Beschreibung, Quellen, Mechanismen
Neben dem Transport radioaktiver Stoffe gibt es drei Situationen, in denen Strahlenunfälle auftreten können:
- Nutzung von Kernreaktionen zur Erzeugung von Energie oder Waffen oder zu Forschungszwecken
- Industrielle Strahlungsanwendungen (Gammaradiographie, Bestrahlung)
- Forschung und Nuklearmedizin (Diagnose oder Therapie).
Strahlenunfälle können in zwei Gruppen eingeteilt werden, je nachdem, ob es eine Emission oder Ausbreitung von Radionukliden in die Umwelt gibt oder nicht; Jede dieser Unfallarten betrifft unterschiedliche Bevölkerungsgruppen.
Das Ausmaß und die Dauer des Expositionsrisikos für die allgemeine Bevölkerung hängen von der Menge und den Eigenschaften (Halbwertszeit, physikalische und chemische Eigenschaften) der in die Umwelt emittierten Radionuklide ab (Tabelle 1). Diese Art der Kontamination tritt auf, wenn die Eindämmungsbarrieren in Kernkraftwerken oder Industrie- oder medizinischen Einrichtungen, die radioaktive Materialien von der Umwelt trennen, brechen. In Ermangelung von Umweltemissionen werden nur Arbeiter, die vor Ort anwesend sind oder radioaktive Geräte oder Materialien handhaben, exponiert.
Tabelle 1. Typische Radionuklide mit ihren radioaktiven Halbwertszeiten
Radionuklid |
Symbol |
Ausgestrahlte Strahlung |
Physikalische Halbwertszeit* |
Biologische Halbwertszeit |
Barium-133 |
Ba-133 |
γ |
10.7 y |
65 d |
Cer-144 |
Ce-144 |
β,γ |
284 d |
263 d |
Cäsium-137 |
CS-137 |
β,γ |
30 y |
109 d |
Cobalt-60 |
Co-60 |
β,γ |
5.3 y |
1.6 y |
Jod-131 |
I-131 |
β,γ |
8 d |
7.5 d |
Plutonium-239 |
Pu-239 |
α,γ |
24,065 y |
50 y |
Polonium-210 |
Po-210 |
α |
138 d |
27 d |
Strontium-90 |
Sr-90 |
β |
29.1 y |
18 y |
Tritium |
H-3 |
β |
12.3 y |
10 T |
* y = Jahre; d = Tage.
Die Exposition gegenüber ionisierender Strahlung kann auf drei Wegen erfolgen, unabhängig davon, ob die Zielpopulation aus Arbeitnehmern oder der allgemeinen Öffentlichkeit besteht: externe Bestrahlung, interne Bestrahlung und Kontamination von Haut und Wunden.
Externe Bestrahlung tritt auf, wenn Personen einer extrakorporalen Strahlungsquelle ausgesetzt sind, entweder punktuell (Strahlentherapie, Bestrahlungsgeräte) oder diffus (radioaktive Wolken und Fallout von Unfällen, Abbildung 1). Die Bestrahlung kann lokal sein und nur einen Teil des Körpers oder den ganzen Körper betreffen.
Abbildung 1. Expositionspfade gegenüber ionisierender Strahlung nach einer unbeabsichtigten Freisetzung von Radioaktivität in die Umwelt
Interne Strahlung tritt nach Aufnahme radioaktiver Substanzen in den Körper auf (Abbildung 1), entweder durch Einatmen radioaktiver Partikel in der Luft (z. B. Cäsium-137 und Jod-131, die in der Tschernobyl-Wolke vorhanden sind) oder durch Aufnahme radioaktiver Materialien in die Nahrungskette (z , Jod-131 in Milch). Je nach Eigenschaften der Radionuklide kann die innere Bestrahlung den ganzen Körper oder nur bestimmte Organe betreffen: Cäsium-137 verteilt sich homogen im Körper, während sich Jod-131 und Strontium-90 in der Schilddrüse bzw. den Knochen anreichern.
Schließlich kann eine Exposition auch durch direkten Kontakt radioaktiver Stoffe mit Haut und Wunden erfolgen.
Unfälle in Kernkraftwerken
Zu den in diese Kategorie fallenden Standorten gehören Kraftwerke, Versuchsreaktoren, Anlagen zur Herstellung und Verarbeitung oder Wiederaufbereitung von Kernbrennstoffen und Forschungslabors. Zu den Militärstandorten gehören Plutoniumbrüter und Reaktoren an Bord von Schiffen und U-Booten.
Atomkraftwerke
Die Abscheidung der durch die Kernspaltung freigesetzten Wärmeenergie ist die Grundlage für die Stromerzeugung aus Kernenergie. Schematisch kann man sich Kernkraftwerke so vorstellen, dass sie umfassen: (1) einen Kern, der das spaltbare Material enthält (für Druckwasserreaktoren 80 bis 120 Tonnen Uranoxid); (2) Wärmeübertragungsausrüstung, die Wärmeübertragungsflüssigkeiten enthält; (3) Ausrüstung, die in der Lage ist, Wärmeenergie in Elektrizität umzuwandeln, ähnlich wie sie in Kraftwerken ohne Kernenergie zu finden ist.
Starke, plötzliche Überspannungen, die eine Kernschmelze mit Emission radioaktiver Produkte verursachen können, sind die Hauptgefahren in diesen Anlagen. Drei Unfälle mit Reaktorkernschmelze ereigneten sich: auf Three Mile Island (1979, Pennsylvania, Vereinigte Staaten), Tschernobyl (1986, Ukraine) und Fukushima (2011, Japan) [Bearbeitet, 2011].
Der Unfall von Tschernobyl war ein sogenannter Kritikalität Unfall– das heißt, ein plötzlicher (innerhalb weniger Sekunden) Anstieg der Spaltung, der zu einem Verlust der Prozesskontrolle führt. Dabei wurde der Reaktorkern vollständig zerstört und es wurden massive Mengen radioaktiver Stoffe emittiert (Tabelle 2). Die Emissionen erreichten eine Höhe von 2 km, was ihre Ausbreitung über weite Entfernungen (im Grunde die gesamte nördliche Hemisphäre) begünstigte. Das Verhalten der radioaktiven Wolke hat sich aufgrund meteorologischer Veränderungen während des Emissionszeitraums als schwierig zu analysieren erwiesen (Abbildung 2) (IAEA 1991).
Tabelle 2. Vergleich verschiedener nuklearer Unfälle
Unfall |
Art der Einrichtung |
Unfall |
Insgesamt emittiert |
Dauer |
Haupt emittiert |
Collective |
Chischtym 1957 |
Lagerung von Hoch- |
Chemische Explosion |
740x106 |
Fast |
Strontium-90 |
2,500 |
Windwaage 1957 |
Plutonium- |
Feuer |
7.4x106 |
ca. |
Jod-131, Polonium-210, |
2,000 |
Three Mile Island |
PWR industriell |
Kühlmittelausfall |
555 |
? |
Jod-131 |
16-50 |
Tschernobyl 1986 |
RBMK industriell |
Kritisch |
3,700x106 |
Mehr als 10 Tagen |
Jod-131, Jod-132, |
600,000 |
Fukushima 2011
|
Der Abschlussbericht der Fukushima Assessment Task Force wird 2013 vorgelegt. |
|
|
|
|
|
Quelle: UNSCEAR 1993.
