Os discos intervertebrais ocupam cerca de um terço da coluna vertebral. Como eles não apenas fornecem flexibilidade à coluna vertebral, mas também transmitem carga, seu comportamento mecânico tem grande influência na mecânica de toda a coluna. Uma alta proporção de casos de lombalgia está associada ao disco, seja diretamente por hérnia de disco, seja indiretamente, porque os discos degenerados colocam outras estruturas da coluna sob estresse anormal. Neste artigo, revisamos a estrutura e a composição do disco em relação à sua função mecânica e discutimos as alterações do disco na doença.
Anatomia
Existem 24 discos intervertebrais na coluna vertebral humana, intercalados entre os corpos vertebrais. Juntos, eles formam o componente anterior (frontal) da coluna vertebral, com as articulações facetárias e os processos transversos e espinhosos formando os elementos posteriores (traseiros). Os discos aumentam de tamanho ao longo da coluna, para aproximadamente 45 mm ântero-posteriormente, 64 mm lateralmente e 11 mm de altura na região lombar.
O disco é feito de tecido semelhante a cartilagem e consiste em três regiões distintas (veja a figura 1). A região interna (núcleo pulposo) é uma massa gelatinosa, principalmente no jovem. A região externa do disco (annulus fibrosus) é firme e em faixas. As fibras do anel são cruzadas em um arranjo que permite suportar altas cargas de flexão e torção. Com o aumento da idade, o núcleo perde água, torna-se mais firme e a distinção entre as duas regiões é menos clara do que no início da vida. O disco é separado do osso por uma fina camada de cartilagem hialina, a terceira região. Na idade adulta, a placa terminal da cartilagem e o próprio disco normalmente não possuem vasos sanguíneos próprios, mas dependem do suprimento sanguíneo de tecidos adjacentes, como ligamentos e corpo vertebral, para transportar nutrientes e remover produtos residuais. Apenas a porção externa do disco é inervada.
Figura 1. As proporções relativas dos três componentes principais do disco intervertebral humano adulto normal e da placa terminal da cartilagem.
Composição
O disco, como outras cartilagens, consiste principalmente de uma matriz de fibras de colágeno (que são embebidas em um gel de proteoglicano) e de água. Juntos, constituem 90 a 95% da massa total do tecido, embora as proporções variem com a localização dentro do disco e com a idade e degeneração. Existem células espalhadas por toda a matriz que são responsáveis por sintetizar e manter os diferentes componentes dentro dela (figura 2). Uma revisão da bioquímica do disco pode ser encontrada em Urban e Roberts 1994.
Figura 2. Representação esquemática da estrutura do disco, mostrando fibras colágenas em bandas intercaladas com numerosas moléculas de proteoglicano semelhantes a escovas de garrafa e poucas células.
Proteoglicanos: O principal proteoglicano do disco, o agrecano, é uma molécula grande que consiste em um núcleo protéico central ao qual muitos glicosaminoglicanos (cadeias repetidas de dissacarídeos) estão ligados (ver figura 3). Essas cadeias laterais têm uma alta densidade de cargas negativas associadas a elas, tornando-as atrativas para moléculas de água (hidrofílicas), uma propriedade descrita como pressão de inchamento. É muito importante para o funcionamento do disco.
Figura 3. Diagrama de parte de um disco agregado de proteoglicano. G1, G2 e G3 são regiões globulares dobradas da proteína do núcleo central.
Enormes agregados de proteoglicanos podem se formar quando moléculas individuais se ligam a uma cadeia de outro produto químico, o ácido hialurônico. O tamanho dos agrecans varia (variando em peso molecular de 300,000 a 7 milhões de dalton) dependendo de quantas moléculas compõem o agregado. Outros tipos menores de proteoglicanos também foram encontrados recentemente no disco e na placa terminal da cartilagem - por exemplo, decorin, biglican, fibromodulin e lumican. Sua função é geralmente desconhecida, mas a fibromodulina e a decorina podem estar envolvidas na regulação da formação da rede de colágeno.
