Domingo, enero 16 2011 19: 52

Evaluación del riesgo de carcinógenos

Valora este artículo
(2 votos)

Si bien los principios y métodos de evaluación de riesgos de sustancias químicas no cancerígenas son similares en diferentes partes del mundo, llama la atención que los enfoques para la evaluación de riesgos de sustancias químicas cancerígenas varíen mucho. No solo existen marcadas diferencias entre países, sino que incluso dentro de un mismo país se aplican o defienden diferentes enfoques por parte de diversas agencias reguladoras, comités y científicos en el campo de la evaluación de riesgos. La evaluación de riesgos para los no carcinógenos es bastante consistente y está bastante bien establecida, en parte debido a la larga historia y una mejor comprensión de la naturaleza de los efectos tóxicos en comparación con los carcinógenos y un alto grado de consenso y confianza tanto por parte de los científicos como del público en general sobre los métodos utilizados. y su resultado.

Para los productos químicos no cancerígenos, se introdujeron factores de seguridad para compensar las incertidumbres en los datos toxicológicos (que se derivan principalmente de experimentos con animales) y en su aplicabilidad a poblaciones humanas grandes y heterogéneas. Al hacerlo, los límites recomendados o exigidos para las exposiciones humanas seguras se establecieron generalmente en una fracción (el enfoque del factor de seguridad o incertidumbre) de los niveles de exposición en animales que podrían documentarse claramente como el nivel sin efectos adversos observados (NOAEL) o el nivel más bajo. nivel de efectos adversos observados (LOAEL). Entonces se supuso que mientras la exposición humana no excediera los límites recomendados, las propiedades peligrosas de las sustancias químicas no se manifestarían. Para muchos tipos de productos químicos, esta práctica, en una forma algo refinada, continúa hasta el día de hoy en la evaluación del riesgo toxicológico.

A fines de la década de 1960 y principios de la de 1970, los organismos reguladores, comenzando en los Estados Unidos, se enfrentaron a un problema cada vez más importante para el cual muchos científicos consideraron que el enfoque del factor de seguridad era inapropiado e incluso peligroso. Este era el problema con los productos químicos que, bajo ciertas condiciones, habían demostrado aumentar el riesgo de cáncer en humanos o animales de experimentación. Estas sustancias se denominaron operativamente carcinógenos. Todavía hay debate y controversia sobre la definición de carcinógeno, y existe una amplia gama de opiniones sobre las técnicas para identificar y clasificar los carcinógenos y también sobre el proceso de inducción del cáncer por sustancias químicas.

La discusión inicial comenzó mucho antes, cuando los científicos en la década de 1940 descubrieron que los carcinógenos químicos causaban daños por un mecanismo biológico que era de un tipo totalmente diferente de los que producían otras formas de toxicidad. Estos científicos, utilizando principios de la biología de los cánceres inducidos por radiación, propusieron lo que se conoce como la hipótesis "sin umbral", que se consideró aplicable tanto a la radiación como a los productos químicos cancerígenos. Se planteó la hipótesis de que cualquier exposición a un carcinógeno que alcance su objetivo biológico crítico, especialmente el material genético, e interactúe con él, puede aumentar la probabilidad (el riesgo) de desarrollar cáncer.

Paralelamente al debate científico en curso sobre los umbrales, existía una creciente preocupación pública sobre el papel adverso de los carcinógenos químicos y la necesidad urgente de proteger a las personas de un conjunto de enfermedades denominadas colectivamente cáncer. El cáncer, con su carácter insidioso y su largo período de latencia, junto con los datos que mostraban que la incidencia de cáncer en la población general estaba aumentando, era considerado por el público en general y los políticos como un motivo de preocupación que justificaba una protección óptima. Los reguladores se enfrentaron al problema de situaciones en las que un gran número de personas, a veces casi toda la población, estaba o podía estar expuesta a niveles relativamente bajos de sustancias químicas (en productos de consumo y medicamentos, en el lugar de trabajo, así como en el aire, el agua , alimentos y suelos) que habían sido identificados como cancerígenos en humanos o animales de experimentación en condiciones de exposición relativamente intensa.

Esos funcionarios reguladores se enfrentaron a dos preguntas fundamentales que, en la mayoría de los casos, no podían responderse completamente utilizando los métodos científicos disponibles:

  1.  ¿Qué riesgo existe para la salud humana en el rango de exposición a sustancias químicas por debajo del rango de exposición estrecho y relativamente intenso bajo el cual se podría medir directamente un riesgo de cáncer?
  2.  ¿Qué se podía decir de los riesgos para la salud humana cuando los animales de experimentación eran los únicos sujetos en los que se había establecido el riesgo de desarrollar cáncer?

 

Los reguladores reconocieron la necesidad de suposiciones, a veces con base científica, pero a menudo sin evidencia experimental. Para lograr coherencia, se adaptaron definiciones y conjuntos específicos de supuestos que se aplicarían de forma genérica a todos los carcinógenos.

La carcinogénesis es un proceso de múltiples etapas

Varias líneas de evidencia respaldan la conclusión de que la carcinogénesis química es un proceso de múltiples etapas impulsado por daño genético y cambios epigenéticos, y esta teoría es ampliamente aceptada en la comunidad científica de todo el mundo (Barrett 1993). Aunque el proceso de carcinogénesis química a menudo se divide en tres etapas: inicio, promoción y progresión, se desconoce el número de cambios genéticos relevantes.

La iniciación implica la inducción de una célula irreversiblemente alterada y para los carcinógenos genotóxicos siempre se equipara con un evento mutacional. La mutagénesis como mecanismo de carcinogénesis ya fue planteada como hipótesis por Theodor Boveri en 1914, y posteriormente se ha demostrado que muchas de sus suposiciones y predicciones son ciertas. Debido a que los efectos mutagénicos irreversibles y autorreplicantes pueden ser causados ​​por la cantidad más pequeña de un carcinógeno que modifica el ADN, no se asume ningún umbral. La promoción es el proceso por el cual la célula iniciada se expande (clonalmente) mediante una serie de divisiones y forma lesiones (pre)neoplásicas. Existe un debate considerable sobre si durante esta fase de promoción las células iniciadas experimentan cambios genéticos adicionales.

Finalmente, en la etapa de progresión se obtiene la "inmortalidad" y se pueden desarrollar tumores malignos completos al influir en la angiogénesis, escapando a la reacción de los sistemas de control del huésped. Se caracteriza por un crecimiento invasivo y con frecuencia una diseminación metastásica del tumor. La progresión va acompañada de cambios genéticos adicionales debido a la inestabilidad de las células en proliferación y la selección.

Por lo tanto, hay tres mecanismos generales por los cuales una sustancia puede influir en el proceso carcinogénico de varios pasos. Un químico puede inducir una alteración genética relevante, promover o facilitar la expansión clonal de una célula iniciada o estimular la progresión a malignidad por cambios somáticos y/o genéticos.

