Quarta-feira, 09 Março 2011 15: 30

Gestão da Poluição do Ar

Classifique este artigo
(30 votos)

A gestão da poluição do ar visa a eliminação, ou redução a níveis aceitáveis, de gases poluentes atmosféricos, material particulado em suspensão e agentes físicos e, até certo ponto, biológicos, cuja presença na atmosfera pode causar efeitos adversos à saúde humana (por exemplo, irritação, aumento da incidência ou prevalência de doenças respiratórias, morbidade, câncer, excesso de mortalidade) ou bem-estar (por exemplo, efeitos sensoriais, redução da visibilidade), efeitos deletérios na vida animal ou vegetal, danos a materiais de valor econômico para a sociedade e danos ao meio ambiente (por exemplo, modificações climáticas). Os graves perigos associados aos poluentes radioativos, bem como os procedimentos especiais exigidos para seu controle e disposição, também merecem atenção especial.

A importância da gestão eficiente da poluição do ar interior e exterior não pode ser subestimada. A menos que haja um controle adequado, a multiplicação das fontes de poluição no mundo moderno pode levar a danos irreparáveis ​​ao meio ambiente e ao homem.

O objetivo deste artigo é fornecer uma visão geral das possíveis abordagens para o gerenciamento da poluição do ar ambiente causada por veículos automotores e fontes industriais. No entanto, deve ser enfatizado desde o início que a poluição do ar interior (em particular, nos países em desenvolvimento) pode desempenhar um papel ainda maior do que a poluição do ar exterior devido à observação de que as concentrações de poluentes do ar interior são muitas vezes substancialmente mais elevadas do que as concentrações exteriores.

Além das considerações de emissões de fontes fixas ou móveis, a gestão da poluição do ar envolve a consideração de fatores adicionais (como topografia e meteorologia, participação da comunidade e do governo, entre muitos outros), todos os quais devem ser integrados em um programa abrangente. Por exemplo, as condições meteorológicas podem afetar muito as concentrações ao nível do solo resultantes da mesma emissão de poluentes. As fontes de poluição do ar podem estar espalhadas por uma comunidade ou região e seus efeitos podem ser sentidos ou seu controle pode envolver mais de uma administração. Além disso, a poluição do ar não respeita quaisquer fronteiras e as emissões de uma região podem induzir efeitos em outra região pelo transporte de longa distância.

A gestão da poluição do ar, portanto, requer uma abordagem multidisciplinar, bem como um esforço conjunto de entidades privadas e governamentais.

Fontes de Poluição Atmosférica

As fontes de poluição do ar causada pelo homem (ou fontes de emissão) são basicamente de dois tipos:

  • estacionário, que podem ser subdivididos em fontes de área, como produção agrícola, mineração e pedreiras, fontes industriais, pontuais e de área, como fabricação de produtos químicos, produtos minerais não metálicos, indústrias básicas de metal, geração de energia e fontes comunitárias (por exemplo, aquecimento de casas e edifícios, incineradores de resíduos municipais e lamas de depuração, lareiras, cozinhas, serviços de lavandaria e instalações de limpeza)
  • móvel, compreendendo qualquer forma de veículos com motor de combustão (por exemplo, carros leves movidos a gasolina, veículos leves e pesados ​​movidos a diesel, motocicletas, aeronaves, incluindo fontes de linha com emissões de gases e material particulado do tráfego de veículos).

 

Além disso, existem também fontes naturais de poluição (por exemplo, áreas erodidas, vulcões, certas plantas que liberam grandes quantidades de pólen, fontes de bactérias, esporos e vírus). Fontes naturais não são discutidas neste artigo.

Tipos de poluentes do ar

Os poluentes atmosféricos são normalmente classificados em partículas em suspensão (poeiras, fumos, névoas, fumos), gases poluentes (gases e vapores) e odores. Alguns exemplos de poluentes usuais são apresentados a seguir:

Material particulado suspenso (SPM, PM-10) inclui exaustão de diesel, cinzas volantes de carvão, poeiras minerais (por exemplo, carvão, amianto, calcário, cimento), poeiras e vapores metálicos (por exemplo, zinco, cobre, ferro, chumbo) e névoas ácidas (por exemplo , ácido sulfúrico), fluoretos, pigmentos de tinta, névoas de pesticidas, negro de fumo e fumaça de óleo. Poluentes particulados suspensos, além de seus efeitos de provocar doenças respiratórias, cânceres, corrosão, destruição de plantas e assim por diante, também podem constituir um incômodo (por exemplo, acúmulo de sujeira), interferir com a luz solar (por exemplo, formação de poluição atmosférica e neblina devido a dispersão de luz) e atuam como superfícies catalíticas para reação de produtos químicos adsorvidos.

Poluentes gasosos incluem compostos de enxofre (por exemplo, dióxido de enxofre (SO2) e trióxido de enxofre (SO3)), monóxido de carbono, compostos de nitrogênio (por exemplo, óxido nítrico (NO), dióxido de nitrogênio (NO2), amônia), compostos orgânicos (por exemplo, hidrocarbonetos (HC), compostos orgânicos voláteis (VOC), hidrocarbonetos aromáticos policíclicos (PAH), aldeídos), compostos de halogênio e derivados de halogênio (por exemplo, HF e HCl), sulfeto de hidrogênio, dissulfeto de carbono e mercaptanos (odores).

