Domingo, enero 16 2011 19: 15

Enfoques para la identificación de peligros: IARC

Valora este artículo
(0 votos)

La identificación de riesgos cancerígenos para el ser humano ha sido el objetivo de la Monografías de la IARC sobre la evaluación de los riesgos cancerígenos para los seres humanos desde 1971. Hasta la fecha, se han publicado o están en prensa 69 volúmenes de monografías, con evaluaciones de carcinogenicidad de 836 agentes o circunstancias de exposición (ver Apéndice).

Estas evaluaciones cualitativas del riesgo carcinogénico para los seres humanos son equivalentes a la fase de identificación de peligros en el esquema ahora generalmente aceptado de evaluación de riesgos, que implica la identificación del peligro, la evaluación de la respuesta a la dosis (incluida la extrapolación fuera de los límites de las observaciones), la evaluación de la exposición y la caracterización del riesgo. .

El objetivo de la Monografías de la IARC programa ha consistido en publicar evaluaciones cualitativas críticas sobre la carcinogenicidad en seres humanos de agentes (productos químicos, grupos de productos químicos, mezclas complejas, factores físicos o biológicos) o circunstancias de exposición (exposiciones ocupacionales, hábitos culturales) a través de la cooperación internacional en forma de grupos de trabajo de expertos . Los grupos de trabajo preparan monografías sobre una serie de agentes o exposiciones individuales y cada volumen se publica y distribuye ampliamente. Cada monografía consta de una breve descripción de las propiedades físicas y químicas del agente; métodos para su análisis; una descripción de cómo se produce, cuánto se produce y cómo se usa; datos sobre ocurrencia y exposición humana; resúmenes de informes de casos y estudios epidemiológicos de cáncer en humanos; resúmenes de pruebas experimentales de carcinogenicidad; una breve descripción de otros datos biológicos relevantes, como toxicidad y efectos genéticos, que puedan indicar su posible mecanismo de acción; y una evaluación de su carcinogenicidad. La primera parte de este esquema general se ajusta adecuadamente cuando se trata de agentes distintos de los químicos o mezclas químicas.

Los principios rectores para evaluar los carcinógenos han sido elaborados por varios grupos ad hoc de expertos y se establecen en el Preámbulo del Monografías (CIIC 1994a).

Herramientas para la identificación cualitativa del riesgo carcinogénico (peligro)

Las asociaciones se establecen examinando los datos disponibles de estudios de humanos expuestos, los resultados de bioensayos en animales de experimentación y estudios de exposición, metabolismo, toxicidad y efectos genéticos tanto en humanos como en animales.

Estudios de cáncer en humanos.

Tres tipos de estudios epidemiológicos contribuyen a la evaluación de la carcinogenicidad: estudios de cohortes, estudios de casos y controles y estudios de correlación (o ecológicos). También se pueden revisar los informes de casos de cáncer.

Los estudios de cohortes y de casos y controles relacionan las exposiciones individuales en estudio con la aparición de cáncer en los individuos y proporcionan una estimación del riesgo relativo (proporción de la incidencia en los expuestos a la incidencia en los no expuestos) como principal medida de asociación.

En los estudios de correlación, la unidad de investigación suele ser poblaciones enteras (p. ej., áreas geográficas particulares) y la frecuencia del cáncer se relaciona con una medida resumida de la exposición de la población al agente. Debido a que la exposición individual no está documentada, es más difícil inferir una relación causal a partir de tales estudios que a partir de estudios de cohortes y de casos y controles. Los informes de casos generalmente surgen de la sospecha, basada en la experiencia clínica, de que la concurrencia de dos eventos, es decir, una exposición particular y la ocurrencia de un cáncer, ha ocurrido con bastante más frecuencia de lo que se esperaría por casualidad. Las incertidumbres que rodean la interpretación de los informes de casos y los estudios de correlación los hacen inadecuados, excepto en casos raros, para formar la única base para inferir una relación causal.

En la interpretación de estudios epidemiológicos, es necesario tener en cuenta los posibles roles de sesgo y confusión. Por sesgo se entiende la operación de factores en el diseño o ejecución del estudio que conducen erróneamente a una asociación más fuerte o más débil de la que en realidad existe entre la enfermedad y un agente. Por confusión se entiende una situación en la que la relación con la enfermedad parece más fuerte o más débil de lo que realmente es como resultado de una asociación entre el factor causal aparente y otro factor que está asociado con un aumento o una disminución en la incidencia de la enfermedad. la enfermedad.

En la evaluación de los estudios epidemiológicos, es más probable que una asociación fuerte (es decir, un riesgo relativo grande) indique causalidad que una asociación débil, aunque se reconoce que los riesgos relativos de pequeña magnitud no implican falta de causalidad y pueden ser importantes si la enfermedad es común. Las asociaciones que se replican en varios estudios del mismo diseño o que utilizan diferentes enfoques epidemiológicos o bajo diferentes circunstancias de exposición tienen más probabilidades de representar una relación causal que las observaciones aisladas de estudios únicos. Se considera que un aumento en el riesgo de cáncer con cantidades crecientes de exposición es una fuerte indicación de causalidad, aunque la ausencia de una respuesta graduada no es necesariamente evidencia en contra de una relación causal. La demostración de una disminución del riesgo después del cese o la reducción de la exposición en individuos o en poblaciones enteras también respalda una interpretación causal de los hallazgos.

Cuando varios estudios epidemiológicos muestran poca o ninguna indicación de una asociación entre una exposición y el cáncer, se puede juzgar que, en conjunto, muestran evidencia que sugiere falta de carcinogenicidad. La posibilidad de que el sesgo, la confusión o la clasificación errónea de la exposición o el resultado puedan explicar los resultados observados debe considerarse y excluirse con certeza razonable. La evidencia que sugiere la falta de carcinogenicidad obtenida de varios estudios epidemiológicos puede aplicarse solo a los tipos de cáncer, niveles de dosis e intervalos entre la primera exposición y la observación de la enfermedad que se estudiaron. Para algunos cánceres humanos, el período entre la primera exposición y el desarrollo de la enfermedad clínica rara vez es inferior a 20 años; los períodos de latencia sustancialmente más cortos que 30 años no pueden proporcionar evidencia que sugiera falta de carcinogenicidad.

La evidencia relevante para la carcinogenicidad de estudios en humanos se clasifica en una de las siguientes categorías:

Evidencia suficiente de carcinogenicidad. Se ha establecido una relación causal entre la exposición al agente, mezcla o circunstancia de exposición y el cáncer humano. Es decir, se ha observado una relación positiva entre la exposición y el cáncer en estudios en los que el azar, el sesgo y la confusión se pudieron descartar con una confianza razonable.

Evidencia limitada de carcinogenicidad. Se ha observado una asociación positiva entre la exposición al agente, la mezcla o las circunstancias de exposición y el cáncer, para lo cual se considera creíble una interpretación causal, pero no se puede descartar con una confianza razonable el azar, el sesgo o la confusión.

