Donnerstag, März 31 2011 17: 34

Flugzeug Flugbetrieb

Artikel bewerten
(0 Stimmen)

Adaptiert aus der 3. Auflage des Enzyklopädie-Artikels „Luftfahrt - fliegendes Personal“, verfasst von H. Gartmann.

Dieser Artikel befasst sich mit dem Arbeitsschutz der Besatzungsmitglieder von Luftfahrzeugen der Zivilluftfahrt; siehe auch die Artikel „Flughafen- und Flugkontrollbetrieb“, „Flugzeugwartungsbetrieb“ und „Hubschrauber“ für weitere Informationen.

Technische Besatzungsmitglieder

Das technische Personal oder Flugbesatzungsmitglieder sind für den Betrieb des Flugzeugs verantwortlich. Zur technischen Besatzung gehören je nach Flugzeugtyp der verantwortliche Pilot (PIC), der Copilot (bzw Erster Offizier) und dem Flugingenieur oder a Zweiter offizier (ein Pilot).

Der PIC (bzw Kapitän) trägt die Verantwortung für die Sicherheit des Flugzeugs, der Passagiere und der anderen Besatzungsmitglieder. Der Kapitän ist der gesetzliche Vertreter des Luftfahrtunternehmens und ist vom Luftfahrtunternehmen und der nationalen Luftfahrtbehörde mit der Befugnis ausgestattet, alle zur Erfüllung dieses Mandats erforderlichen Maßnahmen durchzuführen. Der PIC leitet alle Aufgaben auf dem Flugdeck und hat das Kommando über das gesamte Flugzeug.

Der Copilot nimmt seine Befehle direkt vom PIC entgegen und fungiert als Stellvertreter des Kapitäns auf Delegation oder in dessen Abwesenheit. Der Copilot ist der primäre Assistent des PIC in einer Flugbesatzung; im Zwei-Personen-Flugdeckbetrieb der neueren Generation und in älteren zweimotorigen Flugzeugen ist er oder sie der einzige Assistent.

Viele Flugzeuge der älteren Generation tragen ein drittes technisches Besatzungsmitglied. Diese Person kann ein Flugingenieur oder ein dritter Pilot sein (normalerweise als der Zweiter offizier). Der Flugingenieur, sofern anwesend, ist für den mechanischen Zustand des Luftfahrzeugs und seiner Ausrüstung verantwortlich. Flugzeuge der neuen Generation haben viele der Funktionen des Flugingenieurs automatisiert; Bei diesen Zwei-Personen-Operationen führen die Piloten solche Aufgaben aus, die ein Flugingenieur sonst ausführen könnte, die nicht konstruktionsbedingt automatisiert wurden.

Auf bestimmten Langstreckenflügen kann die Besatzung durch einen Piloten mit den Qualifikationen des PIC, einen zusätzlichen Ersten Offizier und bei Bedarf einen zusätzlichen Flugingenieur ergänzt werden.

Nationale und internationale Gesetze schreiben vor, dass Luftfahrzeugtechniker Luftfahrzeuge nur betreiben dürfen, wenn sie im Besitz einer gültigen, von der nationalen Behörde ausgestellten Lizenz sind. Um ihre Lizenzen aufrechtzuerhalten, erhalten technische Besatzungsmitglieder einmal im Jahr eine Bodenschulausbildung. Sie werden außerdem zweimal jährlich in einem Flugsimulator (einem Gerät, das reale Flug- und Flugnotsituationen simuliert) und mindestens einmal jährlich im realen Betrieb getestet.

Eine weitere Bedingung für den Erhalt und die Verlängerung einer gültigen Lizenz ist eine medizinische Untersuchung alle 6 Monate für Verkehrs- und Berufspiloten über 40 Jahre oder alle 12 Monate für Berufspiloten unter 40 Jahren und Flugingenieure. Die Mindestanforderungen für diese Prüfungen werden von der ICAO und von nationalen Vorschriften festgelegt. Eine bestimmte Anzahl flugmedizinisch erfahrener Ärzte kann von den zuständigen nationalen Behörden zur Durchführung solcher Untersuchungen zugelassen werden. Dazu können Ärzte des Luftfahrtministeriums, Flugchirurgen der Luftwaffe, medizinische Offiziere von Fluggesellschaften oder von der nationalen Behörde benannte niedergelassene Ärzte gehören.

Mitglieder der Kabinenbesatzung

Das Kabinenpersonal (bzw Flugbegleiter) sind in erster Linie für die Sicherheit der Fahrgäste verantwortlich. Flugbegleiter führen routinemäßige Sicherheitsaufgaben durch; Darüber hinaus sind sie für die Überwachung der Flugzeugkabine auf Sicherheits- und Sicherheitsrisiken verantwortlich. Im Notfall sind die Kabinenbesatzungsmitglieder für die Organisation von Notfallmaßnahmen und für die sichere Evakuierung der Passagiere verantwortlich. Während des Fluges muss die Kabinenbesatzung möglicherweise auf Notfälle wie Rauch und Feuer in der Kabine, Turbulenzen, medizinische Traumata, Flugzeugdekompressionen und Entführungen oder andere terroristische Bedrohungen reagieren. Zusätzlich zu ihren Notfallaufgaben bieten Flugbegleiter auch Passagierservice an.

Die minimale Kabinenbesatzung liegt zwischen 1 und 14 Flugbegleitern, abhängig vom Flugzeugtyp, der Passagierkapazität des Flugzeugs und den nationalen Vorschriften. Zusätzlicher Personalbedarf kann durch Tarifverträge festgelegt werden. Die Kabinenbesatzung kann durch einen Purser oder Service Manager ergänzt werden. Die Kabinenbesatzung steht normalerweise unter der Aufsicht eines leitenden oder „verantwortlichen“ Flugbegleiters, der wiederum verantwortlich ist und direkt dem PIC unterstellt ist.

Nationale Vorschriften sehen in der Regel nicht vor, dass die Kabinenbesatzung in gleicher Weise über Lizenzen verfügen sollte wie die technische Besatzung; Das Kabinenpersonal muss jedoch gemäß allen nationalen Vorschriften eine angemessene Einweisung und Schulung in Notfallverfahren erhalten haben. Regelmäßige ärztliche Untersuchungen sind normalerweise nicht gesetzlich vorgeschrieben, aber einige Fluggesellschaften verlangen ärztliche Untersuchungen zum Zweck der Gesunderhaltung.

