Donnerstag, März 31 2011 17: 44

Luft- und Raumfahrtmedizin: Auswirkungen von Schwerkraft, Beschleunigung und Mikrogravitation in der Luft- und Raumfahrtumgebung

Artikel bewerten
(0 Stimmen)

Seit dem ersten Dauerflug eines Motorflugzeugs in Kitty Hawk, North Carolina (USA) im Jahr 1903, ist die Luftfahrt zu einer wichtigen internationalen Aktivität geworden. Es wird geschätzt, dass von 1960 bis 1989 die jährliche Zahl der Fluggäste regelmäßiger Linienflüge von 20 Millionen auf über 900 Millionen gestiegen ist (Poitrast und deTreville 1994). Militärflugzeuge sind für die Streitkräfte vieler Nationen zu unverzichtbaren Waffensystemen geworden. Fortschritte in der Luftfahrttechnologie, insbesondere beim Design von Lebenserhaltungssystemen, haben zur schnellen Entwicklung von Raumfahrtprogrammen mit menschlichen Besatzungen beigetragen. Orbitale Raumflüge finden relativ häufig statt, und Astronauten und Kosmonauten arbeiten über längere Zeiträume in Raumfahrzeugen und Raumstationen.

In der Luft- und Raumfahrtumgebung gehören zu den physischen Stressfaktoren, die die Gesundheit von Flugzeugbesatzungen, Passagieren und Astronauten bis zu einem gewissen Grad beeinträchtigen können, verringerte Sauerstoffkonzentrationen in der Luft, verringerter barometrischer Druck, thermische Belastung, Beschleunigung, Schwerelosigkeit und eine Vielzahl anderer potenzieller Gefahren (DeHart 1992 ). Dieser Artikel beschreibt die flugmedizinischen Auswirkungen der Exposition gegenüber Schwerkraft und Beschleunigung während des Flugs in der Atmosphäre und die Auswirkungen der Mikrogravitation im Weltraum.

Schwerkraft und Beschleunigung

Die Kombination aus Schwerkraft und Beschleunigung, die während des Flugs in der Atmosphäre angetroffen wird, erzeugt eine Vielzahl von physiologischen Effekten, die von Flugzeugbesatzungen und Passagieren erfahren werden. An der Erdoberfläche wirken die Schwerkraftkräfte auf praktisch alle Formen der menschlichen körperlichen Aktivität. Das Gewicht eines Menschen entspricht der Kraft, die das Gravitationsfeld der Erde auf die Masse des menschlichen Körpers ausübt. Das Symbol, das verwendet wird, um die Größe der Beschleunigung eines Objekts im freien Fall auszudrücken, wenn es in der Nähe der Erdoberfläche fallen gelassen wird, wird als bezeichnet g, was einer Beschleunigung von ca. 9.8 m/s entspricht2 (Glaister 1988a; Leverett und Whinnery 1985).

BESCHLEUNIGUNG tritt immer dann auf, wenn ein sich bewegendes Objekt seine Geschwindigkeit erhöht. Geschwindigkeit beschreibt die Bewegungsrate (Geschwindigkeit) und Bewegungsrichtung eines Objekts. Verzögerung bezieht sich auf eine Beschleunigung, die eine Verringerung der festgelegten Geschwindigkeit beinhaltet. Beschleunigung (wie auch Verzögerung) ist eine Vektorgröße (sie hat Größe und Richtung). Es gibt drei Arten von Beschleunigung: lineare Beschleunigung, Geschwindigkeitsänderung ohne Richtungsänderung; Radialbeschleunigung, Richtungsänderung ohne Geschwindigkeitsänderung; und Winkelbeschleunigung, eine Geschwindigkeits- und Richtungsänderung. Während des Fluges können Flugzeuge in alle drei Richtungen manövrieren, und Besatzung und Passagiere können Linear-, Radial- und Winkelbeschleunigungen erfahren. In der Luftfahrt werden angewendete Beschleunigungen üblicherweise als Vielfache der Erdbeschleunigung ausgedrückt. Vereinbarungs, G ist die Einheit, die das Verhältnis einer aufgebrachten Beschleunigung zur Gravitationskonstante ausdrückt (Glaister 1988a; Leverett und Whinnery 1985).

Biodynamik

Die Biodynamik ist die Wissenschaft, die sich mit der Kraft oder Energie lebender Materie befasst und ein wichtiges Interessengebiet auf dem Gebiet der Luft- und Raumfahrtmedizin. Moderne Flugzeuge sind sehr manövrierfähig und können mit sehr hohen Geschwindigkeiten fliegen, was Beschleunigungskräfte auf die Insassen ausübt. Der Einfluss der Beschleunigung auf den menschlichen Körper hängt von der Intensität, der Geschwindigkeit des Beginns und der Richtung der Beschleunigung ab. Die Richtung der Beschleunigung wird im Allgemeinen durch die Verwendung eines dreiachsigen Koordinatensystems beschrieben (x, y, z), in der die Vertikale (z) Achse ist parallel zur Längsachse des Körpers, der x Achse ist von vorne nach hinten orientiert, und die y Achse orientiert von Seite zu Seite (Glaister 1988a). Diese Beschleunigungen können in zwei allgemeine Typen eingeteilt werden: anhaltend und vorübergehend.

Anhaltende Beschleunigung

Die Insassen von Flugzeugen (und Raumfahrzeugen, die während des Starts und Wiedereintritts unter dem Einfluss der Schwerkraft in der Atmosphäre operieren) erfahren üblicherweise Beschleunigungen als Reaktion auf aerodynamische Flugkräfte. Längere Geschwindigkeitsänderungen mit Beschleunigungen, die länger als 2 Sekunden dauern, können durch Änderungen der Geschwindigkeit oder Flugrichtung eines Flugzeugs verursacht werden. Die physiologischen Wirkungen einer anhaltenden Beschleunigung resultieren aus der anhaltenden Verformung von Geweben und Organen des Körpers und Veränderungen des Blutflusses und der Verteilung von Körperflüssigkeiten (Glaister 1988a).