Abbildung 2. Verlauf der Emissionen des Unfalls von Tschernobyl, 26. April bis 6. Mai 1986
Auf der Grundlage von Umweltmessungen von Cäsium-137, einem der wichtigsten radioaktiven Emissionsprodukte, wurden Kontaminationskarten erstellt (Tabelle 1 und Tabelle 2). Gebiete in der Ukraine, Weißrußland (Weißrussland) und Rußland waren stark kontaminiert, während der Fallout im übrigen Europa weniger signifikant war (Abbildung 3 und Abbildung 4 (UNSCEAR 1988). Tabelle 3 zeigt Daten über die Fläche der kontaminierten Zonen, Eigenschaften der exponierte Populationen und Expositionswege.
ABBILDUNG 3. Cäsium-137-Ablagerung in Weißrussland, Russland und der Ukraine nach dem Unfall von Tschernobyl.
Abbildung 4. Cäsium-137-Fallout (kBq/km2) in Europa nach dem Unfall von Tschernobyl
Tabelle 3. Fläche kontaminierter Zonen, Arten der exponierten Bevölkerung und Expositionsarten in der Ukraine, Weißrussland und Russland nach dem Unfall von Tschernobyl
Art der Bevölkerung |
Fläche (km2 ) |
Bevölkerungsgröße (000) |
Hauptarten der Belichtung |
Beruflich exponierte Bevölkerungsgruppen: |
|||
Mitarbeiter vor Ort bei |
≈0.44 |
externe Bestrahlung, |
|
Allgemeine Öffentlichkeit: |
|||
Aus dem evakuiert |
|
115 |
Äußere Bestrahlung durch |
* Personen, die an Aufräumarbeiten im Umkreis von 30 km um den Standort teilnehmen. Dazu gehören Feuerwehrleute, Militärs, Techniker und Ingenieure, die in den ersten Wochen eingegriffen haben, sowie später tätige Ärzte und Forscher.
** Cäsium-137-Kontamination.
Quelle: UNSCEAR 1988; IAEA 1991.
Der Unfall auf Three Mile Island wird als thermischer Unfall ohne Reaktorausreißer eingestuft und war das Ergebnis eines mehrstündigen Ausfalls des Kühlmittels im Reaktorkern. Der Sicherheitsbehälter sorgte dafür, dass trotz teilweiser Zerstörung des Reaktorkerns nur eine begrenzte Menge radioaktiver Stoffe in die Umgebung emittiert wurde (Tabelle 2). Obwohl kein Evakuierungsbefehl erteilt wurde, evakuierten 200,000 Einwohner freiwillig das Gebiet.
Schließlich ereignete sich 1957 an der Westküste Englands ein Unfall mit einem Reaktor zur Plutoniumproduktion (Windscale, Tabelle 2). Dieser Unfall wurde durch einen Brand im Reaktorkern verursacht und führte zu Umweltemissionen aus einem 120 Meter hohen Schornstein.
Brennstoffverarbeitungsanlagen
Brennstoffproduktionsanlagen befinden sich „stromaufwärts“ von Kernreaktoren und sind der Ort der Erzgewinnung und der physikalischen und chemischen Umwandlung von Uran in spaltbares Material, das für die Verwendung in Reaktoren geeignet ist (Abbildung 5). Die primären Unfallgefahren in diesen Anlagen sind chemischer Natur und hängen mit dem Vorhandensein von Uranhexafluorid (UF6), eine gasförmige Uranverbindung, die sich bei Kontakt mit Luft zersetzen kann, um Flusssäure (HF) zu erzeugen, ein sehr korrosives Gas.
Abbildung 5. Kernbrennstoffverarbeitungszyklus.
Zu den „nachgelagerten“ Einrichtungen gehören Brennstofflager und Wiederaufbereitungsanlagen. Bei der chemischen Wiederaufbereitung von angereichertem Uran oder Plutonium sind vier Kritikalitätsunfälle aufgetreten (Rodrigues 1987). Im Gegensatz zu Unfällen in Kernkraftwerken waren bei diesen Unfällen kleine Mengen radioaktiver Stoffe – höchstens mehrere zehn Kilogramm – mit vernachlässigbaren mechanischen Auswirkungen und keiner Emission von Radioaktivität in die Umwelt verbunden. Die Exposition war auf sehr hochdosierte, sehr kurzzeitige (in der Größenordnung von Minuten) externe Gammastrahlen- und Neutronenbestrahlung von Arbeitern beschränkt.
1957 explodierte ein Tank mit hochradioaktivem Abfall in Russlands erster Produktionsanlage für militärisches Plutonium in Khyshtym im südlichen Uralgebirge. Über 16,000 km2 kontaminiert und 740 PBq (20 MCi) in die Atmosphäre emittiert (Tabelle 2 und Tabelle 4).
Tabelle 4. Fläche der kontaminierten Zonen und Größe der Bevölkerung, die nach dem Unfall von Khyshtym (Ural 1957) durch Strontium-90-Kontamination exponiert war
Kontamination ( kBq/m2 ) |
(Ci/km2 ) |
Fläche ( km2 ) |
Einwohnerzahl |
≥ 37,000 |
≥ 1,000 |
20 |
1,240 |
≥ 3,700 |
≥100 |
120 |
1,500 |
≥ 74 |
≥ 2 |
1,000 |
10,000 |
≥ 3.7 |
≥ 0.1 |
15,000 |
270,000 |
Forschungsreaktoren
Die Gefahren in diesen Anlagen ähneln denen in Kernkraftwerken, sind jedoch aufgrund der geringeren Stromerzeugung weniger schwerwiegend. Mehrere Kritikalitätsunfälle mit erheblicher Bestrahlung des Personals sind aufgetreten (Rodrigues 1987).
Unfälle im Zusammenhang mit der Verwendung radioaktiver Quellen in Industrie und Medizin (ohne Kernkraftwerke) (Zerbib 1993)
Der häufigste Unfall dieser Art ist der Verlust radioaktiver Quellen aus der industriellen Gamma-Radiographie, die beispielsweise zur Durchstrahlungsprüfung von Verbindungen und Schweißnähten verwendet wird. Aber auch aus medizinischen Quellen können radioaktive Quellen verloren gehen (Tabelle 5). In jedem Fall sind zwei Szenarien möglich: Die Quelle kann von einer Person aufgehoben und mehrere Stunden aufbewahrt werden (z. B. in einer Tasche), dann gemeldet und restauriert werden, oder sie kann gesammelt und nach Hause getragen werden. Während das erste Szenario zu lokalen Verbrennungen führt, kann das zweite zu einer langfristigen Bestrahlung mehrerer Personen der Bevölkerung führen.