Gefahren und ihre Vermeidung

Alle Flugbesatzungsmitglieder sind einer Vielzahl physischer und psychischer Stressfaktoren, den Gefahren eines Flugzeugunfalls oder eines anderen Flugunfalls und der möglichen Ansteckung mit einer Reihe von Krankheiten ausgesetzt.

Körperliche Belastung

Sauerstoffmangel, eines der Hauptprobleme der Flugmedizin in den Anfängen des Fliegens, war im modernen Luftverkehr bis vor kurzem nur noch eine untergeordnete Rolle. Im Falle eines Düsenflugzeugs, das in 12,000 m Höhe fliegt, beträgt die äquivalente Höhe in der Druckkabine nur 2,300 m, und folglich werden bei gesunden Personen normalerweise keine Symptome von Sauerstoffmangel oder Hypoxie auftreten. Die Toleranz gegenüber Sauerstoffmangel ist von Person zu Person unterschiedlich, aber für einen gesunden, nicht trainierten Probanden liegt die vermutete Höhenschwelle, bei der die ersten Symptome einer Hypoxie auftreten, bei 3,000 m.

Mit dem Aufkommen von Flugzeugen der neuen Generation sind jedoch Bedenken hinsichtlich der Kabinenluftqualität wieder aufgetaucht. Flugzeugkabinenluft besteht aus Luft, die von Kompressoren im Triebwerk angesaugt wird, und enthält häufig auch rezirkulierte Luft aus der Kabine. Die Strömungsgeschwindigkeit der Außenluft innerhalb einer Flugzeugkabine kann von nur 0.2 m variieren3 pro Minute pro Person auf 1.42 m3 pro Minute pro Person, je nach Flugzeugtyp und -alter sowie je nach Standort innerhalb der Kabine. Neue Flugzeuge nutzen umgewälzte Kabinenluft in viel größerem Umfang als ältere Modelle. Dieses Luftqualitätsproblem ist spezifisch für die Kabinenumgebung. Die Luftströmungsraten im Flugdeckabteil betragen oft bis zu 4.25 m3 pro Minute pro Besatzungsmitglied. Diese höheren Luftströmungsraten werden auf dem Flugdeck bereitgestellt, um die Kühlanforderungen der Avionik- und elektronischen Ausrüstung zu erfüllen.

Beschwerden über schlechte Kabinenluftqualität von Kabinenpersonal und Passagieren haben in den letzten Jahren zugenommen, was einige nationale Behörden veranlasst hat, Nachforschungen anzustellen. Mindestbelüftungsraten für Flugzeugkabinen sind in nationalen Vorschriften nicht definiert. Der tatsächliche Kabinenluftstrom wird selten gemessen, sobald ein Flugzeug in Betrieb genommen wird, da dies nicht erforderlich ist. Der minimale Luftstrom und die Verwendung von Umluft erfordern in Kombination mit anderen Problemen der Luftqualität, wie z. B. dem Vorhandensein chemischer Verunreinigungen, Mikroorganismen, anderer Allergene, Tabakrauch und Ozon, eine weitere Bewertung und Untersuchung.

Die Aufrechterhaltung einer angenehmen Lufttemperatur in der Kabine stellt in modernen Flugzeugen kein Problem dar; Die Feuchtigkeit dieser Luft kann jedoch aufgrund des großen Temperaturunterschieds zwischen dem Flugzeuginneren und dem Äußeren nicht auf ein angenehmes Niveau angehoben werden. Dadurch sind Crew und Passagiere besonders auf Langstreckenflügen extrem trockener Luft ausgesetzt. Die Luftfeuchtigkeit in der Kabine hängt von der Belüftungsrate der Kabine, der Passagierlast, der Temperatur und dem Druck ab. Die relative Luftfeuchtigkeit in Flugzeugen schwankt heute zwischen etwa 25 % und weniger als 2 %. Einige Passagiere und Besatzungsmitglieder verspüren auf Flügen, die länger als 3 oder 4 Stunden dauern, Beschwerden wie Trockenheit von Augen, Nase und Rachen. Es gibt keine schlüssigen Beweise für weitreichende oder schwerwiegende gesundheitliche Auswirkungen einer niedrigen relativen Luftfeuchtigkeit auf das Flugpersonal. Es sollten jedoch Vorkehrungen getroffen werden, um Austrocknung zu vermeiden; eine ausreichende Aufnahme von Flüssigkeiten wie Wasser und Säften sollte ausreichen, um Beschwerden vorzubeugen.

Reisekrankheit (Schwindel, Unwohlsein und Erbrechen aufgrund abnormaler Bewegungen und Höhen des Flugzeugs) war viele Jahrzehnte lang ein Problem für Besatzungen und Passagiere der Zivilluftfahrt. Bei kleinen Sportflugzeugen, Militärflugzeugen und Luftakrobatik besteht das Problem heute noch. In modernen Jet-Transportflugzeugen ist es viel weniger schwerwiegend und tritt seltener auf, da höhere Flugzeuggeschwindigkeiten und Startgewichte, höhere Reiseflughöhen (die das Flugzeug über die Turbulenzzonen bringen) und der Einsatz von Bordradar (das Sturmböen und Windböen ermöglicht). Stürme zu lokalisieren und zu umrunden). Darüber hinaus kann das Fehlen von Reisekrankheit auch dem geräumigeren, offenen Design der heutigen Flugzeugkabine zugeschrieben werden, das ein größeres Gefühl von Sicherheit, Stabilität und Komfort vermittelt.

Andere physikalische und chemische Gefahren

Fluglärm ist zwar ein erhebliches Problem für das Bodenpersonal, aber für die Besatzungsmitglieder eines modernen Düsenflugzeugs weniger schwerwiegend als dies bei einem Flugzeug mit Kolbenmotor der Fall war. Die Effizienz von Lärmschutzmaßnahmen wie der Isolierung in modernen Flugzeugen hat dazu beigetragen, diese Gefahr in den meisten Flugumgebungen zu eliminieren. Darüber hinaus haben Verbesserungen in der Kommunikationsausrüstung die Hintergrundgeräuschpegel von diesen Quellen minimiert.

