Quinta-feira, Março 24 2011 18: 00

Controle de Ruído de Engenharia

Classifique este artigo
(3 votos)

Idealmente, o meio mais eficaz de controle de ruído é impedir que a fonte de ruído entre no ambiente da fábrica em primeiro lugar - estabelecendo um programa eficaz de "Compre Silencioso" para fornecer ao local de trabalho equipamentos projetados para produzir baixo ruído. Para realizar tal programa, uma declaração de especificações clara e bem escrita para limitar as características de ruído de novos equipamentos, instalações e processos da planta deve ser projetada para levar em consideração o risco de ruído. Um bom programa também inclui monitoramento e manutenção.

Uma vez instalados os equipamentos e identificado o excesso de ruído por meio de medições de nível sonoro, o problema de controle do ruído torna-se mais complicado. No entanto, existem controles de engenharia disponíveis que podem ser adaptados a equipamentos existentes. Além disso, geralmente há mais de uma opção de controle de ruído para cada problema. Portanto, torna-se importante para o indivíduo que gerencia o programa de controle de ruído determinar os meios mais viáveis ​​e econômicos disponíveis para a redução de ruído em cada situação.

Controlando o ruído na fábrica e no design do produto

O uso de especificações escritas para definir os requisitos do equipamento, sua instalação e aceitação é uma prática padrão no ambiente atual. Uma das principais oportunidades na área de controle de ruído disponível para o projetista de fábrica é influenciar a seleção, compra e layout de novos equipamentos. Quando devidamente escrito e administrado, a implementação de um programa de “Compre Silencioso” por meio de especificações de compra pode ser um meio eficaz de controlar o ruído.

A abordagem mais proativa para controlar o ruído na fase de projeto de instalações e aquisição de equipamentos existe na Europa. Em 1985, os doze estados membros da Comunidade Européia (CE)—agora a União Européia (UE)—adotaram Diretivas de “Nova Abordagem” projetadas para tratar de uma ampla classe de equipamentos ou máquinas, em vez de padrões individuais para cada tipo de equipamento. Até o final de 1994, haviam sido emitidas três Diretivas de “Nova Abordagem” que continham requisitos sobre ruído. Essas Diretrizes são:

  1. Diretiva 89/392/EEC, com duas emendas 91/368/EEC e 93/44/EEC
  2. Directiva 89 / 106 / CEE
  3. Diretiva 89/686/EEC, com uma emenda 93/95/EEC.

 

O primeiro item listado acima (89/392/EEC) é comumente chamado de Diretriz de Máquinas. Esta diretiva obriga os fabricantes de equipamentos a incluir o controle de ruído como parte essencial da segurança das máquinas. O objetivo básico dessas medidas é que, para que as máquinas ou equipamentos sejam vendidos na UE, eles devem atender aos requisitos essenciais em relação ao ruído. Como resultado, tem havido uma grande ênfase no design de equipamentos de baixo ruído desde o final da década de 1980 por fabricantes interessados ​​em comercializar na UE.

Para empresas fora da UE que tentam implementar um programa voluntário “Buy Quiet”, o grau de sucesso alcançado depende em grande parte do tempo e do comprometimento de toda a hierarquia de gerenciamento. A primeira etapa do programa é estabelecer critérios de ruído aceitáveis ​​para a construção de uma nova fábrica, expansão de uma instalação existente e aquisição de novos equipamentos. Para que o programa seja eficaz, os limites de ruído especificados devem ser vistos tanto pelo comprador quanto pelo fornecedor como um requisito absoluto. Quando um produto não atende a outros parâmetros de projeto do equipamento, como tamanho, taxa de fluxo, pressão, aumento de temperatura permitido e assim por diante, ele é considerado inaceitável pela administração da empresa. Este é o mesmo compromisso que deve ser seguido em relação aos níveis de ruído para que o programa “Compre Tranquilo” seja bem-sucedido.

No que diz respeito ao aspecto do tempo mencionado acima, quanto mais cedo no processo de design forem considerados os aspectos de ruído de um projeto ou compra de equipamentos, maior será a probabilidade de sucesso. Em muitas situações, o projetista da fábrica ou o comprador do equipamento poderá escolher os tipos de equipamento. O conhecimento das características do ruído das várias alternativas permitir-lhe-á especificar as mais silenciosas.

Além da seleção do equipamento, é essencial o envolvimento precoce no projeto do layout do equipamento dentro da planta. A realocação do equipamento no papel durante a fase de concepção de um projeto é claramente muito mais fácil do que a movimentação física do equipamento posteriormente, especialmente quando o equipamento estiver em operação. Uma regra simples a seguir é manter juntas as máquinas, processos e áreas de trabalho com nível de ruído aproximadamente igual; e separar áreas particularmente ruidosas e particularmente silenciosas por zonas tampão com níveis de ruído intermediários.

