarà difficile ottenere l'accettazione per un adeguato controllo dell'ambiente di lavoro perché devono essere utilizzati tassi di rinnovo così elevati che le velocità dell'aria elevate probabilmente creeranno disagio, e perché i tassi di rinnovo elevati sono costosi da mantenere. È quindi insolito raccomandare l'uso della ventilazione generale per il controllo delle sostanze chimiche, tranne nel caso di solventi che hanno concentrazioni ammissibili superiori a 100 parti per milione.

Quando, invece, l'obiettivo della ventilazione generale è mantenere le caratteristiche termiche dell'ambiente di lavoro in vista di limiti legalmente accettabili o di raccomandazioni tecniche come le linee guida dell'Organizzazione internazionale per la standardizzazione (ISO), questo metodo ha meno limitazioni. La ventilazione generale viene quindi utilizzata più spesso per controllare l'ambiente termico che per limitare la contaminazione chimica, ma la sua utilità come complemento delle tecniche di estrazione localizzata dovrebbe essere chiaramente riconosciuta.

Mentre per molti anni le frasi ventilazione generale ed ventilazione per diluizione erano considerati sinonimi, oggi non è più così a causa di una nuova strategia di ventilazione generale: ventilazione per spostamento. Anche se la ventilazione per diluizione e la ventilazione per spostamento rientrano nella definizione di ventilazione generale che abbiamo delineato sopra, entrambe differiscono ampiamente nella strategia che impiegano per controllare la contaminazione.

Ventilazione per diluizione ha lo scopo di miscelare nel modo più completo possibile l'aria immessa meccanicamente con tutta l'aria già presente nell'ambiente, in modo che la concentrazione di un dato inquinante sia il più uniforme possibile in tutto il locale (ovvero che la temperatura sia il più uniforme possibile, se il controllo termico è l'obiettivo desiderato). Per ottenere questa miscela uniforme l'aria viene iniettata dal soffitto sotto forma di flussi ad una velocità relativamente elevata, e questi flussi generano una forte circolazione d'aria. Il risultato è un elevato grado di miscelazione dell'aria nuova con quella già presente all'interno dell'ambiente.

Ventilazione per spostamento, nella sua concettualizzazione ideale, consiste nell'iniettare aria in uno spazio in modo tale che aria nuova sposti quella che vi si trovava prima senza mescolarsi con essa. La ventilazione per dislocamento si ottiene immettendo aria nuova in un ambiente a bassa velocità e vicino al pavimento ed estraendo aria vicino al soffitto. Utilizzare la ventilazione per spostamento per controllare l'ambiente termico ha il vantaggio di beneficiare del movimento naturale dell'aria generato dalle variazioni di densità che sono esse stesse dovute alle differenze di temperatura. Nonostante la ventilazione per spostamento sia già ampiamente utilizzata in ambito industriale, la letteratura scientifica sull'argomento è ancora piuttosto limitata, e la valutazione della sua efficacia è quindi ancora difficile.

Ventilazione per diluizione

La progettazione di un sistema di ventilazione per diluizione si basa sull'ipotesi che la concentrazione dell'inquinante sia la stessa in tutto lo spazio considerato. Questo è il modello che gli ingegneri chimici spesso chiamano serbatoio agitato.

Se si assume che l'aria che viene immessa nell'ambiente sia priva di inquinante e che all'istante iniziale la concentrazione all'interno dell'ambiente sia zero, sarà necessario conoscere due fatti per calcolare il tasso di ventilazione richiesto: la quantità dell'inquinante che si genera nello spazio e del livello di concentrazione ambientale che si cerca (che ipoteticamente sarebbe uguale ovunque).

In queste condizioni, i calcoli corrispondenti producono la seguente equazione:

where

c (t) = la concentrazione del contaminante nello spazio nel tempo t

a = la quantità di inquinante generato (massa per unità di tempo)

Q = la velocità con cui viene fornita aria nuova (volume per unità di tempo)

V = il volume dello spazio in questione.

L'equazione precedente mostra che la concentrazione tenderà a uno stato stazionario al valore a/D, e che lo farà più velocemente quanto più piccolo è il valore di Domande/V, spesso indicato come “il numero di rinnovi per unità di tempo”. Sebbene occasionalmente l'indice di qualità della ventilazione sia considerato praticamente equivalente a tale valore, l'equazione di cui sopra mostra chiaramente che la sua influenza è limitata al controllo della velocità di stabilizzazione delle condizioni ambientali, ma non del livello di concentrazione al quale si verificherà tale stato stazionario. Questo dipenderà esclusivamente sulla quantità di inquinante che viene generato (a), e sulla velocità di ventilazione (Q).