Ozonbelastung ist eine bekannte, aber schlecht überwachte Gefahr für Flugpersonal und Passagiere. Ozon ist in der oberen Atmosphäre als Ergebnis der photochemischen Umwandlung von Sauerstoff durch ultraviolette Sonnenstrahlung in Höhen vorhanden, die von kommerziellen Düsenflugzeugen genutzt werden. Die mittlere Ozonkonzentration in der Umgebung nimmt mit zunehmendem Breitengrad zu und ist am stärksten im Frühjahr. Es kann auch mit Wettersystemen variieren, was dazu führt, dass hohe Ozonfahnen in niedrigere Höhen absteigen.

Zu den Symptomen einer Ozonexposition gehören Husten, Reizung der oberen Atemwege, Kitzeln im Hals, Brustbeschwerden, erhebliche Schmerzen oder Schmerzen, Schwierigkeiten oder Schmerzen beim tiefen Atmen, Kurzatmigkeit, Keuchen, Kopfschmerzen, Müdigkeit, verstopfte Nase und Augenreizung. Die meisten Menschen können Ozon bei 0.02 ppm erkennen, und Studien haben gezeigt, dass eine Ozonbelastung bei 0.5 ppm oder mehr zu einer signifikanten Verschlechterung der Lungenfunktion führt. Die Wirkungen der Ozonkontamination werden von Personen, die mäßiger bis schwerer Aktivität nachgehen, leichter gespürt als von Personen, die sich in Ruhe befinden oder einer leichten Aktivität nachgehen. So haben Flugbegleiter (die im Flug körperlich aktiv sind) die Auswirkungen von Ozon früher und häufiger erlebt als die technische Besatzung oder Passagiere auf demselben Flug, wenn eine Ozonkontamination vorhanden war.

In einer Ende der 1970er Jahre von der Luftfahrtbehörde der Vereinigten Staaten durchgeführten Studie (Rogers 1980) wurden mehrere Flüge (meist auf 9,150 bis 12,200 m) auf Ozonbelastung überwacht. Bei elf Prozent der überwachten Flüge wurde festgestellt, dass die zulässigen Ozonkonzentrationsgrenzwerte der Behörde überschritten wurden. Methoden zur Minimierung der Ozonbelastung umfassen die Wahl von Routen und Höhen, die Bereiche mit hoher Ozonkonzentration vermeiden, und die Verwendung von Luftbehandlungsgeräten (normalerweise ein Katalysator). Die Katalysatoren sind jedoch Verschmutzungen und Effizienzverlusten ausgesetzt. Vorschriften (sofern vorhanden) erfordern weder ihre regelmäßige Entfernung für Effizienztests noch die Überwachung der Ozonwerte im tatsächlichen Flugbetrieb. Besatzungsmitglieder, insbesondere die Kabinenbesatzung, haben gefordert, dass eine bessere Überwachung und Kontrolle der Ozonbelastung eingeführt wird.

Eine weitere ernsthafte Sorge für technische und Kabinenbesatzungsmitglieder ist die kosmische Strahlung, die Strahlungsformen umfasst, die von der Sonne und anderen Quellen im Universum durch den Weltraum übertragen werden. Die meiste kosmische Strahlung, die durch den Weltraum wandert, wird von der Erdatmosphäre absorbiert; Je höher die Höhe, desto geringer ist jedoch der Schutz. Das Erdmagnetfeld bietet auch eine gewisse Abschirmung, die in Äquatornähe am größten ist und in höheren Breitengraden abnimmt. Flugbesatzungsmitglieder sind während des Fluges kosmischer Strahlung ausgesetzt, die höher ist als die am Boden empfangene.

Die Höhe der Strahlenbelastung hängt von der Art und dem Umfang des Fliegens ab; Beispielsweise wird ein Besatzungsmitglied, das viele Stunden in großen Höhen und großen Breiten (z. B. Polarrouten) fliegt, die größte Strahlenbelastung erhalten. Die Zivilluftfahrtbehörde der Vereinigten Staaten (FAA) hat geschätzt, dass die langfristige durchschnittliche kosmische Strahlungsdosis für fliegende Besatzungsmitglieder zwischen 0.025 und 0.93 Millisievert (mSv) pro 100 Blockstunden liegt (Friedberg et al. 1992). Basierend auf FAA-Schätzungen würde ein Besatzungsmitglied, das 960 Blockstunden pro Jahr (oder durchschnittlich 80 Stunden/Monat) fliegt, eine geschätzte jährliche Strahlendosis zwischen 0.24 und 8.928 mSv erhalten. Diese Expositionswerte liegen unter dem von der International Commission on Radiological Protection (ICRP) festgelegten Arbeitsplatzgrenzwert von 20 Millisievert pro Jahr (5-Jahres-Durchschnitt).

Die ICRP empfiehlt jedoch, dass die berufliche Exposition gegenüber ionisierender Strahlung während der Schwangerschaft 2 mSv nicht überschreiten sollte. Darüber hinaus empfiehlt der US National Council on Radiation Protection and Measurements (NCRP), dass die Exposition 0.5 mSv in keinem Monat überschreitet, sobald eine Schwangerschaft bekannt ist. Wenn ein Besatzungsmitglied einen ganzen Monat lang auf Flügen mit den höchsten Expositionen gearbeitet hat, könnte die monatliche Dosisleistung den empfohlenen Grenzwert überschreiten. Ein solches Flugmuster über 5 oder 6 Monate könnte zu einer Exposition führen, die auch den empfohlenen Schwangerschaftsgrenzwert von 2 mSv überschreiten würde.