Os poluentes secundários podem ser formados por reações térmicas, químicas ou fotoquímicas. Por exemplo, por ação térmica, o dióxido de enxofre pode oxidar a trióxido de enxofre que, dissolvido em água, dá origem à formação de névoa de ácido sulfúrico (catalisada por manganês e óxidos de ferro). Reações fotoquímicas entre óxidos de nitrogênio e hidrocarbonetos reativos podem produzir ozônio (O3), formaldeído e nitrato de peroxiacetil (PAN); reações entre HCl e formaldeído podem formar éter bis-clorometílico.

Enquanto alguns odores são conhecidos por serem causados ​​por agentes químicos específicos, como sulfeto de hidrogênio (H2S), dissulfeto de carbono (CS2) e mercaptanos (R-SH ou R1-S-R2) outros são difíceis de definir quimicamente.

Exemplos dos principais poluentes associados a algumas fontes industriais de poluição do ar são apresentados na tabela 1 (Economopoulos 1993).

Tabela 1. Poluentes atmosféricos comuns e suas fontes

Categoria

fonte

Poluentes emitidos

Agricultura

Queima aberta

SPM, CO, VOC

Mineração e
extração

Mineração de carvão

Petróleo bruto
e produção de gás natural

Mineração de minério não ferroso

extração de pedra

SPM, SO2, Eu não tenhox, COV

SO2

SPM, Pb

SPM

Indústria​

Alimentos, bebidas e tabaco

Indústrias têxteis e de couro

Produtos de madeira

Produtos de papel, impressão

SPM, CO, COV, H2S

SPM, COV

SPM, COV

SPM, SO2,CO,VOC,H2S, R-SH

Fabricar
de produtos químicos

Anidrido ftálico

Cloro-álcalis

Ácido clorídrico

Acido hidrosulfurico

Ácido sulfúrico

Ácido nítrico

Ácido fosfórico

Óxido de chumbo e pigmentos

Amônia

Carbonato de sódio

Carboneto de cálcio

Ácido adípico

chumbo alquílico

anidrido maleico e
ácido tereftálico

Fertilizante e
produção de pesticidas

Nitrato de amônio

Sulfato de amônia

Resinas sintéticas, plástico
materiais, fibras

Tintas, vernizes, lacas

Sabão

Negro de fumo e tinta de impressão

Trinitrotolueno

SPM, SO2,CO,VOC

Cl2

HCl

HF, SiF4

SO2, SO3

NÃOx

SPM, F2

SPM, Pb

SPM, SO2, Eu não tenhox, CO, COV, NH3

SPM, NH3

SPM

SPM, NÃOx,CO,VOC

Pb

CO, COV

SPM, NH3

SPM, NH3, H.N.O.3

VOC

SPM, COV, H2S, CS2

SPM, COV

SPM

SPM, SO2, Eu não tenhox,CO,VOC,H2S

SPM, SO2, Eu não tenhox, SO3, H.N.O.3

Refinarias de petróleo

Produtos diversos
de petróleo e carvão

SPM, SO2, Eu não tenhox,CO,VOC

Mineral não metálico
fabricação de produtos

Produtos de vidro

Produtos estruturais de argila

Cimento, cal e gesso

SPM, SO2, Eu não tenhox,CO,VOC,F

SPM, SO2, Eu não tenhox,CO,VOC,F2

SPM, SO2, Eu não tenhoxCO

indústrias de metal de base

Ferro e aço

Indústrias não ferrosas

SPM, SO2, Eu não tenhox, CO, COV, Pb

SPM, SO2, F, Pb

A geração de energia

Eletricidade, gás e vapor

SPM, SO2, Eu não tenhox, CO, COV, SO3, Pb

Atacado e
Comercio de varejo

Armazenamento de combustível, operações de enchimento

VOC

Transporte

 

SPM, SO2, Eu não tenhox, CO, COV, Pb

Serviços comunitarios

incineradores municipais

SPM, SO2, Eu não tenhox, CO, COV, Pb

Fonte: Economopoulos 1993

Planos de Implementação de Ar Limpo

A gestão da qualidade do ar visa a preservação da qualidade ambiental, prescrevendo o grau de poluição tolerado, cabendo às autoridades locais e aos poluidores conceber e implementar ações para garantir que esse grau de poluição não seja ultrapassado. Um exemplo de legislação dentro desta abordagem é a adoção de padrões de qualidade do ar ambiente baseados, muitas vezes, em diretrizes de qualidade do ar (OMS 1987) para diferentes poluentes; estes são os níveis máximos aceitos de poluentes (ou indicadores) na área-alvo (por exemplo, ao nível do solo em um ponto específico de uma comunidade) e podem ser padrões primários ou secundários. Os padrões primários (OMS 1980) são os níveis máximos compatíveis com uma margem de segurança adequada e com a preservação da saúde pública, devendo ser cumpridos dentro de um prazo determinado; os padrões secundários são aqueles julgados necessários para a proteção contra efeitos adversos conhecidos ou previstos, exceto riscos à saúde (principalmente na vegetação) e devem ser cumpridos “dentro de um prazo razoável”. Os padrões de qualidade do ar são valores de curto, médio ou longo prazo válidos por 24 horas por dia, 7 dias por semana, e para exposição mensal, sazonal ou anual de todos os indivíduos vivos (incluindo subgrupos sensíveis, como crianças, idosos e o doentes), bem como objetos não vivos; isso contrasta com os níveis máximos permitidos para exposição ocupacional, que são para uma exposição semanal parcial (por exemplo, 8 horas por dia, 5 dias por semana) de trabalhadores adultos e supostamente saudáveis.