Proceso de evaluación de riesgos

Riesgo se puede definir como la frecuencia prevista o real de ocurrencia de un efecto adverso en los seres humanos o el medio ambiente, a partir de una determinada exposición a un peligro. La evaluación de riesgos es un método para organizar sistemáticamente la información científica y sus incertidumbres adjuntas para la descripción y calificación de los riesgos para la salud asociados con sustancias, procesos, acciones o eventos peligrosos. Requiere la evaluación de la información relevante y la selección de los modelos que se utilizarán para hacer inferencias a partir de esa información. Además, requiere el reconocimiento explícito de las incertidumbres y el reconocimiento apropiado de que la interpretación alternativa de los datos disponibles puede ser científicamente plausible. La terminología actual utilizada en la evaluación de riesgos fue propuesta en 1984 por la Academia Nacional de Ciencias de los Estados Unidos. La evaluación cualitativa del riesgo se transformó en caracterización/identificación del peligro y la evaluación cuantitativa del riesgo se dividió en los componentes dosis-respuesta, evaluación de la exposición y caracterización del riesgo.

En la siguiente sección se discutirán brevemente estos componentes en vista de nuestro conocimiento actual del proceso de carcinogénesis (química). Quedará claro que la incertidumbre dominante en la evaluación del riesgo de carcinógenos es el patrón dosis-respuesta a niveles de dosis bajos característicos de la exposición ambiental.

Identificación de peligros

Este proceso identifica qué compuestos tienen el potencial de causar cáncer en humanos; en otras palabras, identifica sus propiedades genotóxicas intrínsecas. La combinación de información de varias fuentes y sobre diferentes propiedades sirve como base para la clasificación de compuestos cancerígenos. En general se utilizará la siguiente información:

  • datos epidemiológicos (p. ej., cloruro de vinilo, arsénico, amianto)
  • datos de carcinogenicidad en animales
  • actividad genotóxica/formación de aductos de ADN
  • mecanismos de accion
  • actividad farmacocinética
  • relaciones estructura-actividad.

 

La clasificación de productos químicos en grupos basada en la evaluación de la idoneidad de las pruebas de carcinogénesis en animales o en el hombre, si se dispone de datos epidemiológicos, es un proceso clave en la identificación de peligros. Los esquemas más conocidos para categorizar químicos cancerígenos son los de IARC (1987), EU (1991) y EPA (1986). En la tabla 1 se proporciona una descripción general de sus criterios de clasificación (p. ej., métodos de extrapolación de dosis baja).

Tabla 1. Comparación de procedimientos de extrapolaciones a dosis bajas

  EPA actual de EE. UU. Dinamarca CEE UK Países Bajos Noruega
carcinógeno genotóxico Procedimiento multietapa linealizado utilizando el modelo de dosis baja más apropiado MLE de modelos de 1 y 2 hits más juicio del mejor resultado No se especifica procedimiento Sin modelo, experiencia científica y juicio de todos los datos disponibles Modelo lineal usando TD50 (Método Peto) o “Método Holandés Simple” si no hay TD50 No se especifica procedimiento
Carcinógeno no genotóxico Lo mismo que arriba Modelo de base biológica de Thorslund o multietapa o modelo de Mantel-Bryan, basado en el origen del tumor y la dosis-respuesta Usar NOAEL y factores de seguridad Use NOEL y factores de seguridad para establecer ADI Use NOEL y factores de seguridad para establecer ADI  

 

Una cuestión importante en la clasificación de los carcinógenos, que a veces tiene consecuencias de largo alcance para su regulación, es la distinción entre mecanismos de acción genotóxicos y no genotóxicos. La suposición predeterminada de la Agencia de Protección Ambiental de EE. UU. (EPA) para todas las sustancias que muestran actividad cancerígena en experimentos con animales es que no existe un umbral (o al menos no se puede demostrar), por lo que existe cierto riesgo con cualquier exposición. Esto se conoce comúnmente como la suposición sin umbral para los compuestos genotóxicos (que dañan el ADN). La UE y muchos de sus miembros, como el Reino Unido, los Países Bajos y Dinamarca, distinguen entre los carcinógenos que son genotóxicos y los que se cree que producen tumores por mecanismos no genotóxicos. Para los carcinógenos genotóxicos, se siguen procedimientos de estimación cuantitativa de la respuesta a la dosis que no asumen ningún umbral, aunque los procedimientos pueden diferir de los utilizados por la EPA. Para las sustancias no genotóxicas, se supone que existe un umbral y se utilizan procedimientos de respuesta a la dosis que asumen un umbral. En el último caso, la evaluación del riesgo generalmente se basa en un enfoque de factor de seguridad, similar al enfoque para los no cancerígenos.

Es importante tener en cuenta que estos diferentes esquemas se desarrollaron para abordar las evaluaciones de riesgos en diferentes contextos y escenarios. El esquema IARC no se elaboró ​​con fines normativos, aunque se ha utilizado como base para desarrollar directrices normativas. El esquema de la EPA fue diseñado para servir como un punto de decisión para ingresar a la evaluación cuantitativa del riesgo, mientras que el esquema de la UE se usa actualmente para asignar un símbolo de peligro (clasificación) y frases de riesgo a la etiqueta del producto químico. Una discusión más extensa sobre este tema se presenta en una revisión reciente (Moolenaar 1994) que cubre los procedimientos utilizados por ocho agencias gubernamentales y dos organizaciones independientes citadas con frecuencia, la Agencia Internacional para la Investigación del Cáncer (IARC) y la Conferencia Americana de Organizaciones Gubernamentales. Higienistas Industriales (ACGIH).

Los esquemas de clasificación generalmente no tienen en cuenta la amplia evidencia negativa que puede estar disponible. Además, en los últimos años ha surgido una mayor comprensión del mecanismo de acción de los carcinógenos. Se ha acumulado evidencia de que algunos mecanismos de carcinogenicidad son específicos de la especie y no son relevantes para el hombre. Los siguientes ejemplos ilustrarán este importante fenómeno. En primer lugar, se ha demostrado recientemente en estudios sobre la carcinogenicidad de las partículas diésel, que las ratas responden con tumores pulmonares a una gran carga del pulmón con partículas. Sin embargo, el cáncer de pulmón no se observa en los mineros del carbón con cargas pulmonares muy pesadas de partículas. En segundo lugar, está la afirmación de la no relevancia de los tumores renales en la rata macho sobre la base de que el elemento clave en la respuesta tumorogénica es la acumulación en el riñón de α-2 microglobulina, una proteína que no existe en humanos (Borghoff, Short y Swenberg 1990). También deben mencionarse a este respecto las alteraciones de la función tiroidea de roedores y la proliferación o mitogénesis de peroxisomas en el hígado de ratón.