Tabelle 5. Unfälle, bei denen radioaktive Quellen verloren gingen und die zur Exposition der Allgemeinheit führten
Land (Jahr) |
Anzahl der |
Anzahl der |
Anzahl der Todesfälle** |
Radioaktives Material beteiligt |
Mexiko (1962) |
? |
5 |
4 |
Cobalt-60 |
China (1963) |
? |
6 |
2 |
Cobalt 60 |
Algerien (1978) |
22 |
5 |
1 |
Iridium-192 |
Marokko (1984) |
? |
11 |
8 |
Iridium-192 |
Mexiko |
≈4,000 |
5 |
0 |
Cobalt-60 |
Brasil |
249 |
50 |
4 |
Cäsium-137 |
China |
≈90 |
12 |
3 |
Cobalt-60 |
USA |
≈90 |
1 |
1 |
Iridium-192 |
* Personen, die Dosen ausgesetzt wurden, die akute oder langfristige Wirkungen oder den Tod verursachen können.
** Unter Personen, die hohe Dosen erhalten.
Quelle: Nénot 1993.
Die Bergung radioaktiver Quellen aus Strahlentherapiegeräten hat zu mehreren Unfällen geführt, bei denen Schrottarbeiter exponiert waren. In zwei Fällen – den Unfällen von Juarez und Goiânia – war auch die breite Öffentlichkeit betroffen (siehe Tabelle 5 und Kasten unten).
Der Unfall von Goiвnia, 1987
Zwischen dem 21. September und dem 28. September 1987 wurden mehrere Personen mit Erbrechen, Durchfall, Schwindel und Hautläsionen an verschiedenen Körperstellen in das auf Tropenkrankheiten spezialisierte Krankenhaus in Goiânia, einer Millionenstadt im brasilianischen Bundesstaat Goias, eingeliefert . Diese Probleme wurden einer in Brasilien verbreiteten parasitären Krankheit zugeschrieben. Am 28. September sah der für die Gesundheitsüberwachung in der Stadt zuständige Arzt eine Frau, die ihm einen Beutel mit Trümmern eines in einer verlassenen Klinik gesammelten Geräts und ein Pulver vorlegte, das nach Angaben der Frau „ein blaues Licht“ abgab. In der Annahme, dass es sich bei dem Gerät wahrscheinlich um ein Röntgengerät handele, kontaktierte der Mediziner seine Kollegen im Krankenhaus für Tropenkrankheiten. Das Umweltamt von Goias wurde benachrichtigt, und am nächsten Tag nahm ein Physiker Messungen im Hof des Hygieneamtes vor, wo die Tasche über Nacht gelagert wurde. Es wurden sehr hohe Radioaktivitätswerte gefunden. In nachfolgenden Untersuchungen wurde die Radioaktivitätsquelle als Cäsium-137-Quelle (Gesamtaktivität: ungefähr 50 TBq (1,375 Ci)) identifiziert, die in einer seit 1985 verlassenen Klinik in Strahlentherapiegeräten enthalten war am 10. September 1987 von zwei Schrottplatzarbeitern zerlegt und die Cäsiumquelle, in Pulverform, entfernt. Sowohl das Cäsium als auch die Fragmente der kontaminierten Häuser wurden nach und nach in der ganzen Stadt verteilt. Mehrere Personen, die das Material transportiert oder gehandhabt hatten oder einfach nur gekommen waren, um es zu sehen (darunter Eltern, Freunde und Nachbarn), waren kontaminiert. Insgesamt wurden über 100,000 Personen untersucht, von denen 129 sehr schwer kontaminiert waren; 50 wurden ins Krankenhaus eingeliefert (14 wegen Markinsuffizienz) und 4, darunter ein 6-jähriges Mädchen, starben. Der Unfall hatte dramatische wirtschaftliche und soziale Folgen für die gesamte Stadt Goiânia und den Bundesstaat Goias: 1/1000 der Stadtfläche wurde kontaminiert, die Preise für landwirtschaftliche Produkte, Mieten, Immobilien und Grundstücke sanken. Die Einwohner des gesamten Staates wurden regelrecht diskriminiert.
Quelle: IAEA 1989a
Der Unfall von Juarez wurde zufällig entdeckt (IAEA 1989b). Am 16. Januar 1984 löste ein mit Stahlstangen beladener Lastwagen, der in das wissenschaftliche Labor von Los Alamos (New Mexico, USA) einfuhr, einen Strahlungsdetektor aus. Die Untersuchung ergab das Vorhandensein von Kobalt-60 in den Stäben und führte das Kobalt-60 zu einer mexikanischen Gießerei zurück. Am 21. Januar wurde ein stark kontaminierter Schrottplatz in Juarez als Quelle des radioaktiven Materials identifiziert. Die systematische Überwachung von Straßen und Autobahnen durch Detektoren führte zur Identifizierung eines stark kontaminierten Lastwagens. Es wurde festgestellt, dass die endgültige Strahlenquelle ein Strahlentherapiegerät war, das bis Dezember 1983 in einem medizinischen Zentrum gelagert wurde, zu welchem Zeitpunkt es zerlegt und zum Schrottplatz transportiert wurde. Auf dem Schrottplatz wurde das Schutzgehäuse, das das Kobalt-60 umgab, zerbrochen, wodurch die Kobaltpellets freigesetzt wurden. Einige der Pellets fielen in den Lastwagen, der zum Transport von Schrott verwendet wurde, und andere wurden während der nachfolgenden Arbeiten auf dem gesamten Schrottplatz verteilt und vermischten sich mit dem anderen Schrott.
Es ist zu Unfällen gekommen, bei denen Arbeiter in aktive industrielle Bestrahlungsgeräte eindrangen (z. B. solche, die zum Konservieren von Lebensmitteln, Sterilisieren von medizinischen Produkten oder Polymerisieren von Chemikalien verwendet werden). In allen Fällen sind diese auf die Nichtbeachtung der Sicherheitsverfahren oder auf getrennte oder defekte Sicherheitssysteme und Alarme zurückzuführen. Die Dosiswerte der externen Bestrahlung, denen die Arbeiter bei diesen Unfällen ausgesetzt waren, waren hoch genug, um zum Tod zu führen. Dosen wurden innerhalb weniger Sekunden oder Minuten empfangen (Tabelle 6).
Tabelle 6. Hauptunfälle mit industriellen Strahlern
Ort, Datum |
Ausrüstung* |
Anzahl der |
Belichtungsstufe |
Betroffene Organe |
Erhaltene Dosis (Gy), |
Medizinische Wirkungen |
Forbach, August 1991 |
EA |
2 |
mehrere DeziGy/ |
Hände, Kopf, Rumpf |
40, Haut |
Verbrennungen betreffen 25–60 % der |
Maryland, Dezember 1991 |
EA |
1 |
? |
Hände |
55, Hände |
Bilaterale Fingeramputation |
Vietnam, November 1992 |
EA |
1 |
1,000 Gy/min |
Hände |
1.5, ganzer Körper |
Amputation der rechten Hand und eines Fingers der linken Hand |
Italien, Mai 1975 |
CI |
1 |
Einige Minuten |
Kopf, ganzer Körper |
8, Knochenmark |
Tod |
San Salvador, Februar 1989 |
CI |
3 |
? |
Ganzer Körper, Beine, |
3–8, ganzer Körper |
2 Beinamputationen, 1 Todesfall |
Israel, Juni 1990 |
CI |
1 |
1 Minuten |
Kopf, ganzer Körper |
10-20 |
Tod |
Weißrussland, Oktober 1991 |
CI |
1 |
Einige Minuten |
Ganzer Körper |
10 |
Tod |
* EA: Elektronenbeschleuniger CI: Kobalt-60-Strahler.