A validação dos critérios de ruído como requisito absoluto requer um esforço cooperativo entre o pessoal da empresa de departamentos como engenharia, jurídico, compras, higiene industrial e meio ambiente. Por exemplo, os departamentos de higiene industrial, segurança e/ou pessoal podem determinar os níveis de ruído desejados para os equipamentos, bem como realizar pesquisas sonoras para qualificar os equipamentos. Em seguida, os engenheiros da empresa podem escrever a especificação de compra, bem como selecionar tipos de equipamentos silenciosos. O agente de compras provavelmente administrará o contrato e contará com os representantes do departamento jurídico para assistência na execução. O envolvimento de todas essas partes deve começar com o início do projeto e continuar por meio de solicitações de financiamento, planejamento, projeto, licitação, instalação e comissionamento.

Mesmo o documento de especificação mais completo e conciso tem pouco valor, a menos que o ônus da conformidade seja colocado no fornecedor ou fabricante. Linguagem contratual clara deve ser usada para definir os meios de determinar a conformidade. Os procedimentos da empresa destinados a estabelecer garantias devem ser consultados e seguidos. Pode ser desejável incluir cláusulas de penalidade por não conformidade. O mais importante na estratégia de cumprimento é o compromisso do comprador em garantir que os requisitos sejam atendidos. O compromisso com os critérios de ruído em troca de custo, data de entrega, desempenho ou outras concessões deve ser a exceção e não a regra.

Nos Estados Unidos, a ANSI publicou o padrão ANSI S12.16: Diretrizes para Especificação de Ruído de Máquinas Novas (1992). Esta norma é um guia útil para escrever uma especificação interna de ruído da empresa. Além disso, esta norma fornece orientação para a obtenção de dados de nível de som de fabricantes de equipamentos. Uma vez obtidos do fabricante, os dados podem ser usados ​​por projetistas de plantas no planejamento de layouts de equipamentos. Devido aos vários tipos de equipamentos e ferramentas distintos para os quais este padrão foi preparado, não existe um único protocolo de levantamento apropriado para a medição de dados de nível de som. Como resultado, esta norma contém informações de referência sobre o procedimento de medição de som apropriado para testar uma variedade de equipamentos estacionários. Esses procedimentos de pesquisa foram preparados pela organização comercial ou profissional apropriada nos Estados Unidos, responsável por um determinado tipo ou classe de equipamento.

Adaptação de equipamentos existentes

Antes que alguém possa decidir o que precisa ser feito, torna-se necessário identificar a causa raiz do ruído. Para este fim, é útil ter uma compreensão de como o ruído é gerado. O ruído é criado na maior parte por impactos mecânicos, fluxo de ar de alta velocidade, fluxo de fluido de alta velocidade, áreas de superfície vibrantes de uma máquina e, frequentemente, pelo produto que está sendo fabricado. No que diz respeito ao último item, é frequente nas indústrias de manufatura e processo, como fabricação de metal, fabricação de vidro, processamento de alimentos, mineração e assim por diante, que a interação entre o produto e as máquinas transmite a energia que cria o ruído.

Identificação da fonte

Um dos aspectos mais desafiadores do controle de ruído é a identificação da fonte real. Em um ambiente industrial típico, geralmente existem várias máquinas operando simultaneamente, o que dificulta a identificação da causa raiz do ruído. Isso é especialmente verdadeiro quando um medidor de nível de som padrão (SLM) é usado para avaliar o ambiente acústico. O SLM normalmente fornece um nível de pressão sonora (SPL) em um local específico, que é provavelmente o resultado de mais de uma fonte de ruído. Portanto, cabe ao topógrafo empregar uma abordagem sistemática que ajudará a separar as fontes individuais e sua contribuição relativa para o SPL geral. As seguintes técnicas de pesquisa podem ser usadas para ajudar a identificar a origem ou fonte de ruído:

  • Meça o espectro de frequência e faça um gráfico dos dados.
  • Meça o nível sonoro, em dBA, em função do tempo.
  • Compare os dados de frequência de equipamentos ou linhas de produção semelhantes.
  • Isole os componentes com controles temporários ou ligando e desligando itens individuais sempre que possível.