Este conocimiento permite una interpretación más sofisticada de los resultados de un bioensayo de carcinogenicidad. Se alienta la investigación hacia una mejor comprensión de los mecanismos de acción de la carcinogenicidad porque puede conducir a una clasificación alterada y a la adición de una categoría en la que los productos químicos se clasifiquen como no carcinógenos para los seres humanos.

Asesoramiento de exposición

A menudo se piensa que la evaluación de la exposición es el componente de la evaluación del riesgo con la menor incertidumbre inherente debido a la capacidad de monitorear las exposiciones en algunos casos y la disponibilidad de modelos de exposición relativamente bien validados. Sin embargo, esto es solo parcialmente cierto, porque la mayoría de las evaluaciones de exposición no se realizan de manera que aprovechen al máximo la gama de información disponible. Por esa razón, hay mucho margen para mejorar las estimaciones de distribución de la exposición. Esto es válido tanto para las evaluaciones de exposición externas como internas. Especialmente para los carcinógenos, el uso de dosis de tejido objetivo en lugar de niveles de exposición externa en el modelado de relaciones dosis-respuesta conduciría a predicciones de riesgo más relevantes, aunque se involucran muchas suposiciones sobre valores predeterminados. Los modelos farmacocinéticos de base fisiológica (PBPK) para determinar la cantidad de metabolitos reactivos que alcanzan el tejido diana son potencialmente de gran valor para estimar estas dosis tisulares.

Caracterización de riesgo

Enfoques actuales

El nivel de dosis o nivel de exposición que causa un efecto en un estudio con animales y la dosis probable que causa un efecto similar en humanos es una consideración clave en la caracterización del riesgo. Esto incluye la evaluación de dosis-respuesta de dosis alta a baja y la extrapolación entre especies. La extrapolación presenta un problema lógico, a saber, que los datos se extrapolan en muchos órdenes de magnitud por debajo de los niveles de exposición experimental mediante modelos empíricos que no reflejan los mecanismos subyacentes de la carcinogenicidad. Esto viola un principio básico en el ajuste de modelos empíricos, a saber, no extrapolar fuera del rango de los datos observables. Por tanto, esta extrapolación empírica da lugar a grandes incertidumbres, tanto desde el punto de vista estadístico como biológico. En la actualidad, no se reconoce ningún procedimiento matemático único como el más apropiado para la extrapolación de dosis bajas en la carcinogénesis. Los modelos matemáticos que se han utilizado para describir la relación entre la dosis externa administrada, el tiempo y la incidencia del tumor se basan en suposiciones de distribución de tolerancia o mecanicistas y, a veces, en ambas. En la tabla 1995 se incluye un resumen de los modelos citados con más frecuencia (Kramer et al. 2).

Tabla 2. Modelos citados con frecuencia en la caracterización del riesgo carcinógeno

Modelos de distribución de tolerancia Modelos mecanicistas  
  Hit-modelos Modelos de base biológica
registro Un golpe Moolgavkar (MVK)1
Probit multiéxito Cohen y Ellwein
Mantel-Bryan Weibull (Pico)1  
Weibull Multietapa (Armitage-Doll)1  
Gamma Multiéxito multietapa linealizado,  

1 Modelos de tiempo hasta el tumor.

Estos modelos de dosis-respuesta generalmente se aplican a los datos de incidencia de tumores correspondientes a solo un número limitado de dosis experimentales. Esto se debe al diseño estándar del bioensayo aplicado. En lugar de determinar la curva dosis-respuesta completa, un estudio de carcinogenicidad generalmente se limita a tres (o dos) dosis relativamente altas, utilizando la dosis máxima tolerada (DMT) como la dosis más alta. Estas altas dosis se usan para superar la baja sensibilidad estadística inherente (10 a 15% sobre el fondo) de tales bioensayos, que se debe al hecho de que (por razones prácticas y de otro tipo) se usa un número relativamente pequeño de animales. Debido a que no se dispone de datos para la región de dosis baja (es decir, no se pueden determinar experimentalmente), se requiere una extrapolación fuera del rango de observación. Para casi todos los conjuntos de datos, la mayoría de los modelos mencionados anteriormente se ajustan igualmente bien al rango de dosis observado, debido al número limitado de dosis y de animales. Sin embargo, en la región de dosis bajas, estos modelos divergen varios órdenes de magnitud, lo que introduce grandes incertidumbres en el riesgo estimado para estos bajos niveles de exposición.

Debido a que la forma real de la curva dosis-respuesta en el rango de dosis bajas no puede generarse experimentalmente, la comprensión mecanicista del proceso de carcinogenicidad es crucial para poder discriminar este aspecto entre los diversos modelos. Kramer et al. (1995) y Park y Hawkins (1993).

Otros enfoques

Además de la práctica actual de modelado matemático, recientemente se han propuesto varios enfoques alternativos.

Modelos biológicamente motivados

Actualmente, los modelos de base biológica, como los modelos de Moogavkar-Venzon-Knudson (MVK), son muy prometedores, pero actualmente no están lo suficientemente avanzados para su uso rutinario y requieren mucha más información específica que la que se obtiene actualmente en los bioensayos. Grandes estudios (4,000 ratas) como los realizados con N-nitrosoalquilaminas indican el tamaño del estudio que se requiere para la recogida de tales datos, aunque todavía no es posible extrapolarlos a dosis bajas. Hasta que estos modelos se desarrollen más, solo se pueden utilizar caso por caso.

Enfoque del factor de evaluación

El uso de modelos matemáticos para la extrapolación por debajo del rango de dosis experimental es en efecto equivalente a un enfoque de factor de seguridad con un factor de incertidumbre grande y mal definido. La alternativa más sencilla sería aplicar un factor de evaluación al "nivel sin efecto" aparente o al "nivel más bajo probado". El nivel utilizado para este factor de evaluación debe determinarse caso por caso considerando la naturaleza de la sustancia química y la población expuesta.

Dosis de referencia (DMO)

La base de este enfoque es un modelo matemático ajustado a los datos experimentales dentro del rango observable para estimar o interpolar una dosis correspondiente a un nivel de efecto definido, como un aumento del uno, cinco o diez por ciento en la incidencia de tumores (ED01, E.D.05, E.D.10). Como un aumento del diez por ciento es el cambio más pequeño que se puede determinar estadísticamente en un bioensayo estándar, la DE10 es apropiado para datos de cáncer. El uso de una BMD que esté dentro del rango observable del experimento evita los problemas asociados con la extrapolación de dosis. Las estimaciones de la DMO o su límite de confianza inferior reflejan las dosis a las que se produjeron cambios en la incidencia de tumores, pero son bastante insensibles al modelo matemático utilizado. Se puede usar una dosis de referencia en la evaluación de riesgos como una medida de la potencia del tumor y combinarla con factores de evaluación apropiados para establecer niveles aceptables para la exposición humana.