Positive oder Vorwärtsbeschleunigung entlang der z Achse (+Gz) stellt das größte physiologische Problem dar. Im zivilen Luftverkehr Gz Beschleunigungen sind selten, können aber gelegentlich bei einigen Starts und Landungen und beim Fliegen in Luftturbulenzen in geringem Maße auftreten. Passagiere können bei plötzlichen Stürzen ein kurzes Gefühl der Schwerelosigkeit verspüren (negativ Gz Beschleunigungen), wenn sie nicht angeschnallt auf ihren Sitzen sitzen. Eine unerwartete abrupte Beschleunigung kann dazu führen, dass nicht angeschnallte Flugzeugbesatzungen oder Passagiere gegen Innenflächen der Flugzeugkabine geschleudert werden, was zu Verletzungen führt.

Im Gegensatz zur zivilen Transportluftfahrt können beim Betrieb von Hochleistungs-Militärflugzeugen sowie Stunt- und Sprühflugzeugen deutlich höhere Linear-, Radial- und Winkelbeschleunigungen auftreten. Erhebliche positive Beschleunigungen können erzeugt werden, wenn ein Hochleistungsflugzeug seine Flugbahn während einer Kurve oder eines Hochziehmanövers aus einem steilen Sinkflug ändert. Das +Gz Leistungsmerkmale aktueller Kampfflugzeuge können die Insassen positiven Beschleunigungen von 5 bis 7 aussetzen G für 10 bis 40 Sekunden (Glaister 1988a). Die Flugzeugbesatzung kann eine Gewichtszunahme von Geweben und Extremitäten bei relativ niedrigen Beschleunigungswerten von nur +2 erfahren Gz. Als Beispiel ein Pilot mit einem Gewicht von 70 kg, der ein Flugzeugmanöver durchführte, das +2 erzeugte Gz würde eine Zunahme des Körpergewichts von 70 kg auf 140 kg erfahren.

Das Herz-Kreislauf-System ist das wichtigste Organsystem zur Bestimmung der Gesamttoleranz und Reaktion auf +Gz Stress (Glaister 1988a). Die Auswirkungen einer positiven Beschleunigung auf das Sehvermögen und die geistige Leistungsfähigkeit sind auf eine Verringerung des Blutflusses und der Sauerstoffzufuhr zu Auge und Gehirn zurückzuführen. Die Fähigkeit des Herzens, Blut zu den Augen und zum Gehirn zu pumpen, hängt von seiner Fähigkeit ab, den hydrostatischen Druck des Blutes an jedem Punkt entlang des Kreislaufsystems und den durch das Positive erzeugten Trägheitskräften zu überschreiten Gz Beschleunigung. Die Situation kann damit verglichen werden, einen teilweise mit Wasser gefüllten Ballon nach oben zu ziehen und die Abwärtsdehnung des Ballons aufgrund der resultierenden Trägheitskraft zu beobachten, die auf die Wassermasse wirkt. Die Exposition gegenüber positiven Beschleunigungen kann zu einem vorübergehenden Verlust des peripheren Sehvermögens oder vollständiger Bewusstlosigkeit führen. Militärpiloten von Hochleistungsflugzeugen können die Entwicklung riskieren G-induzierte Blackouts, wenn sie einem schnellen Beginn oder längeren Perioden positiver Beschleunigung im + ausgesetzt sindGz Achse. Gutartige Herzrhythmusstörungen treten häufig nach Exposition gegenüber hohen anhaltenden Konzentrationen von + aufGz Akzeleration, sind aber normalerweise von minimaler klinischer Bedeutung, es sei denn, es liegt eine vorbestehende Erkrankung vor; –Gz Beschleunigung tritt aufgrund von Beschränkungen in der Flugzeugkonstruktion und -leistung selten auf, kann aber während Rückenflug, Außenschleifen und Trudeln und anderen ähnlichen Manövern auftreten. Die physiologischen Wirkungen im Zusammenhang mit der Exposition gegenüber –Gz Akzeleration sind vor allem erhöhte Gefäßdrücke im Oberkörper, Kopf und Nacken (Glaister 1988a).

Beschleunigungen von anhaltender Dauer, die quer zur Körperlängsachse wirken, werden als Beschleunigungen bezeichnet Querbeschleunigungen und sind in den meisten Luftfahrtsituationen relativ ungewöhnlich, mit Ausnahme von katapult- und jet- oder raketenunterstützten Starts von Flugzeugträgern und während des Starts von Raketensystemen wie dem Space Shuttle. Die bei solchen Militäroperationen auftretenden Beschleunigungen sind relativ gering und wirken sich normalerweise nicht stark auf den Körper aus, da die Trägheitskräfte rechtwinklig zur Körperlängsachse wirken. Im Allgemeinen sind die Effekte weniger ausgeprägt als in Gz Beschleunigungen. Querbeschleunigung in ±Gy Achse sind ungewöhnlich, außer bei Versuchsflugzeugen.

Vorübergehende Beschleunigung

Die physiologischen Reaktionen von Individuen auf vorübergehende Beschleunigungen von kurzer Dauer sind ein wichtiger Gesichtspunkt in der Wissenschaft der Flugunfallverhütung und des Schutzes von Besatzung und Passagieren. Vorübergehende Beschleunigungen sind von so kurzer Dauer (deutlich weniger als 1 Sekunde), dass der Körper keinen stationären Zustand erreichen kann. Die häufigste Verletzungsursache bei Flugzeugunfällen resultiert aus der abrupten Verzögerung, die auftritt, wenn ein Flugzeug auf den Boden oder das Wasser auftrifft (Anton 1988).