Quando l'aria di un dato spazio è contaminata ma non si generano nuove quantità di inquinante, la velocità di diminuzione della concentrazione nel tempo è data dalla seguente espressione:

where Q ed V hanno il significato sopra descritto, t1 ed t2 sono, rispettivamente, il tempo iniziale e finale e c1 ed c2 sono le concentrazioni iniziale e finale.

Si possono trovare espressioni per i calcoli nei casi in cui la concentrazione iniziale non è nulla (Constance 1983; ACGIH 1992), dove l'aria immessa nell'ambiente non è totalmente priva dell'inquinante (perché per ridurre i costi di riscaldamento nella parte invernale dell'aria viene riciclato, per esempio), o dove le quantità di inquinante generato variano in funzione del tempo.

Se ignoriamo la fase di transizione e assumiamo che sia stato raggiunto lo stato stazionario, l'equazione indica che la velocità di ventilazione è equivalente a corrente alternatalim, Dove clim è il valore della concentrazione che deve essere mantenuta nello spazio dato. Questo valore sarà stabilito da regolamenti o, come norma accessoria, da raccomandazioni tecniche come i valori limite di soglia (TLV) della Conferenza americana degli igienisti industriali governativi (ACGIH), che raccomanda di calcolare il tasso di ventilazione con la formula

where a ed clim hanno il significato già descritto e K è un fattore di sicurezza. Un valore di K va scelto un valore compreso tra 1 e 10 in funzione dell'efficacia della miscela aria nello spazio dato, della tossicità del solvente (minore clim è, maggiore è il valore di K sarà), e di ogni altra circostanza ritenuta rilevante dall'igienista industriale. L'ACGIH, tra l'altro, cita la durata del processo, il ciclo delle operazioni e l'ubicazione abituale dei lavoratori rispetto alle fonti di emissione dell'inquinante, il numero di queste fonti e la loro ubicazione nello spazio dato, la stagionalità cambiamenti nella quantità di ventilazione naturale e la prevista riduzione dell'efficacia funzionale delle apparecchiature di ventilazione come altri criteri determinanti.

In ogni caso, l'utilizzo della suddetta formula richiede una conoscenza ragionevolmente esatta dei valori di a ed K che dovrebbe essere utilizzato, e quindi forniamo alcuni suggerimenti al riguardo.

La quantità di inquinante generato può essere abbastanza frequentemente stimata dalla quantità di determinati materiali consumati nel processo che genera l'inquinante. Quindi, nel caso di un solvente, la quantità utilizzata sarà una buona indicazione della quantità massima che si può trovare nell'ambiente.

Come indicato sopra, il valore di K dovrebbe essere determinato in funzione dell'efficacia della miscela d'aria nello spazio dato. Questo valore sarà, quindi, minore in proporzione diretta a quanto è buona la stima di trovare la stessa concentrazione dell'inquinante in qualsiasi punto all'interno dello spazio dato. Questo, a sua volta, dipenderà da come l'aria è distribuita all'interno dello spazio ventilato.

Secondo questi criteri, i valori minimi di K dovrebbe essere utilizzato quando l'aria viene iniettata nello spazio in modo distribuito (usando un plenum, per esempio), e quando l'immissione e l'estrazione dell'aria sono alle estremità opposte dello spazio dato. D'altra parte, valori più alti per K dovrebbe essere utilizzato quando l'aria viene fornita in modo intermittente e l'aria viene estratta in punti vicini all'ingresso di aria nuova (figura 1).

Figura 1. Schema della circolazione dell'aria in una stanza con due aperture di alimentazione

IEN030F1

Va notato che quando l'aria viene iniettata in un dato spazio, specialmente se avviene ad alta velocità, il flusso d'aria creato eserciterà una notevole attrazione sull'aria che lo circonda. Quest'aria poi si mescola con il flusso e lo rallenta, creando anche una turbolenza misurabile. Di conseguenza, questo processo si traduce in un'intensa miscelazione dell'aria già presente nell'ambiente con l'aria nuova che viene immessa, generando correnti d'aria interne. Prevedere queste correnti, anche in generale, richiede una grande dose di esperienza (figura 2).