 

Um dos métodos mais eficazes para localizar a fonte do ruído é medir seu espectro de frequência. Uma vez que os dados são medidos, é muito útil representar graficamente os resultados para que se possa observar visualmente as características da fonte. Para a maioria dos problemas de redução de ruído, as medições podem ser realizadas com filtros de banda de oitava completa (1/1) ou de um terço (1/3) usados ​​com o SLM. A vantagem da medição de banda de 1/3 de oitava é que ela fornece informações mais detalhadas sobre o que está emanando de um equipamento. A Figura 1 mostra uma comparação entre medições de banda de oitava de 1/1 e 1/3 realizadas perto de uma bomba de nove pistões. Conforme ilustrado nesta figura, os dados da banda de 1/3 de oitava identificam claramente a frequência de bombeamento e muitos de seus harmônicos. Se alguém usar apenas 1/1, ou dados de banda de oitava completa, conforme representado pela linha sólida e plotado em cada frequência de banda central na figura 1, torna-se mais difícil diagnosticar o que está ocorrendo dentro da bomba. Com dados de banda de oitava de 1/1, há um total de nove pontos de dados entre 25 Hertz (Hz) e 10,000 Hz, conforme mostrado nesta figura. No entanto, há um total de 27 pontos de dados nesta faixa de frequência com o uso de medições de banda de 1/3 de oitava. Claramente, os dados da banda de 1/3 de oitava fornecerão dados mais úteis para identificar a causa raiz de um ruído. Esta informação é crítica se o objetivo for controlar o ruído na fonte. Se o único interesse for tratar o caminho ao longo do qual as ondas sonoras são transmitidas, então os dados de banda de 1/1 de oitava serão suficientes para fins de seleção de produtos ou materiais acusticamente adequados.

Figura 1. Comparação entre dados de banda de oitava de 1/1 e 1/3

NOI060F1

A Figura 2 mostra uma comparação entre o espectro de banda de 1/3 de oitava medido a 3 pés do tubo cruzado de um compressor de resfriador de líquido e o nível de fundo medido a aproximadamente 25 pés de distância (observe as aproximações dadas na nota de rodapé). Esta posição representa a área geral onde os funcionários normalmente caminham por esta sala. Na maior parte, a sala do compressor não é ocupada rotineiramente pelos trabalhadores. A única exceção existe quando os trabalhadores de manutenção estão consertando ou revisando outros equipamentos na sala. Além do compressor, existem várias outras grandes máquinas operando nessa área. Para auxiliar na identificação das fontes primárias de ruído, vários espectros de frequência foram medidos próximos a cada um dos equipamentos. Quando cada espectro foi comparado com os dados na posição de fundo na passarela, apenas o tubo cruzado da unidade do compressor exibiu uma forma de espectro semelhante. Consequentemente, pode-se concluir que esta é a principal fonte de ruído que controla o nível medido na passagem dos funcionários. Assim, conforme ilustrado na figura 2, por meio do uso de dados de frequência medidos próximos ao equipamento e comparando graficamente as fontes individuais com os dados registrados nas estações de trabalho dos funcionários ou outras áreas de interesse, muitas vezes é possível identificar as fontes dominantes de ruídos claramente.

Figura 2. Comparação do tubo cruzado versus nível de fundo

NOI060F2

Quando o nível de som flutua, como no caso de equipamentos cíclicos, é útil medir o nível de som geral ponderado A versus o tempo. Com este procedimento é importante observar e documentar quais eventos estão ocorrendo ao longo do tempo. A Figura 3 exibe o nível de ruído medido na estação de trabalho do operador durante um ciclo completo da máquina. O processo representado na figura 3 representa o de uma embaladora de produtos, que possui um tempo de ciclo de aproximadamente 95 segundos. Conforme mostrado na figura, o nível máximo de ruído de 96.2 dBA ocorre durante a liberação do ar comprimido, 33 segundos no ciclo da máquina. Os outros eventos importantes também são rotulados na figura, o que permite identificar a origem e a contribuição relativa de cada atividade durante o ciclo completo de empacotamento.

