Quarta-feira, 09 Março 2011 15: 34

Poluição do Ar: Modelagem da Dispersão de Poluentes do Ar

Classifique este artigo
(4 votos)

O objetivo da modelagem da poluição do ar é a estimativa das concentrações externas de poluentes causadas, por exemplo, por processos de produção industrial, emissões acidentais ou tráfego. A modelagem da poluição do ar é usada para determinar a concentração total de um poluente, bem como para encontrar a causa de níveis extraordinariamente altos. Para projetos em fase de planejamento, a contribuição adicional à carga existente pode ser estimada antecipadamente e as condições de emissão podem ser otimizadas.

Figura 1. Sistema Global de Monitoramento Ambiental/Gestão da poluição do ar

EPC020F1

Dependendo dos padrões de qualidade do ar definidos para o poluente em questão, interessam valores médios anuais ou picos de concentração de curta duração. Normalmente, as concentrações devem ser determinadas onde as pessoas estão ativas - isto é, perto da superfície a uma altura de cerca de dois metros acima do solo.

Parâmetros que influenciam a dispersão de poluentes

Dois tipos de parâmetros influenciam a dispersão de poluentes: os parâmetros da fonte e os parâmetros meteorológicos. Para os parâmetros da fonte, as concentrações são proporcionais à quantidade de poluente emitida. No caso de poeira, o diâmetro da partícula deve ser conhecido para determinar a sedimentação e deposição do material (VDI 1992). Como as concentrações de superfície são menores com maior altura de chaminé, este parâmetro também deve ser conhecido. Além disso, as concentrações dependem da quantidade total do gás de exaustão, bem como de sua temperatura e velocidade. Se a temperatura do gás de exaustão exceder a temperatura do ar circundante, o gás ficará sujeito à flutuabilidade térmica. Sua velocidade de exaustão, que pode ser calculada a partir do diâmetro interno da chaminé e do volume do gás de exaustão, causará uma flutuação do momento dinâmico. Fórmulas empíricas podem ser usadas para descrever esses recursos (VDI 1985; Venkatram e Wyngaard 1988). Deve-se ressaltar que não é a massa do poluente em questão, mas sim a massa do gás total que é responsável pela flutuação do momento térmico e dinâmico.

Os parâmetros meteorológicos que influenciam a dispersão de poluentes são a velocidade e a direção do vento, bem como a estratificação térmica vertical. A concentração de poluentes é proporcional ao recíproco da velocidade do vento. Isto é principalmente devido ao transporte acelerado. Além disso, a mistura turbulenta aumenta com o aumento da velocidade do vento. Como as chamadas inversões (ou seja, situações em que a temperatura aumenta com a altura) impedem a mistura turbulenta, as concentrações máximas na superfície são observadas durante a estratificação altamente estável. Ao contrário, as situações convectivas intensificam a mistura vertical e, portanto, apresentam os menores valores de concentração.

Os padrões de qualidade do ar - por exemplo, valores médios anuais ou percentis 98 - geralmente são baseados em estatísticas. Portanto, são necessários dados de séries temporais para os parâmetros meteorológicos relevantes. Idealmente, as estatísticas devem ser baseadas em dez anos de observação. Se apenas séries temporais mais curtas estiverem disponíveis, deve-se verificar se elas são representativas para um período mais longo. Isso pode ser feito, por exemplo, pela análise de séries temporais mais longas de outros locais de observação.

A série temporal meteorológica utilizada também deve ser representativa do local considerado - ou seja, deve refletir as características locais. Isso é especialmente importante em relação aos padrões de qualidade do ar baseados em frações de pico da distribuição, como 98 percentis. Se nenhuma série temporal estiver disponível, um modelo de fluxo meteorológico pode ser usado para calcular um a partir de outros dados, como será descrito abaixo.

 


 

Programas de Monitoramento Internacional

Agências internacionais como a Organização Mundial da Saúde (OMS), a Organização Meteorológica Mundial (OMM) e o Programa das Nações Unidas para o Meio Ambiente (PNUMA) têm instituído projetos de monitoramento e pesquisa para esclarecer as questões envolvidas na poluição do ar e promover medidas para prevenir uma maior deterioração da saúde pública e das condições ambientais e climáticas.