Pruebas inadecuadas de carcinogenicidad. Los estudios disponibles son de calidad, consistencia o poder estadístico insuficientes para permitir una conclusión sobre la presencia o ausencia de una asociación causal, o no hay datos disponibles sobre el cáncer en humanos.

Evidencia que sugiere falta de carcinogenicidad. Hay varios estudios adecuados que cubren la gama completa de niveles de exposición que se sabe que enfrentan los seres humanos, que son mutuamente consistentes en no mostrar una asociación positiva entre la exposición al agente y el cáncer estudiado en cualquier nivel de exposición observado. Una conclusión de “evidencia que sugiere falta de carcinogenicidad” se limita inevitablemente a los sitios de cáncer, condiciones y niveles de exposición y duración de la observación cubiertos por los estudios disponibles.

La aplicabilidad de una evaluación de la carcinogenicidad de una mezcla, proceso, ocupación o industria sobre la base de pruebas de estudios epidemiológicos depende del tiempo y el lugar. Se debe buscar la exposición, el proceso o la actividad específicos que se consideren más probables como responsables de cualquier exceso de riesgo y enfocar la evaluación de la manera más restringida posible. El largo período de latencia del cáncer humano complica la interpretación de los estudios epidemiológicos. Otra complicación es el hecho de que los seres humanos están expuestos simultáneamente a una variedad de productos químicos, que pueden interactuar para aumentar o disminuir el riesgo de neoplasia.

Estudios de carcinogenicidad en animales de experimentación

Hace unos 50 años se introdujeron estudios en los que animales de experimentación (por lo general, ratones y ratas) se exponen a carcinógenos potenciales y se examinan en busca de evidencia de cáncer con el objetivo de introducir un enfoque científico para el estudio de la carcinogénesis química y evitar algunas de las desventajas de utilizando únicamente datos epidemiológicos en humanos. En el Monografías de la IARC Se resumen todos los estudios disponibles y publicados sobre carcinogenicidad en animales, y el grado de evidencia de carcinogenicidad se clasifica en una de las siguientes categorías:

Evidencia suficiente de carcinogenicidad. Se ha establecido una relación causal entre el agente o la mezcla y una mayor incidencia de neoplasias malignas o de una combinación apropiada de neoplasias benignas y malignas en dos o más especies de animales o en dos o más estudios independientes en una especie realizados en momentos diferentes. o en diferentes laboratorios o bajo diferentes protocolos. Excepcionalmente, se podría considerar que un solo estudio en una especie proporciona evidencia suficiente de carcinogenicidad cuando las neoplasias malignas ocurren en un grado inusual con respecto a la incidencia, el sitio, el tipo de tumor o la edad de aparición.

Evidencia limitada de carcinogenicidad. Los datos sugieren un efecto carcinogénico pero están limitados para hacer una evaluación definitiva porque, por ejemplo, (a) la evidencia de carcinogenicidad está restringida a un solo experimento; o (b) hay algunas preguntas sin resolver con respecto a la idoneidad del diseño, la realización o la interpretación del estudio; o (c) el agente o mezcla aumenta la incidencia solo de neoplasias benignas o lesiones de potencial neoplásico incierto, o de ciertas neoplasias que pueden ocurrir espontáneamente en altas incidencias en ciertas cepas.

Pruebas inadecuadas de carcinogenicidad. Los estudios no pueden interpretarse como que muestran la presencia o ausencia de un efecto cancerígeno debido a limitaciones cualitativas o cuantitativas importantes, o porque no hay datos disponibles sobre el cáncer en animales de experimentación.

Evidencia que sugiere falta de carcinogenicidad. Se dispone de estudios adecuados con al menos dos especies que muestran que, dentro de los límites de las pruebas utilizadas, el agente o la mezcla no son cancerígenos. Una conclusión de evidencia que sugiere la falta de carcinogenicidad se limita inevitablemente a las especies, los sitios del tumor y los niveles de exposición estudiados.

Otros datos relevantes para una evaluación de la carcinogenicidad

Los datos sobre efectos biológicos en humanos que son de particular relevancia incluyen consideraciones toxicológicas, cinéticas y metabólicas y evidencia de unión al ADN, persistencia de lesiones en el ADN o daño genético en humanos expuestos. La información toxicológica, como la de citotoxicidad y regeneración, la unión al receptor y los efectos hormonales e inmunológicos, y los datos sobre la cinética y el metabolismo en animales de experimentación se resumen cuando se consideran relevantes para el posible mecanismo de acción carcinogénica del agente. Los resultados de las pruebas de efectos genéticos y relacionados se resumen para mamíferos completos, incluido el hombre, células de mamíferos cultivadas y sistemas no mamíferos. Las relaciones estructura-actividad se mencionan cuando son relevantes.

Para el agente, mezcla o circunstancia de exposición que se está evaluando, los datos disponibles sobre puntos finales u otros fenómenos relevantes para los mecanismos de carcinogénesis de estudios en humanos, animales de experimentación y sistemas de prueba de tejidos y células se resumen dentro de una o más de las siguientes dimensiones descriptivas :

  •  evidencia de genotoxicidad (es decir, cambios estructurales a nivel del gen): por ejemplo, consideraciones estructura-actividad, formación de aductos, mutagenicidad (efecto sobre genes específicos), mutación cromosómica o aneuploidía
  •  evidencia de efectos sobre la expresión de genes relevantes (es decir, cambios funcionales a nivel intracelular): por ejemplo, alteraciones en la estructura o cantidad del producto de un protooncogén o gen supresor de tumores, alteraciones en la activación metabólica, inactivación o ADN reparar
  •  evidencia de efectos relevantes en el comportamiento celular (es decir, cambios morfológicos o de comportamiento a nivel celular o tisular): por ejemplo, inducción de mitogénesis, proliferación celular compensatoria, preneoplasia e hiperplasia, supervivencia de células premalignas o malignas (inmortalización, inmunosupresión), efectos sobre el potencial metastásico
  •  evidencia de las relaciones de dosis y tiempo de efectos cancerígenos e interacciones entre agentes: por ejemplo, etapa temprana versus tardía, como se infiere de estudios epidemiológicos; iniciación, promoción, progresión o conversión maligna, tal como se define en los experimentos de carcinogenicidad en animales; toxicocinética.

 

Estas dimensiones no son mutuamente excluyentes y un agente puede estar dentro de más de una. Así, por ejemplo, la acción de un agente sobre la expresión de genes relevantes podría resumirse tanto en la primera como en la segunda dimensión, incluso si se supiera con certeza razonable que esos efectos resultan de la genotoxicidad.

Evaluaciones generales

Finalmente, el cuerpo de evidencia se considera como un todo, con el fin de llegar a una evaluación global de la carcinogenicidad para los humanos de un agente, mezcla o circunstancia de exposición. Se puede hacer una evaluación para un grupo de productos químicos cuando los datos de respaldo indican que otros compuestos relacionados para los cuales no hay evidencia directa de la capacidad de inducir cáncer en humanos o en animales también pueden ser cancerígenos, una declaración que describe el fundamento de esta conclusión es agregado a la descripción de la evaluación.