Água: A água é o principal constituinte do disco, perfazendo 65 a 90% do volume do tecido, dependendo da idade e da região do disco. Existe uma correlação entre a quantidade de proteoglicano e o teor de água da matriz. A quantidade de água também varia de acordo com a carga aplicada ao disco, portanto, o conteúdo de água difere noite e dia, pois a carga será muito diferente ao dormir. A água é importante tanto para o funcionamento mecânico do disco quanto para fornecer o meio para o transporte de substâncias dissolvidas dentro da matriz.
Colágeno: O colágeno é a principal proteína estrutural do corpo, e consiste em uma família de pelo menos 17 proteínas distintas. Todos os colágenos possuem regiões helicoidais e são estabilizados por uma série de reticulações intra e intermoleculares, que tornam as moléculas muito fortes na resistência a tensões mecânicas e degradação enzimática. O comprimento e a forma dos diferentes tipos de moléculas de colágeno e a proporção que é helicoidal variam. O disco é composto por vários tipos de colágenos, sendo o anel externo predominantemente colágeno tipo I, e o núcleo e a placa terminal da cartilagem predominantemente tipo II. Ambos os tipos formam fibrilas que fornecem a estrutura estrutural do disco. As fibrilas do núcleo são muito mais finas (>> mm de diâmetro) do que as do anel (0.1 a 0.2 mm de diâmetro). As células do disco são frequentemente circundadas por uma cápsula de alguns dos outros tipos de colágeno, como o tipo VI.
Células: O disco intervertebral tem uma densidade de células muito baixa em comparação com outros tecidos. Embora a densidade das células seja baixa, sua atividade continuada é vital para a saúde do disco, pois as células produzem macromoléculas ao longo da vida, para repor aquelas que se decompõem e se perdem com o passar do tempo.
função
A principal função do disco é mecânica. O disco transmite carga ao longo da coluna vertebral e também permite que a coluna se dobre e torça. As cargas no disco surgem do peso corporal e da atividade muscular e mudam com a postura (ver figura 4). Durante as atividades diárias, o disco está sujeito a cargas complexas. A extensão ou flexão da coluna produz principalmente tensões de tração e compressão no disco, que aumentam em magnitude descendo a coluna, devido a diferenças no peso corporal e na geometria. A rotação da lombada produz tensões transversais (cisalhamento).
Figura 4. Pressões intradiscal relativas em diferentes posturas em comparação com a pressão na posição ortostática (100%).
Os discos estão sob pressão, que varia com a postura de cerca de 0.1 a 0.2 MPa em repouso, para cerca de 1.5 a 2.5 MPa ao dobrar e levantar. A pressão se deve principalmente à pressão da água através do núcleo e do anel interno em um disco normal. Quando a carga no disco aumenta, a pressão é distribuída uniformemente pela placa final e por todo o disco.
Durante o carregamento, o disco se deforma e perde altura. A placa terminal e o anel protuberam, aumentando a tensão nessas estruturas e, consequentemente, a pressão do núcleo aumenta. O grau de deformação do disco depende da taxa na qual ele é carregado. O disco pode se deformar consideravelmente, comprimindo ou estendendo de 30 a 60% durante a flexão e extensão. As distâncias entre os processos espinhais adjacentes podem aumentar em mais de 300%. Se uma carga for removida em poucos segundos, o disco volta rapidamente ao seu estado anterior, mas se a carga for mantida, o disco continua a perder altura. Esse “deslizamento” resulta da deformação contínua das estruturas do disco e também da perda de fluido, porque os discos perdem fluido como resultado do aumento da pressão. Entre 10 e 25% do fluido do disco é perdido lentamente durante as atividades diárias, quando o disco está sob pressões muito maiores, e recuperado quando deitado em repouso. Essa perda de água pode levar a uma diminuição da altura de um indivíduo de 1 a 2 cm de manhã à noite entre os trabalhadores diurnos.
À medida que o disco muda sua composição devido ao envelhecimento ou degeneração, a resposta do disco às cargas mecânicas também muda. Com a perda de proteoglicano e, portanto, do conteúdo de água, o núcleo não pode mais responder com a mesma eficiência. Essa alteração resulta em tensões desiguais na placa terminal e nas fibras anulares e, em casos graves de degeneração, as fibras internas podem inchar para dentro quando o disco é carregado, o que, por sua vez, pode levar a tensões anormais em outras estruturas do disco, eventualmente causando seu fracasso. A taxa de fluência também é aumentada em discos degenerados, que assim perdem altura mais rapidamente do que os discos normais sob a mesma carga. O estreitamento do espaço discal afeta outras estruturas da coluna vertebral, como músculos e ligamentos e, em particular, leva a um aumento da pressão nas articulações facetárias, o que pode ser a causa das alterações degenerativas observadas nas articulações facetárias de espinhas com alterações discos.