O Sistema Global de Monitoramento Ambiental GEMS/Air (OMS/PNUMA 1993) é organizado e patrocinado pela OMS e pelo PNUMA e desenvolveu um programa abrangente para fornecer os instrumentos de gerenciamento racional da poluição do ar (consulte a figura 55.1.[EPC01FE] O núcleo deste programa é um banco de dados global de concentrações de poluentes atmosféricos urbanos de dióxidos de enxofre, material particulado em suspensão, chumbo, óxidos de nitrogênio, monóxido de carbono e ozônio. Tão importante quanto esse banco de dados, no entanto, é o fornecimento de ferramentas de gerenciamento, como guias para inventários rápidos de emissões, programas para modelagem de dispersão, estimativas de exposição da população, medidas de controle e análise de custo-benefício. A esse respeito, GEMS/Air fornece manuais de revisão de metodologia (OMS/UNEP 1994, 1995), conduz avaliações globais da qualidade do ar, facilita a revisão e validação de avaliações , atua como um corretor de dados/informações, produz documentos técnicos de apoio a todos os aspectos da gestão da qualidade do ar, facilita o estabelecimento entidade de monitoramento, realiza e distribui amplamente revisões anuais e estabelece ou identifica centros de colaboração regionais e/ou especialistas para coordenar e apoiar atividades de acordo com as necessidades das regiões. (OMS/PNUMA 1992, 1993, 1995)

O programa Global Atmospheric Watch (GAW) (Miller e Soudine 1994) fornece dados e outras informações sobre a composição química e as características físicas relacionadas da atmosfera, e suas tendências, com o objetivo de entender a relação entre a mudança da composição atmosférica e as mudanças da atmosfera global. e clima regional, o transporte atmosférico de longo alcance e a deposição de substâncias potencialmente nocivas sobre os ecossistemas terrestres, de água doce e marinhos, e o ciclo natural de elementos químicos no sistema global atmosfera/oceano/biosfera e impactos antropogênicos sobre eles. O programa GAW consiste em quatro áreas de atividade: o Sistema Global de Observação de Ozônio (GO3OS), monitoramento global da composição atmosférica de fundo, incluindo a Rede de Monitoramento de Poluição Atmosférica de Fundo (BAPMoN); dispersão, transporte, transformação química e deposição de poluentes atmosféricos sobre terra e mar em diferentes escalas de tempo e espaço; troca de poluentes entre a atmosfera e outros compartimentos ambientais; e monitoramento integrado. Um dos aspectos mais importantes do GAW é o estabelecimento de Centros de Atividades Científicas de Garantia de Qualidade para supervisionar a qualidade dos dados produzidos no âmbito do GAW.


 

 

Conceitos de Modelagem de Poluição do Ar

Como mencionado acima, a dispersão de poluentes depende das condições de emissão, transporte e mistura turbulenta. O uso da equação completa que descreve esses recursos é chamado de modelagem de dispersão euleriana (Pielke 1984). Por esta abordagem, ganhos e perdas do poluente em questão devem ser determinados em todos os pontos de uma grade espacial imaginária e em intervalos de tempo distintos. Como esse método é muito complexo e demorado no computador, geralmente não pode ser tratado rotineiramente. No entanto, para muitas aplicações, pode ser simplificado usando as seguintes suposições:

  • nenhuma mudança das condições de emissão com o tempo
  • nenhuma mudança das condições meteorológicas durante o transporte
  • velocidades do vento acima de 1 m/s.