El agente, mezcla o circunstancia de exposición se describe de acuerdo con la redacción de una de las siguientes categorías, y se da el grupo designado. La categorización de un agente, mezcla o circunstancia de exposición es una cuestión de juicio científico, que refleja la solidez de la evidencia derivada de estudios en humanos y en animales de experimentación y de otros datos relevantes.

Grupo 1

El agente (mezcla) es cancerígeno para los seres humanos. La circunstancia de exposición implica exposiciones que son cancerígenas para los seres humanos.

Esta categoría se utiliza cuando existe suficiente evidencia de carcinogenicidad en humanos. Excepcionalmente, un agente (mezcla) puede colocarse en esta categoría cuando la evidencia en humanos es menos que suficiente pero hay suficiente evidencia de carcinogenicidad en animales de experimentación y fuerte evidencia en humanos expuestos de que el agente (mezcla) actúa a través de un mecanismo relevante de carcinogenicidad. .

Grupo 2

Esta categoría incluye agentes, mezclas y circunstancias de exposición para los que, en un extremo, el grado de evidencia de carcinogenicidad en humanos es casi suficiente, así como aquellos para los que, en el otro extremo, no hay datos en humanos pero para los que no hay evidencia de carcinogenicidad en animales de experimentación. Los agentes, las mezclas y las circunstancias de exposición se asignan al grupo 2A (probablemente cancerígeno para los humanos) o al grupo 2B (posiblemente cancerígeno para los humanos) sobre la base de evidencia epidemiológica y experimental de carcinogenicidad y otros datos relevantes.

Grupo 2A. El agente (mezcla) es probablemente cancerígeno para los seres humanos. La circunstancia de exposición implica exposiciones que probablemente sean cancerígenas para los seres humanos. Esta categoría se utiliza cuando existe evidencia limitada de carcinogenicidad en humanos y suficiente evidencia de carcinogenicidad en animales de experimentación. En algunos casos, un agente (mezcla) puede clasificarse en esta categoría cuando hay evidencia inadecuada de carcinogenicidad en humanos y suficiente evidencia de carcinogenicidad en animales de experimentación y fuerte evidencia de que la carcinogénesis está mediada por un mecanismo que también opera en humanos. Excepcionalmente, un agente, una mezcla o una circunstancia de exposición pueden clasificarse en esta categoría únicamente sobre la base de pruebas limitadas de carcinogenicidad en humanos.

Grupo 2B. El agente (mezcla) es posiblemente cancerígeno para los seres humanos. La circunstancia de exposición implica exposiciones que posiblemente sean cancerígenas para los seres humanos. Esta categoría se utiliza para agentes, mezclas y circunstancias de exposición para los cuales existe evidencia limitada de carcinogenicidad en humanos y evidencia menos que suficiente de carcinogenicidad en animales de experimentación. También se puede usar cuando no hay evidencia adecuada de carcinogenicidad en humanos pero hay suficiente evidencia de carcinogenicidad en animales de experimentación. En algunos casos, un agente, una mezcla o una circunstancia de exposición para los que no hay pruebas suficientes de carcinogenicidad en humanos pero pruebas limitadas de carcinogenicidad en animales de experimentación, junto con pruebas de apoyo de otros datos pertinentes, pueden incluirse en este grupo.

Grupo 3

El agente (mezcla o circunstancia de exposición) no es clasificable en cuanto a su carcinogenicidad en humanos. Esta categoría se usa más comúnmente para agentes, mezclas y circunstancias de exposición para los cuales la evidencia de carcinogenicidad es inadecuada en humanos e inadecuada o limitada en animales de experimentación.

Excepcionalmente, los agentes (mezclas) para los cuales la evidencia de carcinogenicidad en humanos es inadecuada pero suficiente en animales de experimentación pueden incluirse en esta categoría cuando hay evidencia fuerte de que el mecanismo de carcinogenicidad en animales de experimentación no opera en humanos.

Grupo 4

El agente (mezcla) probablemente no es cancerígeno para los humanos. Esta categoría se usa para agentes o mezclas para los cuales hay evidencia que sugiere falta de carcinogenicidad en humanos y en animales de experimentación. En algunos casos, los agentes o mezclas para los que no hay evidencia adecuada de carcinogenicidad en humanos pero evidencia que sugiere falta de carcinogenicidad en animales de experimentación, consistente y fuertemente respaldada por una amplia gama de otros datos relevantes, pueden clasificarse en este grupo.

Los sistemas de clasificación hechos por humanos no son lo suficientemente perfectos para abarcar todas las entidades complejas de la biología. Sin embargo, son útiles como principios rectores y pueden modificarse a medida que se establezcan con mayor firmeza nuevos conocimientos sobre la carcinogénesis. En la categorización de un agente, mezcla o circunstancia de exposición, es fundamental apoyarse en juicios científicos formulados por el grupo de expertos.

Resultados hasta la fecha

Hasta la fecha, 69 volúmenes de Monografías de la IARC han sido publicados o están en prensa, en los que se han realizado evaluaciones de carcinogenicidad en humanos para 836 agentes o circunstancias de exposición. Setenta y cuatro agentes o exposiciones han sido evaluados como cancerígenos para humanos (Grupo 1), 56 como probablemente cancerígenos para humanos (Grupo 2A), 225 como posiblemente cancerígenos para humanos (Grupo 2B) y uno como probablemente no cancerígeno para humanos (Grupo 4 ). Para 480 agentes o exposiciones, los datos epidemiológicos y experimentales disponibles no permitieron una evaluación de su carcinogenicidad en humanos (Grupo 3).

Importancia de los datos mecanísticos

El Preámbulo revisado, que apareció por primera vez en el volumen 54 del Monografías IARC, permite la posibilidad de que un agente para el cual la evidencia epidemiológica de cáncer es menos que suficiente pueda colocarse en el Grupo 1 cuando hay suficiente evidencia de carcinogenicidad en animales de experimentación y fuerte evidencia en humanos expuestos de que el agente actúa a través de un mecanismo relevante de carcinogenicidad. Por el contrario, un agente para el cual no hay evidencia adecuada de carcinogenicidad en humanos junto con evidencia suficiente en animales de experimentación y evidencia fuerte de que el mecanismo de carcinogénesis no opera en humanos puede ubicarse en el Grupo 3 en lugar del Grupo 2B normalmente asignado—posiblemente cancerígeno a los humanos—categoría.