Die gesundheitlichen Auswirkungen einer jahrelangen Strahlenexposition auf niedrigem Niveau umfassen Krebs, genetische Defekte und Geburtsfehler bei einem Kind, das im Mutterleib exponiert ist. Die FAA schätzt, dass das zusätzliche Risiko für tödlichen Krebs aufgrund der Strahlenbelastung während des Fluges zwischen 1 zu 1,500 und 1 zu 94 liegen würde, abhängig von der Art der Strecken und der Anzahl der geflogenen Stunden; das zusätzliche Risiko eines schweren genetischen Defekts aufgrund der Exposition eines Elternteils gegenüber kosmischer Strahlung liegt zwischen 1 von 220,000 Lebendgeburten und 1 von 4,600 Lebendgeburten; und das Risiko von geistiger Behinderung und Krebs im Kindesalter bei einem exponierten Kind in utero gegenüber kosmischer Strahlung würde zwischen 1 zu 20,000 und 1 zu 680 liegen, abhängig von der Art und Menge der Flüge, die die Mutter während der Schwangerschaft unternommen hat.

Der FAA-Bericht kommt zu dem Schluss, dass „Strahlenbelastung wahrscheinlich kein Faktor ist, der das Fliegen für ein nicht schwangeres Besatzungsmitglied einschränken würde“, da selbst die größte Menge an Strahlung, die jährlich von einem Besatzungsmitglied empfangen wird, das bis zu 1,000 Blockstunden pro Jahr arbeitet, dies ist weniger als die Hälfte der von der ICRP empfohlenen durchschnittlichen Jahresgrenze. Bei einem schwangeren Besatzungsmitglied sieht die Situation jedoch anders aus. Die FAA berechnet, dass ein schwangeres Besatzungsmitglied, das 70 Blockstunden pro Monat arbeitet, bei etwa einem Drittel der von ihr untersuchten Flüge die empfohlene 5-Monats-Grenze überschreiten würde (Friedberg et al. 1992).

Es sollte betont werden, dass diese Expositions- und Risikoschätzungen nicht allgemein anerkannt sind. Schätzungen hängen von Annahmen über die Art und Mischung radioaktiver Partikel ab, die in der Höhe angetroffen werden, sowie von dem Gewichts- oder Qualitätsfaktor, der zur Bestimmung der Dosisschätzungen für einige dieser Strahlungsformen verwendet wird. Einige Wissenschaftler glauben, dass die tatsächliche Strahlungsgefahr für Flugbesatzungsmitglieder größer sein könnte als oben beschrieben. Eine zusätzliche Überwachung der Flugumgebung mit zuverlässigen Instrumenten ist erforderlich, um das Ausmaß der Strahlenbelastung während des Fluges klarer zu bestimmen.

Bis mehr über die Expositionswerte bekannt ist, sollten Flugbesatzungsmitglieder ihre Exposition gegenüber allen Arten von Strahlung so gering wie möglich halten. In Bezug auf die Strahlenbelastung während des Fluges kann die Minimierung der Flugzeit und die Maximierung des Abstands von der Strahlenquelle einen direkten Einfluss auf die empfangene Dosis haben. Die Reduzierung der monatlichen und jährlichen Flugzeit und/oder die Auswahl von Flügen, die in niedrigeren Höhen und Breiten fliegen, wird die Exposition verringern. Ein Flugbesatzungsmitglied, das in der Lage ist, seine Flugzuweisungen zu kontrollieren, kann sich dafür entscheiden, weniger Stunden pro Monat zu fliegen, für eine Mischung aus Inlands- und Auslandsflügen zu bieten oder regelmäßig Urlaub zu beantragen. Ein schwangeres Flugbesatzungsmitglied kann sich entscheiden, für die Dauer der Schwangerschaft Urlaub zu nehmen. Da das erste Trimester die wichtigste Zeit zum Schutz vor Strahlenbelastung ist, sollte ein Flugbesatzungsmitglied, das eine Schwangerschaft plant, möglicherweise auch einen Urlaub in Betracht ziehen, insbesondere wenn es regelmäßig Polarrouten über große Entfernungen fliegt und keine Kontrolle über seinen Flug hat Zuordnungen.

Ergonomische Probleme

Das wichtigste ergonomische Problem für technisches Personal ist die Notwendigkeit, viele Stunden in einer sitzenden, aber unruhigen Position und in einem sehr begrenzten Arbeitsbereich zu arbeiten. In dieser Position (fixiert durch Becken- und Schultergurt) ist es notwendig, eine Vielzahl von Aufgaben auszuführen, wie Bewegungen der Arme, Beine und des Kopfes in verschiedene Richtungen, um Instrumente in einem Abstand von etwa 1 m nach oben, unten, zu konsultieren nach vorne und zur Seite, Scannen aus der Ferne, Lesen einer Karte oder eines Handbuchs aus nächster Nähe (30 cm), Zuhören über Kopfhörer oder Sprechen über ein Mikrofon. Sitze, Instrumente, Beleuchtung, Mikroklima im Cockpit und der Komfort der Funkkommunikationsausrüstung waren und sind Gegenstand ständiger Verbesserungen. Das heutige moderne Flugdeck, das oft als „Glascockpit“ bezeichnet wird, hat durch den Einsatz von Spitzentechnologie und Automatisierung eine weitere Herausforderung geschaffen; Die Aufrechterhaltung der Wachsamkeit und des Situationsbewusstseins unter diesen Bedingungen hat sowohl bei den Konstrukteuren von Flugzeugen als auch bei dem technischen Personal, das sie fliegt, zu neuen Bedenken geführt.

Kabinenpersonal hat ganz andere ergonomische Probleme. Ein Hauptproblem ist das Stehen und Bewegen während des Fluges. Beim Steig- und Sinkflug sowie in Turbulenzen muss die Kabinenbesatzung auf einem geneigten Boden gehen; Bei einigen Flugzeugen kann die Kabinenneigung auch während des Reiseflugs bei etwa 3 % bleiben. Außerdem sind viele Kabinenböden so gestaltet, dass beim Gehen ein Rückpralleffekt entsteht, der die Flugbegleiter, die sich während eines Fluges ständig bewegen, zusätzlich belastet. Ein weiteres wichtiges ergonomisches Problem für Flugbegleiter war die Verwendung mobiler Wagen. Diese Wagen können bis zu 100 bis 140 kg wiegen und müssen in der Kabine auf und ab geschoben und gezogen werden. Darüber hinaus haben die schlechte Konstruktion und Wartung der Bremsmechanismen bei vielen dieser Wagen zu einer Zunahme von Verletzungen durch wiederholte Belastung (RSIs) bei Flugbegleitern geführt. Luftfahrtunternehmen und Wagenhersteller nehmen diese Ausrüstung jetzt ernsthafter unter die Lupe, und neue Designs haben zu ergonomischen Verbesserungen geführt. Zusätzliche ergonomische Probleme ergeben sich aus der Notwendigkeit, schwere oder sperrige Gegenstände in beengten Räumen oder unter Beibehaltung einer unbequemen Körperhaltung zu heben und zu tragen.