 

Neste caso, a equação mencionada acima pode ser resolvida analiticamente. A fórmula resultante descreve uma pluma com distribuição de concentração gaussiana, o chamado modelo de pluma gaussiana (VDI 1992). Os parâmetros de distribuição dependem das condições meteorológicas e da distância a favor do vento, bem como da altura da chaminé. Eles devem ser determinados empiricamente (Venkatram e Wyngaard 1988). Situações em que as emissões e/ou parâmetros meteorológicos variam consideravelmente no tempo e/ou no espaço podem ser descritas pelo modelo Gaussiano puff (VDI 1994). Sob esta abordagem, sopros distintos são emitidos em intervalos de tempo fixos, cada um seguindo seu próprio caminho de acordo com as condições meteorológicas atuais. Em seu caminho, cada sopro cresce de acordo com a mistura turbulenta. Os parâmetros que descrevem esse crescimento, novamente, devem ser determinados a partir de dados empíricos (Venkatram e Wyngaard 1988). Ressalta-se, entretanto, que para atingir este objetivo, parâmetros de entrada devem estar disponíveis com a resolução necessária no tempo e/ou espaço.

No que diz respeito a liberações acidentais ou estudos de caso único, um modelo lagrangiano ou de partícula (Diretriz VDI 3945, Parte 3) é recomendado. O conceito, portanto, é calcular os caminhos de muitas partículas, cada uma das quais representa uma quantidade fixa do poluente em questão. Os caminhos individuais são compostos de transporte pelo vento médio e de perturbações estocásticas. Devido à parte estocástica, os caminhos não coincidem totalmente, mas retratam a mistura por turbulência. Em princípio, os modelos lagrangeanos são capazes de considerar condições meteorológicas complexas - em particular, vento e turbulência; campos calculados por modelos de fluxo descritos abaixo podem ser usados ​​para modelagem de dispersão Lagrangiana.

Modelagem de Dispersão em Terrenos Complexos

Se as concentrações de poluentes tiverem que ser determinadas em terreno estruturado, pode ser necessário incluir efeitos topográficos na dispersão de poluentes na modelagem. Tais efeitos são, por exemplo, transporte seguindo a estrutura topográfica, ou sistemas de ventos térmicos como brisas marítimas ou ventos de montanha, que mudam a direção do vento ao longo do dia.

Se tais efeitos ocorrerem em uma escala muito maior do que a área do modelo, a influência pode ser considerada usando dados meteorológicos que refletem as características locais. Se tais dados não estiverem disponíveis, a estrutura tridimensional impressa no fluxo pela topografia pode ser obtida usando um modelo de fluxo correspondente. Com base nesses dados, a própria modelagem de dispersão pode ser realizada assumindo a homogeneidade horizontal conforme descrito acima no caso do modelo de pluma gaussiana. No entanto, em situações onde as condições de vento mudam significativamente dentro da área do modelo, a própria modelagem de dispersão deve considerar o fluxo tridimensional afetado pela estrutura topográfica. Como mencionado acima, isso pode ser feito usando um sopro Gaussiano ou um modelo Lagrangiano. Outra maneira é realizar a modelagem Euleriana mais complexa.

Para determinar a direção do vento de acordo com o terreno topograficamente estruturado, pode-se usar modelagem consistente de massa ou fluxo de diagnóstico (Pielke 1984). Usando esta abordagem, o fluxo é ajustado à topografia variando os valores iniciais o mínimo possível e mantendo sua massa consistente. Como esta é uma abordagem que leva a resultados rápidos, também pode ser usada para calcular estatísticas de vento para um determinado local, caso não haja observações disponíveis. Para fazer isso, são usadas estatísticas geostróficas do vento (ou seja, dados do ar superior de rawinsondes).

Se, no entanto, os sistemas de vento térmico tiverem que ser considerados com mais detalhes, os chamados modelos de prognóstico devem ser usados. Dependendo da escala e da inclinação da área do modelo, uma abordagem hidrostática ou ainda mais complexa não hidrostática é adequada (VDI 1981). Modelos deste tipo precisam de muito poder computacional, bem como muita experiência na aplicação. A determinação de concentrações com base em médias anuais, em geral, não é possível com esses modelos. Em vez disso, os estudos de pior caso podem ser realizados considerando apenas uma direção do vento e os parâmetros de velocidade e estratificação do vento que resultam nos maiores valores de concentração de superfície. Se esses valores de pior caso não excederem os padrões de qualidade do ar, estudos mais detalhados não são necessários.