Quelle: Zerbib 1993; Nénot 1993.
Schließlich kann medizinisches und wissenschaftliches Personal, das radioaktive Quellen vorbereitet oder handhabt, durch Haut- und Wundkontamination oder Einatmen oder Verschlucken radioaktiver Materialien exponiert werden. Es ist zu beachten, dass diese Art von Unfällen auch in Kernkraftwerken möglich ist.
Public Health Aspekte des Problems
Zeitliche Muster
Das United States Radiation Accident Registry (Oak Ridge, USA) ist ein weltweites Register von Strahlenunfällen, an denen Menschen seit 1944 beteiligt sind. Um in das Register aufgenommen zu werden, muss ein Unfall Gegenstand eines veröffentlichten Berichts gewesen sein und zu einem Ganzkörperschaden geführt haben Exposition über 0.25 Sievert (Sv) oder Hautexposition über 6 Sv oder Exposition anderer Gewebe und Organe über 0.75 Sv (siehe "Fallstudie: Was bedeutet Dosis?" für eine Definition der Dosis). Unfälle, die aus Sicht der öffentlichen Gesundheit interessant sind, aber zu geringeren Expositionen führten, werden somit ausgeschlossen (siehe unten für eine Diskussion der Expositionsfolgen).
Die Auswertung der Registerdaten von 1944 bis 1988 zeigt ab 1980 einen deutlichen Anstieg sowohl der Häufigkeit von Strahlenunfällen als auch der Zahl der Strahlenexponierten (Tabelle 7). Der Anstieg der Zahl der exponierten Personen ist wahrscheinlich auf den Unfall von Tschernobyl zurückzuführen, insbesondere die etwa 135,000 Personen, die sich zunächst im Sperrgebiet im Umkreis von 30 km um die Unfallstelle aufhielten. Die Unfälle in Goiânia (Brasilien) und Juarez (Mexiko) ereigneten sich ebenfalls in diesem Zeitraum und führten zu einer erheblichen Exposition vieler Menschen (Tabelle 5).
Tabelle 7. Im Unfallregister von Oak Ridge (USA) aufgeführte Strahlenunfälle (weltweit, 1944-88)
1944-79 |
1980-88 |
1944-88 |
|
Gesamtzahl der Unfälle |
98 |
198 |
296 |
Anzahl der beteiligten Personen |
562 |
136,053 |
136,615 |
Anzahl der Personen, die Dosen von mehr als |
306 |
24,547 |
24,853 |
Zahl der Todesfälle (akute Wirkungen) |
16 |
53 |
69 |
* 0.25 Sv für Ganzkörperexposition, 6 Sv für Hautexposition, 0.75 Sv für andere Gewebe und Organe.
Potenziell exponierte Bevölkerungsgruppen
Aus Sicht der Exposition gegenüber ionisierender Strahlung sind zwei Bevölkerungsgruppen von Interesse: beruflich exponierte Bevölkerungsgruppen und die breite Öffentlichkeit. Der Wissenschaftliche Ausschuss der Vereinten Nationen für die Auswirkungen atomarer Strahlung (UNSCEAR 1993) schätzt, dass im Zeitraum 4-1985 weltweit 1989 Millionen Arbeitnehmer beruflich ionisierender Strahlung ausgesetzt waren; davon waren etwa 20 % in der Herstellung, Verwendung und Verarbeitung von Kernbrennstoffen beschäftigt (Tabelle 8). 760 verfügten die Mitgliedsländer der IAEA schätzungsweise über 1992 Bestrahlungsgeräte, davon 600 Elektronenbeschleuniger und 160 Gammabestrahlungsgeräte.
Tabelle 8. Zeitlicher Verlauf der beruflichen Exposition gegenüber ionisierender Strahlung weltweit (in Tausend)
Aktivität |
1975-79 |
1980-84 |
1985-89 |
Kernbrennstoffverarbeitung* |
560 |
800 |
880 |
Militärische Anwendungen** |
310 |
350 |
380 |
Industrielle Anwendungen |
530 |
690 |
560 |
Medizinische Anwendungen |
1,280 |
1,890 |
2,220 |
Total |
2,680 |
3,730 |
4,040 |
* Produktion und Wiederaufbereitung von Kraftstoff: 40,000; Reaktorbetrieb: 430,000.
** darunter 190,000 Schiffspersonal.
Quelle: UNSCEAR 1993.
Die Anzahl der nuklearen Standorte pro Land ist ein guter Indikator für das Expositionspotenzial der breiten Öffentlichkeit (Abbildung 6).
Abbildung 6. Verteilung von Stromerzeugungsreaktoren und Brennstoffwiederaufbereitungsanlagen in der Welt, 1989-90
Auswirkungen auf die Gesundheit
Direkte gesundheitliche Auswirkungen ionisierender Strahlung
Im Allgemeinen sind die gesundheitlichen Wirkungen ionisierender Strahlung gut bekannt und hängen von der empfangenen Dosis und der Dosisleistung (empfangene Dosis pro Zeiteinheit (vgl "Fallstudie: Was bedeutet Dosis?").
Deterministische Effekte
Diese treten auf, wenn die Dosis einen bestimmten Schwellenwert überschreitet und die Dosisleistung hoch ist. Die Schwere der Wirkungen ist proportional zur Dosis, obwohl die Dosisschwelle organspezifisch ist (Tabelle 9).
Tabelle 9. Deterministische Effekte: Schwellenwerte für ausgewählte Organe
Gewebe oder Effekt |
Äquivalente Einzeldosis |
Hoden: |
|
Vorübergehende Sterilität |
0.15 |
Dauerhafte Sterilität |
3.5-6.0 |
Eierstöcke: |
|
Sterilität |
2.5-6.0 |
Krystalllinse: |
|
Erkennbare Trübungen |
0.5-2.0 |
Sehstörungen (Katarakte) |
5.0 |
Knochenmark: |
|
Depression der Hämopoese |
0.5 |
Quelle: ICRP 1991.
Bei den oben diskutierten Unfällen können deterministische Effekte durch örtliche intensive Bestrahlung verursacht werden, wie etwa durch externe Bestrahlung, direkten Kontakt mit einer Quelle (z. B. eine falsch platzierte Quelle, die aufgenommen und in eine Tasche gesteckt wird) oder Hautkontamination. All dies führt zu radiologischen Verbrennungen. Liegt die Ortsdosis in der Größenordnung von 20 bis 25 Gy (Tabelle 6, "Fallstudie: Was bedeutet Dosis?") Gewebenekrose kann folgen. Ein Syndrom, bekannt als akutes Bestrahlungssyndrom, gekennzeichnet durch Verdauungsstörungen (Übelkeit, Erbrechen, Durchfall) und Knochenmarkaplasie unterschiedlichen Schweregrades, können induziert werden, wenn die durchschnittliche Ganzkörperbestrahlungsdosis 0.5 Gy übersteigt. Es sollte daran erinnert werden, dass eine Ganzkörper- und eine lokale Bestrahlung gleichzeitig erfolgen können.