Arbeitsbelastung

Die Arbeitsbelastung für Flugbesatzungsmitglieder hängt von der Aufgabe, der ergonomischen Anordnung, den Arbeits-/Dienstzeiten und vielen anderen Faktoren ab. Zu den zusätzlichen Faktoren, die die technische Crew beeinflussen, gehören:

  • Dauer der Ruhezeit zwischen aktuellem und letztem Flug und Dauer der Schlafzeit während der Ruhezeit
  • das Briefing vor dem Flug und Probleme, die während des Briefings vor dem Flug aufgetreten sind
  • Verspätungen vor dem Abflug
  • Flugzeiten
  • meteorologische Bedingungen am Abfahrtsort, unterwegs und am Zielort
  • Anzahl der Flugsegmente
  • Art der geflogenen Ausrüstung
  • Qualität und Quantität der Funkkommunikation
  • Sichtbarkeit beim Abstieg, Blendung und Schutz vor der Sonne
  • Turbulenz
  • technische Probleme mit dem Flugzeug
  • Erfahrung anderer Besatzungsmitglieder
  • Flugverkehr (insbesondere am Abflug- und Zielort)
  • Anwesenheit von Personal eines Luftfahrtunternehmens oder einer nationalen Behörde zum Zwecke der Überprüfung der Befähigung der Besatzung.

 

Einige dieser Faktoren können für die Kabinenbesatzung gleichermaßen wichtig sein. Darüber hinaus unterliegen letztere den folgenden spezifischen Faktoren:

  • Zeitdruck durch kurze Flugdauer, hohes Passagieraufkommen und umfangreiche Serviceanforderungen
  • von Passagieren geforderte Zusatzleistungen, der Charakter bestimmter Passagiere und gelegentlich verbaler oder körperlicher Missbrauch durch Passagiere
  • Passagiere, die besondere Pflege und Aufmerksamkeit benötigen (z. B. Kinder, Behinderte, ältere Menschen, ein medizinischer Notfall)
  • Umfang der Vorarbeiten
  • Mangel an notwendigen Serviceleistungen (z. B. unzureichende Mahlzeiten, Getränke usw.) und Ausrüstung.

 

Zu den Maßnahmen, die das Management von Luftfahrtunternehmen und Regierungsbehörden ergriffen haben, um die Arbeitsbelastung der Besatzung in angemessenen Grenzen zu halten, gehören: Verbesserung und Ausweitung der Flugverkehrskontrolle; angemessene Beschränkungen der Dienstzeiten und Anforderungen an Mindestruhezeiten; Durchführung von Vorbereitungsarbeiten durch Disponenten, Wartungs-, Catering- und Reinigungspersonal; Automatisierung von Cockpit-Ausrüstung und -Aufgaben; die Standardisierung von Serviceverfahren; angemessene Personalausstattung; und die Bereitstellung effizienter und einfach zu handhabender Geräte.

Arbeitszeiten

Einer der wichtigsten Faktoren, die sowohl die Arbeitssicherheit als auch die Gesundheit und Sicherheit der Flugbegleiter betreffen (und sicherlich der am häufigsten diskutierte und umstrittenste) ist das Thema Flugermüdung und -erholung. Diese Ausgabe deckt das breite Tätigkeitsspektrum ab, das Praktiken der Besatzungsplanung umfasst – Länge der Dienstzeiten, Umfang der Flugzeit (täglich, monatlich und jährlich), Reserve- oder Bereitschaftsdienstzeiten und Verfügbarkeit von Ruhezeiten sowohl während des Flugeinsatzes als auch am Wohnort. Zirkadiane Rhythmen, insbesondere Schlafintervalle und -dauer, mit all ihren physiologischen und psychologischen Implikationen, sind für Flugbesatzungsmitglieder von besonderer Bedeutung. Die größten Probleme bereiten Zeitverschiebungen, sei es durch Nachtflüge oder durch Ost/West- oder West/Ost-Reisen über mehrere Zeitzonen hinweg. Flugzeuge der neueren Generation, die bis zu 15 bis 16 Stunden am Stück in der Luft bleiben können, haben den Konflikt zwischen Flugplänen und menschlichen Einschränkungen verschärft.

Nationale Vorschriften zur Begrenzung von Dienst- und Flugzeiten und zur Bereitstellung von Mindestruhezeiten existieren von Nation zu Nation. In einigen Fällen haben diese Vorschriften nicht mit der Technologie oder Wissenschaft Schritt gehalten und garantieren auch nicht unbedingt die Flugsicherheit. Bis vor kurzem gab es kaum Versuche, diese Vorschriften zu standardisieren. Gegenwärtige Harmonisierungsversuche haben bei Flugbesatzungsmitgliedern zu Bedenken geführt, dass Länder mit strengeren Schutzbestimmungen möglicherweise niedrigere und weniger angemessene Standards akzeptieren müssen. Zusätzlich zu den nationalen Vorschriften konnten viele Flugbesatzungsmitglieder in ihren Arbeitsverträgen mehr Schutzstunden für Dienstanforderungen aushandeln. Obwohl diese ausgehandelten Vereinbarungen wichtig sind, sind die meisten Besatzungsmitglieder der Ansicht, dass Dienststundenstandards für ihre Gesundheit und Sicherheit (und die der fliegenden Öffentlichkeit) von wesentlicher Bedeutung sind und daher Mindeststandards von den nationalen Behörden angemessen geregelt werden sollten.