Figura 3. Estação de trabalho para operador de embalagem

NOI060F3

Em ambientes industriais onde há várias linhas de processo com o mesmo equipamento, vale a pena comparar os dados de frequência de equipamentos semelhantes entre si. A Figura 4 mostra essa comparação para duas linhas de processo semelhantes, ambas fabricando o mesmo produto e operando na mesma velocidade. Parte do processo envolve o uso de um dispositivo acionado pneumaticamente que perfura um orifício de meia polegada no produto como fase final de sua produção. A inspeção desta figura revela claramente que a linha nº 1 tem um nível de som geral 5 dBA mais alto que a linha nº 2. Além disso, o espectro representado pela linha nº 1 contém uma frequência fundamental e muitos harmônicos que não aparecem no espectro da linha nº 2. Consequentemente, é necessário investigar a causa dessas diferenças. Freqüentemente, diferenças significativas serão uma indicação da necessidade de manutenção, como foi a situação do mecanismo de perfuração final da linha #2. No entanto, este problema de ruído específico exigirá medidas de controle adicionais, uma vez que o nível geral na linha nº 1 ainda é relativamente alto. Mas o objetivo dessa técnica de pesquisa é identificar os diferentes problemas de ruído que podem existir entre itens de equipamentos e processos semelhantes que podem ser facilmente remediados com manutenção eficaz ou outros ajustes.

Figura 4. Operação de perfuração final para linhas de processo idênticas

NOI060F4

Conforme mencionado acima, um SLM normalmente fornece um SPL que compreende energia acústica de uma ou mais fontes de ruído. Em condições ideais de medição, seria melhor medir cada item do equipamento com todos os outros equipamentos desligados. Embora essa situação seja ideal, raramente é prático desligar a usina para permitir o isolamento de uma fonte específica. Para contornar essa limitação, muitas vezes é eficaz usar medidas de controle temporárias com certas fontes de ruído que fornecerão alguma redução de ruído de curto prazo para permitir a medição de outra fonte. Alguns materiais disponíveis que podem proporcionar uma redução temporária incluem invólucros de compensado, mantas acústicas, silenciadores e barreiras. Freqüentemente, a aplicação permanente desses materiais criará problemas de longo prazo, como acúmulo de calor, interferência no acesso do operador ou no fluxo do produto ou quedas de pressão dispendiosas associadas a silenciadores selecionados incorretamente. No entanto, para ajudar no isolamento de componentes individuais, esses materiais podem ser eficazes como controle de curto prazo.

Outro método disponível para isolar uma determinada máquina ou componente é ligar e desligar diferentes equipamentos ou seções de uma linha de produção. Para conduzir efetivamente este tipo de análise de diagnóstico, o processo deve ser capaz de funcionar com o item selecionado desligado. Em seguida, para que esse procedimento seja legítimo, é fundamental que o processo de fabricação não seja afetado de forma alguma. Se o processo for afetado, é totalmente possível que a medição não seja representativa do nível de ruído em condições normais. Por fim, todos os dados válidos podem ser classificados pela magnitude do valor geral de dBA para ajudar a priorizar equipamentos para controle de ruído de engenharia.

Selecionando as opções apropriadas de controle de ruído

Uma vez que a causa ou fonte do ruído é identificada e se sabe como ele se irradia para as áreas de trabalho dos funcionários, o próximo passo é decidir quais podem ser as opções de controle de ruído disponíveis. O modelo padrão usado com relação ao controle de quase todos os perigos à saúde é examinar as várias opções de controle que se aplicam à fonte, caminho e receptor. Em algumas situações, o controle de um desses elementos será suficiente. No entanto, em outras circunstâncias, pode ser necessário o tratamento de mais de um elemento para obter um ambiente de ruído aceitável.

O primeiro passo no processo de controle de ruído deve ser tentar alguma forma de tratamento da fonte. Com efeito, a modificação da fonte aborda a causa raiz de um problema de ruído, enquanto o controle do caminho de transmissão do som com barreiras e invólucros trata apenas os sintomas do ruído. Nas situações em que existem várias fontes dentro de uma máquina e o objetivo é tratar a fonte, será necessário abordar todos os mecanismos geradores de ruído componente por componente.

Para ruído excessivo gerado por impactos mecânicos, as opções de controle a serem investigadas podem incluir métodos para reduzir a força motriz, reduzir a distância entre os componentes, equilibrar equipamentos rotativos e instalar acessórios de isolamento de vibração. No que diz respeito ao ruído proveniente do fluxo de ar ou fluido em alta velocidade, a principal modificação é reduzir a velocidade do meio, assumindo que esta é uma opção viável. Às vezes, a velocidade pode ser reduzida aumentando a área da seção transversal da tubulação em questão. As obstruções na tubulação devem ser eliminadas para permitir um fluxo simplificado, o que por sua vez reduzirá as variações de pressão e a turbulência no meio a ser transportado. Finalmente, a instalação de um silenciador ou silenciador de tamanho adequado pode proporcionar uma redução significativa no ruído geral. O fabricante do silenciador deve ser consultado para obter assistência na seleção do dispositivo adequado, com base nos parâmetros operacionais e restrições estabelecidos pelo comprador.