Figura 2. Fattori K suggeriti per le posizioni di ingresso e scarico

IEN030F2

Per evitare i problemi derivanti dall'esposizione dei lavoratori a flussi d'aria a velocità relativamente elevate, l'immissione dell'aria avviene comunemente mediante griglie diffusori progettate in modo tale da favorire la rapida miscelazione dell'aria nuova con quella già presente nelle lo spazio. In questo modo, le aree in cui l'aria si muove ad alta velocità vengono mantenute le più piccole possibili.

L'effetto flusso appena descritto non si produce in prossimità di punti in cui l'aria fuoriesce o viene estratta attraverso porte, finestre, bocchette di estrazione o altre aperture. L'aria raggiunge le griglie di aspirazione da tutte le direzioni, quindi anche a una distanza relativamente breve da esse, il movimento dell'aria non è facilmente percepito come una corrente d'aria.

In ogni caso, nell'affrontare la distribuzione dell'aria, è importante tenere presente la convenienza di posizionare i posti di lavoro, per quanto possibile, in modo che l'aria nuova raggiunga i lavoratori prima che raggiunga le fonti di contaminazione.

Quando nello spazio sono presenti importanti fonti di calore, il movimento dell'aria sarà in gran parte condizionato dalle correnti di convezione che sono dovute alle differenze di densità tra aria più densa e fredda e aria più leggera e calda. In ambienti di questo tipo, il progettista della distribuzione dell'aria non deve mancare di tenere presente l'esistenza di queste fonti di calore, altrimenti il ​​movimento dell'aria potrebbe risultare molto diverso da quello previsto.

La presenza di contaminazione chimica, invece, non altera in modo misurabile la densità dell'aria. Mentre allo stato puro gli inquinanti possono avere una densità molto diversa da quella dell'aria (solitamente molto maggiore), date le reali concentrazioni esistenti negli ambienti di lavoro, il mix di aria e inquinante non ha una densità significativamente diversa da quella densità dell'aria pura.

Va inoltre sottolineato che uno degli errori più comuni commessi nell'applicazione di questo tipo di ventilazione è quello di alimentare l'ambiente solo con estrattori d'aria, senza alcuna accortezza per adeguate prese d'aria. In questi casi, l'efficacia dei ventilatori di estrazione è ridotta e, pertanto, i tassi effettivi di estrazione dell'aria sono molto inferiori a quelli pianificati. Il risultato sono concentrazioni ambientali maggiori dell'inquinante nello spazio dato rispetto a quelle inizialmente calcolate.

Per evitare questo problema si dovrebbe pensare a come l'aria verrà introdotta nell'ambiente. La linea di condotta raccomandata è quella di utilizzare ventilatori di immissione e ventilatori di estrazione. Normalmente, il tasso di estrazione dovrebbe essere maggiore del tasso di immissione per consentire l'infiltrazione attraverso finestre e altre aperture. Inoltre, è consigliabile mantenere lo spazio in leggera pressione negativa per evitare che la contaminazione generata si diffonda in aree non contaminate.

Ventilazione per spostamento

Come accennato in precedenza, con la ventilazione per dislocamento si cerca di minimizzare la miscelazione di aria nuova e aria precedentemente presente nello spazio dato, e si cerca di adeguare il sistema al modello noto come flusso a pistone. Ciò si ottiene solitamente introducendo aria a bassa velocità ea bassa quota nello spazio dato ed estraendola vicino al soffitto; questo ha due vantaggi rispetto alla ventilazione per diluizione.

In primo luogo, rende possibili tassi di rinnovo dell'aria più bassi, perché l'inquinamento si concentra vicino al soffitto dello spazio, dove non ci sono lavoratori per respirarlo. Il media concentrazione nello spazio dato sarà quindi superiore al clim valore cui abbiamo fatto riferimento prima, ma che non implica un rischio maggiore per i lavoratori perché nella zona occupata dello spazio dato la concentrazione dell'inquinante sarà uguale o inferiore a un clim.

Inoltre, quando l'obiettivo della ventilazione è il controllo dell'ambiente termico, la ventilazione per dislocamento consente di introdurre nello spazio dato aria più calda di quanto sarebbe richiesto da un sistema di ventilazione per diluizione. Questo perché l'aria calda che viene estratta è ad una temperatura di diversi gradi superiore alla temperatura nella zona occupata del locale.