Psychologischer Stress

Flugzeugbesatzungen wurden in den letzten Jahren mit einem ernsthaften psychischen Stressfaktor konfrontiert: der Wahrscheinlichkeit von Flugzeugentführungen, Bombenangriffen und bewaffneten Angriffen auf Flugzeuge. Obwohl die Sicherheitsvorkehrungen in der Zivilluftfahrt weltweit erheblich erhöht und verbessert wurden, hat sich auch die Erfahrung der Terroristen erhöht. Luftpiraterie, Terrorismus und andere kriminelle Handlungen bleiben eine echte Bedrohung für alle Flugbesatzungsmitglieder. Das Engagement und die Zusammenarbeit aller nationalen Behörden sowie die Kraft der weltweiten öffentlichen Meinung sind erforderlich, um diese Taten zu verhindern. Darüber hinaus müssen Flugbesatzungsmitglieder weiterhin spezielle Schulungen und Informationen zu Sicherheitsmaßnahmen erhalten und rechtzeitig über vermutete Bedrohungen durch Luftpiraterie und Terrorismus informiert werden.

Flugbesatzungsmitglieder wissen, wie wichtig es ist, den Flugdienst in einem ausreichend guten geistigen und körperlichen Zustand zu beginnen, um sicherzustellen, dass die durch den Flug selbst verursachte Ermüdung und der Stress die Sicherheit nicht beeinträchtigen. Die Flugdiensttauglichkeit kann gelegentlich durch psychische und physische Belastungen beeinträchtigt sein, und es liegt in der Verantwortung des Besatzungsmitglieds zu erkennen, ob es diensttauglich ist oder nicht. Manchmal sind diese Auswirkungen jedoch für die unter Druck stehende Person nicht ohne weiteres erkennbar. Aus diesem Grund haben die meisten Fluggesellschaften und Flugbesatzungsverbände und Gewerkschaften professionelle Standardisierungsausschüsse, um die Besatzungsmitglieder in diesem Bereich zu unterstützen.

Unfälle

Glücklicherweise sind katastrophale Flugzeugunfälle seltene Ereignisse; dennoch stellen sie eine Gefahr für Flugbesatzungsmitglieder dar. Ein Flugzeugunfall ist praktisch nie eine Gefahr, die aus einer einzigen, genau definierten Ursache resultiert; In fast allen Fällen stimmen im kausalen Prozess eine Reihe technischer und menschlicher Faktoren überein.

Defekte Ausrüstungskonstruktion oder Ausrüstungsversagen, insbesondere infolge unzureichender Wartung, sind zwei mechanische Ursachen für Flugzeugunfälle. Eine wichtige, wenn auch relativ seltene Art des menschlichen Versagens ist der plötzliche Tod beispielsweise aufgrund eines Myokardinfarkts; andere Ausfälle umfassen plötzlichen Bewusstseinsverlust (z. B. epileptische Anfälle, Herzsynkopen und Ohnmacht aufgrund einer Lebensmittelvergiftung oder einer anderen Intoxikation). Menschliches Versagen kann auch aus der langsamen Verschlechterung bestimmter Funktionen wie Hören oder Sehen resultieren, obwohl kein schwerer Flugzeugunfall auf eine solche Ursache zurückgeführt wurde. Die Vermeidung von Unfällen aus medizinischen Gründen ist eine der wichtigsten Aufgaben der Flugmedizin. Sorgfältige Personalauswahl, regelmäßige ärztliche Untersuchungen, Erhebungen über krankheits- und unfallbedingte Fehlzeiten, ständiger ärztlicher Umgang mit den Arbeitsbedingungen und arbeitshygienische Erhebungen können die Gefahr einer plötzlichen Arbeitsunfähigkeit oder eines langsamen Verfalls der technischen Besatzung erheblich verringern. Medizinisches Personal sollte außerdem routinemäßig Flugplanungspraktiken überwachen, um ermüdungsbedingte Zwischenfälle und Unfälle zu vermeiden. Eine gut geführte, moderne Airline von nennenswerter Größe sollte für diese Zwecke über einen eigenen medizinischen Dienst verfügen.

Fortschritte in der Flugunfallprävention werden oft durch sorgfältige Untersuchung von Unfällen und Zwischenfällen erzielt. Die systematische Überprüfung aller, auch geringfügiger, Unfälle und Zwischenfälle durch eine Unfalluntersuchungsstelle, die sich aus technischen, betrieblichen, strukturellen, medizinischen und anderen Experten zusammensetzt, ist unerlässlich, um alle kausalen Faktoren eines Unfalls oder Zwischenfalls zu ermitteln und Empfehlungen zur Vermeidung künftiger Ereignisse zu geben.

In der Luftfahrt gibt es eine Reihe strenger Vorschriften zur Vermeidung von Unfällen, die durch den Konsum von Alkohol oder anderen Drogen verursacht werden. Besatzungsmitglieder sollten keine Alkoholmengen konsumieren, die über das hinausgehen, was mit den beruflichen Anforderungen vereinbar ist, und während und mindestens 8 Stunden vor dem Flugdienst überhaupt keinen Alkohol konsumieren. Der Konsum illegaler Drogen ist strengstens untersagt. Der Drogenkonsum zu medizinischen Zwecken wird streng kontrolliert; Solche Medikamente sind im Allgemeinen während oder unmittelbar vor dem Flug nicht erlaubt, obwohl Ausnahmen von einem anerkannten Flugarzt genehmigt werden können.

Der Transport gefährlicher Materialien auf dem Luftweg ist eine weitere Ursache für Flugzeugunfälle und Zwischenfälle. Eine kürzlich durchgeführte Untersuchung über einen Zeitraum von 2 Jahren (1992 bis 1993) identifizierte über 1,000 Flugzeugunfälle mit gefährlichen Materialien auf Passagier- und Frachtflugzeugen allein in einem Land. Vor kurzem kam es in den Vereinigten Staaten zu einem Unfall, bei dem 110 Passagiere und Besatzungsmitglieder ums Leben kamen, bei dem es um die Beförderung gefährlicher Fracht ging. Zwischenfälle mit gefährlichen Stoffen im Luftverkehr treten aus einer Reihe von Gründen auf. Versender und Passagiere sind sich möglicherweise der Gefahren nicht bewusst, die von den Materialien ausgehen, die sie in ihrem Gepäck an Bord des Flugzeugs bringen oder zum Transport anbieten. Gelegentlich entscheiden sich skrupellose Personen dafür, verbotene gefährliche Materialien illegal zu versenden. Zusätzliche Beschränkungen für die Beförderung gefährlicher Materialien auf dem Luftweg und verbesserte Schulungen für Flugbesatzungsmitglieder, Passagiere, Verlader und Verlader können dazu beitragen, künftige Zwischenfälle zu verhindern. Andere Unfallverhütungsvorschriften behandeln Sauerstoffversorgung, Verpflegung der Besatzung und Verhalten im Krankheitsfall.