Medidas típicas na gestão da qualidade do ar são medidas de controle na fonte, por exemplo, aplicação do uso de conversores catalíticos em veículos ou de padrões de emissão em incineradores, planejamento do uso do solo e fechamento de fábricas ou redução do tráfego durante condições climáticas desfavoráveis . A melhor gestão da qualidade do ar enfatiza que as emissões de poluentes atmosféricos devem ser reduzidas ao mínimo; isso é basicamente definido por meio de padrões de emissão para fontes únicas de poluição do ar e pode ser alcançado para fontes industriais, por exemplo, por meio de sistemas fechados e coletores de alta eficiência. Um padrão de emissão é um limite na quantidade ou concentração de um poluente emitido por uma fonte. Este tipo de legislação exige uma decisão, para cada setor, sobre a melhor forma de controlar suas emissões (isto é, fixar padrões de emissão).

O objetivo básico da gestão da poluição do ar é derivar um plano de implementação de ar limpo (ou plano de redução da poluição do ar) (Schwela e Köth-Jahr 1994), que consiste nos seguintes elementos:

  • descrição da área em relação à topografia, meteorologia e socioeconomia
  • inventário de emissões
  • comparação com padrões de emissão
  • inventário de concentrações de poluentes atmosféricos
  • concentrações simuladas de poluentes atmosféricos
  • comparação com os padrões de qualidade do ar
  • inventário de efeitos sobre a saúde pública e o meio ambiente
  • análise causal
  • medidas de controle
  • custo das medidas de controle
  • custo de saúde pública e efeitos ambientais
  • análise de custo-benefício (custos de controle vs. custos de esforços)
  • transporte e planejamento do uso da terra
  • plano de execução; compromisso de recursos
  • projeções para o futuro sobre população, tráfego, indústrias e consumo de combustível
  • estratégias de acompanhamento.

 

Algumas dessas questões serão descritas a seguir.

Inventário de Emissões; Comparação com os Padrões de Emissão

O inventário de emissões é uma listagem mais completa de fontes em uma determinada área e de suas emissões individuais, estimadas com a maior precisão possível de todas as fontes emissoras de ponto, linha e área (difusas). Quando essas emissões são comparadas com os padrões de emissão estabelecidos para uma determinada fonte, são dadas as primeiras dicas sobre possíveis medidas de controle caso os padrões de emissão não sejam cumpridos. O inventário de emissões também serve para avaliar uma lista prioritária de fontes importantes de acordo com a quantidade de poluentes emitidos e indica a influência relativa de diferentes fontes – por exemplo, tráfego em comparação com fontes industriais ou residenciais. O inventário de emissões também permite uma estimativa das concentrações de poluentes atmosféricos para aqueles poluentes para os quais as medições de concentração ambiente são difíceis ou muito caras de realizar.

Inventário de Concentrações de Poluentes Atmosféricos; Comparação com os Padrões de Qualidade do Ar

O inventário das concentrações de poluentes atmosféricos sintetiza os resultados da monitorização dos poluentes atmosféricos ambientais em termos de médias anuais, percentis e tendências dessas quantidades. Os compostos medidos para tal inventário incluem o seguinte:

  • dióxido de enxofre
  • óxidos de nitrogênio
  • material particulado suspenso
  • monóxido de carbono
  • ozônio
  • metais pesados ​​(Pb, Cd, Ni, Cu, Fe, As, Be)
  • hidrocarbonetos aromáticos policíclicos: benzo(a)pireno, benzo(e)pireno, benzo(a)antraceno, dibenzo(uma,h)antraceno, benzooi)perileno, coronen
  • Compostos orgânicos voláteis: n-hexano, benzeno, 3-metil-hexano, n-heptano, tolueno, octano, etil-benzeno xileno (o-,m-,p-), n-nonano, isopropilbenzeno, propilbenzeno, n-2-/3-/4-etiltolueno, 1,2,4-/1,3,5-trimetilbenzeno, triclorometano, 1,1,1 tricloroetano, tetraclorometano, tri-/tetracloroeteno.

 

A comparação das concentrações de poluentes atmosféricos com os padrões ou diretrizes de qualidade do ar, se existirem, indica áreas problemáticas para as quais uma análise causal deve ser realizada para descobrir quais fontes são responsáveis ​​pelo não cumprimento. A modelagem de dispersão deve ser usada na realização dessa análise causal (consulte “Poluição do ar: Modelagem da dispersão de poluentes do ar”). Os dispositivos e procedimentos usados ​​no monitoramento atual da poluição do ar são descritos em “Monitoramento da qualidade do ar”.

Concentrações Simuladas de Poluentes do Ar; Comparação com os Padrões de Qualidade do Ar

A partir do inventário de emissões, com seus milhares de compostos que não podem ser todos monitorados no ar ambiente por questões de economia, o uso de modelagem de dispersão pode ajudar a estimar as concentrações de compostos mais “exóticos”. Usando parâmetros meteorológicos apropriados em um modelo de dispersão adequado, médias anuais e percentis podem ser estimados e comparados com padrões ou diretrizes de qualidade do ar, se existirem.