Quando as áreas de superfície vibratória de uma máquina atuam como uma caixa de ressonância para o ruído aéreo, as opções de controle incluem uma redução na força motriz associada ao ruído, criação de seções menores a partir de áreas de superfície maiores, perfuração da superfície, aumento da rigidez do substrato ou massa, e aplicação de material de amortecimento ou acessórios de isolamento de vibração. Com relação ao uso de materiais de isolamento e amortecimento de vibração, o fabricante do produto deve ser consultado para obter assistência na seleção dos materiais e procedimentos de instalação apropriados. Finalmente, em muitas indústrias, o produto real que está sendo fabricado geralmente é um radiador eficiente de som transmitido pelo ar. Nessas situações, é importante avaliar maneiras de proteger firmemente ou apoiar melhor o produto durante a fabricação. Outra medida de controle de ruído a ser investigada seria reduzir a força de impacto entre a máquina e o produto, entre partes do próprio produto ou entre itens separados do produto.

Freqüentemente, o redesenho do processo ou do equipamento e a modificação da fonte podem se mostrar inviáveis. Além disso, pode haver situações em que é praticamente impossível identificar a causa raiz do ruído. Quando qualquer uma dessas situações existir, a utilização de medidas de controle para tratamento do percurso de transmissão do som seria um meio eficaz para reduzir o nível geral de ruído. As duas medidas primárias de redução para tratamentos de caminhos são os fechamentos acústicos e as barreiras.

O desenvolvimento de gabinetes acústicos está bem avançado no mercado atual. Caixas prontas para uso e caixas personalizadas estão disponíveis em vários fabricantes. Para adquirir o sistema apropriado, é necessário que o comprador forneça informações sobre o nível geral de ruído atual (e possivelmente dados de frequência), as dimensões do equipamento, a meta de redução de ruído, a necessidade de fluxo de produto e o acesso do funcionário, e quaisquer outras restrições operacionais. O fornecedor poderá usar essas informações para selecionar um item de estoque ou fabricar um invólucro personalizado para atender às necessidades do comprador.

Em muitas situações, pode ser mais econômico projetar e construir um gabinete em vez de comprar um sistema comercial. Ao projetar caixas, muitos fatores devem ser levados em consideração para que a caixa seja satisfatória do ponto de vista acústico e de produção. As diretrizes específicas para o projeto de gabinete são as seguintes:

Dimensões do gabinete. Não há nenhuma diretriz crítica para o tamanho ou dimensões de um invólucro. A melhor regra a seguir é quanto maior melhor. É fundamental que haja espaço suficiente para permitir que o equipamento execute todos os movimentos pretendidos sem entrar em contato com o invólucro.

Muro do recinto. A redução de ruído proporcionada por um invólucro depende dos materiais utilizados na construção das paredes e da estanqueidade do invólucro. A seleção dos materiais apropriados para a parede do invólucro deve ser determinada usando as seguintes regras práticas (Moreland 1979):

  • para um invólucro, sem absorção interna:

TLnecessário=NR+20dBA

  • com aproximadamente 50% de absorção interna:

TLnecessário=NR+15dBA

  • com 100% de absorção interna:

TLnecessário=NR+10dBA.

Nestas expressões TLnecessário é a perda de transmissão necessária da parede ou painel do invólucro e NR é a redução de ruído desejada para atender à meta de redução.

Selos. Para máxima eficiência, todas as juntas da parede do gabinete devem ser bem ajustadas. Aberturas em torno de penetrações de tubos, fiação elétrica e assim por diante, devem ser vedadas com mástique não endurecedor, como calafetagem de silicone.

Absorção interna. Para absorver e dissipar a energia acústica, a área da superfície interna do invólucro deve ser revestida com material acusticamente absorvente. O espectro de frequência da fonte deve ser usado para selecionar o material apropriado. Os dados de absorção publicados pelo fabricante fornecem a base para combinar o material com a fonte de ruído. É importante combinar os fatores de absorção máximos com as frequências da fonte que possuem os níveis de pressão sonora mais altos. O fornecedor ou fabricante do produto também pode ajudar na seleção do material mais eficaz com base no espectro de frequência da fonte.

Isolamento do gabinete. É importante que a estrutura do invólucro seja separada ou isolada do equipamento para garantir que vibrações mecânicas não sejam transmitidas ao próprio invólucro. Quando partes da máquina, como penetrações de tubos, entram em contato com o invólucro, é importante incluir acessórios de isolamento de vibração no ponto de contato para curto-circuitar qualquer caminho de transmissão potencial. Finalmente, se a máquina fizer o piso vibrar, a base do invólucro também deve ser tratada com material de isolamento de vibração.