Contribuição dos principais componentes para a função
Proteoglicanos
A função do disco depende da manutenção do equilíbrio no qual a pressão da água do disco é equilibrada pela pressão de expansão do disco. A pressão de expansão depende da concentração de íons atraídos para o disco pelos proteoglicanos carregados negativamente e, portanto, depende diretamente da concentração de proteoglicanos. Se a carga no disco aumenta, a pressão da água aumenta e perturba o equilíbrio. Para compensar, o fluido sai do disco, aumentando a concentração de proteoglicanos e a pressão osmótica do disco. Essa expressão fluida continua até que o equilíbrio seja restaurado ou a carga no disco seja removida.
Os proteoglicanos também afetam o movimento dos fluidos de outras maneiras. Devido à sua alta concentração no tecido, os espaços entre as cadeias são muito pequenos (0.003 a 0.004 mm). O fluxo de fluido através desses poros pequenos é muito lento e, portanto, mesmo que haja um grande diferencial de pressão, a taxa na qual o fluido é perdido e, portanto, a taxa de deslizamento do disco, é lenta. No entanto, como os discos degenerados têm concentrações mais baixas de proteoglicanos, o fluido pode fluir através da matriz mais rapidamente. Pode ser por isso que os discos degenerados perdem altura mais rapidamente do que os discos normais. A carga e a alta concentração de proteoglicanos controlam a entrada e o movimento de outras substâncias dissolvidas no disco. Moléculas pequenas (nutrientes como glicose, oxigênio) podem entrar facilmente no disco e se mover pela matriz. Produtos químicos eletropositivos e íons, como Na+ouro Ca2+, têm concentrações mais altas no disco carregado negativamente do que no fluido intersticial circundante. Moléculas grandes, como albumina sérica ou imunoglobulinas, são muito volumosas para entrar no disco e estão presentes apenas em concentrações muito baixas. Os proteoglicanos também podem afetar a atividade celular e o metabolismo. Pequenos proteoglicanos, como o biglicano, podem se ligar a fatores de crescimento e outros mediadores da atividade celular, liberando-os quando a matriz é degradada.
Água
A água é o principal componente do disco e a rigidez do tecido é mantida pelas propriedades hidrofílicas dos proteoglicanos. Com a perda inicial de água, o disco torna-se mais flácido e deformável à medida que a rede de colágeno relaxa. No entanto, uma vez que o disco tenha perdido uma fração significativa de água, suas propriedades mecânicas mudam drasticamente; o tecido se comporta mais como um sólido do que como um composto sob carga. A água também fornece o meio através do qual nutrientes e resíduos são trocados entre o disco e o suprimento sanguíneo circundante.
Colágeno
A rede de colágeno, que pode suportar altas cargas de tração, fornece uma estrutura para o disco e o ancora aos corpos vertebrais vizinhos. A rede é inflada pela água absorvida pelos proteoglicanos; por sua vez, a rede retém os proteoglicanos e os impede de escapar do tecido. Esses três componentes juntos formam uma estrutura capaz de suportar altas cargas de compressão.
A organização das fibrilas de colágeno confere flexibilidade ao disco. As fibrilas são dispostas em camadas, com o ângulo em que as fibrilas de cada camada correm entre os corpos vertebrais vizinhos, alternando em direção. Este tecido altamente especializado permite que o disco se encaixe extensivamente, permitindo assim a flexão da coluna, embora as próprias fibrilas de colágeno possam se estender em apenas cerca de 3%.
Metabolismo
As células do disco produzem moléculas grandes e enzimas que podem quebrar os componentes da matriz. Em um disco saudável, as taxas de produção e degradação da matriz são equilibradas. Se o equilíbrio for perturbado, a composição do disco deve mudar. No crescimento, as taxas de síntese de moléculas novas e de substituição são maiores do que as taxas de degradação, e os materiais da matriz se acumulam ao redor das células. Com o envelhecimento e a degeneração, ocorre o inverso. Os proteoglicanos normalmente duram cerca de dois anos. O colágeno dura muitos anos. Se o equilíbrio for perturbado ou se a atividade celular cair, o conteúdo de proteoglicanos da matriz acaba diminuindo, o que afeta as propriedades mecânicas do disco.