Umbral de regulación

Krewski et al. (1990) han revisado el concepto de un “umbral de regulación” para carcinógenos químicos. Con base en los datos obtenidos de la base de datos de potencia cancerígena (CPDB) para 585 experimentos, la dosis correspondiente a 10-6 el riesgo se distribuyó aproximadamente de forma logarítmica normal alrededor de una mediana de 70 a 90 ng/kg/d. La exposición a niveles de dosis superiores a este rango se consideraría inaceptable. La dosis se estimó por extrapolación lineal a partir de la DT50 (la toxicidad que induce la dosis es del 50% de los animales ensayados) y estaba dentro de un factor de cinco a diez de la cifra obtenida del modelo de etapas múltiples linealizado. Desafortunadamente, el DT50 los valores estarán relacionados con el MTD, lo que nuevamente arroja dudas sobre la validez de la medición. Sin embargo, el DT50 a menudo estará dentro o muy cerca del rango de datos experimentales.

Un enfoque como el uso de un umbral de regulación requeriría mucha más consideración de cuestiones biológicas, analíticas y matemáticas y una base de datos mucho más amplia antes de que pudiera ser considerado. Una mayor investigación sobre las potencias de varios carcinógenos puede arrojar más luz sobre esta área.

Objetivos y futuro de la evaluación del riesgo de carcinógenos

Mirando hacia atrás a las expectativas originales sobre la regulación de carcinógenos (ambientales), es decir, para lograr una reducción importante del cáncer, parece que los resultados actuales son decepcionantes. A lo largo de los años se hizo evidente que el número de casos de cáncer que se estimaba que producían los carcinógenos regulables era desconcertantemente pequeño. Teniendo en cuenta las altas expectativas que lanzaron los esfuerzos regulatorios en la década de 1970, no se ha logrado una reducción importante anticipada en la tasa de mortalidad por cáncer en términos de los efectos estimados de los carcinógenos ambientales, ni siquiera con procedimientos de evaluación cuantitativa ultraconservadores. La principal característica de los procedimientos de la EPA es que las extrapolaciones de dosis bajas se realizan de la misma manera para cada químico independientemente del mecanismo de formación del tumor en los estudios experimentales. Cabe señalar, sin embargo, que este enfoque contrasta marcadamente con los enfoques adoptados por otras agencias gubernamentales. Como se indicó anteriormente, la UE y varios gobiernos europeos (Dinamarca, Francia, Alemania, Italia, los Países Bajos, Suecia, Suiza y el Reino Unido) distinguen entre carcinógenos genotóxicos y no genotóxicos y abordan la estimación del riesgo de manera diferente para las dos categorías. En general, los carcinógenos no genotóxicos se tratan como tóxicos de umbral. No se determinan niveles de efecto y se utilizan factores de incertidumbre para proporcionar un amplio margen de seguridad. Determinar si una sustancia química debe considerarse o no como no genotóxica es un tema de debate científico y requiere un juicio experto claro.

La cuestión fundamental es: ¿Cuál es la causa del cáncer en humanos y cuál es el papel de los carcinógenos ambientales en esa causalidad? Los aspectos hereditarios del cáncer en humanos son mucho más importantes de lo que se había anticipado. La clave para un avance significativo en la evaluación del riesgo de carcinógenos es una mejor comprensión de las causas y los mecanismos del cáncer. El campo de la investigación del cáncer está entrando en un área muy emocionante. La investigación molecular puede alterar radicalmente la forma en que vemos el impacto de los carcinógenos ambientales y los enfoques para controlar y prevenir el cáncer, tanto para el público en general como para el lugar de trabajo. La evaluación del riesgo de los carcinógenos debe basarse en conceptos de los mecanismos de acción que, de hecho, están emergiendo. Uno de los aspectos importantes es el mecanismo del cáncer hereditario y la interacción de los carcinógenos con este proceso. Este conocimiento deberá incorporarse a la metodología sistemática y consistente que ya existe para la evaluación del riesgo de carcinógenos.

 

Atrás

Leer 9100 veces Ultima modificacion el Martes, julio 26 2022 19: 40

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Referencias de toxicología

Andersen, KE y HI Maibach. 1985. Pruebas predictivas de alergia de contacto en conejillos de indias. Cap. 14 en Problemas Actuales en Dermatología. Basilea: Karger.

Ashby, J y RW Tennant. 1991. Relaciones definitivas entre estructura química, carcinogenicidad y mutagenicidad para 301 sustancias químicas probadas por el NTP de EE. UU. Resolución mutacional 257: 229-306.

Barlow, S y F Sullivan. mil novecientos ochenta y dos. Peligros reproductivos de los productos químicos industriales. Londres: Prensa académica.

Barret, JC. 1993a. Mecanismos de acción de carcinógenos humanos conocidos. En Mecanismos de carcinogénesis en la identificación de riesgos, editado por H Vainio, PN Magee, DB McGregor y AJ McMichael. Lyon: Agencia Internacional para la Investigación del Cáncer (IARC).

—. 1993b. Mecanismos de carcinogénesis en varios pasos y evaluación del riesgo carcinógeno. Medio Ambiente Salud Persp 100: 9-20.

Bernstein, ME. 1984. Agentes que afectan el sistema reproductivo masculino: Efectos de la estructura sobre la actividad. Drug Metab Rev 15: 941-996.

Beutler, E. 1992. La biología molecular de las variantes de G6PD y otros defectos de glóbulos rojos. Annu Rev Med 43: 47-59.

Bloom, AD. 1981. Directrices para estudios reproductivos en poblaciones humanas expuestas. White Plains, Nueva York: Fundación March of Dimes.

Borghoff, S, B Short y J Swenberg. 1990. Mecanismos bioquímicos y patobiología de la nefropatía a-2-globulina. Annu Rev Pharmacol Toxicol 30: 349.

Burchell, B, DW Nebert, DR Nelson, KW Bock, T Iyanagi, PLM Jansen, D Lancet, GJ Mulder, JR Chowdhury, G Siest, TR Tephly y PI Mackenzie. 1991. La superfamilia de genes UPD-glucuronosiltransferasa: nomenclatura sugerida basada en la divergencia evolutiva. Biol de células de ADN 10: 487-494.

Burleson, G, A Munson y J Dean. 1995. Métodos modernos en inmunotoxicología. Nueva York: Wiley.

Capecchi, M. 1994. Reemplazo de genes dirigidos. Sci Am 270: 52-59.

Carney, EW. 1994. Una perspectiva integrada sobre la toxicidad del etilenglicol para el desarrollo. Rep Toxicol 8: 99-113.

Dean, JH, MI Lustre, AE Munson y yo Kimber. 1994. Inmunotoxicología e Inmunofarmacología. Nueva York: Raven Press.

Escotes, J. 1986. Inmunotoxicología de Fármacos y Químicos. Ámsterdam: Elsevier.