Neun von 60 Arbeitern, die bei kritischen Unfällen in Kernbrennstoffverarbeitungsanlagen oder Forschungsreaktoren exponiert waren, starben (Rodrigues 1987). Verstorbene erhielten 3 bis 45 Gy, Hinterbliebene 0.1 bis 7 Gy. Bei Überlebenden wurden die folgenden Wirkungen beobachtet: akutes Bestrahlungssyndrom (gastrointestinale und hämatologische Wirkungen), bilaterale Katarakte und Nekrosen von Gliedmaßen, die eine Amputation erforderlich machten.
In Tschernobyl war das Kraftwerkspersonal sowie das Notfallpersonal, das keine spezielle Schutzausrüstung trug, in den ersten Stunden oder Tagen nach dem Unfall einer hohen Beta- und Gammastrahlung ausgesetzt. Fünfhundert Menschen mussten ins Krankenhaus eingeliefert werden; 237 Personen, die eine Ganzkörperbestrahlung erhielten, wiesen ein akutes Bestrahlungssyndrom auf, und 28 Personen starben trotz Behandlung (Tabelle 10) (UNSCEAR 1988). Andere erhielten eine lokale Bestrahlung der Gliedmaßen, die in einigen Fällen über 50 % der Körperoberfläche betrafen, und leiden noch viele Jahre später an multiplen Hauterkrankungen (Peter, Braun-Falco und Birioukov 1994).
Tabelle 10. Verteilung der Patienten mit akutem Bestrahlungssyndrom (AIS) nach dem Unfall von Tschernobyl nach Schweregrad der Erkrankung
Schweregrad von AIS |
Äquivalentdosis |
Anzahl der |
Anzahl der |
Durchschnittliches Überleben |
I |
1-2 |
140 |
- |
- |
II |
2-4 |
55 |
1 (1.8) |
96 |
III |
4-6 |
21 |
7 (33.3) |
29.7 |
IV |
>6 |
21 |
20 (95.2) |
26.6 |
Quelle: UNSCEAR 1988.
Stochastische Effekte
Diese sind probabilistischer Natur (dh ihre Häufigkeit nimmt mit der erhaltenen Dosis zu), aber ihre Schwere ist dosisunabhängig. Die wichtigsten stochastischen Effekte sind:
- Mutation. Dies wurde in Tierversuchen beobachtet, war jedoch beim Menschen schwer zu dokumentieren.
- Krebs. Die Wirkung der Bestrahlung auf das Krebsrisiko wurde bei Patienten, die eine Strahlentherapie erhielten, und bei Überlebenden der Bombenanschläge von Hiroshima und Nagasaki untersucht. UNSCEAR (1988, 1994) fasst regelmäßig die Ergebnisse dieser epidemiologischen Studien zusammen. Die Dauer der Latenzzeit beträgt je nach Organ und Gewebe typischerweise 5 bis 15 Jahre ab Expositionsdatum. Tabelle 11 listet die Krebsarten auf, für die ein Zusammenhang mit ionisierender Strahlung festgestellt wurde. Bei Überlebenden der Bombenanschläge von Hiroshima und Nagasaki mit Expositionen über 0.2 Sv wurden signifikante Krebsexzesse nachgewiesen.
- Ausgewählte gutartige Tumoren. Gutartige Schilddrüsenadenome.
Tabelle 11. Ergebnisse epidemiologischer Studien zur Wirkung einer hohen Dosisleistung externer Bestrahlung auf Krebs
Krebs Website |
Hiroshima/Nagasaki |
Andere Studien |
|
Sterblichkeit |
Häufigkeit |
||
Hämatopoetisches System |
|||
Leukämie |
+* |
+* |
6/11 |
Lymphom (nicht angegeben) |
+ |
0/3 |
|
Non-Hodgkin-Lymphom |
+* |
1/1 |
|
Myelom |
+ |
+ |
1/4 |
Mundhöhle |
+ |
+ |
0/1 |
Speicheldrüsen |
+* |
1/3 |
|
Verdauungssystem |
|||
Speiseröhre |
+* |
+ |
2/3 |
Magen |
+* |
+* |
2/4 |
Dünndarm |
1/2 |
||
Doppelpunkt |
+* |
+* |
0/4 |
Rektum |
+ |
+ |
3/4 |
Leber |
+* |
+* |
0/3 |
Gallenblase |
0/2 |
||
Bauchspeicheldrüse |
3/4 |
||
Atmungssystem |
|||
Larynx |
0/1 |
||
Luftröhre, Bronchien, Lunge |
+* |
+* |
1/3 |
Haut |
|||
Unbestimmt |
1/3 |
||
Melanom |
0/1 |
||
Andere Krebsarten |
+* |
0/1 |
|
Brust (Frauen) |
+* |
+* |
9/14 |
Fortpflanzungsapparat |
|||
Gebärmutter (unspezifisch) |
+ |
+ |
2/3 |
Uteruskörper |
1/1 |
||
Eierstöcke |
+* |
+* |
2/3 |
Andere Frauen) |
2/3 |
||
Alles im Fluss |
+ |
+ |
2/2 |
Harnwege |
|||
Blase |
+* |
+* |
3/4 |
Nieren |
0/3 |
||
Andere |
0/1 |
||
Zentrales Nervensystem |
+ |
+ |
2/4 |
Schilddrüse |
+* |
4/7 |
|
Knochen |
2/6 |
||
Bindegewebe |
0/4 |
||
Alle Krebsarten, außer Leukämien |
1/2 |
+ Krebsstellen, die bei den Überlebenden von Hiroshima und Nagasaki untersucht wurden.
* Positive Assoziation mit ionisierender Strahlung.
1 Kohorten- (Inzidenz oder Mortalität) oder Fall-Kontroll-Studien.
Quelle: UNSCEAR 1994.
Zwei wichtige Punkte bezüglich der Auswirkungen ionisierender Strahlung bleiben umstritten.
Erstens, was sind die Auswirkungen von Niedrigdosisbestrahlung (unter 0.2 Sv) und niedrigen Dosisleistungen? Die meisten epidemiologischen Studien haben Überlebende der Bombenanschläge von Hiroshima und Nagasaki oder Patienten untersucht, die eine Strahlentherapie erhielten – Bevölkerungsgruppen, die über sehr kurze Zeiträume relativ hohen Dosen ausgesetzt waren –, und Schätzungen des Risikos, aufgrund der Exposition gegenüber niedrigen Dosen und Dosisraten an Krebs zu erkranken, hängen wesentlich davon ab auf Extrapolationen aus diesen Populationen. Mehrere Studien an Kernkraftwerksarbeitern, die über mehrere Jahre niedrigen Dosen ausgesetzt waren, haben über Krebsrisiken für Leukämie und andere Krebsarten berichtet, die mit Extrapolationen von Gruppen mit hoher Exposition vereinbar sind, aber diese Ergebnisse bleiben unbestätigt (UNSCEAR 1994; Cardis, Gilbert und Carpenter 1995).