Krankheiten

Spezifische Berufskrankheiten der Besatzungsmitglieder sind nicht bekannt oder dokumentiert. Bestimmte Krankheiten können jedoch bei Besatzungsmitgliedern häufiger auftreten als bei Personen in anderen Berufen. Erkältungen und Infektionen der oberen Atemwege sind häufig; Dies kann zum Teil auf die niedrige Luftfeuchtigkeit während des Fluges, Unregelmäßigkeiten bei den Flugplänen, die Exposition gegenüber einer großen Anzahl von Menschen auf engstem Raum und so weiter zurückzuführen sein. Eine gewöhnliche Erkältung, insbesondere mit verstopfter oberer Atemwege, die für einen Büroangestellten nicht von Bedeutung ist, kann ein Besatzungsmitglied arbeitsunfähig machen, wenn sie den Druckabbau auf das Mittelohr während des Aufstiegs und insbesondere während des Sinkflugs verhindert. Darüber hinaus können auch Krankheiten, die irgendeine Form einer medikamentösen Therapie erfordern, das Besatzungsmitglied für einen bestimmten Zeitraum daran hindern, an der Arbeit teilzunehmen. Häufige Reisen in tropische Gebiete können auch zu einer erhöhten Exposition gegenüber Infektionskrankheiten führen, von denen die wichtigsten Malaria und Infektionen des Verdauungssystems sind.

Die enge Enge eines Flugzeugs für längere Zeit birgt auch ein erhöhtes Risiko für luftübertragene Infektionskrankheiten wie Tuberkulose, wenn ein Passagier oder Besatzungsmitglied eine solche Krankheit im ansteckenden Stadium hat.

 

Zurück

Lesen Sie mehr 7220 mal Zuletzt geändert am Mittwoch, 29. Juni 2011, 13:38 Uhr

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Referenzen für Transportindustrie und Lagerhaltung

American National Standards Institute (ANSI). 1967. Beleuchtung. ANSI A11.1-1967. New York: ANSI.

Anton, DJ. 1988. Crashdynamik und Rückhaltesysteme. In Aviation Medicine, 2. Auflage, herausgegeben von J Ernsting und PF King. London: Butterworth.

Beiler, H. und U. Tränkle. 1993. Fahrerarbeit als Lebensarbeitsperspektive. In Europäische Forschungsansätze zur Gestaltung der Fahrtätigkeit im ÖPNV (S. 94-98) Bundesanstat für Arbeitsschutz. Bremerhaven: Wirtschaftsverlag NW.

Büro für Arbeitsstatistik (BLS). 1996. Sicherheits- und Gesundheitsstatistik. Washington, DC: BLS.

Canadian Urban Transit Association. 1992. Ergonomische Untersuchung des Fahrerarbeitsplatzes in Stadtbussen. Toronto: Canadian Urban Transit Association.

Decker, JA. 1994. Gesundheitsgefährdungsbewertung: Southwest Airlines, Houston Hobby Airport, Houston, Texas. HETA-93-0816-2371. Cincinnati, OH: NIOSH.

DeHart RL. 1992. Luft- und Raumfahrtmedizin. In Public Health and Preventive Medicine, 13. Auflage, herausgegeben von ML Last und RB Wallace. Norwalk, Connecticut: Appleton und Lange.

DeHart, RL und KN Biere. 1985. Flugzeugunfälle, Überleben und Rettung. In Fundamentals of Aerospace Medicine, herausgegeben von RL DeHart. Philadelphia, PA: Lea und Febiger.

Eisenhardt, D und E Olmsted. 1996. Untersuchung des Eindringens von Düsenabgasen in ein Gebäude auf der Rollbahn des Flughafens John F. Kennedy (JFK). New York: US Department of Health and Human Services, Public Health Service, Division of Federal Occupational Health, New York Field Office.

Firth, R. 1995. Schritte zur erfolgreichen Installation eines Lagerverwaltungssystems. Wirtschaftsingenieurwesen 27 (2): 34–36.

Friedberg, W, L Snyder, DN Faulkner, EB Darden, Jr. und K O'Brien. 1992. Strahlenbelastung von Besatzungsmitgliedern von Luftfahrtunternehmen II. DOT/FAA/AM-92-2.19. Oklahoma City, OK: Institut für Zivilluftfahrtmedizin; Washington, DC: Federal Aviation Administration.

Gentry, JJ, J. Semeijn und DB Vellenga. 1995. Die Zukunft des Straßengüterverkehrs in der neuen Europäischen Union – 1995 und darüber hinaus. Logistics and Transportation Review 31(2):149.

Giesser-Weigt, M und G Schmidt. 1989. Verbesserung der Arbeitssituation von Fahrern im öffentlichen Personennahverkehr. Bremerhaven: Wirtschaftsverlag NW.

Glaster, DH. 1988a. Die Auswirkungen einer lang andauernden Beschleunigung. In Aviation Medicine, 2. Auflage, herausgegeben von J Ernsting und PF King. London: Butterworth.

—. 1988b. Schutz vor Langzeitbeschleunigung. In Aviation Medicine, 2. Auflage, herausgegeben von J Ernsting und PF King. London: Butterworth.

Haas, J, H Petry und W Schühlein. 1989. Untersuchung zur Verringerung berufsbedingter Gesundheitsrisiken im Fahrdienst des öffentlichen Personennahverkehrs. Bremerhaven; Wirtschaftsverlag NW.