Wenn ein Flugzeug auf dem Boden auftrifft, übt eine enorme Menge an kinetischer Energie schädliche Kräfte auf das Flugzeug und seine Insassen aus. Der menschliche Körper reagiert auf diese aufgebrachten Kräfte mit einer Kombination aus Beschleunigung und Dehnung. Verletzungen resultieren aus einer Deformation von Geweben und Organen und einem Trauma an anatomischen Teilen, die durch eine Kollision mit strukturellen Komponenten des Flugzeugcockpits und/oder der Kabine verursacht werden.

Die menschliche Toleranz gegenüber abrupter Verzögerung ist variabel. Die Art der Verletzungen hängt von der Art der ausgeübten Kraft ab (ob es sich hauptsächlich um einen durchdringenden oder stumpfen Aufprall handelt). Beim Aufprall hängen die erzeugten Kräfte von den Längs- und Horizontalverzögerungen ab, die im Allgemeinen auf einen Insassen ausgeübt werden. Abrupte Verzögerungskräfte werden oft in tolerierbar, schädlich und tödlich kategorisiert. Erträglich Kräfte erzeugen traumatische Verletzungen wie Abschürfungen und Prellungen; schädlich Kräfte erzeugen ein mittelschweres bis schweres Trauma, das möglicherweise nicht handlungsunfähig ist. Es wird geschätzt, dass ein Beschleunigungsimpuls von ungefähr 25 G 0.1 Sekunde lang gehalten wird, ist die Tolerierbarkeitsgrenze entlang des +Gz Achse, und zwar um 15 G für 0.1 sek ist die Grenze für die –Gz Achse (Anton 1988).

Mehrere Faktoren beeinflussen die menschliche Toleranz gegenüber kurzzeitiger Beschleunigung. Diese Faktoren umfassen die Grße und Dauer der aufgebrachten Kraft, die Geschwindigkeit des Einsetzens der aufgebrachten Kraft, ihre Richtung und den Ort der Anwendung. Es ist zu beachten, dass Menschen senkrecht zur Körperlängsachse viel größeren Kräften standhalten können.

Schützende Gegenmaßnahmen

Die physische Untersuchung von Besatzungsmitgliedern zur Identifizierung schwerwiegender vorbestehender Krankheiten, die sie in der Luft- und Raumfahrt einem erhöhten Risiko aussetzen könnten, ist eine Schlüsselfunktion flugmedizinischer Programme. Darüber hinaus stehen der Besatzung von Hochleistungsflugzeugen Gegenmaßnahmen zum Schutz vor den nachteiligen Auswirkungen extremer Beschleunigungen während des Fluges zur Verfügung. Besatzungsmitglieder müssen geschult werden, um zu erkennen, dass mehrere physiologische Faktoren ihre Toleranz verringern können G betonen. Zu diesen Risikofaktoren gehören Müdigkeit, Dehydration, Hitzestress, Hypoglykämie und Hypoxie (Glaister 1988b).

Drei Arten von Manövern, die Besatzungsmitglieder von Hochleistungsflugzeugen anwenden, um die nachteiligen Auswirkungen einer anhaltenden Beschleunigung während des Fluges zu minimieren, sind Muskelanspannung, forcierte Exspiration gegen eine geschlossene oder teilweise geschlossene Glottis (Zungenrücken) und Überdruckatmung (Glaister 1988b; DeHart 1992). Erzwungene Muskelkontraktionen üben einen erhöhten Druck auf die Blutgefäße aus, um die venöse Ansammlung zu verringern und den venösen Rückfluss und das Herzzeitvolumen zu erhöhen, was zu einem erhöhten Blutfluss zum Herzen und zum Oberkörper führt. Das Verfahren ist zwar effektiv, erfordert jedoch extreme, aktive Anstrengung und kann schnell zu Ermüdung führen. Ablauf gegen eine geschlossene Glottis, die so genannte Valsalva-Manöver (oder M-1-Verfahren) kann den Druck im Oberkörper erhöhen und den intrathorakalen Druck (in der Brust) erhöhen; Das Ergebnis ist jedoch nur von kurzer Dauer und kann bei längerer Dauer schädlich sein, da es den venösen Blutrückfluss und das Herzzeitvolumen verringert. Forciertes Ausatmen gegen eine teilweise geschlossene Glottis ist ein wirksameres Anti-G belastendes Manöver. Das Atmen unter positivem Druck stellt eine weitere Methode dar, um den intrathorakalen Druck zu erhöhen. Positive Drücke werden auf das kleine Arteriensystem übertragen, was zu einer erhöhten Durchblutung der Augen und des Gehirns führt. Überdruckatmung muss mit der Verwendung von Anti-G Anzüge, um eine übermäßige Ansammlung im Unterkörper und in den Gliedmaßen zu verhindern.

Militärflugzeugbesatzungen üben eine Vielzahl von Trainingsmethoden, um sich zu verbessern G Toleranz. Besatzungen trainieren häufig in einer Zentrifuge, die aus einer Gondel besteht, die an einem rotierenden Arm befestigt ist, der sich dreht und + erzeugtGz Beschleunigung. Die Flugbesatzung wird mit dem Spektrum der physiologischen Symptome, die sich entwickeln können, vertraut und lernt die richtigen Verfahren, um sie zu kontrollieren. Auch ein körperliches Fitnesstraining, insbesondere ein Ganzkörper-Krafttraining, hat sich als wirksam erwiesen. Eines der am häufigsten verwendeten mechanischen Geräte, das als Schutzausrüstung verwendet wird, um die Auswirkungen von + zu reduzierenG Exposition besteht aus pneumatisch aufgeblasenem Anti-G Anzüge (Glaister 1988b). Das typische hosenähnliche Kleidungsstück besteht aus Luftblasen über Bauch, Oberschenkeln und Waden, die sich automatisch mittels eines Anti-G Ventil im Flugzeug. Die Anti-G Ventil bläst sich als Reaktion auf eine auf das Flugzeug ausgeübte Beschleunigung auf. Bei der Inflation wird die Anti-G Anzug führt zu einem Anstieg des Gewebedrucks der unteren Extremitäten. Dadurch wird der periphere Gefäßwiderstand aufrechterhalten, die Blutansammlung im Abdomen und den unteren Gliedmaßen verringert und die Abwärtsverschiebung des Zwerchfells minimiert, um eine Zunahme des vertikalen Abstands zwischen Herz und Gehirn zu verhindern, die durch positive Beschleunigung verursacht werden kann (Glaister 1988b).