El uso de tales datos sobre mecanismos se ha discutido en tres ocasiones recientes:

Si bien en general se acepta que la radiación solar es cancerígena para los humanos (Grupo 1), los estudios epidemiológicos sobre el cáncer en humanos para la radiación UVA y UVB de las lámparas solares solo proporcionan evidencia limitada de carcinogenicidad. Se han observado sustituciones especiales de bases en tándem (GCTTT) en genes de supresión de tumores p53 en tumores de células escamosas en sitios expuestos al sol en humanos. Aunque la UVR puede inducir transiciones similares en algunos sistemas experimentales y las UVB, UVA y UVC son cancerígenas en animales de experimentación, los datos mecánicos disponibles no se consideraron lo suficientemente sólidos como para permitir que el grupo de trabajo clasificara las UVB, UVA y UVC por encima del Grupo 2A (IARC 1992). ). En un estudio publicado después de la reunión (Kress et al. 1992), se demostraron transiciones CCTTT en p53 en tumores de piel inducidos por UVB en ratones, lo que podría sugerir que los UVB también deberían clasificarse como cancerígenos para los humanos (Grupo 1).

El segundo caso en el que se consideró la posibilidad de encuadrar un agente en el Grupo 1 en ausencia de evidencia epidemiológica suficiente fue el 4,4´-metileno-bis(2-cloroanilina) (MOCA). MOCA es cancerígeno en perros y roedores y es ampliamente genotóxico. Se une al ADN a través de la reacción con N-hidroxi MOCA y los mismos aductos que se forman en los tejidos diana para la carcinogenicidad en animales se han encontrado en células uroteliales de un pequeño número de humanos expuestos. Después de largas discusiones sobre la posibilidad de una mejora, el grupo de trabajo finalmente hizo una evaluación general del Grupo 2A, probablemente cancerígeno para los humanos (IARC 1993).

Durante una evaluación reciente del óxido de etileno (IARC 1994b), los estudios epidemiológicos disponibles proporcionaron evidencia limitada de carcinogenicidad en humanos, y los estudios en animales de experimentación proporcionaron evidencia suficiente de carcinogenicidad. Teniendo en cuenta los demás datos pertinentes de que (1) el óxido de etileno induce un aumento sensible, persistente y relacionado con la dosis en la frecuencia de aberraciones cromosómicas e intercambios de cromátidas hermanas en linfocitos periféricos y micronúcleos en células de médula ósea de trabajadores expuestos; (2) se ha asociado con malignidades del sistema linfático y hematopoyético tanto en humanos como en animales de experimentación; (3) induce un aumento relacionado con la dosis en la frecuencia de aductos de hemoglobina en humanos expuestos y aumentos relacionados con la dosis en el número de aductos tanto en ADN como en hemoglobina en roedores expuestos; (4) induce mutaciones genéticas y translocaciones hereditarias en células germinales de roedores expuestos; y (5) es un poderoso mutágeno y clastógeno en todos los niveles filogenéticos; el óxido de etileno se clasificó como cancerígeno para los humanos (Grupo 1).

En el caso en que el Preámbulo permita la posibilidad de que un agente para el que exista suficiente evidencia de carcinogenicidad en animales pueda ubicarse en el Grupo 3 (en lugar del Grupo 2B, en el que normalmente se clasificaría) cuando exista una fuerte evidencia de que el mecanismo de carcinogenicidad en animales no opera en humanos, esta posibilidad aún no ha sido utilizada por ningún grupo de trabajo. Tal posibilidad podría haberse previsto en el caso de d-limoneno si hubiera suficiente evidencia de su carcinogenicidad en animales, ya que hay datos que sugieren que α2-La producción de microglobulina en riñón de rata macho está relacionada con los tumores renales observados.

Entre los muchos productos químicos designados como prioritarios por un grupo de trabajo ad-hoc en diciembre de 1993, aparecieron algunos mecanismos de acción intrínsecos comunes postulados o se identificaron ciertas clases de agentes en función de sus propiedades biológicas. El grupo de trabajo recomendó que antes de realizar evaluaciones sobre agentes tales como proliferadores de peroxisomas, fibras, polvos y agentes tirostáticos dentro del Monografías programa, se deben convocar grupos especiales ad-hoc para discutir el último estado del arte sobre sus mecanismos de acción particulares.

 

Atrás

Leer 7002 veces Ultima modificacion el Jueves, octubre 13 2011 20: 50

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de toxicología

Andersen, KE y HI Maibach. 1985. Pruebas predictivas de alergia de contacto en conejillos de indias. Cap. 14 en Problemas Actuales en Dermatología. Basilea: Karger.

Ashby, J y RW Tennant. 1991. Relaciones definitivas entre estructura química, carcinogenicidad y mutagenicidad para 301 sustancias químicas probadas por el NTP de EE. UU. Resolución mutacional 257: 229-306.

Barlow, S y F Sullivan. mil novecientos ochenta y dos. Peligros reproductivos de los productos químicos industriales. Londres: Prensa académica.

Barret, JC. 1993a. Mecanismos de acción de carcinógenos humanos conocidos. En Mecanismos de carcinogénesis en la identificación de riesgos, editado por H Vainio, PN Magee, DB McGregor y AJ McMichael. Lyon: Agencia Internacional para la Investigación del Cáncer (IARC).

—. 1993b. Mecanismos de carcinogénesis en varios pasos y evaluación del riesgo carcinógeno. Medio Ambiente Salud Persp 100: 9-20.

Bernstein, ME. 1984. Agentes que afectan el sistema reproductivo masculino: Efectos de la estructura sobre la actividad. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. La biología molecular de las variantes de G6PD y otros defectos de glóbulos rojos. Annu Rev Med 43: 47-59.

Bloom, AD. 1981. Directrices para estudios reproductivos en poblaciones humanas expuestas. White Plains, Nueva York: Fundación March of Dimes.

Borghoff, S, B Short y J Swenberg. 1990. Mecanismos bioquímicos y patobiología de la nefropatía a-2-globulina. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly y PI Mackenzie. 1991. La superfamilia de genes UPD-glucuronosiltransferasa: nomenclatura sugerida basada en la divergencia evolutiva. Biol de células de ADN 10: 487-494.

Burleson, G, A Munson y J Dean. 1995. Métodos modernos en inmunotoxicología. Nueva York: Wiley.

Capecchi, M. 1994. Reemplazo de genes dirigidos. Sci Am 270: 52-59.

Carney, EW. 1994. Una perspectiva integrada sobre la toxicidad del etilenglicol para el desarrollo. Rep Toxicol 8: 99-113.

Dean, JH, MI Lustre, AE Munson y yo Kimber. 1994. Inmunotoxicología e Inmunofarmacología. Nueva York: Raven Press.

Escotes, J. 1986. Inmunotoxicología de Fármacos y Químicos. Ámsterdam: Elsevier.

Devary, Y, C Rosette, JA DiDonato y M Karin. 1993. Activación de NFkB por luz ultravioleta no dependiente de una señal nuclear. Ciencia: 261: 1442-1445.

Dixon, RL. 1985. Toxicología reproductiva. Nueva York: Raven Press.

Duffus, JH. 1993. Glosario para químicos de términos usados ​​en toxicología. Química de aplicación pura 65: 2003-2122.