Figura 2. Estrutura topográfica de uma região modelo

EPC30F1A

A Figura 2, a Figura 3 e a Figura 4 demonstram como o transporte e a distribuição de poluentes podem ser apresentados em relação à influência do terreno e das climatologias eólicas derivadas da consideração das frequências dos ventos geostróficos e de superfície.

Figura 3. Distribuições de frequência de superfície determinadas a partir da distribuição de frequência geostrófica

EPC30F1B

Figura 4. Concentrações médias anuais de poluentes para uma região hipotética calculada a partir da distribuição de frequência geostrófica para campos de vento heterogêneos

EPC30F1C

Modelagem de Dispersão em Caso de Fontes Baixas

Considerando a poluição do ar causada por fontes baixas (ou seja, alturas de chaminés da ordem da altura dos edifícios ou emissões do tráfego rodoviário), a influência dos edifícios circundantes deve ser considerada. As emissões do tráfego rodoviário ficarão presas até certo ponto nos desfiladeiros das ruas. Formulações empíricas foram encontradas para descrever isso (Yamartino e Wiegand 1986).

Os poluentes emitidos por uma chaminé baixa situada em um edifício serão capturados na circulação no lado sotavento do edifício. A extensão dessa circulação de sotavento depende da altura e largura do edifício, bem como da velocidade do vento. Portanto, abordagens simplificadas para descrever a dispersão de poluentes nesse caso, baseadas apenas na altura de um edifício, geralmente não são válidas. A extensão vertical e horizontal da circulação de sotavento foi obtida a partir de estudos em túnel de vento (Hosker 1985) e pode ser implementada em modelos de diagnóstico consistentes em massa. Assim que o campo de fluxo for determinado, ele pode ser usado para calcular o transporte e a mistura turbulenta do poluente emitido. Isso pode ser feito por modelagem de dispersão lagrangiana ou euleriana.

Estudos mais detalhados - relativos a vazamentos acidentais, por exemplo - podem ser realizados apenas usando modelos não hidrostáticos de fluxo e dispersão, em vez de uma abordagem diagnóstica. Como isso, em geral, exige alto poder computacional, uma abordagem de pior caso, conforme descrito acima, é recomendada antes de uma modelagem estatística completa.

 

Voltar

Leia 13520 vezes Última modificação em terça-feira, 26 de julho de 2022 22:01

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de controle de poluição ambiental

Associação Americana de Saúde Pública (APHA). 1995. Métodos padrão para o exame de água e águas residuais. Alexandria, Virgínia: Federação do Meio Ambiente da Água.

Secretaria da ARET. 1995. Environmental Leaders 1, Voluntary Commitments to Action on Toxics through ARET. Hull, Quebec: Gabinete de Inquérito Público do Meio Ambiente do Canadá.

Bispo, P.L. 1983. Poluição Marinha e Seu Controle. Nova York: McGraw-Hill.

Brown, LC e TO Barnwell. 1987. Modelos aprimorados de qualidade de água de fluxo QUAL2E e QUAL2E-UNCAS: Documentação e Manual do usuário. Athens, Ga: US EPA, Laboratório de Pesquisa Ambiental.

Marrom, RH. 1993. Pure Appl Chem 65(8):1859-1874.

Calabrese, EJ e EM Kenyon. 1991. Tóxicos Aéreos e Avaliação de Risco. Chelsea, Michigan: Lewis.

Canadá e Ontário. 1994. O Acordo Canadá-Ontário Respeitando o Ecossistema dos Grandes Lagos. Hull, Quebec: Gabinete de Inquérito Público do Meio Ambiente do Canadá.

Dillon, PJ. 1974. Uma revisão crítica do modelo de orçamento de nutrientes de Vollenweider e outros modelos relacionados. Recursos Hídricos Bull 10(5):969-989.

Eckenfelder, WW. 1989. Controle de Poluição de Água Industrial. Nova York: McGraw-Hill.

Economopoulos, AP. 1993. Avaliação das Fontes de Poluição do Ar, Água e Terra. Um guia para técnicas de inventário de fonte rápida e seu uso na formulação de estratégias de controle ambiental. Parte Um: Técnicas de Inventário Rápido em Poluição Ambiental. Parte Dois: Abordagens para Consideração na Formulação de Estratégias de Controle Ambiental. (Documento não publicado WHO/YEP/93.1.) Genebra: OMS.