Das Überleben von vorübergehenden Beschleunigungen im Zusammenhang mit Flugzeugabstürzen hängt von wirksamen Rückhaltesystemen und der Aufrechterhaltung der Cockpit-/Kabinenintegrität ab, um das Eindringen beschädigter Flugzeugkomponenten in den Wohnraum zu minimieren (Anton 1988). Die Funktion von Beckengurten, Gurten und anderen Arten von Rückhaltesystemen besteht darin, die Bewegung der Flugzeugbesatzung oder der Passagiere zu begrenzen und die Auswirkungen einer plötzlichen Verzögerung während des Aufpralls zu dämpfen. Die Wirksamkeit des Rückhaltesystems hängt davon ab, wie gut es Lasten zwischen Karosserie und Sitz bzw. Fahrzeugstruktur überträgt. Energiedämpfende Sitze und nach hinten gerichtete Sitze sind weitere Merkmale im Flugzeugdesign, die Verletzungen begrenzen. Andere Technologien zum Schutz vor Unfällen umfassen das Design von Flugzeugzellenkomponenten zur Absorption von Energie und Verbesserungen der Sitzstrukturen zur Reduzierung mechanischer Ausfälle (DeHart 1992; DeHart und Beers 1985).

Mikrogravitation

Seit den 1960er Jahren haben Astronauten und Kosmonauten zahlreiche Missionen in den Weltraum geflogen, darunter 6 Mondlandungen von Amerikanern. Die Missionsdauer betrug mehrere Tage bis mehrere Monate, wobei einige russische Kosmonauten ungefähr 1-Jahres-Flüge absolvierten. Nach diesen Raumflügen wurde eine große Menge an Literatur von Ärzten und Wissenschaftlern geschrieben, die physiologische Aberrationen während und nach dem Flug beschreiben. Zum größten Teil wurden diese Aberrationen der Exposition gegenüber Schwerelosigkeit oder Mikrogravitation zugeschrieben. Obwohl diese Veränderungen vorübergehend sind, mit vollständiger Genesung innerhalb von einigen Tagen bis mehreren Monaten nach der Rückkehr zur Erde, kann niemand mit absoluter Sicherheit sagen, ob Astronauten nach zwei- bis dreijährigen Missionen so viel Glück haben würden, wie es für eine Hin- und Rückreise zum Mars vorgesehen ist. Die wichtigsten physiologischen Aberrationen (und Gegenmaßnahmen) können in kardiovaskuläre, muskuloskelettale, neurovestibuläre, hämatologische und endokrinologische Erkrankungen eingeteilt werden (Nicogossian, Huntoon und Pool 2).

Kardiovaskuläre Gefahren

Bisher gab es im Weltraum keine ernsthaften Herzprobleme wie Herzinfarkte oder Herzinsuffizienz, obwohl mehrere Astronauten vorübergehende Herzrhythmusstörungen entwickelt haben, insbesondere während Aktivitäten außerhalb des Fahrzeugs (EVA). In einem Fall musste ein russischer Kosmonaut vorsorglich früher als geplant zur Erde zurückkehren.

Andererseits scheint die Mikrogravitation eine Labilität von Blutdruck und Puls zu induzieren. Obwohl dies während des Flugs keine Beeinträchtigung der Gesundheit oder der Leistung der Besatzung verursacht, wird etwa die Hälfte der Astronauten unmittelbar nach dem Flug extrem schwindelig und schwindlig, wobei einige von Ohnmachtsanfällen (Synkopen) oder Ohnmachtsanfällen (Präsynkopen) betroffen sind. Als Ursache für diese Vertikalitätsintoleranz wird ein Blutdruckabfall beim Wiedereintritt in das Gravitationsfeld der Erde in Verbindung mit einer Dysfunktion der körpereigenen Kompensationsmechanismen vermutet. Daher führen ein niedriger Blutdruck und ein abnehmender Puls ohne Gegenwirkung der normalen Reaktion des Körpers auf solche physiologischen Abweichungen zu diesen Symptomen.

Obwohl diese präsynkopalen und synkopalen Episoden vorübergehend und ohne Folgen sind, besteht aus mehreren Gründen weiterhin große Besorgnis. Erstens wäre es für Astronauten äußerst schwierig, schnell zu entkommen, falls ein zurückkehrendes Raumfahrzeug bei der Landung einen Notfall, wie z. B. ein Feuer, erleiden würde. Zweitens würden Astronauten, die nach Zeitabschnitten im Weltraum auf dem Mond landen, bis zu einem gewissen Grad anfällig für Ohnmachtsanfälle und Ohnmachtsanfälle sein, obwohl das Gravitationsfeld des Mondes ein Sechstel des der Erde beträgt. Und schließlich können diese kardiovaskulären Symptome nach sehr langen Missionen weitaus schlimmer oder sogar tödlich sein.