As células do disco também respondem a mudanças no estresse mecânico. O carregamento afeta o metabolismo do disco, embora os mecanismos não sejam claros. No momento, é impossível prever quais demandas mecânicas estimulam um equilíbrio estável e quais podem favorecer a degradação em relação à síntese da matriz.
Fornecimento de nutrientes
Como o disco recebe nutrientes do suprimento sanguíneo dos tecidos adjacentes, os nutrientes como oxigênio e glicose devem se difundir através da matriz para as células no centro do disco. As células podem estar a até 7 a 8 mm do suprimento de sangue mais próximo. Desenvolvem-se gradientes acentuados. Na interface entre o disco e o corpo vertebral, a concentração de oxigênio está em torno de 50%, enquanto no centro do disco está abaixo de 1%. O metabolismo do disco é principalmente anaeróbico. Quando o oxigênio cai abaixo de 5%, o disco aumenta a produção de lactato, um resíduo metabólico. A concentração de lactato no centro do núcleo pode ser seis a oito vezes maior do que no sangue ou no interstício (ver figura 5).
Figura 5. As principais vias nutricionais para o disco intervertebral são por difusão da vasculatura dentro do corpo vertebral (V), através da placa motora (E) para o núcleo (N) ou do suprimento sanguíneo fora do anel (A) .
Uma queda no suprimento de nutrientes é frequentemente sugerida como uma das principais causas de degeneração do disco. A permeabilidade da placa terminal do disco diminui com a idade, o que pode impedir o transporte de nutrientes para o disco e levar ao acúmulo de resíduos, como o lactato. Em discos onde o transporte de nutrientes foi reduzido, as concentrações de oxigênio no centro do disco podem cair para níveis muito baixos. Aqui, o metabolismo anaeróbico e, conseqüentemente, a produção de lactato aumentam, e a acidez no centro do disco pode cair para valores tão baixos quanto pH 6.4. Esses baixos valores de pH, bem como baixas tensões de oxigênio, reduzem a taxa de síntese da matriz, resultando em uma queda no conteúdo de proteoglicanos. Além disso, as próprias células podem não sobreviver à exposição prolongada ao pH ácido. Uma alta porcentagem de células mortas foi encontrada em discos humanos.
A degeneração do disco leva à perda de proteoglicano e a uma mudança em sua estrutura, desorganização da rede de colágeno e crescimento interno de vasos sanguíneos. Existe a possibilidade de que algumas dessas mudanças possam ser revertidas. O disco demonstrou ter alguma capacidade de reparo.
Doenças
Escoliose: A escoliose é uma curva lateral da coluna vertebral, onde tanto o disco intervertebral quanto os corpos vertebrais estão presos. Geralmente está associado a uma torção ou rotação da coluna vertebral. Devido à maneira como as costelas estão presas às vértebras, isso dá origem a uma “corcova nas costelas”, visível quando o indivíduo afetado se inclina para a frente. A escoliose pode ser causada por um defeito congênito na coluna vertebral, como uma hemivértebra em forma de cunha, ou pode surgir secundária a um distúrbio como a distrofia neuromuscular. No entanto, na maioria dos casos, a causa é desconhecida e, portanto, é denominada escoliose idiopática. A dor raramente é um problema na escoliose e o tratamento é realizado, principalmente para interromper o desenvolvimento da curvatura lateral da coluna vertebral. (Para detalhes sobre o tratamento clínico desta e de outras patologias da coluna ver Tidswell 1992.)
Spondylolistêmese: A espondilolistese é um deslizamento para a frente e horizontal de uma vértebra em relação à outra. Pode resultar de uma fratura na ponte do osso que liga a frente à parte posterior da vértebra. Obviamente, o disco intervertebral entre duas dessas vértebras é esticado e submetido a cargas anormais. A matriz desse disco e, em menor extensão, dos discos adjacentes, mostra alterações na composição típicas da degeneração – perda de água e proteoglicano. Esta condição pode ser diagnosticada por raio-x.