Elsenhans, B, K Schuemann y W Forth. 1991. Metales tóxicos: Interacciones con metales esenciales. En Nutrición, Toxicidad y Cáncer, editado por IR Rowland. Boca-Ratón: CRC Press.

Agencia de Protección Ambiental (EPA). 1992. Directrices para la evaluación de la exposición. registro federal 57: 22888-22938.

—. 1993. Principios de evaluación del riesgo de neurotoxicidad. registro federal 58: 41556-41598.

—. 1994. Directrices para la Evaluación de la Toxicidad Reproductiva. Washington, DC: EPA de EE. UU.: Oficina de Investigación y Desarrollo.

Fergusson, JE. 1990. Los elementos pesados. Cap. 15 en Química, Impacto Ambiental y Efectos sobre la Salud. Oxford: Pérgamo.

Gehring, PJ, PG Watanabe y GE Blau. 1976. Estudios farmacocinéticos en la evaluación del peligro toxicológico y ambiental de los productos químicos. Evaluación segura de nuevos conceptos 1 (Parte 1, Capítulo 8): 195-270.

Goldstein, JA y SMF de Morais. 1994. Bioquímica y biología molecular del ser humano. CYP2C subfamilia. Farmacogenética 4: 285-299.

González, FJ. 1992. Citocromos humanos P450: Problemas y perspectivas. Tendencias Pharmacol Sci 13: 346-352.

González, FJ, CL Crespi y HV Gelboin. 1991. Citocromo P450 humano expresado por ADNc: una nueva era en toxicología molecular y evaluación de riesgos humanos. Resolución mutacional 247: 113-127.

González, FJ y DW Nebert. 1990. Evolución de la superfamilia de genes P450: "guerra" animal-planta, impulso molecular y diferencias genéticas humanas en la oxidación de fármacos. Tendencias Genet 6: 182-186.

Subvención, DM. 1993. Genética molecular de las N-acetiltransferasas. Farmacogenética 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman y J Laskey. 1988. El desarrollo de un protocolo para evaluar los efectos reproductivos de los tóxicos en la rata. Rep Toxicol 2: 281-287.

Guengerich, FP. 1989. Polimorfismo del citocromo P450 en humanos. Tendencias Pharmacol Sci 10: 107-109.

—. 1993. Enzimas del citocromo P450. Soy ciencia 81: 440-447.

Hansch, C y A Leo. 1979. Constantes de Sustituyentes para Análisis de Correlación en Química y Biología. Nueva York: Wiley.

Hansch, C y L Zhang. 1993. Relaciones cuantitativas estructura-actividad del citocromo P450. Drug Metab Rev 25: 1-48.

Hayes A.W. 1988. Principios y Métodos de Toxicología. 2ª ed. Nueva York: Raven Press.

Heindell, JJ y RE Chapin. 1993. Métodos en Toxicología: Toxicología Reproductiva Masculina y Femenina. vol. 1 y 2. San Diego, California: Academic Press.

Agencia Internacional para la Investigación del Cáncer (IARC). 1992. Radiación solar y ultravioleta. Lyon: IARC.

—. 1993. Exposición ocupacional de peluqueros y barberos y uso personal de colorantes para el cabello: algunos tintes para el cabello, colorantes cosméticos, colorantes industriales y aminas aromáticas. Lyon: IARC.

—. 1994a. Preámbulo. Lyon: IARC.

—. 1994b. Algunos productos químicos industriales. Lyon: IARC.

Comisión Internacional de Protección Radiológica (ICRP). 1965. Principios de Vigilancia Ambiental Relacionados con el Manejo de Materiales Radiactivos. Informe del Comité IV de la Comisión Internacional de Protección Radiológica. Oxford: Pérgamo.

Programa Internacional de Seguridad Química (IPCS). 1991. Principios y métodos para la evaluación de la nefrotoxicidad asociada con la exposición a sustancias químicas, EHC 119. Ginebra: OMS.

—. 1996. Principios y métodos para evaluar Inmunotoxicidad directa asociada con la exposición a sustancias químicas, EHC 180. Ginebra: OMS.

Johanson, G y PH Naslund. 1988. Programación de hoja de cálculo: un nuevo enfoque en el modelado basado en la fisiología de la toxicocinética de solventes. Letras de toxicol 41: 115-127.

Johnson, BL. 1978. Prevención de Enfermedades Neurotóxicas en Poblaciones Trabajadoras. Nueva York: Wiley.

Jones, JC, JM Ward, U Mohr y RD Hunt. 1990. Sistema Hemopoyético, Monografía ILSI, Berlín: Springer Verlag.

Kalow, W. 1962. Farmacogenética: Herencia y la Respuesta a las Drogas. Filadelfia: WB Saunders.

—. 1992. Farmacogenética del Metabolismo de Fármacos. Nueva York: Pérgamo.

Kammüller, ME, N Bloksma y W Seinen. 1989. Autoinmunidad y Toxicología. Desregulación inmune inducida por drogas y productos químicos. Ámsterdam: Elsevier Sciences.

Kawajiri, K, J Watanabe y SI Hayashi. 1994. Polimorfismo genético de P450 y cáncer humano. En Citocromo P450: Bioquímica, Biofísica y Biología Molecular, editado por MC Lechner. París: John Libbey Eurotext.

Kehrer, JP. 1993. Los radicales libres como mediadores de lesiones y enfermedades tisulares. Toxicol Rev Crítico 23: 21-48.

Kellerman, G, CR Shaw y M Luyten-Kellerman. 1973. Inducibilidad de aril hidrocarburo hidroxilasa y carcinoma broncogénico. Nueva Engl J Med 289: 934-937.

Khera, KS. 1991. Alteraciones químicamente inducidas, homeostasis materna e histología del concepto: su significado etiológico en anomalías fetales de rata. Teratología 44: 259-297.

Kimmel, CA, GL Kimmel y V Frankos. 1986. Taller del Grupo de enlace regulatorio interinstitucional sobre evaluación del riesgo de toxicidad para la reproducción. Medio Ambiente Salud Persp 66: 193-221.

Klaassen, CD, MO Amdur y J Doull (eds.). 1991. Toxicología de Casarett y Doull. Nueva York: Pergamon Press.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen y ED Kroese. 1995. Métodos cuantitativos en toxicología para la evaluación de la respuesta a la dosis humana. RIVM-informe nr. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer y M Schwarz. 1992. Patrón mutacional específico de carcinógeno en el gen p53 en carcinomas de células escamosas de piel de ratón inducidos por radiación ultravioleta B. Res Cáncer 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Un enfoque sin modelo para la extrapolación de dosis bajas. Env H Pers. 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare y DM Ziegler. 1994. Una nomenclatura para la familia de genes de monooxigenasa que contiene flavina de mamíferos basada en identidades de secuencias de aminoácidos. Biochis de arco biochem 308: 254-257.