Devary, Y, C Rosette, JA DiDonato y M Karin. 1993. Activación de NFkB por luz ultravioleta no dependiente de una señal nuclear. Ciencia: 261: 1442-1445.

Dixon, RL. 1985. Toxicología reproductiva. Nueva York: Raven Press.

Duffus, JH. 1993. Glosario para químicos de términos usados ​​en toxicología. Química de aplicación pura 65: 2003-2122.

Elsenhans, B, K Schuemann y W Forth. 1991. Metales tóxicos: Interacciones con metales esenciales. En Nutrición, Toxicidad y Cáncer, editado por IR Rowland. Boca-Ratón: CRC Press.

Agencia de Protección Ambiental (EPA). 1992. Directrices para la evaluación de la exposición. registro federal 57: 22888-22938.

—. 1993. Principios de evaluación del riesgo de neurotoxicidad. registro federal 58: 41556-41598.

—. 1994. Directrices para la Evaluación de la Toxicidad Reproductiva. Washington, DC: EPA de EE. UU.: Oficina de Investigación y Desarrollo.

Fergusson, JE. 1990. Los elementos pesados. Cap. 15 en Química, Impacto Ambiental y Efectos sobre la Salud. Oxford: Pérgamo.

Gehring, PJ, PG Watanabe y GE Blau. 1976. Estudios farmacocinéticos en la evaluación del peligro toxicológico y ambiental de los productos químicos. Evaluación segura de nuevos conceptos 1 (Parte 1, Capítulo 8): 195-270.

Goldstein, JA y SMF de Morais. 1994. Bioquímica y biología molecular del ser humano. CYP2C subfamilia. Farmacogenética 4: 285-299.

González, FJ. 1992. Citocromos humanos P450: Problemas y perspectivas. Tendencias Pharmacol Sci 13: 346-352.

González, FJ, CL Crespi y HV Gelboin. 1991. Citocromo P450 humano expresado por ADNc: una nueva era en toxicología molecular y evaluación de riesgos humanos. Resolución mutacional 247: 113-127.

González, FJ y DW Nebert. 1990. Evolución de la superfamilia de genes P450: "guerra" animal-planta, impulso molecular y diferencias genéticas humanas en la oxidación de fármacos. Tendencias Genet 6: 182-186.

Subvención, DM. 1993. Genética molecular de las N-acetiltransferasas. Farmacogenética 3: 45-50.

Gray, LE, J Ostby, R Sigmon, J Ferrel, R Linder, R Cooper, J Goldman y J Laskey. 1988. El desarrollo de un protocolo para evaluar los efectos reproductivos de los tóxicos en la rata. Rep Toxicol 2: 281-287.

Guengerich, FP. 1989. Polimorfismo del citocromo P450 en humanos. Tendencias Pharmacol Sci 10: 107-109.

—. 1993. Enzimas del citocromo P450. Soy ciencia 81: 440-447.

Hansch, C y A Leo. 1979. Constantes de Sustituyentes para Análisis de Correlación en Química y Biología. Nueva York: Wiley.

Hansch, C y L Zhang. 1993. Relaciones cuantitativas estructura-actividad del citocromo P450. Drug Metab Rev 25: 1-48.

Hayes A.W. 1988. Principios y Métodos de Toxicología. 2ª ed. Nueva York: Raven Press.

Heindell, JJ y RE Chapin. 1993. Métodos en Toxicología: Toxicología Reproductiva Masculina y Femenina. vol. 1 y 2. San Diego, California: Academic Press.

Agencia Internacional para la Investigación del Cáncer (IARC). 1992. Radiación solar y ultravioleta. Lyon: IARC.

—. 1993. Exposición ocupacional de peluqueros y barberos y uso personal de colorantes para el cabello: algunos tintes para el cabello, colorantes cosméticos, colorantes industriales y aminas aromáticas. Lyon: IARC.

—. 1994a. Preámbulo. Lyon: IARC.

—. 1994b. Algunos productos químicos industriales. Lyon: IARC.

Comisión Internacional de Protección Radiológica (ICRP). 1965. Principios de Vigilancia Ambiental Relacionados con el Manejo de Materiales Radiactivos. Informe del Comité IV de la Comisión Internacional de Protección Radiológica. Oxford: Pérgamo.

Programa Internacional de Seguridad Química (IPCS). 1991. Principios y métodos para la evaluación de la nefrotoxicidad asociada con la exposición a sustancias químicas, EHC 119. Ginebra: OMS.

—. 1996. Principios y métodos para evaluar Inmunotoxicidad directa asociada con la exposición a sustancias químicas, EHC 180. Ginebra: OMS.

Johanson, G y PH Naslund. 1988. Programación de hoja de cálculo: un nuevo enfoque en el modelado basado en la fisiología de la toxicocinética de solventes. Letras de toxicol 41: 115-127.

Johnson, BL. 1978. Prevención de Enfermedades Neurotóxicas en Poblaciones Trabajadoras. Nueva York: Wiley.

Jones, JC, JM Ward, U Mohr y RD Hunt. 1990. Sistema Hemopoyético, Monografía ILSI, Berlín: Springer Verlag.

Kalow, W. 1962. Farmacogenética: Herencia y la Respuesta a las Drogas. Filadelfia: WB Saunders.

—. 1992. Farmacogenética del Metabolismo de Fármacos. Nueva York: Pérgamo.

Kammüller, ME, N Bloksma y W Seinen. 1989. Autoinmunidad y Toxicología. Desregulación inmune inducida por drogas y productos químicos. Ámsterdam: Elsevier Sciences.

Kawajiri, K, J Watanabe y SI Hayashi. 1994. Polimorfismo genético de P450 y cáncer humano. En Citocromo P450: Bioquímica, Biofísica y Biología Molecular, editado por MC Lechner. París: John Libbey Eurotext.

Kehrer, JP. 1993. Los radicales libres como mediadores de lesiones y enfermedades tisulares. Toxicol Rev Crítico 23: 21-48.

Kellerman, G, CR Shaw y M Luyten-Kellerman. 1973. Inducibilidad de aril hidrocarburo hidroxilasa y carcinoma broncogénico. Nueva Engl J Med 289: 934-937.

Khera, KS. 1991. Alteraciones químicamente inducidas, homeostasis materna e histología del concepto: su significado etiológico en anomalías fetales de rata. Teratología 44: 259-297.

Kimmel, CA, GL Kimmel y V Frankos. 1986. Taller del Grupo de enlace regulatorio interinstitucional sobre evaluación del riesgo de toxicidad para la reproducción. Medio Ambiente Salud Persp 66: 193-221.

Klaassen, CD, MO Amdur y J Doull (eds.). 1991. Toxicología de Casarett y Doull. Nueva York: Pergamon Press.

Kramer, HJ, EJHM Jansen, MJ Zeilmaker, HJ van Kranen y ED Kroese. 1995. Métodos cuantitativos en toxicología para la evaluación de la respuesta a la dosis humana. RIVM-informe nr. 659101004.