Inventário de Efeitos na Saúde Pública e no Meio Ambiente; Análise causal

Outra importante fonte de informação é o inventário de efeitos (Ministerium für Umwelt 1993), que consiste em resultados de estudos epidemiológicos na área em questão e de efeitos da poluição do ar observados em receptores biológicos e materiais como, por exemplo, plantas, animais e construção metais e pedras de construção. Os efeitos observados atribuídos à poluição do ar devem ser analisados ​​causalmente em relação ao componente responsável por um determinado efeito – por exemplo, aumento da prevalência de bronquite crônica em uma área poluída. Se o composto ou compostos foram fixados em uma análise causal (análise de composto-causal), uma segunda análise deve ser realizada para descobrir as fontes responsáveis ​​(análise de origem-causal).

Medidas de controle; Custo das Medidas de Controle

As medidas de controle para instalações industriais incluem dispositivos de limpeza de ar adequados, bem projetados, bem instalados, operados e mantidos com eficiência, também chamados de separadores ou coletores. Um separador ou coletor pode ser definido como um “aparelho para separar qualquer um ou mais dos seguintes elementos de um meio gasoso no qual estão suspensos ou misturados: partículas sólidas (filtro e separadores de poeira), partículas líquidas (filtro e separador de gotículas) e gases (purificador de gás)”. Os tipos básicos de equipamentos de controle de poluição do ar (discutidos mais adiante em “Controle de poluição do ar”) são os seguintes:

  • para material particulado: separadores inerciais (por exemplo, ciclones); filtros de tecido (baghouses); precipitadores eletrostáticos; coletores úmidos (lavadores)
  • para poluentes gasosos: coletores úmidos (lavadores); unidades de adsorção (por exemplo, leitos de adsorção); pós-combustores, que podem ser de queima direta (incineração térmica) ou catalítica (combustão catalítica).

 

Coletores úmidos (lavadores) podem ser usados ​​para coletar, ao mesmo tempo, poluentes gasosos e material particulado. Além disso, certos tipos de dispositivos de combustão podem queimar gases e vapores combustíveis, bem como certos aerossóis combustíveis. Dependendo do tipo de efluente, pode ser utilizado um ou uma combinação de mais de um coletor.

O controlo dos odores quimicamente identificáveis ​​assenta no controlo do(s) agente(s) químico(s) de que emanam (por exemplo, por absorção, por incineração). No entanto, quando um odor não é definido quimicamente ou o agente produtor é encontrado em níveis extremamente baixos, outras técnicas podem ser usadas, como mascaramento (por um agente mais forte, mais agradável e inofensivo) ou neutralização (por um aditivo que neutraliza ou parcialmente neutraliza o odor ofensivo).

Deve-se ter em mente que operação e manutenção adequadas são indispensáveis ​​para garantir a eficiência esperada de um coletor. Isso deve ser assegurado na fase de planejamento, tanto do ponto de vista de know-how quanto financeiro. Os requisitos de energia não devem ser negligenciados. Ao selecionar um dispositivo de limpeza de ar, não apenas o custo inicial, mas também os custos operacionais e de manutenção devem ser considerados. Sempre que se trate de poluentes de alta toxicidade, deve-se garantir alta eficiência, bem como procedimentos especiais para manutenção e descarte de resíduos.

As medidas fundamentais de controle em instalações industriais são as seguintes:

Substituição de materiais. Exemplos: substituição de solventes menos tóxicos por altamente tóxicos utilizados em determinados processos industriais; uso de combustíveis com menor teor de enxofre (por exemplo, carvão lavado), portanto, dando origem a menos compostos de enxofre e assim por diante.

Modificação ou alteração do processo ou equipamento industrial. Exemplos: na indústria siderúrgica, mudança de minério bruto para minério sinterizado peletizado (para reduzir a poeira liberada durante o manuseio do minério); uso de sistemas fechados ao invés de abertos; mudança de sistemas de aquecimento de combustível para vapor, água quente ou sistemas elétricos; uso de catalisadores nas saídas de ar de exaustão (processos de combustão) e assim por diante.

Modificações nos processos, bem como no layout da planta, também podem facilitar e/ou melhorar as condições de dispersão e coleta de poluentes. Por exemplo, um layout diferente da planta pode facilitar a instalação de um sistema de exaustão local; o desempenho de um processo a uma taxa mais baixa pode permitir o uso de um determinado coletor (com limitações de volume, mas adequado). Modificações de processo que concentram diferentes fontes de efluentes estão intimamente relacionadas ao volume de efluente tratado, e a eficiência de alguns equipamentos de purificação do ar aumenta com a concentração de poluentes no efluente. Tanto a substituição de materiais quanto a modificação de processos podem apresentar limitações técnicas e/ou econômicas, que devem ser consideradas.

Limpeza e armazenamento adequados. Exemplos: sanitização rigorosa no processamento de alimentos e produtos de origem animal; evitar o armazenamento aberto de produtos químicos (por exemplo, pilhas de enxofre) ou materiais empoeirados (por exemplo, areia) ou, na falta disso, borrifar as pilhas de partículas soltas com água (se possível) ou aplicar revestimentos de superfície (por exemplo, agentes umectantes, plástico) a pilhas de materiais que podem liberar poluentes.

Descarte adequado de resíduos. Exemplos: evitar o simples acúmulo de resíduos químicos (como restos de reatores de polimerização), bem como o despejo de materiais poluentes (sólidos ou líquidos) em cursos d'água. Esta última prática não só causa poluição da água, mas também pode criar uma fonte secundária de poluição do ar, como no caso de resíduos líquidos de fábricas de celulose de processamento de sulfito, que liberam poluentes gasosos com odor desagradável.