Lewalter, J y U Korallus. 1985. Conjugados de proteína sanguínea y acetilación de aminas aromáticas. Nuevos hallazgos en el monitoreo biológico. Int Arch Occup Salud Ambiental 56: 179-196.

Majno, G y I Joris. 1995. Apoptosis, oncosis y necrosis: una descripción general de la muerte celular. Soy J Pathol 146: 3-15.

Mattison, DR y PJ Thomford. 1989. El mecanismo de acción de los tóxicos reproductivos. Toxicol Patol 17: 364-376.

Meyer, UA. 1994. Polimorfismos del citocromo P450 CYP2D6 como factor de riesgo en la carcinogénesis. En Citocromo P450: Bioquímica, Biofísica y Biología Molecular, editado por MC Lechner. París: John Libbey Eurotext.

Moller, H, H Vainio y E Heseltine. 1994. Estimación cuantitativa y predicción de riesgo en la Agencia Internacional para la Investigación del Cáncer. Cáncer Res 54:3625-3627.

Moolenaar, RJ. 1994. Supuestos predeterminados en la evaluación del riesgo de carcinógenos utilizados por las agencias reguladoras. Regul Toxicol Pharmacol 20: 135-141.

Moser, VC. 1990. Enfoques de detección de la neurotoxicidad: una batería de observación funcional. J Am Coll Toxicol 1: 85-93.

Consejo Nacional de Investigación (NRC). 1983. Evaluación de Riesgos en el Gobierno Federal: Gestión del Proceso. Washington, DC: Prensa de NAS.

—. 1989. Marcadores Biológicos en Toxicidad Reproductiva. Washington, DC: Prensa de NAS.

—. 1992. Marcadores biológicos en inmunotoxicología. Subcomité de Toxicología. Washington, DC: Prensa de NAS.

Nebert, DW. 1988. Genes que codifican enzimas que metabolizan fármacos: posible papel en las enfermedades humanas. En Variación fenotípica en poblaciones, editado por AD Woodhead, MA Bender y RC Leonard. Nueva York: Plenum Publishing.

—. 1994. Enzimas metabolizadoras de fármacos en la transcripción modulada por ligandos. Biochem Pharmacol 47: 25-37.

Nebert, DW y WW Weber. 1990. Farmacogenética. En Principios de Acción de los Medicamentos. La base de la farmacología, editado por WB Pratt y PW Taylor. Nueva York: Churchill-Livingstone.

Nebert, DW y DR Nelson. 1991. Nomenclatura del gen P450 basada en la evolución. En Métodos de Enzimología. Citocromo P450, editado por MR Waterman y EF Johnson. Orlando, Florida: Prensa académica.

Nebert, DW y RA McKinnon. 1994. Citocromo P450: Evolución y diversidad funcional. Prog Liv Dis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato y MR Waterman. 1987. La superfamilia de genes P450: nomenclatura recomendada. Biol de células de ADN 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman y DJ Waxman. 1991. La superfamilia P450: Actualización sobre nuevas secuencias, mapeo de genes y nomenclatura recomendada. Biol de células de ADN 10: 1-14.

Nebert, DW, DD Petersen y A Puga. 1991. Polimorfismo y cáncer del locus AH humano: Inducibilidad de CYP1A1 y otros genes por productos de combustión y dioxina. Farmacogenética 1: 68-78.

Nebert, DW, A Puga y V Vasiliou. 1993. Papel del receptor Ah y la batería de genes [Ah] inducibles por dioxina en la toxicidad, el cáncer y la transducción de señales. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert y K Okuda. 1993. La superfamilia P450: actualización de nuevas secuencias, mapeo de genes, números de acceso, primeros nombres triviales de enzimas y nomenclatura. Biol de células de ADN 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu y DK Miller. 1995. Identificación e inhibición de la proteasa ICE/CED-3 necesaria para la apoptosis de los mamíferos. Naturaleza 376: 37-43.

Nolan, RJ, WT Stott y PG Watanabe. 1995. Datos toxicológicos en evaluación de seguridad química. Cap. 2 en Higiene Industrial y Toxicología de Patty, editado por LJ Cralley, LV Cralley y JS Bus. Nueva York: John Wiley & Sons.

Nordberg, GF. 1976. Efecto y relaciones dosis-respuesta de metales tóxicos. Ámsterdam: Elsevier.

Oficina de Evaluación de Tecnología (OTA). 1985. Riesgos reproductivos en el lugar de trabajo. Documento No. OTA-BA-266. Washington, DC: Imprenta del Gobierno.

—. 1990. Neurotoxicidad: identificación y control de venenos del sistema nervioso. Documento No. OTA-BA-436. Washington, DC: Imprenta del Gobierno.

Organización para la Cooperación y el Desarrollo Económicos (OCDE). 1993. Proyecto conjunto US EPA/EC sobre la evaluación de las relaciones estructura-actividad (cuantitativas). París: OCDE.

Parque, CN y NC Hawkins. 1993. Revisión de tecnología; una descripción general de la evaluación del riesgo de cáncer. Métodos de toxicol 3: 63-86.

Pease, W, J Vandenberg y WK Hooper. 1991. Comparación de enfoques alternativos para establecer niveles regulatorios para tóxicos reproductivos: DBCP como estudio de caso. Medio Ambiente Salud Persp 91: 141-155.

pipi ƒ -Maji ƒ , D, S Telišman y S Kezi ƒ . 6.5. Estudio in vitro sobre la interacción del plomo y el alcohol y la inhibición de la deshidratasa del ácido delta-aminolevulínico eritrocitario en el hombre. Scand J Trabajo Medio Ambiente Salud 10: 235-238.

Reitz, RH, RJ Nolan y AM Schumann. 1987. Desarrollo de modelos farmacocinéticos de múltiples especies y múltiples vías para el cloruro de metileno y el 1,1,1-tricloroetano. En Farmacocinética y Evaluación de Riesgos, Agua Potable y Salud. Washington, DC: Prensa de la Academia Nacional.

Roitt, I, J Brostoff y D Male. 1989. Inmunología. Londres: Gower Medical Publishing.

Sato, A. 1991. El efecto de los factores ambientales en el comportamiento farmacocinético de los vapores de solventes orgánicos. Ann Ocupar Higiene 35: 525-541.

Silbergeld, EK. 1990. Desarrollo de métodos formales de evaluación de riesgos para neurotóxicos: una evaluación del estado del arte. En Avances en Toxicología Neuroconductual, editado por BL Johnson, WK Anger, A Durao y C Xintaras. Chelsea, Michigan: Lewis.

Spencer, PS y HH Schaumberg. 1980. Neurotoxicología Experimental y Clínica. Baltimore: Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills y RE LePorte. 1988. Evaluación de métodos para la identificación prospectiva de pérdidas fetales tempranas en estudios de epidemiología ambiental. Soy J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger y H Meier. 1973. Análisis genético de la resistencia al daño testicular inducido por cadmio en ratones. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interacciones de metales y metaloides esenciales y/o tóxicos con respecto a las diferencias interindividuales en la susceptibilidad a varios tóxicos y enfermedades crónicas en el hombre. Arh plataforma rada toksikol 46: 459-476.