Kress, S, C Sutter, PT Strickland, H Mukhtar, J Schweizer y M Schwarz. 1992. Patrón mutacional específico de carcinógeno en el gen p53 en carcinomas de células escamosas de piel de ratón inducidos por radiación ultravioleta B. Res Cáncer 52: 6400-6403.

Krewski, D, D Gaylor, M Szyazkowicz. 1991. Un enfoque sin modelo para la extrapolación de dosis bajas. Env H Pers. 90: 270-285.

Lawton, MP, T Cresteil, AA Elfarra, E Hodgson, J Ozols, RM Philpot, AE Rettie, DE Williams, JR Cashman, CT Dolphin, RN Hines, T Kimura, IR Phillips, LL Poulsen, EA Shephare y DM Ziegler. 1994. Una nomenclatura para la familia de genes de monooxigenasa que contiene flavina de mamíferos basada en identidades de secuencias de aminoácidos. Biochis de arco biochem 308: 254-257.

Lewalter, J y U Korallus. 1985. Conjugados de proteína sanguínea y acetilación de aminas aromáticas. Nuevos hallazgos en el monitoreo biológico. Int Arch Occup Salud Ambiental 56: 179-196.

Majno, G y I Joris. 1995. Apoptosis, oncosis y necrosis: una descripción general de la muerte celular. Soy J Pathol 146: 3-15.

Mattison, DR y PJ Thomford. 1989. El mecanismo de acción de los tóxicos reproductivos. Toxicol Patol 17: 364-376.

Meyer, UA. 1994. Polimorfismos del citocromo P450 CYP2D6 como factor de riesgo en la carcinogénesis. En Citocromo P450: Bioquímica, Biofísica y Biología Molecular, editado por MC Lechner. París: John Libbey Eurotext.

Moller, H, H Vainio y E Heseltine. 1994. Estimación cuantitativa y predicción de riesgo en la Agencia Internacional para la Investigación del Cáncer. Cáncer Res 54:3625-3627.

Moolenaar, RJ. 1994. Supuestos predeterminados en la evaluación del riesgo de carcinógenos utilizados por las agencias reguladoras. Regul Toxicol Pharmacol 20: 135-141.

Moser, VC. 1990. Enfoques de detección de la neurotoxicidad: una batería de observación funcional. J Am Coll Toxicol 1: 85-93.

Consejo Nacional de Investigación (NRC). 1983. Evaluación de Riesgos en el Gobierno Federal: Gestión del Proceso. Washington, DC: Prensa de NAS.

—. 1989. Marcadores Biológicos en Toxicidad Reproductiva. Washington, DC: Prensa de NAS.

—. 1992. Marcadores biológicos en inmunotoxicología. Subcomité de Toxicología. Washington, DC: Prensa de NAS.

Nebert, DW. 1988. Genes que codifican enzimas que metabolizan fármacos: posible papel en las enfermedades humanas. En Variación fenotípica en poblaciones, editado por AD Woodhead, MA Bender y RC Leonard. Nueva York: Plenum Publishing.

—. 1994. Enzimas metabolizadoras de fármacos en la transcripción modulada por ligandos. Biochem Pharmacol 47: 25-37.

Nebert, DW y WW Weber. 1990. Farmacogenética. En Principios de Acción de los Medicamentos. La base de la farmacología, editado por WB Pratt y PW Taylor. Nueva York: Churchill-Livingstone.

Nebert, DW y DR Nelson. 1991. Nomenclatura del gen P450 basada en la evolución. En Métodos de Enzimología. Citocromo P450, editado por MR Waterman y EF Johnson. Orlando, Florida: Prensa académica.

Nebert, DW y RA McKinnon. 1994. Citocromo P450: Evolución y diversidad funcional. Prog Liv Dis 12: 63-97.

Nebert, DW, M Adesnik, MJ Coon, RW Estabrook, FJ Gonzalez, FP Guengerich, IC Gunsalus, EF Johnson, B Kemper, W Levin, IR Phillips, R Sato y MR Waterman. 1987. La superfamilia de genes P450: nomenclatura recomendada. Biol de células de ADN 6: 1-11.

Nebert, DW, DR Nelson, MJ Coon, RW Estabrook, R Feyereisen, Y Fujii-Kuriyama, FJ Gonzalez, FP Guengerich, IC Gunsalas, EF Johnson, JC Loper, R Sato, MR Waterman y DJ Waxman. 1991. La superfamilia P450: Actualización sobre nuevas secuencias, mapeo de genes y nomenclatura recomendada. Biol de células de ADN 10: 1-14.

Nebert, DW, DD Petersen y A Puga. 1991. Polimorfismo y cáncer del locus AH humano: Inducibilidad de CYP1A1 y otros genes por productos de combustión y dioxina. Farmacogenética 1: 68-78.

Nebert, DW, A Puga y V Vasiliou. 1993. Papel del receptor Ah y la batería de genes [Ah] inducibles por dioxina en la toxicidad, el cáncer y la transducción de señales. Ann NY Acad Sci 685: 624-640.

Nelson, DR, T Kamataki, DJ Waxman, FP Guengerich, RW Estabrook, R Feyereisen, FJ Gonzalez, MJ Coon, IC Gunsalus, O Gotoh, DW Nebert y K Okuda. 1993. La superfamilia P450: actualización de nuevas secuencias, mapeo de genes, números de acceso, primeros nombres triviales de enzimas y nomenclatura. Biol de células de ADN 12: 1-51.

Nicholson, DW, A All, NA Thornberry, JP Vaillancourt, CK Ding, M Gallant, Y Gareau, PR Griffin, M Labelle, YA Lazebnik, NA Munday, SM Raju, ME Smulson, TT Yamin, VL Yu y DK Miller. 1995. Identificación e inhibición de la proteasa ICE/CED-3 necesaria para la apoptosis de los mamíferos. Naturaleza 376: 37-43.

Nolan, RJ, WT Stott y PG Watanabe. 1995. Datos toxicológicos en evaluación de seguridad química. Cap. 2 en Higiene Industrial y Toxicología de Patty, editado por LJ Cralley, LV Cralley y JS Bus. Nueva York: John Wiley & Sons.

Nordberg, GF. 1976. Efecto y relaciones dosis-respuesta de metales tóxicos. Ámsterdam: Elsevier.

Oficina de Evaluación de Tecnología (OTA). 1985. Riesgos reproductivos en el lugar de trabajo. Documento No. OTA-BA-266. Washington, DC: Imprenta del Gobierno.

—. 1990. Neurotoxicidad: identificación y control de venenos del sistema nervioso. Documento No. OTA-BA-436. Washington, DC: Imprenta del Gobierno.

Organización para la Cooperación y el Desarrollo Económicos (OCDE). 1993. Proyecto conjunto US EPA/EC sobre la evaluación de las relaciones estructura-actividad (cuantitativas). París: OCDE.