Fornecer fluxo de produto. Como na maioria dos equipamentos de produção, haverá a necessidade de mover o produto para dentro e para fora do gabinete. O uso de canais ou túneis revestidos acusticamente pode permitir o fluxo do produto e ainda fornecer absorção acústica. Para minimizar o vazamento de ruído, recomenda-se que todas as passagens sejam três vezes mais longas que a largura interna da maior dimensão da abertura do túnel ou canal.

Fornecer acesso ao trabalhador. Portas e janelas podem ser instaladas para fornecer acesso físico e visual ao equipamento. É fundamental que todas as janelas tenham pelo menos as mesmas propriedades de perda de transmissão que as paredes do gabinete. Em seguida, todas as portas de acesso devem vedar firmemente em todas as bordas. Para evitar o funcionamento do equipamento com as portas abertas, recomenda-se a inclusão de um sistema de intertravamento que permita o funcionamento somente com as portas totalmente fechadas.

Ventilação do invólucro. Em muitas aplicações de gabinete, haverá acúmulo excessivo de calor. Para passar o ar de resfriamento pelo gabinete, um soprador com capacidade de 650 a 750 pés cúbicos/metros deve ser instalado na saída ou no duto de descarga. Finalmente, os dutos de admissão e descarga devem ser revestidos com material absorvente.

Proteção de material absorvente. Para evitar que o material absorvente seja contaminado, uma barreira contra respingos deve ser aplicada sobre o revestimento absorvente. Este deve ser de um material muito leve, como um filme plástico de um mil. A camada absorvente deve ser retida com metal expandido, chapa perfurada ou tela de hardware. O material de revestimento deve ter pelo menos 25% de área aberta.

Um tratamento alternativo do caminho de transmissão de som é usar uma barreira acústica para bloquear ou proteger o receptor (o trabalhador em risco de perigo de ruído) do caminho direto do som. Uma barreira acústica é um material de alta perda de transmissão, como uma divisória ou parede sólida, inserida entre a fonte de ruído e o receptor. Ao bloquear o caminho direto da linha de visão para a fonte, a barreira faz com que as ondas sonoras cheguem ao receptor pela reflexão de várias superfícies na sala e pela difração nas bordas da barreira. Como resultado, o nível geral de ruído é reduzido no local do receptor.

A eficácia de uma barreira é uma função de sua localização em relação à fonte de ruído ou receptores e de suas dimensões gerais. Para maximizar a redução potencial de ruído, a barreira deve estar localizada o mais próximo possível da fonte ou do receptor. Em seguida, a barreira deve ser tão alta e larga quanto possível. Para bloquear o caminho do som de forma eficaz, um material de alta densidade, da ordem de 4 a 6 lb/ft3, deve ser usado. Finalmente, a barreira não deve conter aberturas ou lacunas, o que pode reduzir significativamente sua eficácia. Caso seja necessária a inclusão de janela para acesso visual ao equipamento, é importante que a janela tenha um índice de transmissão sonora no mínimo equivalente ao do próprio material de barreira.

A opção final para reduzir a exposição do trabalhador ao ruído é tratar o espaço ou área onde o funcionário trabalha. Essa opção é mais prática para as atividades de trabalho, como inspeção de produtos ou estações de monitoramento de equipamentos, onde o movimento dos funcionários é limitado a uma área relativamente pequena. Nessas situações, pode-se instalar cabine ou abrigo acústico para isolar os funcionários e aliviar os níveis excessivos de ruído. As exposições diárias ao ruído serão reduzidas, desde que uma parte significativa do turno de trabalho seja passada dentro do abrigo. Para construir tal abrigo, devem ser consultadas as diretrizes descritas anteriormente para o projeto do invólucro.

Em conclusão, a implementação de um programa eficaz de “Compre Silencioso” deve ser o passo inicial em um processo de controle total do ruído. Essa abordagem é projetada para evitar a compra ou instalação de qualquer equipamento que possa apresentar um problema de ruído. No entanto, para aquelas situações em que já existem níveis excessivos de ruído, é necessário avaliar sistematicamente o ambiente de ruído para desenvolver a opção de controle de engenharia mais prática para cada fonte de ruído individual. Ao determinar a prioridade relativa e a urgência da implementação de medidas de controle de ruído, devem ser consideradas as exposições dos funcionários, a ocupação do espaço e os níveis gerais de ruído da área. Obviamente, um aspecto importante do resultado desejado é obter a máxima redução da exposição do funcionário ao ruído para os fundos monetários investidos e, ao mesmo tempo, garantir o maior grau de proteção do funcionário.