Telišman, S, A Pinent y D Prpi ƒ -Maji ƒ . 6.5. La interferencia del plomo en el metabolismo del zinc y la interacción entre el plomo y el zinc en humanos como posible explicación de la aparente susceptibilidad individual al plomo. En Metales Pesados ​​en el Medio Ambiente, editado por RJ Allan y JO Nriagu. Edimburgo: CEP Consultants.

Telišman, S, D Prpi ƒ -Maji ƒ y S Kezi ƒ . 6.5. Estudio in vivo sobre la interacción del plomo y el alcohol y la inhibición de la deshidratasa del ácido delta-aminolevulínico eritrocitario en el hombre. Scand J Trabajo Medio Ambiente Salud 10: 239-244.

Tilson, HA y PA Cabe. 1978. Estrategias para la evaluación de las consecuencias neuroconductuales de los factores ambientales. Medio Ambiente Salud Persp 26: 287-299.

Trump, BF y AU Arstila. 1971. Lesión celular y muerte celular. En Principios de patobiología, editado por MF LaVia y RB Hill Jr. Nueva York: Oxford Univ. Presionar.

Trump, BF e IK Berezesky. 1992. El papel del Ca2 citosólico + en daño celular, necrosis y apoptosis. Curr Opin Cell Biol 4: 227-232.

—. 1995. Lesión celular mediada por calcio y muerte celular. FASEB J 9: 219-228.

Trump, BF, IK Berezesky y A Osornio-Vargas. 1981. La muerte celular y el proceso de la enfermedad. El papel del calcio celular. En Muerte Celular en Biología y Patología, editado por ID Bowen y RA Lockshin. Londres: Chapman & Hall.

Vos, JG, M Younes y E Smith. 1995. Hipersensibilidades alérgicas inducidas por sustancias químicas: recomendaciones para la prevención publicadas en nombre de la Oficina Regional para Europa de la Organización Mundial de la Salud. Boca Ratón, FL: CRC Press.

Weber, WW. 1987. Los genes acetiladores y la respuesta a fármacos. Nueva York: Universidad de Oxford. Presionar.

Organización Mundial de la Salud (OMS). 1980. Límites recomendados basados ​​en la salud en la exposición ocupacional a metales pesados. Serie de Informes Técnicos, No. 647. Ginebra: OMS.

—. 1986. Principios y métodos para la evaluación de la neurotoxicidad asociada con la exposición a sustancias químicas. Criterios de Salud Ambiental, No.60. Ginebra: OMS.

—. 1987. Directrices de calidad del aire para Europa. European Series, No. 23. Copenhague: Publicaciones regionales de la OMS.

—. 1989. Glosario de términos sobre seguridad química para uso en publicaciones del IPCS. Ginebra: OMS.

—. 1993. La derivación de los valores guía para los límites de exposición basados ​​en la salud. Criterios de Salud Ambiental, borrador sin editar. Ginebra: OMS.

Wyllie, AH, JFR Kerr y AR Currie. 1980. Muerte celular: La importancia de la apoptosis. Int Rev Citol 68: 251-306.

@REFS LABEL = Otras lecturas relevantes

Alberto, RE. 1994. Evaluación del riesgo carcinógeno en la Agencia de Protección Ambiental de EE.UU. crítico Rev. Toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts y JD Watson. 1988. Biología molecular de la célula. Nueva York: Garland Publishing.

Ariens, EJ. 1964. Farmacología Molecular. Volúmen 1. Nueva York: Prensa Académica.

Ariens, EJ, E Mutschler y AM Simonis. 1978. Allgemeine Toxicologie [Toxicología general]. Stuttgart: Georg Thieme Verlag.

Ashby, J y RW Tennant. 1994. Predicción de carcinogenicidad en roedores para 44 químicos: Resultados. Mutagénesis 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis y CC Caldart. 1990. Vigilancia del trabajador por exposición y enfermedad. Baltimore: Universidad Johns Hopkins. Presionar.

Balabuha, NS y GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Acumulación de elementos radiactivos en el organismo y su excreción]. Moscú: Medgiz.

Balls, M, J Bridges y J Southee. 1991. Animales y Alternativas en Toxicología Estado Actual y Perspectivas Futuras. Nottingham, Reino Unido: El Fondo para el Reemplazo de Animales en Experimentos Médicos.

Berlin, A, J Dean, MH Draper, EMB Smith y F Spreafico. 1987. Inmunotoxicología. Dordrecht: Martinus Nijhoff.

Boyhous, A. 1974. Respiración. Nueva York: Grune & Stratton.

Brandau, R y BH Lippold. mil novecientos ochenta y dos. Absorción dérmica y transdérmica. Stuttgart: Wissenschaftliche Verlagsgesellschaft.

Brusick, DJ. 1994. Métodos para la Evaluación del Riesgo Genético. Boca Ratón: Lewis Publishers.

Burrell, R. 1993. Toxicidad inmunológica humana. Mol Aspectos Med 14: 1-81.

Castell, JV y MJ Gómez-Lechón. 1992. Alternativas in vitro a la farmacotoxicología animal. Madrid, España: Farmaindustria.

Chapman, G. 1967. Líquidos corporales y sus funciones. Londres: Edward Arnold.

Comité de Marcadores Biológicos del Consejo Nacional de Investigaciones. 1987. Marcadores biológicos en la investigación de salud ambiental. Medio Ambiente Salud Persp 74: 3-9.

Cralley, LJ, LV Cralley y JS Bus (eds.). 1978. Higiene Industrial y Toxicología de Patty. Nueva York: Witey.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith y MT Van der Venne. 1990. Inmunotoxicidad de los Metales e Inmunotoxicología. Nueva York: Plenum Press.

Djuric, D. 1987. Aspectos moleculares y celulares de la exposición ocupacional a sustancias químicas tóxicas. En Parte 1 Toxicocinética. Ginebra: OMS.

Duffus, JH. 1980. Toxicología Ambiental. Londres: Edward Arnold.

ECOTOC. 1986. Relación Estructura-Actividad en Toxicología y Ecotoxicología, Monografía No. 8. Bruselas: ECOTOC.

Forth, W, D Henschler y W Rummel. 1983. Farmakologie und Toxikologie. Mannheim: Bibliographische Institut.

Frazier, JM. 1990. Criterios científicos para la Validación de Pruebas de Toxicidad in Vitro. Monografía ambiental de la OCDE, no. 36. París: OCDE.

—. 1992. Toxicidad in vitro: aplicaciones a la evaluación de la seguridad. Nueva York: Marcel Dekker.

Gad, Carolina del Sur. 1994. Toxicología in vitro. Nueva York: Raven Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tejidos grasos y sustancias tóxicas]. En Aktualnie Vaprosi promishlenoi toksikolgii [Problemas Actuales en Toxicología Ocupacional], editado por NV Lazarev. Leningrado: Ministerio de Salud RSFSR.