Agência de Proteção Ambiental (EPA). 1987. Diretrizes para Delineação de Áreas de Proteção de Cabeças de Poço. Englewood Cliffs, NJ: EPA.

Meio Ambiente Canadá. 1995a. Prevenção da Poluição - Uma Estratégia Federal para Ação. Ottawa: Environment Canada.

—. 1995b. Prevenção da Poluição - Uma Estratégia Federal para Ação. Ottawa: Environment Canada.

Freeze, RA e JA Cherry. 1987. Água subterrânea. Englewood Cliffs, NJ: Prentice Hall.

Sistema Global de Monitoramento Ambiental (GEMS/Ar). 1993. Um Programa Global para Monitoramento e Avaliação da Qualidade do Ar Urbano. Genebra: PNUMA.

Hosker, RP. 1985. Fluxo em torno de estruturas isoladas e clusters de construção, uma revisão. ASHRAE Trans 91.

Comissão Conjunta Internacional (IJC). 1993. Uma Estratégia para Eliminação Virtual de Substâncias Tóxicas Persistentes. Vol. 1, 2, Windsor, Ontário: IJC.

Kanarek, A. 1994. Recarga de águas subterrâneas com efluentes municipais, bacias de recarga Soreq, Yavneh 1 & Yavneh 2. Israel: Mekoroth Water Co.

Lee, N. 1993. Visão geral da AIA na Europa e sua aplicação no New Bundeslander. Em UVP

Leitfaden, editado por V Kleinschmidt. Dortmund .

Metcalf e Eddy, I. 1991. Wastewater Engineering Treatment, Disposal, and Reuse. Nova York: McGraw-Hill.

Miller, JM e A Soudine. 1994. Sistema de observação atmosférica global da OMM. Hvratski meteorolski casopsis 29:81-84.

Ministério für Umwelt. 1993. Raumordnung Und Landwirtschaft Des Landes Nordrhein-Westfalen, Luftreinhalteplan
Ruhrgebiet West [Plano de Implementação de Ar Limpo na Área de Ruhr Ocidental].

Parkhurst, B. 1995. Métodos de Gestão de Risco, Ambiente e Tecnologia da Água. Washington, DC: Federação do Meio Ambiente da Água.

Pecor, CH. 1973. Houghton Lake Annual Nitrogen and Phosphorous Budgets. Lansing, Michigan: Departamento de Recursos Naturais.

Pielke, RA. 1984. Modelagem Meteorológica de Mesoescala. Orlando: Academic Press.

Preul, HC. 1964. Viagem de compostos de nitrogênio em solos. doutorado Dissertação, University of Minnesota, Minneapolis, Minn.

—. 1967. Movimento Subterrâneo de Nitrogênio. Vol. 1. Londres: Associação Internacional de Qualidade da Água.

—. 1972. Análise e controle da poluição subterrânea. Pesquisa de Água. J Int Assoc Qualidade da Água (outubro):1141-1154.

—. 1974. Efeitos da disposição de resíduos no subsolo na bacia hidrográfica do Lago Sunapee. Estudo e relatório para Lake Sunapee Protective Association, Estado de New Hampshire, inédito.

—. 1981. Plano de Reciclagem de Efluentes de Curtumes de Couro. Associação Internacional de Recursos Hídricos.

—. 1991. Nitratos em Recursos Hídricos nos EUA. : Associação de Recursos Hídricos.

Preul, HC e GJ Schroepfer. 1968. Viagem de compostos de nitrogênio em solos. J Water Pollut Contr Fed (abril).

Reid, G e R Wood. 1976. Ecologia de águas interiores e estuários. Nova York: Van Nostrand.

Reish, D. 1979. Poluição marinha e estuarina. J Water Pollut Contr Fed 51(6):1477-1517.

Sawyer, CN. 1947. Fertilização de lagos por drenagem agrícola e urbana. J New Engl Waterworks Assoc 51:109-127.