Manutenção. Exemplo: motores de combustão interna bem conservados e bem ajustados produzem menos monóxido de carbono e hidrocarbonetos.

Práticas de trabalho. Exemplo: levar em consideração as condições meteorológicas, principalmente ventos, ao pulverizar pesticidas.

Por analogia com as práticas adequadas no local de trabalho, as boas práticas a nível comunitário podem contribuir para o controlo da poluição atmosférica - por exemplo, alterações na utilização de veículos motorizados (mais transportes colectivos, automóveis pequenos, etc.) isolamento de edifícios para exigir menos aquecimento, melhores combustíveis e assim por diante).

As medidas de controlo das emissões veiculares são adequadas e eficientes programas obrigatórios de inspecção e manutenção que se aplicam ao parque automóvel existente, programas de fiscalização da utilização de conversores catalíticos em automóveis novos, substituição agressiva de automóveis movidos a energia solar/bateria por movidos a combustível , regulação do tráfego rodoviário e conceitos de planejamento de transporte e uso do solo.

As emissões dos veículos motorizados são controladas pelo controle das emissões por milha percorrida por veículo (VMT) e pelo controle do próprio VMT (Walsh 1992). As emissões por VMT podem ser reduzidas controlando o desempenho do veículo - hardware, manutenção - para carros novos e em uso. A composição do combustível da gasolina com chumbo pode ser controlada pela redução do teor de chumbo ou enxofre, o que também tem um efeito benéfico na diminuição das emissões de HC dos veículos. A redução dos níveis de enxofre no combustível diesel como forma de diminuir a emissão de partículas diesel tem o efeito benéfico adicional de aumentar o potencial de controle catalítico das emissões de partículas diesel e HC orgânicos.

Outra importante ferramenta de gestão para reduzir as emissões evaporativas e de reabastecimento dos veículos é o controle da volatilidade da gasolina. O controle da volatilidade do combustível pode reduzir significativamente as emissões de HC por evaporação do veículo. O uso de aditivos oxigenados na gasolina reduz a exaustão de HC e CO, desde que a volatilidade do combustível não seja aumentada.

A redução do VMT é um meio adicional de controlar as emissões veiculares por meio de estratégias de controle como

  • uso de meios de transporte mais eficientes
  • aumentando o número médio de passageiros por carro
  • espalhando cargas de tráfego de pico congestionadas
  • redução da demanda de viagens.

 

Embora essas abordagens promovam a economia de combustível, elas ainda não são aceitas pela população em geral e os governos não tentaram implementá-las seriamente.

Todas essas soluções tecnológicas e políticas para o problema do veículo motorizado, exceto a substituição de carros elétricos, são cada vez mais compensadas pelo crescimento da população de veículos. O problema do veículo só pode ser resolvido se o problema do crescimento for tratado de maneira apropriada.

Custo da Saúde Pública e Efeitos Ambientais; Análise de custo-benefício

A estimativa dos custos da saúde pública e dos efeitos ambientais é a parte mais difícil de um plano de implementação de ar limpo, pois é muito difícil estimar o valor da redução ao longo da vida de doenças incapacitantes, taxas de internação hospitalar e horas de trabalho perdidas. No entanto, esta estimativa e uma comparação com o custo das medidas de controle são absolutamente necessárias para equilibrar os custos das medidas de controle versus os custos de nenhuma medida, em termos de saúde pública e efeitos ambientais.

Planejamento de Transporte e Uso do Solo

O problema da poluição está intimamente ligado ao uso da terra e ao transporte, incluindo questões como planejamento comunitário, projeto de estradas, controle de tráfego e transporte de massa; a preocupações de demografia, topografia e economia; e às preocupações sociais (Venzia 1977). Em geral, as agregações urbanas em rápido crescimento têm sérios problemas de poluição devido a más práticas de uso do solo e transporte. O planejamento de transporte para controle da poluição do ar inclui controles de transporte, políticas de transporte, trânsito de massa e custos de congestionamento nas rodovias. Os controles de transporte têm um impacto importante no público em geral em termos de equidade, repressão e perturbação social e econômica - em particular, controles diretos de transporte, como restrições de veículos motorizados, limitações de gasolina e reduções de emissões de veículos motorizados. As reduções de emissões devido a controles diretos podem ser estimadas e verificadas de forma confiável. Controles indiretos de transporte, como redução de milhas percorridas por veículos por meio da melhoria dos sistemas de transporte de massa, regulamentos de melhoria do fluxo de tráfego, regulamentos sobre estacionamentos, impostos rodoviários e de gasolina, permissões de uso de carros e incentivos para abordagens voluntárias são baseados principalmente em experiências anteriores. experiência de erro e incluem muitas incertezas ao tentar desenvolver um plano de transporte viável.

Os planos de ação nacionais que incorrem em controles indiretos de transporte podem afetar o transporte e o planejamento do uso do solo em relação a rodovias, estacionamentos e shopping centers. O planejamento de longo prazo do sistema de transporte e da área por ele influenciada evitará uma deterioração significativa da qualidade do ar e garantirá o cumprimento dos padrões de qualidade do ar. O transporte de massa é consistentemente considerado como uma solução potencial para os problemas de poluição do ar urbano. A seleção de um sistema de transporte de massa para atender uma área e diferentes divisões modais entre o uso de rodovias e serviços de ônibus ou trens acabará por alterar os padrões de uso do solo. Existe uma divisão ótima que minimizará a poluição do ar; no entanto, isso pode não ser aceitável quando fatores não ambientais são considerados.