I principi fondamentali della ventilazione per spostamento sono stati sviluppati da Sandberg, che nei primi anni '1980 ha sviluppato una teoria generale per l'analisi di situazioni in cui vi erano concentrazioni disuniformi di inquinanti in ambienti chiusi. Questo ha permesso di superare i limiti teorici della ventilazione per diluizione (che presuppone una concentrazione uniforme in tutto lo spazio dato) e ha aperto la strada alle applicazioni pratiche (Sandberg 1981).

Anche se la ventilazione per spostamento è ampiamente utilizzata in alcuni paesi, in particolare in Scandinavia, sono stati pubblicati pochissimi studi in cui l'efficacia dei diversi metodi viene confrontata in installazioni reali. Ciò è senza dubbio dovuto alle difficoltà pratiche di installare due diversi sistemi di ventilazione in una fabbrica reale e perché l'analisi sperimentale di questi tipi di sistemi richiede l'uso di traccianti. La tracciatura viene eseguita aggiungendo un gas tracciante alla corrente di ventilazione dell'aria e quindi misurando le concentrazioni del gas in diversi punti all'interno dello spazio e nell'aria estratta. Questo tipo di esame permette di dedurre come l'aria è distribuita all'interno dell'ambiente e quindi confrontare l'efficacia di diversi sistemi di ventilazione.

I pochi studi disponibili che sono stati effettuati su impianti effettivamente esistenti non sono conclusivi, se non per quanto riguarda il fatto che i sistemi che utilizzano la ventilazione per spostamento forniscono un migliore ricambio d'aria. In questi studi, tuttavia, sono spesso espresse riserve sui risultati in quanto non confermati da misurazioni del livello di contaminazione ambientale nei cantieri.

 

Di ritorno

Leggi 15707 volte Ultima modifica giovedì 13 ottobre 2011 21:28

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti

Riferimenti sul controllo ambientale interno

Conferenza americana degli igienisti industriali governativi (ACGIH). 1992. Ventilazione industriale: un manuale di pratica consigliata. 21a ed. Cincinnati, Ohio: ACGIH.

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). 1992. Metodo di test dei dispositivi di purificazione dell'aria utilizzati nella ventilazione generale per la rimozione del particolato. Atlanta: ASHRAE.

Baturin, VV. 1972. Fondamenti di ventilazione industriale. New York: Pergamo.

Bedford, T e FA Chrenko. 1974. Principi di base di ventilazione e riscaldamento. Londra: HK Lewis.

Centro europeo di normalizzazione (CEN). 1979. Metodo di test dei filtri dell'aria utilizzati nella ventilazione generale. Eurovento 4/5. Anversa: Comitato europeo degli standard.

Istituzione autorizzata dei servizi di costruzione. 1978. Criteri ambientali per la progettazione. : Chartered Institution of Building Services.

Consiglio delle Comunità Europee (KEK). 1992. Linee guida per i requisiti di ventilazione negli edifici. Lussemburgo: CE.

Costanza, J.D. 1983. Controllo dei contaminanti presenti nell'aria negli impianti. Progettazione e calcoli del sistema. New York: Marcel Dekker.

Fanger, PO. 1988. Introduzione delle unità olf e decipol per quantificare l'inquinamento atmosferico percepito dall'uomo all'interno e all'esterno. Energia Costruzione 12:7-19.

—. 1989. La nuova equazione del comfort per la qualità dell'aria interna. Rivista ASHRAE 10:33-38.

Organizzazione Internazionale del Lavoro (ILO). 1983. Enciclopedia della salute e sicurezza sul lavoro, a cura di L Parmeggiani. 3a ed. Ginevra: OIL.

Istituto nazionale per la sicurezza e la salute sul lavoro (NIOSH). 1991. Qualità dell'aria negli edifici: una guida per proprietari di edifici e gestori di strutture. Cincinnati, Ohio: NIOSH.

Sandberg, M. 1981. Cos'è l'efficienza della ventilazione? Costruisci Ambiente 16:123-135.

Organizzazione Mondiale della Sanità (OMS). 1987. Linee guida sulla qualità dell'aria per l'Europa. Serie europea, n. 23. Copenaghen: pubblicazioni regionali dell'OMS.