 

Voltar

Leia 10619 vezes Última modificação em quinta-feira, 13 de outubro de 2011 21:28

" ISENÇÃO DE RESPONSABILIDADE: A OIT não se responsabiliza pelo conteúdo apresentado neste portal da Web em qualquer idioma que não seja o inglês, que é o idioma usado para a produção inicial e revisão por pares do conteúdo original. Algumas estatísticas não foram atualizadas desde a produção da 4ª edição da Enciclopédia (1998)."

Conteúdo

Referências de Ruído

Instituto Nacional de Padrões Americano (ANSI). 1985. ANSI SI.4-1983, alterado por ANSI SI.4-1985. Nova York: ANSI.

—. 1991. ANSI SI2.13. Avaliação de Programas de Conservação Auditiva. Nova York: ANSI.

—. 1992. ANSI S12.16. Diretrizes para Especificação de Ruído de Máquinas Novas. Nova York: ANSI.

Arenas, J.P. 1995. Instituto de Acústica, Universidad Austral de Chile. Trabalho apresentado no 129º encontro da Acoustical Society of America, Valdivia, Chile.

Boettcher FA, D Henderson, MA Gratton, RW Danielson e CD Byrne. 1987. Interações sinérgicas de ruído e outros agentes ototraumáticos. Ouvir Ouvir. 8(4):192-212.

Conselho das Comunidades Europeias (CEC). 1986. Directiva de 12 de Maio de 1986 relativa à protecção dos trabalhadores contra os riscos relacionados com a exposição ao ruído no trabalho (86/188/CEE).

—. 1989a. Directiva 89/106/CEE de 21 de Dezembro de 1988 relativa à aproximação das disposições legislativas, regulamentares e administrativas dos Estados-Membros respeitantes aos produtos de construção, JO n.º L40 de 11 de Fevereiro.

—. 1989b. Directiva 89/392/CEE de 14 de Junho de 1989 relativa à aproximação das legislações dos Estados-membros respeitantes às máquinas, JO n.º L183 de 29.6.1989.

—. 1989c. Directiva 89/686/CEE de 21 de Dezembro de 1989 relativa à aproximação das legislações dos Estados-membros respeitantes aos equipamentos de protecção individual, JO n.º L399 de 30.12.1989.

—. 1991. Diretiva 91/368/EEC de 20 de junho de 1991 que altera a Diretiva 89/392/EEC sobre a aproximação das legislações dos Estados Membros relativas a máquinas, JO No. L198, 22.7.91.

—. 1993a. Directiva 93/44/CEE de 14 de Junho de 1993 que altera a Directiva 89/392/CEE relativa à aproximação das legislações dos Estados-Membros respeitantes às máquinas, JO n.º L175 de 19.7.92.

—. 1993b. Directiva 93/95/CEE de 29 de Outubro de 1993 que altera a 89/686/CEE relativa à aproximação das legislações dos Estados-Membros respeitantes aos equipamentos de protecção individual (EPI), JO n.º L276 de 9.11.93.

Dunn, DE, RR Davis, CJ Merry e JR Franks. 1991. Perda auditiva na chinchila por impacto e exposição contínua ao ruído. J Acoust Soc Am 90:1975-1985.

Embleton, TFW. 1994. Avaliação técnica dos limites superiores de ruído no local de trabalho. Ruído/Notícias Intl. Poughkeepsie, NY: I-INCE.

FECHTER, LD. 1989. Uma base mecanicista para interações entre ruído e exposição química. ACES 1:23-28.

Gunn, PNd Departamento de Saúde Ocupacional, Segurança e Bem-Estar, Perth, Austrália Ocidental. Com. pessoal

Hamernik, RP, WA Ahroon e KD Hsueh. 1991. O espectro de energia de um impulso: sua relação com a perda auditiva. J Acoust Soc Am 90:197-204.

Comissão Eletrotécnica Internacional (IEC). 1979. Documento IEC nº 651.

—. 1985. Documento IEC nº 804.

Organização Internacional do Trabalho (OIT). 1994. Regulamentos e Padrões de Ruído (Resumos). Genebra: OIT.

Organização Internacional para Padronização. (ISO). 1975. Método para calcular o nível de sonoridade. Documento ISO No. 532. Genebra: ISO.

—. 1990. Acústica: Determinação da Exposição Ocupacional ao Ruído e Estimativa da Deficiência Auditiva Induzida pelo Ruído. Documento ISO No. 1999. Genebra: ISO.