O automóvel tem sido considerado o maior gerador de externalidades econômicas já conhecido. Alguns deles, como empregos e mobilidade, são positivos, mas os negativos, como poluição do ar, acidentes com morte e ferimentos, danos à propriedade, ruído, perda de tempo e agravamento, levam à conclusão de que o transporte não é uma indústria de custo decrescente em áreas urbanizadas. Os custos de congestionamento rodoviário são outra externalidade; tempo perdido e custos de congestionamento, no entanto, são difíceis de determinar. Uma verdadeira avaliação dos modos de transporte concorrentes, como o transporte de massa, não pode ser obtida se os custos de viagens de trabalho não incluírem os custos de congestionamento.

O planejamento do uso da terra para o controle da poluição do ar inclui códigos de zoneamento e padrões de desempenho, controles de uso da terra, habitação e desenvolvimento da terra e políticas de planejamento do uso da terra. O zoneamento do uso da terra foi a tentativa inicial de proteger as pessoas, suas propriedades e suas oportunidades econômicas. No entanto, a natureza ubíqua dos poluentes atmosféricos exigia mais do que a separação física de indústrias e áreas residenciais para proteger o indivíduo. Por esta razão, padrões de desempenho baseados inicialmente em decisões estéticas ou qualitativas foram introduzidos em alguns códigos de zoneamento na tentativa de quantificar critérios para identificar problemas potenciais.

As limitações da capacidade assimilativa do ambiente devem ser identificadas para o planejamento do uso da terra a longo prazo. Então, controles de uso da terra podem ser desenvolvidos para ratear a capacidade equitativamente entre as atividades locais desejadas. Os controles de uso da terra incluem sistemas de permissão para revisão de novas fontes estacionárias, regulamentação de zoneamento entre áreas industriais e residenciais, restrição por servidão ou compra de terras, controle de localização de receptores, zoneamento de densidade de emissão e regulamentação de alocação de emissões.

As políticas habitacionais destinadas a tornar a casa própria disponível para muitos que de outra forma não poderiam pagar (como incentivos fiscais e políticas hipotecárias) estimulam a expansão urbana e indiretamente desencorajam o desenvolvimento residencial de alta densidade. Essas políticas já provaram ser ambientalmente desastrosas, pois nenhuma consideração foi dada ao desenvolvimento simultâneo de sistemas de transporte eficientes para atender às necessidades da multidão de novas comunidades que estão sendo desenvolvidas. A lição aprendida com esse desenvolvimento é que os programas que impactam o meio ambiente devem ser coordenados e um planejamento abrangente deve ser feito no nível em que o problema ocorre e em uma escala grande o suficiente para incluir todo o sistema.

O planejamento do uso da terra deve ser examinado nos níveis nacional, provincial ou estadual, regional e local para garantir adequadamente a proteção do meio ambiente a longo prazo. Os programas governamentais geralmente começam com a localização de usinas de energia, locais de extração mineral, zoneamento costeiro e deserto, montanha ou outro desenvolvimento recreativo. Como a multiplicidade de governos locais em uma determinada região não pode lidar adequadamente com os problemas ambientais regionais, os governos ou agências regionais devem coordenar o desenvolvimento da terra e os padrões de densidade, supervisionando o arranjo espacial e a localização de novas construções e usos e instalações de transporte. O planejamento do uso do solo e dos transportes deve estar inter-relacionado com a aplicação dos regulamentos para manter a qualidade do ar desejada. Idealmente, o controle da poluição do ar deveria ser planejado pela mesma agência regional que faz o planejamento do uso da terra por causa das externalidades sobrepostas associadas a ambas as questões.

Plano de Execução, Compromisso de Recursos

O plano de implementação de ar limpo deve sempre conter um plano de execução que indique como as medidas de controle podem ser aplicadas. Isso implica também um compromisso de recursos que, de acordo com o princípio do poluidor-pagador, indicará o que o poluidor deve implementar e como o governo ajudará o poluidor a cumprir o compromisso.

Projeções para o futuro

No sentido de um plano de precaução, o plano de implementação do ar limpo também deve incluir estimativas das tendências da população, tráfego, indústrias e consumo de combustível para avaliar respostas a problemas futuros. Isso evitará tensões futuras ao aplicar medidas bem antes dos problemas imaginados.

Estratégias de Acompanhamento

Uma estratégia de acompanhamento da gestão da qualidade do ar consiste em planos e políticas sobre como implementar planos futuros de implementação de ar limpo.

Papel da Avaliação de Impacto Ambiental

Avaliação de impacto ambiental (AIA) é o processo de fornecer uma declaração detalhada pela agência responsável sobre o impacto ambiental de uma ação proposta que afeta significativamente a qualidade do ambiente humano (Lee 1993). A AIA é um instrumento de prevenção que visa a consideração do ambiente humano numa fase inicial do desenvolvimento de um programa ou projeto.

A AIA é particularmente importante para os países que desenvolvem projetos no quadro da reorientação e reestruturação económica. A AIA tornou-se legislação em muitos países desenvolvidos e agora é cada vez mais aplicada em países em desenvolvimento e economias em transição.