Aus diesen Gründen wurde aggressiv nach Gegenmaßnahmen gesucht, um die Auswirkungen der Mikrogravitation auf das kardiovaskuläre System zu verhindern oder zumindest zu lindern. Obwohl derzeit eine Reihe von Gegenmaßnahmen untersucht werden, die vielversprechend sind, hat sich bisher keine als wirklich wirksam erwiesen. Die Forschung hat sich auf das Training während des Fluges unter Verwendung eines Laufbandes, eines Fahrradergometers und eines Rudergeräts konzentriert. Darüber hinaus werden auch Studien mit Lower Body Negativ Pressure (LBNP) durchgeführt. Es gibt Hinweise darauf, dass das Senken des Drucks um den Unterkörper (unter Verwendung kompakter Spezialgeräte) die Fähigkeit des Körpers zur Kompensation verbessert (dh Blutdruck und Puls erhöhen, wenn sie zu niedrig sind). Die LBNP-Gegenmaßnahme könnte noch effektiver sein, wenn der Astronaut gleichzeitig moderate Mengen von speziell zusammengesetztem Salzwasser trinkt.

Wenn das Herz-Kreislauf-Problem gelöst werden soll, muss nicht nur weiter an diesen Gegenmaßnahmen gearbeitet werden, sondern es müssen auch neue gefunden werden.

Gefahren für den Bewegungsapparat

Alle Astronauten, die aus dem Weltraum zurückkehren, leiden unabhängig von der Missionsdauer an einem gewissen Grad an Muskelschwund oder Atrophie. Besonders gefährdete Muskeln sind die der Arme und Beine, was zu einer Verringerung der Größe sowie der Kraft, Ausdauer und Arbeitsfähigkeit führt. Obwohl der Mechanismus für diese Muskelveränderungen immer noch schlecht definiert ist, ist eine teilweise Erklärung längere Nichtbenutzung; Arbeit, Aktivität und Bewegung in Schwerelosigkeit sind fast mühelos, da nichts Gewicht hat. Dies mag für Astronauten, die im Weltraum arbeiten, ein Segen sein, ist aber eindeutig eine Belastung, wenn sie in ein Gravitationsfeld zurückkehren, sei es das des Mondes oder der Erde. Ein geschwächter Zustand könnte nicht nur Aktivitäten nach dem Flug (einschließlich Arbeiten auf der Mondoberfläche) behindern, sondern auch eine schnelle Notbefreiung vom Boden aus beeinträchtigen, falls dies bei der Landung erforderlich ist. Ein weiterer Faktor ist die mögliche Notwendigkeit, während der EVA Reparaturen an Raumfahrzeugen durchzuführen, was sehr anstrengend sein kann. Zu den untersuchten Gegenmaßnahmen gehören Flugübungen, elektrische Stimulation und anabole Medikamente (Testosteron oder testosteronähnliche Steroide). Leider verzögern diese Modalitäten bestenfalls nur die Muskeldysfunktion.

Zusätzlich zum Muskelschwund gibt es auch einen langsamen, aber unaufhaltsamen Knochenschwund im Weltraum (etwa 300 mg pro Tag oder 0.5 % des gesamten Knochenkalziums pro Monat), den alle Astronauten erfahren. Dies wurde durch Röntgenaufnahmen von Knochen nach dem Flug dokumentiert, insbesondere von denen, die Gewicht tragen (dh das Achsenskelett). Dies ist auf einen langsamen, aber unablässigen Kalziumverlust in Urin und Kot zurückzuführen. Von großer Bedeutung ist der anhaltende Kalziumverlust, unabhängig von der Flugdauer. Folglich könnten dieser Kalziumverlust und die Knochenerosion ein einschränkender Faktor für die Flucht sein, es sei denn, es kann eine wirksame Gegenmaßnahme gefunden werden. Obwohl der genaue Mechanismus dieser sehr signifikanten physiologischen Abweichung nicht vollständig verstanden ist, ist sie zweifellos teilweise auf das Fehlen von Gravitationskräften auf den Knochen sowie auf Nichtbenutzung, ähnlich wie Muskelschwund, zurückzuführen. Wenn der Knochenschwund auf unbestimmte Zeit anhalten würde, insbesondere bei langen Einsätzen, würden die Knochen so brüchig werden, dass schließlich selbst bei geringer Belastung die Gefahr von Frakturen bestünde. Darüber hinaus besteht bei einem konstanten Calciumfluss über die Nieren in den Urin die Möglichkeit einer Nierensteinbildung mit begleitenden starken Schmerzen, Blutungen und Infektionen. Natürlich wäre jede dieser Komplikationen eine sehr ernste Angelegenheit, wenn sie im Weltraum auftreten würde.

Leider sind keine Gegenmaßnahmen bekannt, die den Kalziumverlust während des Weltraumflugs wirksam verhindern. Eine Reihe von Modalitäten werden getestet, einschließlich Übungen (Laufband, Fahrradergometer und Rudergerät), wobei die Theorie besagt, dass solche freiwilligen körperlichen Belastungen den Knochenstoffwechsel normalisieren und dadurch Knochenschwund verhindern oder zumindest verbessern würden. Andere untersuchte Gegenmaßnahmen sind Kalziumpräparate, Vitamine und verschiedene Medikamente (wie Diphosphonate – eine Klasse von Medikamenten, die nachweislich Knochenschwund bei Patienten mit Osteoporose verhindern). Wenn sich keine dieser einfacheren Gegenmaßnahmen als wirksam erweist, liegt die Lösung möglicherweise in künstlicher Schwerkraft, die durch kontinuierliche oder intermittierende Rotation des Raumfahrzeugs erzeugt werden könnte. Obwohl eine solche Bewegung erdähnliche Gravitationskräfte erzeugen könnte, wäre dies neben erheblichen Zusatzkosten ein technischer „Alptraum“.