Parque, CN y NC Hawkins. 1993. Revisión de tecnología; una descripción general de la evaluación del riesgo de cáncer. Métodos de toxicol 3: 63-86.

Pease, W, J Vandenberg y WK Hooper. 1991. Comparación de enfoques alternativos para establecer niveles regulatorios para tóxicos reproductivos: DBCP como estudio de caso. Medio Ambiente Salud Persp 91: 141-155.

pipi ƒ -Maji ƒ , D, S Telišman y S Kezi ƒ . 6.5. Estudio in vitro sobre la interacción del plomo y el alcohol y la inhibición de la deshidratasa del ácido delta-aminolevulínico eritrocitario en el hombre. Scand J Trabajo Medio Ambiente Salud 10: 235-238.

Reitz, RH, RJ Nolan y AM Schumann. 1987. Desarrollo de modelos farmacocinéticos de múltiples especies y múltiples vías para el cloruro de metileno y el 1,1,1-tricloroetano. En Farmacocinética y Evaluación de Riesgos, Agua Potable y Salud. Washington, DC: Prensa de la Academia Nacional.

Roitt, I, J Brostoff y D Male. 1989. Inmunología. Londres: Gower Medical Publishing.

Sato, A. 1991. El efecto de los factores ambientales en el comportamiento farmacocinético de los vapores de solventes orgánicos. Ann Ocupar Higiene 35: 525-541.

Silbergeld, EK. 1990. Desarrollo de métodos formales de evaluación de riesgos para neurotóxicos: una evaluación del estado del arte. En Avances en Toxicología Neuroconductual, editado por BL Johnson, WK Anger, A Durao y C Xintaras. Chelsea, Michigan: Lewis.

Spencer, PS y HH Schaumberg. 1980. Neurotoxicología Experimental y Clínica. Baltimore: Williams & Wilkins.

Sweeney, AM, MR Meyer, JH Aarons, JL Mills y RE LePorte. 1988. Evaluación de métodos para la identificación prospectiva de pérdidas fetales tempranas en estudios de epidemiología ambiental. Soy J Epidemiol 127: 843-850.

Taylor, BA, HJ Heiniger y H Meier. 1973. Análisis genético de la resistencia al daño testicular inducido por cadmio en ratones. Proc Soc Exp Biol Med 143: 629-633.

Telišman, S. 1995. Interacciones de metales y metaloides esenciales y/o tóxicos con respecto a las diferencias interindividuales en la susceptibilidad a varios tóxicos y enfermedades crónicas en el hombre. Arh plataforma rada toksikol 46: 459-476.

Telišman, S, A Pinent y D Prpi ƒ -Maji ƒ . 6.5. La interferencia del plomo en el metabolismo del zinc y la interacción entre el plomo y el zinc en humanos como posible explicación de la aparente susceptibilidad individual al plomo. En Metales Pesados ​​en el Medio Ambiente, editado por RJ Allan y JO Nriagu. Edimburgo: CEP Consultants.

Telišman, S, D Prpi ƒ -Maji ƒ y S Kezi ƒ . 6.5. Estudio in vivo sobre la interacción del plomo y el alcohol y la inhibición de la deshidratasa del ácido delta-aminolevulínico eritrocitario en el hombre. Scand J Trabajo Medio Ambiente Salud 10: 239-244.

Tilson, HA y PA Cabe. 1978. Estrategias para la evaluación de las consecuencias neuroconductuales de los factores ambientales. Medio Ambiente Salud Persp 26: 287-299.

Trump, BF y AU Arstila. 1971. Lesión celular y muerte celular. En Principios de patobiología, editado por MF LaVia y RB Hill Jr. Nueva York: Oxford Univ. Presionar.

Trump, BF e IK Berezesky. 1992. El papel del Ca2 citosólico + en daño celular, necrosis y apoptosis. Curr Opin Cell Biol 4: 227-232.

—. 1995. Lesión celular mediada por calcio y muerte celular. FASEB J 9: 219-228.

Trump, BF, IK Berezesky y A Osornio-Vargas. 1981. La muerte celular y el proceso de la enfermedad. El papel del calcio celular. En Muerte Celular en Biología y Patología, editado por ID Bowen y RA Lockshin. Londres: Chapman & Hall.

Vos, JG, M Younes y E Smith. 1995. Hipersensibilidades alérgicas inducidas por sustancias químicas: recomendaciones para la prevención publicadas en nombre de la Oficina Regional para Europa de la Organización Mundial de la Salud. Boca Ratón, FL: CRC Press.

Weber, WW. 1987. Los genes acetiladores y la respuesta a fármacos. Nueva York: Universidad de Oxford. Presionar.

Organización Mundial de la Salud (OMS). 1980. Límites recomendados basados ​​en la salud en la exposición ocupacional a metales pesados. Serie de Informes Técnicos, No. 647. Ginebra: OMS.

—. 1986. Principios y métodos para la evaluación de la neurotoxicidad asociada con la exposición a sustancias químicas. Criterios de Salud Ambiental, No.60. Ginebra: OMS.

—. 1987. Directrices de calidad del aire para Europa. European Series, No. 23. Copenhague: Publicaciones regionales de la OMS.

—. 1989. Glosario de términos sobre seguridad química para uso en publicaciones del IPCS. Ginebra: OMS.

—. 1993. La derivación de los valores guía para los límites de exposición basados ​​en la salud. Criterios de Salud Ambiental, borrador sin editar. Ginebra: OMS.

Wyllie, AH, JFR Kerr y AR Currie. 1980. Muerte celular: La importancia de la apoptosis. Int Rev Citol 68: 251-306.

@REFS LABEL = Otras lecturas relevantes

Alberto, RE. 1994. Evaluación del riesgo carcinógeno en la Agencia de Protección Ambiental de EE.UU. crítico Rev. Toxicol 24: 75-85.

Alberts, B, D Bray, J Lewis, M Raff, K Roberts y JD Watson. 1988. Biología molecular de la célula. Nueva York: Garland Publishing.

Ariens, EJ. 1964. Farmacología Molecular. Volúmen 1. Nueva York: Prensa Académica.

Ariens, EJ, E Mutschler y AM Simonis. 1978. Allgemeine Toxicologie [Toxicología general]. Stuttgart: Georg Thieme Verlag.

Ashby, J y RW Tennant. 1994. Predicción de carcinogenicidad en roedores para 44 químicos: Resultados. Mutagénesis 9: 7-15.

Ashford, NA, CJ Spadafor, DB Hattis y CC Caldart. 1990. Vigilancia del trabajador por exposición y enfermedad. Baltimore: Universidad Johns Hopkins. Presionar.

Balabuha, NS y GE Fradkin. 1958. Nakoplenie radioaktivnih elementov v organizme I ih vivedenie [Acumulación de elementos radiactivos en el organismo y su excreción]. Moscú: Medgiz.