A AIA é integrativa no sentido de planejamento e gestão ambiental abrangente, considerando as interações entre os diferentes meios ambientais. Por outro lado, a AIA integra a estimativa das consequências ambientais no processo de planeamento e torna-se assim um instrumento de desenvolvimento sustentável. O EIA também combina propriedades técnicas e participativas, pois coleta, analisa e aplica dados científicos e técnicos com consideração de controle de qualidade e garantia de qualidade, e enfatiza a importância de consultas antes dos procedimentos de licenciamento entre agências ambientais e o público que pode ser afetado por projetos específicos . Um plano de implementação de ar limpo pode ser considerado como parte do procedimento de AIA com referência ao ar.

 

Voltar

Leia 21650 vezes Última modificação em sábado, 30 de julho de 2011 15:38

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de controle de poluição ambiental

Associação Americana de Saúde Pública (APHA). 1995. Métodos padrão para o exame de água e águas residuais. Alexandria, Virgínia: Federação do Meio Ambiente da Água.

Secretaria da ARET. 1995. Environmental Leaders 1, Voluntary Commitments to Action on Toxics through ARET. Hull, Quebec: Gabinete de Inquérito Público do Meio Ambiente do Canadá.

Bispo, P.L. 1983. Poluição Marinha e Seu Controle. Nova York: McGraw-Hill.

Brown, LC e TO Barnwell. 1987. Modelos aprimorados de qualidade de água de fluxo QUAL2E e QUAL2E-UNCAS: Documentação e Manual do usuário. Athens, Ga: US EPA, Laboratório de Pesquisa Ambiental.

Marrom, RH. 1993. Pure Appl Chem 65(8):1859-1874.

Calabrese, EJ e EM Kenyon. 1991. Tóxicos Aéreos e Avaliação de Risco. Chelsea, Michigan: Lewis.

Canadá e Ontário. 1994. O Acordo Canadá-Ontário Respeitando o Ecossistema dos Grandes Lagos. Hull, Quebec: Gabinete de Inquérito Público do Meio Ambiente do Canadá.

Dillon, PJ. 1974. Uma revisão crítica do modelo de orçamento de nutrientes de Vollenweider e outros modelos relacionados. Recursos Hídricos Bull 10(5):969-989.

Eckenfelder, WW. 1989. Controle de Poluição de Água Industrial. Nova York: McGraw-Hill.

Economopoulos, AP. 1993. Avaliação das Fontes de Poluição do Ar, Água e Terra. Um guia para técnicas de inventário de fonte rápida e seu uso na formulação de estratégias de controle ambiental. Parte Um: Técnicas de Inventário Rápido em Poluição Ambiental. Parte Dois: Abordagens para Consideração na Formulação de Estratégias de Controle Ambiental. (Documento não publicado WHO/YEP/93.1.) Genebra: OMS.

Agência de Proteção Ambiental (EPA). 1987. Diretrizes para Delineação de Áreas de Proteção de Cabeças de Poço. Englewood Cliffs, NJ: EPA.

Meio Ambiente Canadá. 1995a. Prevenção da Poluição - Uma Estratégia Federal para Ação. Ottawa: Environment Canada.

—. 1995b. Prevenção da Poluição - Uma Estratégia Federal para Ação. Ottawa: Environment Canada.

Freeze, RA e JA Cherry. 1987. Água subterrânea. Englewood Cliffs, NJ: Prentice Hall.

Sistema Global de Monitoramento Ambiental (GEMS/Ar). 1993. Um Programa Global para Monitoramento e Avaliação da Qualidade do Ar Urbano. Genebra: PNUMA.

Hosker, RP. 1985. Fluxo em torno de estruturas isoladas e clusters de construção, uma revisão. ASHRAE Trans 91.

Comissão Conjunta Internacional (IJC). 1993. Uma Estratégia para Eliminação Virtual de Substâncias Tóxicas Persistentes. Vol. 1, 2, Windsor, Ontário: IJC.

Kanarek, A. 1994. Recarga de águas subterrâneas com efluentes municipais, bacias de recarga Soreq, Yavneh 1 & Yavneh 2. Israel: Mekoroth Water Co.

Lee, N. 1993. Visão geral da AIA na Europa e sua aplicação no New Bundeslander. Em UVP

Leitfaden, editado por V Kleinschmidt. Dortmund .

Metcalf e Eddy, I. 1991. Wastewater Engineering Treatment, Disposal, and Reuse. Nova York: McGraw-Hill.

Miller, JM e A Soudine. 1994. Sistema de observação atmosférica global da OMM. Hvratski meteorolski casopsis 29:81-84.

Ministério für Umwelt. 1993. Raumordnung Und Landwirtschaft Des Landes Nordrhein-Westfalen, Luftreinhalteplan
Ruhrgebiet West [Plano de Implementação de Ar Limpo na Área de Ruhr Ocidental].

Parkhurst, B. 1995. Métodos de Gestão de Risco, Ambiente e Tecnologia da Água. Washington, DC: Federação do Meio Ambiente da Água.

Pecor, CH. 1973. Houghton Lake Annual Nitrogen and Phosphorous Budgets. Lansing, Michigan: Departamento de Recursos Naturais.

Pielke, RA. 1984. Modelagem Meteorológica de Mesoescala. Orlando: Academic Press.

Preul, HC. 1964. Viagem de compostos de nitrogênio em solos. doutorado Dissertação, University of Minnesota, Minneapolis, Minn.