Zweitens, gibt es eine Schwellendosis (dh eine Dosis, unterhalb der keine Wirkung eintritt)? Dies ist derzeit nicht bekannt. Experimentelle Studien haben gezeigt, dass Schäden am Erbgut (DNA), die durch spontane Fehler oder Umweltfaktoren verursacht wurden, ständig repariert werden. Diese Reparatur ist jedoch nicht immer effektiv und kann zu einer malignen Transformation von Zellen führen (UNSCEAR 1994).
Andere Effekte
Schließlich sollte die Möglichkeit teratogener Wirkungen aufgrund einer Bestrahlung während der Schwangerschaft beachtet werden. Mikrozephalie und mentale Retardierung wurden bei Kindern von weiblichen Überlebenden der Bombenanschläge von Hiroshima und Nagasaki beobachtet, die im ersten Trimester einer Bestrahlung von mindestens 0.1 Gy ausgesetzt waren (Otake, Schull und Yoshimura 1989; Otake und Schull 1992). Es ist nicht bekannt, ob diese Effekte deterministisch oder stochastisch sind, obwohl die Daten auf die Existenz einer Schwelle hindeuten.
Nach dem Unfall von Tschernobyl beobachtete Auswirkungen
Der Unfall von Tschernobyl ist der schwerste Atomunfall, der sich bisher ereignet hat. Doch selbst jetzt, zehn Jahre später, sind noch nicht alle gesundheitlichen Auswirkungen auf die am stärksten exponierten Bevölkerungsgruppen genau bewertet worden. Dafür gibt es mehrere Gründe:
- Einige Wirkungen treten erst viele Jahre nach dem Expositionsdatum auf: Beispielsweise dauert es bei solidem Gewebekrebs typischerweise 10 bis 15 Jahre, bis sie auftreten.
- Da zwischen dem Unfall und dem Beginn epidemiologischer Studien einige Zeit verstrichen ist, wurden einige Wirkungen, die in der Anfangszeit nach dem Unfall aufgetreten sind, möglicherweise nicht erkannt.
- Verwertbare Daten zur Quantifizierung des Krebsrisikos wurden nicht immer zeitnah erhoben. Dies gilt insbesondere für Daten, die notwendig sind, um die Exposition der Schilddrüse gegenüber radioaktiven Jodiden abzuschätzen, die während des Vorfalls emittiert wurden (Tellur-132, Jod-133) (Williams et al. 1993).
- Schließlich verließen viele ursprünglich exponierte Personen anschließend die kontaminierten Zonen und gingen wahrscheinlich für die Nachverfolgung verloren.
Arbeitskräfte. Für alle Arbeiter, die in den ersten Tagen nach dem Unfall stark verstrahlt wurden, liegen derzeit noch keine umfassenden Informationen vor. Studien über das Risiko für Reinigungs- und Hilfskräfte, an Leukämie und solidem Gewebekrebs zu erkranken, sind im Gange (siehe Tabelle 3). Diese Studien stoßen auf viele Hindernisse. Die regelmäßige Überwachung des Gesundheitszustands der Aufräum- und Hilfskräfte wird durch die Tatsache stark behindert, dass viele von ihnen aus verschiedenen Teilen der ehemaligen UdSSR stammten und nach ihrer Arbeit auf dem Gelände von Tschernobyl wieder abgefertigt wurden. Außerdem muss die erhaltene Dosis rückwirkend geschätzt werden, da für diesen Zeitraum keine verlässlichen Daten vorliegen.
Durchschnittsbevölkerung. Die einzige plausible Wirkung, die bis heute mit ionisierender Strahlung in dieser Bevölkerungsgruppe in Verbindung gebracht wird, ist ein Anstieg der Inzidenz von Schilddrüsenkrebs bei Kindern unter 1989 Jahren, beginnend mit 15. Dies wurde 1989, nur drei Jahre nach dem Vorfall, in Weißrussland (Weißrussland) festgestellt und von mehreren Expertengruppen bestätigt (Williams et al. 1993). Besonders bemerkenswert war der Anstieg in den am stärksten kontaminierten Gebieten Weißrusslands, insbesondere in der Region Gomel. Während Schilddrüsenkrebs bei Kindern unter 15 Jahren normalerweise selten war (jährliche Inzidenzrate von 1 bis 3 pro Million), stieg seine Inzidenz auf nationaler Basis um das Zehnfache und in der Region Gomel um das Zwanzigfache (Tabelle 12, Abbildung 7) (Stsjazhko et Al. 1995). Anschließend wurde in den fünf am stärksten kontaminierten Gebieten der Ukraine ein Anstieg der Inzidenz von Schilddrüsenkrebs um das Zehnfache gemeldet, und auch in der Region Brjansk (Russland) wurde ein Anstieg von Schilddrüsenkrebs gemeldet (Tabelle 12). Ein Anstieg bei Erwachsenen wird vermutet, aber nicht bestätigt. Systematische Screening-Programme, die in den kontaminierten Regionen durchgeführt wurden, ermöglichten die Erkennung von latentem Krebs, der vor dem Unfall vorhanden war; Besonders hilfreich waren in diesem Zusammenhang Ultraschallprogramme, mit denen Schilddrüsenkrebs von wenigen Millimetern erkannt werden kann. Das Ausmaß des Anstiegs der Inzidenz bei Kindern, zusammen mit der Aggressivität der Tumore und ihrer schnellen Entwicklung, legt nahe, dass die beobachteten Zunahmen von Schilddrüsenkrebs teilweise auf den Unfall zurückzuführen sind.
Tabelle 12. Zeitliches Muster der Inzidenz und Gesamtzahl von Schilddrüsenkrebs bei Kindern in Weißrussland, der Ukraine und Russland, 1981-94
Inzidenz* (/100,000) |
Zahl der Fälle |
|||
1981-85 |
1991-94 |
1981-85 |
1991-94 |
|
Belarus |
||||
Das ganze Land |
0.3 |
3.06 |
3 |
333 |
Bereich Gomel |
0.5 |
9.64 |
1 |
164 |
Ukraine |
||||
Das ganze Land |
0.05 |
0.34 |
25 |
209 |
Fünf am schwersten |
0.01 |
1.15 |
1 |
118 |
Russland |
||||
Das ganze Land |
? |
? |
? |
? |
Brjansk und |
0 |
1.00 |
0 |
20 |
* Inzidenz: das Verhältnis der Anzahl neuer Fälle einer Krankheit in einem bestimmten Zeitraum zur Größe der untersuchten Population im selben Zeitraum.
Quelle: Stsjazhko et al. 1995.
Abbildung 7. Inzidenz von Schilddrüsenkrebs bei Kindern unter 15 Jahren in Weißrussland
In den am stärksten kontaminierten Gebieten (z. B. Region Gomel) waren die Schilddrüsendosen besonders bei Kindern hoch (Williams et al. 1993). Dies steht im Einklang mit den mit dem Unfall verbundenen erheblichen Jodemissionen und der Tatsache, dass sich radioaktives Jod ohne vorbeugende Maßnahmen bevorzugt in der Schilddrüse anreichern wird.