Disco rompido ou prolapso: A ruptura do anel posterior é bastante comum em adultos jovens ou de meia-idade fisicamente ativos. Não pode ser diagnosticado por raio-x, a menos que seja realizado um discograma, no qual um material radiopaco é injetado no centro do disco. Uma lágrima pode então ser demonstrada pelo rastreamento do fluido do discograma. Às vezes, pedaços isolados e sequestrados de material do disco podem passar por esse rasgo no canal espinhal. A irritação ou pressão no nervo ciático causa dor intensa e parestesia (ciática) no membro inferior.
Doença degenerativa do disco: Este é um termo aplicado a um grupo mal definido de pacientes que apresentam dor lombar. Podem apresentar alterações no aspecto radiográfico, como diminuição da altura do disco e possivelmente formação de osteófitos na borda dos corpos vertebrais. Este grupo de pacientes pode representar o estágio final de várias vias patológicas. Por exemplo, rupturas anulares não tratadas podem eventualmente assumir esta forma.
Estenose espinal: O estreitamento do canal espinhal que ocorre na estenose espinhal causa compressão mecânica das raízes nervosas espinhais e seu suprimento sanguíneo. Como tal, pode levar a sintomas como fraqueza, reflexos alterados, dor ou perda de sensibilidade (parestesia) ou, por vezes, não apresentar sintomas. O estreitamento do canal pode, por sua vez, ser causado por vários fatores, incluindo protrusão do disco intervertebral no espaço do canal, formação de osso novo nas articulações facetárias (hipertrofia facetária) e artrite com inflamação de outros tecidos conjuntivos moles.
A interpretação das técnicas de imagem mais recentes em relação à patologia do disco não foi completamente estabelecida. Por exemplo, discos degenerados na ressonância magnética (MRI) fornecem um sinal alterado em relação aos discos “normais”. No entanto, a correlação entre um disco de aparência “degenerada” na ressonância magnética e os sintomas clínicos é pobre, com 45% dos discos degenerados na ressonância magnética sendo assintomáticos e 37% dos pacientes com dor lombar apresentando ressonância magnética normal da coluna.
Fatores de Risco
Carregando
A carga nos discos depende da postura. Medições intradiscal mostram que a posição sentada leva a pressões cinco vezes maiores do que aquelas dentro da coluna em repouso (ver Figura 8). Se pesos externos forem levantados, isso pode aumentar muito a pressão intradiscal, especialmente se o peso for mantido afastado do corpo. Obviamente, um aumento de carga pode levar à ruptura de discos que, de outra forma, permaneceriam intactos.
Investigações epidemiológicas revisadas por Brinckmann e Pope (1990) concordam em um aspecto: levantar ou carregar objetos pesados repetidamente ou realizar trabalho em postura flexionada ou hiperextendida representam fatores de risco para problemas lombares. Da mesma forma, certos esportes, como levantamento de peso, podem estar associados a uma maior incidência de dores nas costas do que, por exemplo, natação. O mecanismo não é claro, embora os diferentes padrões de carregamento possam ser relevantes.
Fumar
A nutrição do disco é muito precária, necessitando apenas de uma pequena redução no fluxo de nutrientes para torná-lo insuficiente para o metabolismo normal das células do disco. O tabagismo pode causar essa redução devido ao seu efeito no sistema circulatório fora do disco intervertebral. O transporte de nutrientes, como oxigênio, glicose ou sulfato, para o disco é significativamente reduzido após apenas 20 a 30 minutos de tabagismo, o que pode explicar a maior incidência de dor lombar em indivíduos que fumam em comparação com aqueles que não fumam ( Rydevik e Holm 1992).
vibração
Estudos epidemiológicos têm mostrado que há um aumento na incidência de lombalgia em indivíduos expostos a níveis elevados de vibração. A coluna vertebral é suscetível a danos em suas frequências naturais, particularmente de 5 a 10 Hz. Muitos veículos excitam vibrações nessas frequências. Estudos relatados por Brinckmann e Pope (1990) mostraram uma relação entre essas vibrações e a incidência de dor lombar. Como foi demonstrado que a vibração afeta os pequenos vasos sanguíneos em outros tecidos, esse também pode ser o mecanismo de seu efeito na coluna.