—. 1967. Movimento Subterrâneo de Nitrogênio. Vol. 1. Londres: Associação Internacional de Qualidade da Água.

—. 1972. Análise e controle da poluição subterrânea. Pesquisa de Água. J Int Assoc Qualidade da Água (outubro):1141-1154.

—. 1974. Efeitos da disposição de resíduos no subsolo na bacia hidrográfica do Lago Sunapee. Estudo e relatório para Lake Sunapee Protective Association, Estado de New Hampshire, inédito.

—. 1981. Plano de Reciclagem de Efluentes de Curtumes de Couro. Associação Internacional de Recursos Hídricos.

—. 1991. Nitratos em Recursos Hídricos nos EUA. : Associação de Recursos Hídricos.

Preul, HC e GJ Schroepfer. 1968. Viagem de compostos de nitrogênio em solos. J Water Pollut Contr Fed (abril).

Reid, G e R Wood. 1976. Ecologia de águas interiores e estuários. Nova York: Van Nostrand.

Reish, D. 1979. Poluição marinha e estuarina. J Water Pollut Contr Fed 51(6):1477-1517.

Sawyer, CN. 1947. Fertilização de lagos por drenagem agrícola e urbana. J New Engl Waterworks Assoc 51:109-127.

Schwela, DH e I Köth-Jahr. 1994. Leitfaden für die Aufstellung von Luftreinhalteplänen [Diretrizes para a implementação de planos de implementação de ar limpo]. Landesumweltamt des Landes Nordrhein Westfalen.

Estado de Ohio. 1995. Padrões de qualidade da água. No Cap. 3745-1 do Código Administrativo. Columbus, Ohio: Ohio EPA.

TAYLOR, ST. 1995. Simulando o impacto da vegetação enraizada na dinâmica de nutrientes e oxigênio dissolvido usando o modelo diurno OMNI. Nos Anais da Conferência Anual do FEM. Alexandria, Virgínia: Federação do Meio Ambiente da Água.

Estados Unidos e Canadá. 1987. Acordo revisado sobre a qualidade da água dos Grandes Lagos de 1978, conforme alterado pelo protocolo assinado em 18 de novembro de 1987. Hull, Quebec: Escritório de Inquérito Público do Canadá Ambiental.

Venkatram, A e J Wyngaard. 1988. Palestras sobre Modelagem de Poluição do Ar. Boston, Mass: American Meteorological Society.

Venzia, RA. 1977. Uso da terra e planejamento de transporte. In Air Pollution, editado por AC Stern. Nova York: Academic Press.

Verein Deutscher Ingenieure (VDI) 1981. Diretriz 3783, Parte 6: Dispersão regional de poluentes em trens complexos.
Simulação do campo de vento. Düsseldorf: VDI.

—. 1985. Diretriz 3781, Parte 3: Determinação da ascensão da pluma. Düsseldorf: VDI.

—. 1992. Diretriz 3782, Parte 1: Modelo de dispersão gaussiana para gerenciamento da qualidade do ar. Düsseldorf: VDI.

—. 1994. Diretriz 3945, Parte 1 (rascunho): Modelo de sopro gaussiano. Düsseldorf: VDI.

—. ª Diretriz 3945, Parte 3 (em preparação): Modelos de partículas. Düsseldorf: VDI.

Viessman, W, GL Lewis e JW Knapp. 1989. Introdução à Hidrologia. Nova York: Harper & Row.

Vollenweider, RA. 1968. Fundamentos Científicos da Eutrofização de Lagos e Águas Correntes, com Particular
Referência aos Fatores de Nitrogênio e Fósforo na Eutrofização. Paris: OCDE.

—. 1969. Möglichkeiten e Grenzen elementarer Modelle der Stoffbilanz von Seen. Arch Hydrobiol 66:1-36.

Walsh, MP. 1992. Revisão das medidas de controle de emissões de veículos motorizados e sua eficácia. In Motor Vehicle Air Pollution, Public Health Impact and Control Measures, editado por D Mage e O Zali. República e Cantão de Genebra: Serviço de Ecotoxicologia da OMS, Departamento de Saúde Pública.

Federação do Meio Ambiente da Água. 1995. Resumo de Prevenção de Poluição e Minimização de Resíduos. Alexandria, Virgínia: Federação do Meio Ambiente da Água.

Organização Mundial da Saúde (OMS). 1980. Glossário Sobre Poluição do Ar. European Series, No. 9. Copenhagen: WHO Regional Publications.

—. 1987. Diretrizes de Qualidade do Ar para a Europa. European Series, No. 23. Copenhagen: WHO Regional Publications.

Organização Mundial da Saúde (OMS) e Programa Ambiental das Nações Unidas (PNUMA). 1994. GEMS/AIR Methodology Reviews Handbook Series. Vol. 1-4. Seguro de Qualidade no Monitoramento da Qualidade do Ar Urbano, Genebra: OMS.

—. 1995a. Tendências de qualidade do ar da cidade. vol. 1-3. Genebra: OMS.

—. 1995b. Série de manuais de revisões de metodologia GEMS/AIR. Vol. 5. Diretrizes para análises colaborativas GEMS/AIR. Genebra: OMS.

Yamartino, RJ e G Wiegand. 1986. Desenvolvimento e avaliação de modelos simples para os campos de fluxo, turbulência e concentração de poluentes dentro de um desfiladeiro urbano. Atmos Environ 20(11):S2137-S2156.