Internationale Schifffahrtskammer. 1978. Internationaler Sicherheitsleitfaden für Öltanker und Terminals. London: Witherby.

Internationale Arbeitsorganisation (ILO). 1992. Jüngste Entwicklungen im Binnenverkehr. Bericht I, Programm für sektorale Aktivitäten, Zwölfte Tagung. Genf: ILO.

—. 1996. Unfallverhütung an Bord von Schiffen auf See und im Hafen. Ein IAO-Verhaltenskodex. 2. Auflage. Genf: ILO.

Joyner, KH und MJ Bangay. 1986. Expositionserhebung bei zivilen Flughafenradararbeitern in Australien. Zeitschrift für Mikrowellenleistung und elektromagnetische Energie 21 (4): 209–219.

Landsbergis, PA, D. Stein, D. Iacopelli und J. Fruscella. 1994. Umfrage zum Arbeitsumfeld von Fluglotsen und Entwicklung eines Arbeitssicherheits- und Gesundheitsschulungsprogramms. Präsentiert bei der American Public Health Association, 1. November, Washington, DC.

Leverett, SD und JEWhinnery. 1985. Biodynamik: Nachhaltige Beschleunigung. In Fundamentals of Aerospace Medicine, herausgegeben von RL DeHart. Philadelphia, PA: Lea und Febiger.

Magnier, M. 1996. Experten: Japan hat die Struktur, aber nicht den Willen zum Intermodalismus. Zeitschrift für Handel und Gewerbe 407:15.

Martin, RL. 1987. AS/RS: Vom Lager in die Fabrikhalle. Fertigungstechnik 99: 49–56.

Meifort, J., H. Reiners, und J. Schuh. 1983. Arbeitsshedingungen von Linienbus- und Straßenbahnfahrern des Dortmunder Staatwerke Aktiengesellschaft. Bremenhaven: Wirtschaftsverlag.

Miyamoto, Y. 1986. Reizstoffe für Augen und Atemwege in Düsentriebwerksabgasen. Aviation, Space and Environmental Medicine 57(11):1104–1108.

Nationaler Brandschutzverband (NFPA). 1976. Brandschutzhandbuch, 14. Auflage. Quincy, MA: NFPA.

Nationales Institut für Sicherheit und Gesundheitsschutz am Arbeitsplatz (NIOSH). 1976. Dokumentierte Personalbelastung durch Gepäckkontrollsysteme am Flughafen. DHHS (NIOSH) Veröffentlichung 77-105. Cincinnati, OH: NIOSH.

—. 1993a. Bewertung der Gesundheitsgefährdung: Big Bear Grocery Warehouse. HETA 91-405-2340. Cincinnati, OH: NIOSH.

—. 1993b. Warnung: Tötungsdelikte am Arbeitsplatz verhindern. DHHS (NIOSH) Veröffentlichung 93-108. Cincinatti, OH: NIOSH.

—. 1995. Gesundheitsgefährdungsbewertung: Kroger Grocery Warehouse. HETA 93-0920-2548. Cincinnati, OH: NIOSH.

Nationaler Sicherheitsrat. 1988. Aviation Ground Operation Safety Handbook, 4. Auflage. Chicago, IL: Nationaler Sicherheitsrat.

Nicogossian, AE, CL Huntoon und SL Pool (Hrsg.). 1994. Weltraumphysiologie und -medizin, 3. Auflage. Philadelphia, PA: Lea und Febiger.

Peters, Gustavsson, Morén, Nilsson und Wenäll. 1992. Forarplats I Buss, Etapp 3; Kravspezifikation. Linköping, Schweden: Väg och Trafikinstitutet.

Poitrast, BJ und deTreville. 1994. Arbeitsmedizinische Überlegungen in der Luftfahrtindustrie. In Occupational Medicine, 3. Auflage, herausgegeben von C. Zenz, OB Dickerson und EP Hovarth. St. Louis, MO: Mosby.

Register, O. 1994. Lassen Sie Auto-ID in Ihrer Welt funktionieren. Transport und Vertrieb 35(10):102–112.

Reimann, J. 1981. Beanspruchung von Linienbusfahrern. Untersuchungen zur Beanspruchung von Linienbusfahrern im innerstädtischen Verkehr. Bremerhaven: Wirtschafts-Verlag NW.

Rogers, JW. 1980. Ergebnisse des FAA Cabin Ozone Monitoring Program in Commercial Aircraft in 1978 und 1979. FAA-EE-80-10. Washington, DC: Federal Aviation Administration, Amt für Umwelt und Energie.

Rose, RM, CD Jenkins und MW Hurst. 1978. Air Traffic Controller Health Change Study. Boston, MA: Boston University School of Medicine.

Sampson, RJ, MT Farris und DL Shrock. 1990. Inlandstransport: Praxis, Theorie und Politik, 6. Auflage. Boston, MA: Houghton Mifflin Company.

Streekvervoer Niederlande. 1991. Chaufferscabine [Fahrerhaus]. Amsterdam, Niederlande: Streekvervoer Nederland.

US-Senat. 1970. Fluglotsen (Corson-Bericht). Senatsbericht 91-1012. 91. Kongress, 2. Sitzung, 9. Juli. Washington, DC: Gruppenrichtlinienobjekt.

US-Verkehrsministerium (DOT). 1995. Senatsbericht 103–310, Juni 1995. Washington, DC: GPO.

Verband Deutscher Verkehrsunternehmen. 1996. Fahrerarbeitsplatz im Linienbus. VDV Schrift 234 (Entwurf). Köln, Deutschland: Verband Deutscher Verkehrsunternehmen.

Violland, M. 1996. Wohin Eisenbahnen? OECD-Beobachter Nr. 198, 33.

Wallentowitz H., M. Marx, F. Luczak, J. Scherff. 1996. Forschungsprojekt. Fahrerarbeitsplatz im Linienbus— Abschlußbericht. Fahrerarbeitsplatz in Bussen – Abschlussbericht. Aachen, Deutschland: RWTH.

Wu, YX, XL Liu, BG Wang und XY Wang. 1989. Fluglärmbedingte vorübergehende Schwellenverschiebung. Luft- und Raumfahrt und Medizin 60 (3): 268–270.