Neurovestibuläre Gefahren

Mehr als die Hälfte der Astronauten und Kosmonauten leidet an der Weltraumreisekrankheit (SMS). Obwohl die Symptome von Person zu Person etwas variieren, leiden die meisten unter Magenbewusstsein, Übelkeit, Erbrechen, Kopfschmerzen und Schläfrigkeit. Oft kommt es bei schnellen Kopfbewegungen zu einer Verschlimmerung der Symptome. Wenn ein Astronaut SMS entwickelt, tritt dies normalerweise innerhalb weniger Minuten bis zu einigen Stunden nach dem Start auf, mit vollständiger Remission innerhalb von 72 Stunden. Interessanterweise kehren die Symptome manchmal nach der Rückkehr auf die Erde wieder.

SMS, insbesondere Erbrechen, können nicht nur die Besatzungsmitglieder beunruhigen, sondern können auch zu Leistungseinbußen bei einem kranken Astronauten führen. Darüber hinaus kann das Risiko des Erbrechens in einem Druckanzug bei der EVA nicht ignoriert werden, da das Erbrochene zu einer Fehlfunktion des Lebenserhaltungssystems führen kann. Aus diesen Gründen sind während der ersten 3 Tage einer Weltraummission niemals EVA-Aktivitäten geplant. Wenn eine EVA beispielsweise für Notreparaturen am Raumfahrzeug erforderlich wird, müsste die Besatzung dieses Risiko eingehen.

Ein Großteil der neurovestibulären Forschung wurde darauf ausgerichtet, einen Weg zu finden, SMS zu verhindern und zu behandeln. Verschiedene Modalitäten, einschließlich Pillen und Pflaster gegen Reisekrankheit, sowie die Verwendung von Anpassungstrainern vor dem Flug, wie Drehstühle, um Astronauten zu gewöhnen, wurden mit sehr begrenztem Erfolg versucht. In den letzten Jahren wurde jedoch entdeckt, dass das durch Injektion verabreichte Antihistaminikum Phenergan eine äußerst wirksame Behandlung darstellt. Daher wird es auf allen Flügen mitgeführt und bei Bedarf gegeben. Seine präventive Wirksamkeit muss noch nachgewiesen werden.

Andere von Astronauten berichtete neurovestibuläre Symptome sind Schwindel, Schwindel, Gleichgewichtsstörungen und Illusionen von Eigenbewegungen und Bewegungen der Umgebung, die manchmal das Gehen für kurze Zeit nach dem Flug erschweren. Die Mechanismen für diese Phänomene sind sehr komplex und noch nicht vollständig verstanden. Besonders nach einer Mondlandung nach mehreren Tagen oder Wochen im All könnten sie problematisch sein. Derzeit sind keine wirksamen Gegenmaßnahmen bekannt.

Neurovestibuläre Phänomene werden höchstwahrscheinlich durch eine Dysfunktion des Innenohrs (der Bogengänge und des Utrikelsacks) aufgrund der Mikrogravitation verursacht. Entweder werden fehlerhafte Signale an das zentrale Nervensystem gesendet oder Signale werden falsch interpretiert. In jedem Fall sind die Ergebnisse die oben genannten Symptome. Sobald der Mechanismus besser verstanden ist, können wirksame Gegenmaßnahmen identifiziert werden.

Hämatologische Gefahren

Die Mikrogravitation wirkt sich auf die roten und weißen Blutkörperchen des Körpers aus. Erstere dienen als Sauerstofftransporter zu den Geweben und letztere als immunologisches System, um den Körper vor eindringenden Organismen zu schützen. Daher könnte jede Fehlfunktion schädliche Auswirkungen haben. Aus unbekannten Gründen verlieren Astronauten zu Beginn des Fluges etwa 7 bis 17 % ihrer Masse an roten Blutkörperchen. Dieser Verlust scheint sich innerhalb weniger Monate zu stabilisieren und 4 bis 8 Wochen nach dem Flug wieder normal zu werden.

Bisher war dieses Phänomen nicht klinisch signifikant, sondern eher ein kurioser Laborbefund. Es besteht jedoch ein klares Potenzial, dass dieser Verlust an roter Blutkörperchenmasse eine sehr schwerwiegende Abweichung darstellt. Besorgniserregend ist die Möglichkeit, dass bei sehr langen Missionen, die für das XNUMX. Jahrhundert vorgesehen sind, rote Blutkörperchen schneller und in weitaus größeren Mengen verloren gehen könnten. In diesem Fall könnte sich eine Anämie entwickeln, die einen Astronauten ernsthaft erkranken könnte. Es ist zu hoffen, dass dies nicht der Fall sein wird und dass der Verlust der roten Blutkörperchen unabhängig von der Missionsdauer sehr gering bleibt.

Darüber hinaus sind mehrere Komponenten des weißen Blutkörperchensystems von der Mikrogravitation betroffen. Beispielsweise gibt es eine allgemeine Zunahme der weißen Blutkörperchen, hauptsächlich Neutrophile, aber eine Abnahme der Lymphozyten. Es gibt auch Hinweise darauf, dass einige weiße Blutkörperchen nicht normal funktionieren.

Bis jetzt wurde trotz dieser Veränderungen diesen Veränderungen der weißen Blutkörperchen keine Krankheit zugeschrieben. Es ist nicht bekannt, ob eine lange Mission zu einem weiteren Rückgang der Anzahl sowie zu weiteren Funktionsstörungen führen wird oder nicht. Sollte dies eintreten, würde das Immunsystem des Körpers beeinträchtigt, wodurch Astronauten sehr anfällig für Infektionskrankheiten werden und möglicherweise selbst durch geringfügige Krankheiten außer Gefecht gesetzt werden, die ansonsten leicht von einem normal funktionierenden Immunsystem abgewehrt würden.