Schwela, DH e I Köth-Jahr. 1994. Leitfaden für die Aufstellung von Luftreinhalteplänen [Diretrizes para a implementação de planos de implementação de ar limpo]. Landesumweltamt des Landes Nordrhein Westfalen.

Estado de Ohio. 1995. Padrões de qualidade da água. No Cap. 3745-1 do Código Administrativo. Columbus, Ohio: Ohio EPA.

TAYLOR, ST. 1995. Simulando o impacto da vegetação enraizada na dinâmica de nutrientes e oxigênio dissolvido usando o modelo diurno OMNI. Nos Anais da Conferência Anual do FEM. Alexandria, Virgínia: Federação do Meio Ambiente da Água.

Estados Unidos e Canadá. 1987. Acordo revisado sobre a qualidade da água dos Grandes Lagos de 1978, conforme alterado pelo protocolo assinado em 18 de novembro de 1987. Hull, Quebec: Escritório de Inquérito Público do Canadá Ambiental.

Venkatram, A e J Wyngaard. 1988. Palestras sobre Modelagem de Poluição do Ar. Boston, Mass: American Meteorological Society.

Venzia, RA. 1977. Uso da terra e planejamento de transporte. In Air Pollution, editado por AC Stern. Nova York: Academic Press.

Verein Deutscher Ingenieure (VDI) 1981. Diretriz 3783, Parte 6: Dispersão regional de poluentes em trens complexos.
Simulação do campo de vento. Düsseldorf: VDI.

—. 1985. Diretriz 3781, Parte 3: Determinação da ascensão da pluma. Düsseldorf: VDI.

—. 1992. Diretriz 3782, Parte 1: Modelo de dispersão gaussiana para gerenciamento da qualidade do ar. Düsseldorf: VDI.

—. 1994. Diretriz 3945, Parte 1 (rascunho): Modelo de sopro gaussiano. Düsseldorf: VDI.

—. ª Diretriz 3945, Parte 3 (em preparação): Modelos de partículas. Düsseldorf: VDI.

Viessman, W, GL Lewis e JW Knapp. 1989. Introdução à Hidrologia. Nova York: Harper & Row.

Vollenweider, RA. 1968. Fundamentos Científicos da Eutrofização de Lagos e Águas Correntes, com Particular
Referência aos Fatores de Nitrogênio e Fósforo na Eutrofização. Paris: OCDE.

—. 1969. Möglichkeiten e Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch Hydrobiol 66:1-36.

Walsh, MP. 1992. Revisão das medidas de controle de emissões de veículos motorizados e sua eficácia. In Motor Vehicle Air Pollution, Public Health Impact and Control Measures, editado por D Mage e O Zali. República e Cantão de Genebra: Serviço de Ecotoxicologia da OMS, Departamento de Saúde Pública.

Federação do Meio Ambiente da Água. 1995. Resumo de Prevenção de Poluição e Minimização de Resíduos. Alexandria, Virgínia: Federação do Meio Ambiente da Água.

Organização Mundial da Saúde (OMS). 1980. Glossário Sobre Poluição do Ar. European Series, No. 9. Copenhagen: WHO Regional Publications.

—. 1987. Diretrizes de Qualidade do Ar para a Europa. European Series, No. 23. Copenhagen: WHO Regional Publications.

Organização Mundial da Saúde (OMS) e Programa Ambiental das Nações Unidas (PNUMA). 1994. GEMS/AIR Methodology Reviews Handbook Series. Vol. 1-4. Seguro de Qualidade no Monitoramento da Qualidade do Ar Urbano, Genebra: OMS.

—. 1995a. Tendências de qualidade do ar da cidade. vol. 1-3. Genebra: OMS.

—. 1995b. Série de manuais de revisões de metodologia GEMS/AIR. Vol. 5. Diretrizes para análises colaborativas GEMS/AIR. Genebra: OMS.

Yamartino, RJ e G Wiegand. 1986. Desenvolvimento e avaliação de modelos simples para os campos de fluxo, turbulência e concentração de poluentes dentro de um desfiladeiro urbano. Atmos Environ 20(11):S2137-S2156.