Ising, H e B Kruppa. 1993. Larm und Krankheit [Ruído e Doença]. Estugarda: Gustav Fischer Verlag.

Kihlman, T. 1992. Plano de ação da Suécia contra o ruído. Ruído/Notícias Intl 1(4):194-208.

Moll van Charante, AW e PGH Mulder. 1990. Acuidade perceptiva e risco de acidentes industriais. Am J Epidemiol 131:652-663.

Morata, T.C. 1989. Estudo dos efeitos da exposição simultânea ao ruído e dissulfeto de carbono na audição dos trabalhadores. Scan Audiol 18:53-58.

Morata, TC, DE Dunn, LW Kretchmer, GK Lemasters e UP Santos. 1991. Efeitos da exposição simultânea ao ruído e ao tolueno na audição e no equilíbrio dos trabalhadores. Em Proceedings of the Fourth International Conference On the Combined Environmental Factors, editado por LD Fechter. Baltimore: Johns Hopkins Univ.

Moreland, JB. 1979. Técnicas de Controle de Ruído. No Handbook of Noise Control, editado por CM Harris. Nova York: McGraw-Hill

Peterson, EA, JS Augenstein e DC Tanis. 1978. Estudos continuados de ruído e função cardiovascular. J Sound Vibrat 59:123.

Peterson, EA, JS Augenstein, D Tanis e DG Augenstein. 1981. O ruído aumenta a pressão arterial sem prejudicar a sensibilidade auditiva. Science 211:1450-1452.

Peterson, EA, JS Augenstein, DC Tanis, R Warner e A Heal. 1983. Proceedings of the Fourth International Congress On Noise As a Public Health Problem, editado por G Rossi. Milão: Centro Richerche e Studi Amplifon.

Preço, GR. 1983. Risco relativo de impulsos de armas. J Acoust Soc Am 73:556-566.

Rehm, S. 1983. Pesquisa sobre os efeitos extraaurais do ruído desde 1978. In Proceedings of the Fourth International Congress On Noise As a Public Health Problem, editado por G Rossi. Milão: Centro Richerche e Studi Amplifon.

Royster, JD. 1985. Avaliações audiométricas para conservação auditiva industrial. J Sound Vibrat 19(5):24-29.

Royster, JD e LH Royster. 1986. Análise de banco de dados audiométricos. No Noise and Hearing Conservation Manual, editado por EH Berger, WD Ward, JC Morrill e LH Royster. Akron, Ohio: Associação Americana de Higiene Industrial (AIHA).

—. 1989. Conservação Auditiva. NC-OSHA Industry Guide No. 15. Raleigh, NC: Departamento de Trabalho da Carolina do Norte.

—. 1990. Programas de Conservação Auditiva: Diretrizes Práticas para o Sucesso. Chelsea, Michigan: Lewis.

Royster, LH, EH Berger e JD Royster. 1986. Levantamentos de ruído e análise de dados. In Noise and Hearing Conservation Manual, editado por EH Berger, WH Ward, JC Morill e LH Royster. Akron, Ohio: Associação Americana de Higiene Industrial (AIHA).

Royster, LH e JD Royster. 1986. Educação e motivação. No Noise & Hearing Conservation Manual, editado por EH Berger, WH Ward, JC Morill e LH Royster. Akron, Ohio: Associação Americana de Higiene Industrial (AIHA).

SUTER, AH. 1992. Comunicação e Desempenho no Trabalho no Ruído: Uma Revisão. Monografias da American Speech-Language Hearing Association, No.28. Washington, DC: ASHA.

—. 1993. Ruído e conservação da audição. Indivíduo. 2 no Manual de Conservação Auditiva Milwaukee, Wisc: Conselho de Credenciamento em Conservação Auditiva Ocupacional.

Thiery, L e C Meyer-Bisch. 1988. Perda auditiva devido à exposição parcialmente impulsiva ao ruído industrial em níveis entre 87 e 90 dBA. J Acoust Soc Am 84:651-659.

Van Dijk, FJH. 1990. Pesquisa epidemiológica sobre os efeitos não auditivos da exposição ocupacional ao ruído desde 1983. In Noise As a Public Health Problem, editado por B Berglund e T Lindvall. Estocolmo: Conselho Sueco para Pesquisa em Edifícios.

Von Gierke, HE. 1993. Regulamentos e padrões de ruído: Progresso, experiências e desafios. In Noise As a Public Health Problem, editado por M Vallet. França: Institut National de Recherche sur les Transports et leur Sécurité.

Wilkins, PA e WI Acton. 1982. Ruído e acidentes: Uma revisão. Ann Occup Hyg 2:249-260.