Wie die Veränderungen der roten Blutkörperchen sind die Veränderungen der weißen Blutkörperchen zumindest bei Einsätzen von etwa einem Jahr ohne klinische Bedeutung. Aufgrund des potenziellen Risikos einer schweren Erkrankung während oder nach dem Flug ist es von entscheidender Bedeutung, dass die Forschung zu den Auswirkungen der Mikrogravitation auf das hämatologische System fortgesetzt wird.

Endokrinologische Gefahren

Während des Weltraumflugs wurde festgestellt, dass es im Körper zu einer Reihe von Flüssigkeits- und Mineralienveränderungen kommt, die teilweise auf Veränderungen im endokrinen System zurückzuführen sind. Im Allgemeinen kommt es zu einem Verlust an gesamten Körperflüssigkeiten sowie an Kalzium, Kalium und Kalzium. Ein genauer Mechanismus für diese Phänomene konnte nicht definiert werden, obwohl Veränderungen in verschiedenen Hormonspiegeln eine teilweise Erklärung bieten. Um die Dinge weiter zu verwirren, sind die Laborbefunde unter den untersuchten Astronauten oft uneinheitlich, was es unmöglich macht, eine einheitliche Hypothese über die Ursache dieser physiologischen Aberrationen zu erkennen. Trotz dieser Verwirrung haben diese Änderungen keine bekannte Beeinträchtigung der Gesundheit von Astronauten und keine Leistungsminderung im Flug verursacht. Welche Bedeutung diese endokrinen Veränderungen für einen sehr langen Flug haben, sowie die Möglichkeit, dass sie Vorboten sehr schwerwiegender Folgen sein können, ist unbekannt.

Danksagung: Die Autoren möchten die Arbeit der Aerospace Medical Association auf diesem Gebiet würdigen.

 

Zurück

Lesen Sie mehr 9957 mal Zuletzt geändert am Samstag, 30. Juli 2022 22:50

HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

Inhalte

Referenzen für Transportindustrie und Lagerhaltung

American National Standards Institute (ANSI). 1967. Beleuchtung. ANSI A11.1-1967. New York: ANSI.

Anton, DJ. 1988. Crashdynamik und Rückhaltesysteme. In Aviation Medicine, 2. Auflage, herausgegeben von J Ernsting und PF King. London: Butterworth.

Beiler, H. und U. Tränkle. 1993. Fahrerarbeit als Lebensarbeitsperspektive. In Europäische Forschungsansätze zur Gestaltung der Fahrtätigkeit im ÖPNV (S. 94-98) Bundesanstat für Arbeitsschutz. Bremerhaven: Wirtschaftsverlag NW.

Büro für Arbeitsstatistik (BLS). 1996. Sicherheits- und Gesundheitsstatistik. Washington, DC: BLS.

Canadian Urban Transit Association. 1992. Ergonomische Untersuchung des Fahrerarbeitsplatzes in Stadtbussen. Toronto: Canadian Urban Transit Association.

Decker, JA. 1994. Gesundheitsgefährdungsbewertung: Southwest Airlines, Houston Hobby Airport, Houston, Texas. HETA-93-0816-2371. Cincinnati, OH: NIOSH.

DeHart RL. 1992. Luft- und Raumfahrtmedizin. In Public Health and Preventive Medicine, 13. Auflage, herausgegeben von ML Last und RB Wallace. Norwalk, Connecticut: Appleton und Lange.

DeHart, RL und KN Biere. 1985. Flugzeugunfälle, Überleben und Rettung. In Fundamentals of Aerospace Medicine, herausgegeben von RL DeHart. Philadelphia, PA: Lea und Febiger.

Eisenhardt, D und E Olmsted. 1996. Untersuchung des Eindringens von Düsenabgasen in ein Gebäude auf der Rollbahn des Flughafens John F. Kennedy (JFK). New York: US Department of Health and Human Services, Public Health Service, Division of Federal Occupational Health, New York Field Office.

Firth, R. 1995. Schritte zur erfolgreichen Installation eines Lagerverwaltungssystems. Wirtschaftsingenieurwesen 27 (2): 34–36.

Friedberg, W, L Snyder, DN Faulkner, EB Darden, Jr. und K O'Brien. 1992. Strahlenbelastung von Besatzungsmitgliedern von Luftfahrtunternehmen II. DOT/FAA/AM-92-2.19. Oklahoma City, OK: Institut für Zivilluftfahrtmedizin; Washington, DC: Federal Aviation Administration.

Gentry, JJ, J. Semeijn und DB Vellenga. 1995. Die Zukunft des Straßengüterverkehrs in der neuen Europäischen Union – 1995 und darüber hinaus. Logistics and Transportation Review 31(2):149.

Giesser-Weigt, M und G Schmidt. 1989. Verbesserung der Arbeitssituation von Fahrern im öffentlichen Personennahverkehr. Bremerhaven: Wirtschaftsverlag NW.

Glaster, DH. 1988a. Die Auswirkungen einer lang andauernden Beschleunigung. In Aviation Medicine, 2. Auflage, herausgegeben von J Ernsting und PF King. London: Butterworth.

—. 1988b. Schutz vor Langzeitbeschleunigung. In Aviation Medicine, 2. Auflage, herausgegeben von J Ernsting und PF King. London: Butterworth.

Haas, J, H Petry und W Schühlein. 1989. Untersuchung zur Verringerung berufsbedingter Gesundheitsrisiken im Fahrdienst des öffentlichen Personennahverkehrs. Bremerhaven; Wirtschaftsverlag NW.

Internationale Schifffahrtskammer. 1978. Internationaler Sicherheitsleitfaden für Öltanker und Terminals. London: Witherby.

Internationale Arbeitsorganisation (ILO). 1992. Jüngste Entwicklungen im Binnenverkehr. Bericht I, Programm für sektorale Aktivitäten, Zwölfte Tagung. Genf: ILO.