Strahlenbelastung ist ein gut dokumentierter Risikofaktor für Schilddrüsenkrebs. In einem Dutzend Studien an Kindern, die eine Strahlentherapie an Kopf und Hals erhielten, wurde ein deutlicher Anstieg der Inzidenz von Schilddrüsenkrebs beobachtet. In den meisten Fällen war der Anstieg zehn bis 15 Jahre nach der Exposition deutlich, in einigen Fällen jedoch innerhalb von drei bis sieben Jahren nachweisbar. Andererseits sind die Auswirkungen einer inneren Bestrahlung durch Jod-131 und Jodisotope mit kurzer Halbwertszeit bei Kindern nicht gut belegt (Shore 1992).
Das genaue Ausmaß und Muster des Anstiegs der Inzidenz von Schilddrüsenkrebs in den am stärksten exponierten Bevölkerungsgruppen in den kommenden Jahren sollte untersucht werden. Derzeit laufende epidemiologische Studien sollen dazu beitragen, den Zusammenhang zwischen der von der Schilddrüse aufgenommenen Dosis und dem Risiko, an Schilddrüsenkrebs zu erkranken, zu quantifizieren und die Rolle anderer genetischer und umweltbedingter Risikofaktoren zu identifizieren. Zu beachten ist, dass Jodmangel in den betroffenen Regionen weit verbreitet ist.
Innerhalb von fünf bis zehn Jahren nach dem Unfall ist bei den am stärksten exponierten Mitgliedern der Bevölkerung mit einem Anstieg der Inzidenz von Leukämie, insbesondere der Jugendleukämie (da Kinder empfindlicher auf die Wirkung ionisierender Strahlung reagieren) zu rechnen. Obwohl ein solcher Anstieg noch nicht beobachtet wurde, lassen die methodischen Schwächen der bisherigen Studien keine endgültigen Schlüsse zu.
Psychosoziale Auswirkungen
Das Auftreten von mehr oder weniger schweren chronischen psychischen Problemen nach einem psychischen Trauma ist gut belegt und wurde hauptsächlich in Bevölkerungsgruppen untersucht, die mit Umweltkatastrophen wie Überschwemmungen, Vulkanausbrüchen und Erdbeben konfrontiert waren. Posttraumatischer Stress ist ein schwerer, lang anhaltender und lähmender Zustand (APA 1994).
Der größte Teil unseres Wissens über die Auswirkungen von Strahlenunfällen auf psychische Probleme und Stress stammt aus Studien, die nach dem Unfall von Three Mile Island durchgeführt wurden. Im Jahr nach dem Unfall wurden bei der exponierten Bevölkerung unmittelbare psychische Effekte beobachtet, insbesondere Mütter kleiner Kinder zeigten erhöhte Empfindlichkeit, Angst und Depression (Bromet et al. 1982). Außerdem wurde bei Kraftwerksarbeitern im Vergleich zu Arbeitern in einem anderen Kraftwerk eine Zunahme von Depressionen und angstbedingten Problemen beobachtet (Bromet et al. 1982). In den Folgejahren (dh nach der Wiederinbetriebnahme des Kraftwerks) wies etwa ein Viertel der befragten Bevölkerung relativ starke psychische Probleme auf. Es gab keinen Unterschied in der Häufigkeit psychischer Probleme bei der übrigen Befragungspopulation im Vergleich zu Kontrollpopulationen (Dew und Bromet 1993). Psychische Probleme traten häufiger bei Personen auf, die in der Nähe des Kraftwerks lebten, ohne soziales Unterstützungsnetz waren, eine Vorgeschichte mit psychiatrischen Problemen hatten oder ihre Wohnung zum Zeitpunkt des Unfalls evakuiert hatten (Baum, Cohen und Hall 1993).
Es werden auch Studien unter Bevölkerungsgruppen durchgeführt, die während des Unfalls von Tschernobyl exponiert waren und für die Stress ein wichtiges Problem der öffentlichen Gesundheit zu sein scheint (z. B. Reinigungs- und Hilfskräfte und Personen, die in einer kontaminierten Zone leben). Derzeit liegen jedoch keine verlässlichen Daten über Art, Schweregrad, Häufigkeit und Verteilung psychischer Probleme in den Zielpopulationen vor. Zu den Faktoren, die bei der Bewertung der psychischen und sozialen Folgen des Unfalls für die Bewohner der kontaminierten Gebiete zu berücksichtigen sind, gehören die schwierige soziale und wirtschaftliche Lage, die Vielfalt der verfügbaren Entschädigungssysteme, die Auswirkungen von Evakuierung und Umsiedlung (zusätzlich ca. 100,000 Menschen wurden in den Jahren nach dem Unfall umgesiedelt) und die Auswirkungen von Einschränkungen des Lebensstils (z. B. Ernährungsumstellung).
Grundsätze der Prävention und Richtlinien
Sicherheitsprinzipien und Richtlinien
Industrielle und medizinische Verwendung radioaktiver Quellen
Es trifft zwar zu, dass sich alle gemeldeten größeren Strahlenunfälle in Kernkraftwerken ereignet haben, die Verwendung radioaktiver Quellen in anderen Umgebungen hat jedoch zu Unfällen mit schwerwiegenden Folgen für die Arbeiter oder die breite Öffentlichkeit geführt. Die Vermeidung solcher Unfälle ist gerade im Hinblick auf die enttäuschenden Prognosen bei Hochdosis-Exposition essenziell. Die Vorbeugung hängt von der angemessenen Ausbildung der Arbeiter und der Führung eines umfassenden Lebenszyklusinventars radioaktiver Quellen ab, das Informationen sowohl über die Art als auch über den Standort der Quellen enthält. Die IAEA hat eine Reihe von Sicherheitsrichtlinien und -empfehlungen für den Umgang mit radioaktiven Quellen in Industrie, Medizin und Forschung herausgegeben (Safety Series No. 102). Die fraglichen Prinzipien ähneln denen, die im Folgenden für Kernkraftwerke dargestellt werden.
Sicherheit in Kernkraftwerken (IAEA Safety Series No. 75, INSAG-3)
Ziel dabei ist es, Mensch und Umwelt unter allen Umständen vor der Emission radioaktiver Stoffe zu schützen. Dazu sind vielfältige Maßnahmen bei Planung, Bau, Betrieb und Stilllegung von Kernkraftwerken erforderlich.
Die Sicherheit von Kernkraftwerken hängt grundsätzlich vom „Defense-in-Depth“-Prinzip ab, also der Redundanz von Systemen und Geräten, die dazu bestimmt sind, technische oder menschliche Fehler und Mängel auszugleichen. Konkret werden radioaktive Materialien durch eine Reihe aufeinanderfolgender Barrieren von der Umgebung getrennt. In Reaktoren zur Kernenergieerzeugung ist die letzte dieser Barrieren die Containment-Struktur (am Standort von Tschernobyl nicht vorhanden, aber auf Three Mile Island vorhanden). Um den Zusammenbruch dieser Barrieren zu vermeiden und die Folgen von Ausfällen zu begrenzen, sollten während der gesamten Betriebsdauer des Kraftwerks die folgenden drei Sicherheitsmaßnahmen praktiziert werden: Kontrolle der Kernreaktion, Kühlung des Brennstoffs und Eindämmung radioaktiver Stoffe.