Gaylor, DW. 1983. El uso de factores de seguridad para controlar el riesgo. J Toxicol Salud Ambiental 11: 329-336.

Gibson, GG, R Hubbard y DV Parke. 1983. Inmunotoxicología. Londres: Prensa académica.

Goldberg, AM. 1983-1995. Alternativas en Toxicología. vol. 1-12. Nueva York: Mary Ann Liebert.

Grandjean, P. 1992. Susceptibilidad individual a la toxicidad. Letras de toxicol 64 / 65: 43-51.

Hanke, J y JK Piotrowski. 1984. Biochemyczne podstawy toksikologii [Bases bioquímicas de la toxicología]. Varsovia: PZWL.

Escotilla, T y P Bruto. 1954. Depósito Pulmonar y Retención de Aerosoles Inhalados. Nueva York: Academic Press.

Consejo de Salud de los Países Bajos: Comité de Evaluación de la Carcinogenicidad de Sustancias Químicas. 1994. Evaluación de riesgos de sustancias químicas cancerígenas en los Países Bajos. Regul Toxicol Pharmacol 19: 14-30.

Holland, WC, RL Klein y AH Briggs. 1967. Farmacología Molekulaere.

Huff, JE. 1993. Sustancias químicas y cáncer en humanos: Primera evidencia en animales de experimentación. Medio Ambiente Salud Persp 100: 201-210.

Klaassen, CD y DL Eaton. 1991. Principios de toxicología. Cap. 2 en Toxicología de Casarett y Doull, editado por CD Klaassen, MO Amdur y J Doull. Nueva York: Pergamon Press.

Kossover, EM. 1962. Bioquímica Molecular. Nueva York: McGraw-Hill.

Kundiev, YI. 1975.Vssavanie pesticidav cherez kozsu I profilaktika otravlenii [Absorción de plaguicidas a través de la piel y prevención de la intoxicación]. Kiev: Zdorovia.

Kustov, VV, LA Tiunov y JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Efectos combinados de tóxicos industriales]. Moscú: Medicina.

Lauwerys, R. 1982. Toxicología industrial y intoxicaciones profesionales. París: Masson.

Li, AP y RH Heflich. 1991. Toxicología genética. Boca Ratón: CRC Press.

Loewey, AG y P Siekewitz. 1969. Estructura y funciones celulares. Nueva York: Holt, Reinhart y Winston.

Loomis, TA. 1976. Fundamentos de Toxicología. Filadelfia: Lea & Febiger.

Mendelsohn, ML y RJ Albertini. 1990. Mutación y Medio Ambiente, Partes AE. Nueva York: Wiley Liss.

Mettzler, DE. 1977. Bioquímica. Nueva York: Academic Press.

Miller, K, JL Turk y S. Nicklin. 1992. Principios y Práctica de la Inmunotoxicología. Oxford: Blackwells científico.

Ministerio de Industria y Comercio Internacional. 1981. Manual de Sustancias Químicas Existentes. Tokio: Chemical Daily Press.

—. 1987. Solicitud de Aprobación de Sustancias Químicas por Ley de Control de Sustancias Químicas. (En japonés y en inglés). Tokio: Kagaku Kogyo Nippo Press.

Montaña, W. 1956. La estructura y función de la piel. Nueva York: Academic Press.

Moolenaar, RJ. 1994. Evaluación del riesgo carcinógeno: comparación internacional. REgul Toxicol Pharmacol 20: 302-336.

Consejo nacional de investigación. 1989. Marcadores biológicos en toxicidad reproductiva. Washington, DC: Prensa de NAS.

Neuman, WG y M Neuman. 1958. La dinámica química de los minerales óseos. Chicago: La Universidad. de Prensa de Chicago.

Newcombe, DS, NR Rose y JC Bloom. 1992. Inmunotoxicología clínica. Nueva York: Raven Press.

Pacheco, H. 1973. La farmacologie moleculaire. París: Presse Universitaire.

Piotrowski, JK. 1971. La aplicación de la cinética metabólica y excretora a problemas de toxicología industrial.. Washington, DC: Departamento de Salud, Educación y Bienestar de EE. UU.

—. 1983. Interacciones bioquímicas de metales pesados: Metalotioneína. En Efectos sobre la salud de la exposición combinada a sustancias químicas. Copenhague: Oficina Regional de la OMS para Europa.

Actas de la Conferencia de Arnold O. Beckman/IFCC sobre biomarcadores de toxicología ambiental de exposición química. 1994. Clin Chem. 40(7B).

Russell, WMS y RL Burch. 1959. Los principios de la técnica experimental humanitaria. Londres: Methuen & Co. Reimpreso por la Federación de Universidades para el Bienestar Animal, 1993.

Rycroft, RJG, T Menné, PJ Frosch y C Benezra. 1992. Libro de texto de dermatitis de contacto. Berlín: Springer-Verlag.

Schubert, J. 1951. Estimación de radioelementos en individuos expuestos. nucleónica 8: 13-28.

Shelby, MD y E Zeiger. 1990. Actividad de carcinógenos humanos en las pruebas citogenéticas de Salmonella y médula ósea de roedores. Resolución mutacional 234: 257-261.

Stone, R. 1995. Un enfoque molecular del riesgo de cáncer. Ciencia: 268: 356-357.

Teisinger, J. 1984. Prueba de exposición en der Industrietoxikologie [Pruebas de Exposición en Toxicología Industrial]. Berlín: VEB Verlag Volk und Gesundheit.

Congreso de Estados Unidos. 1990. Monitoreo y detección genética en el lugar de trabajo, OTA-BA-455. Washington, DC: Imprenta del Gobierno de los Estados Unidos.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vida]. Leipzig: VEB Bibliographische Institut.

Weil, E. 1975. Elementos de toxicología industrial [Elementos de Toxicología Industrial]. París: Masson et Cie.

Organización Mundial de la Salud (OMS). 1975. Métodos utilizados en la URSS para establecer niveles seguros de sustancias tóxicas. Ginebra: OMS.

1978. Principios y métodos para evaluar la toxicidad de los productos químicos, Parte 1. Criterios de Salud Ambiental, nº6. Ginebra: OMS.

—. 1981. Exposición Combinada a Productos Químicos, Documento Provisional n.º 11. Copenhague: Oficina Regional de la OMS para Europa.

—. 1986. Principios de estudios toxicocinéticos. Criterios de Salud Ambiental, núm. 57. Ginebra: OMS.

Yoftrey, JM y FC Courtice. 1956. Linfáticos, linfa y tejido linfoide. Cambridge: Universidad de Harvard. Presionar.

Zakutinsky, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problemas de toxicología de materiales radiactivos]. Moscú: Medguiz.

Zurlo, J, D Rudacille y AM Goldberg. 1993. Animales y Alternativas en las Pruebas: Historia, Ciencia y Ética. Nueva York: Mary Ann Liebert.