—. 1996. Unfallverhütung an Bord von Schiffen auf See und im Hafen. Ein IAO-Verhaltenskodex. 2. Auflage. Genf: ILO.

Joyner, KH und MJ Bangay. 1986. Expositionserhebung bei zivilen Flughafenradararbeitern in Australien. Zeitschrift für Mikrowellenleistung und elektromagnetische Energie 21 (4): 209–219.

Landsbergis, PA, D. Stein, D. Iacopelli und J. Fruscella. 1994. Umfrage zum Arbeitsumfeld von Fluglotsen und Entwicklung eines Arbeitssicherheits- und Gesundheitsschulungsprogramms. Präsentiert bei der American Public Health Association, 1. November, Washington, DC.

Leverett, SD und JEWhinnery. 1985. Biodynamik: Nachhaltige Beschleunigung. In Fundamentals of Aerospace Medicine, herausgegeben von RL DeHart. Philadelphia, PA: Lea und Febiger.

Magnier, M. 1996. Experten: Japan hat die Struktur, aber nicht den Willen zum Intermodalismus. Zeitschrift für Handel und Gewerbe 407:15.

Martin, RL. 1987. AS/RS: Vom Lager in die Fabrikhalle. Fertigungstechnik 99: 49–56.

Meifort, J., H. Reiners, und J. Schuh. 1983. Arbeitsshedingungen von Linienbus- und Straßenbahnfahrern des Dortmunder Staatwerke Aktiengesellschaft. Bremenhaven: Wirtschaftsverlag.

Miyamoto, Y. 1986. Reizstoffe für Augen und Atemwege in Düsentriebwerksabgasen. Aviation, Space and Environmental Medicine 57(11):1104–1108.

Nationaler Brandschutzverband (NFPA). 1976. Brandschutzhandbuch, 14. Auflage. Quincy, MA: NFPA.

Nationales Institut für Sicherheit und Gesundheitsschutz am Arbeitsplatz (NIOSH). 1976. Dokumentierte Personalbelastung durch Gepäckkontrollsysteme am Flughafen. DHHS (NIOSH) Veröffentlichung 77-105. Cincinnati, OH: NIOSH.

—. 1993a. Bewertung der Gesundheitsgefährdung: Big Bear Grocery Warehouse. HETA 91-405-2340. Cincinnati, OH: NIOSH.

—. 1993b. Warnung: Tötungsdelikte am Arbeitsplatz verhindern. DHHS (NIOSH) Veröffentlichung 93-108. Cincinatti, OH: NIOSH.

—. 1995. Gesundheitsgefährdungsbewertung: Kroger Grocery Warehouse. HETA 93-0920-2548. Cincinnati, OH: NIOSH.

Nationaler Sicherheitsrat. 1988. Aviation Ground Operation Safety Handbook, 4. Auflage. Chicago, IL: Nationaler Sicherheitsrat.

Nicogossian, AE, CL Huntoon und SL Pool (Hrsg.). 1994. Weltraumphysiologie und -medizin, 3. Auflage. Philadelphia, PA: Lea und Febiger.

Peters, Gustavsson, Morén, Nilsson und Wenäll. 1992. Forarplats I Buss, Etapp 3; Kravspezifikation. Linköping, Schweden: Väg och Trafikinstitutet.

Poitrast, BJ und deTreville. 1994. Arbeitsmedizinische Überlegungen in der Luftfahrtindustrie. In Occupational Medicine, 3. Auflage, herausgegeben von C. Zenz, OB Dickerson und EP Hovarth. St. Louis, MO: Mosby.

Register, O. 1994. Lassen Sie Auto-ID in Ihrer Welt funktionieren. Transport und Vertrieb 35(10):102–112.

Reimann, J. 1981. Beanspruchung von Linienbusfahrern. Untersuchungen zur Beanspruchung von Linienbusfahrern im innerstädtischen Verkehr. Bremerhaven: Wirtschafts-Verlag NW.

Rogers, JW. 1980. Ergebnisse des FAA Cabin Ozone Monitoring Program in Commercial Aircraft in 1978 und 1979. FAA-EE-80-10. Washington, DC: Federal Aviation Administration, Amt für Umwelt und Energie.

Rose, RM, CD Jenkins und MW Hurst. 1978. Air Traffic Controller Health Change Study. Boston, MA: Boston University School of Medicine.

Sampson, RJ, MT Farris und DL Shrock. 1990. Inlandstransport: Praxis, Theorie und Politik, 6. Auflage. Boston, MA: Houghton Mifflin Company.

Streekvervoer Niederlande. 1991. Chaufferscabine [Fahrerhaus]. Amsterdam, Niederlande: Streekvervoer Nederland.

US-Senat. 1970. Fluglotsen (Corson-Bericht). Senatsbericht 91-1012. 91. Kongress, 2. Sitzung, 9. Juli. Washington, DC: Gruppenrichtlinienobjekt.

US-Verkehrsministerium (DOT). 1995. Senatsbericht 103–310, Juni 1995. Washington, DC: GPO.

Verband Deutscher Verkehrsunternehmen. 1996. Fahrerarbeitsplatz im Linienbus. VDV Schrift 234 (Entwurf). Köln, Deutschland: Verband Deutscher Verkehrsunternehmen.

Violland, M. 1996. Wohin Eisenbahnen? OECD-Beobachter Nr. 198, 33.

Wallentowitz H., M. Marx, F. Luczak, J. Scherff. 1996. Forschungsprojekt. Fahrerarbeitsplatz im Linienbus— Abschlußbericht. Fahrerarbeitsplatz in Bussen – Abschlussbericht. Aachen, Deutschland: RWTH.

Wu, YX, XL Liu, BG Wang und XY Wang. 1989. Fluglärmbedingte vorübergehende Schwellenverschiebung. Luft- und Raumfahrt und Medizin 60 (3): 268–270.