Ein weiteres wesentliches Sicherheitsprinzip ist die „Betriebserfahrungsanalyse“, also die Nutzung von Informationen aus auch kleineren Ereignissen an anderen Standorten zur Erhöhung der Sicherheit eines bestehenden Standorts. So hat die Analyse der Unfälle von Three Mile Island und Tschernobyl zur Umsetzung von Modifikationen geführt, die sicherstellen sollen, dass sich ähnliche Unfälle nicht anderswo ereignen.
Abschließend sei darauf hingewiesen, dass erhebliche Anstrengungen unternommen wurden, um eine Sicherheitskultur zu fördern, d. h. eine Kultur, die ständig auf Sicherheitsbedenken im Zusammenhang mit der Organisation, den Aktivitäten und Praktiken des Werks sowie auf das individuelle Verhalten eingeht. Um die Sichtbarkeit von Zwischenfällen und Unfällen in Kernkraftwerken zu erhöhen, wurde eine internationale Skala nuklearer Ereignisse (INES) entwickelt, die im Prinzip mit Skalen identisch ist, die zur Messung der Schwere von Naturphänomenen wie Erdbeben und Wind verwendet werden (Tabelle 12). Diese Skala ist jedoch nicht geeignet, um die Sicherheit eines Standorts zu bewerten oder internationale Vergleiche anzustellen.
Tabelle 13. Internationales Ausmaß nuklearer Zwischenfälle
Niveau |
Offsite |
Vor Ort |
Schutzstruktur |
7 – Großer Unfall |
Große Emission, |
||
6 – Schwerer Unfall |
Erhebliche Emission, |
||
5 – Unfall |
Begrenzte Emission, |
Schwere Schäden an |
|
4 – Unfall |
Emissionsarm, öffentlich |
Schäden an Reaktoren |
|
3 – Schwerer Vorfall |
Sehr emissionsarm, |
Echte Beschallungs- |
Unfall knapp vermieden |
2 – Vorfall |
Schwere Kontamination |
Schwerwiegendes Versagen von Sicherheitsmaßnahmen |
|
1 – Anomalie |
Abnormalität darüber hinaus |
||
0 – Ungleichheit |
Keine Bedeutung von |
Grundsätze zum Schutz der Bevölkerung vor Strahlenexposition
In Fällen, in denen die breite Öffentlichkeit potenziell exponiert ist, kann es erforderlich sein, Schutzmaßnahmen anzuwenden, die darauf abzielen, die Exposition gegenüber ionisierender Strahlung zu verhindern oder zu begrenzen; dies ist besonders wichtig, wenn deterministische Effekte vermieden werden sollen. Die ersten Maßnahmen, die im Notfall ergriffen werden sollten, sind Evakuierung, Unterbringung und Verabreichung von stabilem Jod. Stabiles Jod sollte an exponierte Bevölkerungsgruppen verteilt werden, da dies die Schilddrüse sättigt und ihre Aufnahme von radioaktivem Jod hemmt. Um jedoch wirksam zu sein, muss die Schilddrüsensättigung vor oder kurz nach Beginn der Exposition erfolgen. Schließlich kann eine vorübergehende oder dauerhafte Umsiedlung, Dekontaminierung und Kontrolle der Landwirtschaft und Lebensmittel notwendig werden.
Jede dieser Gegenmaßnahmen hat ihre eigene „Auslöseschwelle“ (Tabelle 14), nicht zu verwechseln mit den ICRP-Dosisgrenzwerten für Arbeitnehmer und die allgemeine Öffentlichkeit, die entwickelt wurden, um einen angemessenen Schutz bei nicht unfallbedingter Exposition zu gewährleisten (ICRP 1991).
Tabelle 14. Beispiele allgemeiner Eingreifrichtwerte für Schutzmaßnahmen für die allgemeine Bevölkerung
Schutzmaßnahme |
Interventionslevel (abgewandte Dosis) |
Notfall |
|
Eindämmung |
10 mSv |
Evakuierung |
50 mSv |
Verteilung von stabilem Jod |
100 mGy |
Verspätet |
|
Vorübergehende Umsiedlung |
30 mSv in 30 Tagen; 10 mSv in den nächsten 30 Tagen |
Dauerhafte Umsiedlung |
1 Sv Lebensdauer |
Quelle: IAEA 1994.
Forschungsbedarf und zukünftige Trends
Die aktuelle Sicherheitsforschung konzentriert sich auf die Verbesserung des Designs von Kernreaktoren zur Stromerzeugung – genauer gesagt auf die Verringerung des Risikos und der Auswirkungen einer Kernschmelze.
Die Erfahrungen aus früheren Unfällen sollen zu Verbesserungen im therapeutischen Management schwer verstrahlter Personen führen. Derzeit wird der Einsatz von Knochenmarkzellwachstumsfaktoren (hämatopoetischen Wachstumsfaktoren) bei der Behandlung von strahleninduzierter Medulläraplasie (Entwicklungsstörung) untersucht (Thierry et al. 1995).
Die Auswirkungen niedriger Dosen und Dosisleistungen ionisierender Strahlung sind nach wie vor unklar und müssen geklärt werden, sowohl aus rein wissenschaftlicher Sicht als auch im Hinblick auf die Festlegung von Dosisgrenzwerten für die Allgemeinheit und für Arbeitnehmer. Biologische Forschung ist notwendig, um die beteiligten karzinogenen Mechanismen aufzuklären. Die Ergebnisse großangelegter epidemiologischer Studien, insbesondere derjenigen, die derzeit an Arbeitern in Kernkraftwerken durchgeführt werden, sollten sich als nützlich erweisen, um die Genauigkeit von Krebsrisikoschätzungen für Bevölkerungsgruppen zu verbessern, die niedrigen Dosen oder Dosisraten ausgesetzt sind. Studien an Bevölkerungsgruppen, die aufgrund von Unfällen ionisierender Strahlung ausgesetzt waren oder waren, sollten unser Verständnis der Auswirkungen höherer Dosen, die oft mit niedrigen Dosisraten verabreicht werden, verbessern.
Die für die zeitnahe Erfassung der für die Bewertung der gesundheitlichen Auswirkungen von Strahlenunfällen wesentlichen Daten erforderliche Infrastruktur (Organisation, Ausrüstung und Hilfsmittel) muss rechtzeitig vor dem Unfall vorhanden sein.
Schließlich sind umfangreiche Untersuchungen notwendig, um die psychologischen und sozialen Auswirkungen von Strahlenunfällen zu klären (z. B. Art und Häufigkeit sowie Risikofaktoren für pathologische und nicht-pathologische posttraumatische psychische Reaktionen). Diese Forschung ist unerlässlich, wenn der Umgang mit sowohl beruflich als auch nicht beruflich exponierten Bevölkerungsgruppen verbessert werden soll.