Balls, M, J Bridges y J Southee. 1991. Animales y Alternativas en Toxicología Estado Actual y Perspectivas Futuras. Nottingham, Reino Unido: El Fondo para el Reemplazo de Animales en Experimentos Médicos.

Berlin, A, J Dean, MH Draper, EMB Smith y F Spreafico. 1987. Inmunotoxicología. Dordrecht: Martinus Nijhoff.

Boyhous, A. 1974. Respiración. Nueva York: Grune & Stratton.

Brandau, R y BH Lippold. mil novecientos ochenta y dos. Absorción dérmica y transdérmica. Stuttgart: Wissenschaftliche Verlagsgesellschaft.

Brusick, DJ. 1994. Métodos para la Evaluación del Riesgo Genético. Boca Ratón: Lewis Publishers.

Burrell, R. 1993. Toxicidad inmunológica humana. Mol Aspectos Med 14: 1-81.

Castell, JV y MJ Gómez-Lechón. 1992. Alternativas in vitro a la farmacotoxicología animal. Madrid, España: Farmaindustria.

Chapman, G. 1967. Líquidos corporales y sus funciones. Londres: Edward Arnold.

Comité de Marcadores Biológicos del Consejo Nacional de Investigaciones. 1987. Marcadores biológicos en la investigación de salud ambiental. Medio Ambiente Salud Persp 74: 3-9.

Cralley, LJ, LV Cralley y JS Bus (eds.). 1978. Higiene Industrial y Toxicología de Patty. Nueva York: Witey.

Dayan, AD, RF Hertel, E Heseltine, G Kazantis, EM Smith y MT Van der Venne. 1990. Inmunotoxicidad de los Metales e Inmunotoxicología. Nueva York: Plenum Press.

Djuric, D. 1987. Aspectos moleculares y celulares de la exposición ocupacional a sustancias químicas tóxicas. En Parte 1 Toxicocinética. Ginebra: OMS.

Duffus, JH. 1980. Toxicología Ambiental. Londres: Edward Arnold.

ECOTOC. 1986. Relación Estructura-Actividad en Toxicología y Ecotoxicología, Monografía No. 8. Bruselas: ECOTOC.

Forth, W, D Henschler y W Rummel. 1983. Farmakologie und Toxikologie. Mannheim: Bibliographische Institut.

Frazier, JM. 1990. Criterios científicos para la Validación de Pruebas de Toxicidad in Vitro. Monografía ambiental de la OCDE, no. 36. París: OCDE.

—. 1992. Toxicidad in vitro: aplicaciones a la evaluación de la seguridad. Nueva York: Marcel Dekker.

Gad, Carolina del Sur. 1994. Toxicología in vitro. Nueva York: Raven Press.

Gadaskina, ID. 1970. Zhiroraya tkan I yadi [Tejidos grasos y sustancias tóxicas]. En Aktualnie Vaprosi promishlenoi toksikolgii [Problemas Actuales en Toxicología Ocupacional], editado por NV Lazarev. Leningrado: Ministerio de Salud RSFSR.

Gaylor, DW. 1983. El uso de factores de seguridad para controlar el riesgo. J Toxicol Salud Ambiental 11: 329-336.

Gibson, GG, R Hubbard y DV Parke. 1983. Inmunotoxicología. Londres: Prensa académica.

Goldberg, AM. 1983-1995. Alternativas en Toxicología. vol. 1-12. Nueva York: Mary Ann Liebert.

Grandjean, P. 1992. Susceptibilidad individual a la toxicidad. Letras de toxicol 64 / 65: 43-51.

Hanke, J y JK Piotrowski. 1984. Biochemyczne podstawy toksikologii [Bases bioquímicas de la toxicología]. Varsovia: PZWL.

Escotilla, T y P Bruto. 1954. Depósito Pulmonar y Retención de Aerosoles Inhalados. Nueva York: Academic Press.

Consejo de Salud de los Países Bajos: Comité de Evaluación de la Carcinogenicidad de Sustancias Químicas. 1994. Evaluación de riesgos de sustancias químicas cancerígenas en los Países Bajos. Regul Toxicol Pharmacol 19: 14-30.

Holland, WC, RL Klein y AH Briggs. 1967. Farmacología Molekulaere.

Huff, JE. 1993. Sustancias químicas y cáncer en humanos: Primera evidencia en animales de experimentación. Medio Ambiente Salud Persp 100: 201-210.

Klaassen, CD y DL Eaton. 1991. Principios de toxicología. Cap. 2 en Toxicología de Casarett y Doull, editado por CD Klaassen, MO Amdur y J Doull. Nueva York: Pergamon Press.

Kossover, EM. 1962. Bioquímica Molecular. Nueva York: McGraw-Hill.

Kundiev, YI. 1975.Vssavanie pesticidav cherez kozsu I profilaktika otravlenii [Absorción de plaguicidas a través de la piel y prevención de la intoxicación]. Kiev: Zdorovia.

Kustov, VV, LA Tiunov y JA Vasiljev. 1975. Komvinovanie deistvie promishlenih yadov [Efectos combinados de tóxicos industriales]. Moscú: Medicina.

Lauwerys, R. 1982. Toxicología industrial y intoxicaciones profesionales. París: Masson.

Li, AP y RH Heflich. 1991. Toxicología genética. Boca Ratón: CRC Press.

Loewey, AG y P Siekewitz. 1969. Estructura y funciones celulares. Nueva York: Holt, Reinhart y Winston.

Loomis, TA. 1976. Fundamentos de Toxicología. Filadelfia: Lea & Febiger.

Mendelsohn, ML y RJ Albertini. 1990. Mutación y Medio Ambiente, Partes AE. Nueva York: Wiley Liss.

Mettzler, DE. 1977. Bioquímica. Nueva York: Academic Press.

Miller, K, JL Turk y S. Nicklin. 1992. Principios y Práctica de la Inmunotoxicología. Oxford: Blackwells científico.

Ministerio de Industria y Comercio Internacional. 1981. Manual de Sustancias Químicas Existentes. Tokio: Chemical Daily Press.

—. 1987. Solicitud de Aprobación de Sustancias Químicas por Ley de Control de Sustancias Químicas. (En japonés y en inglés). Tokio: Kagaku Kogyo Nippo Press.

Montaña, W. 1956. La estructura y función de la piel. Nueva York: Academic Press.

Moolenaar, RJ. 1994. Evaluación del riesgo carcinógeno: comparación internacional. REgul Toxicol Pharmacol 20: 302-336.

Consejo nacional de investigación. 1989. Marcadores biológicos en toxicidad reproductiva. Washington, DC: Prensa de NAS.

Neuman, WG y M Neuman. 1958. La dinámica química de los minerales óseos. Chicago: La Universidad. de Prensa de Chicago.

Newcombe, DS, NR Rose y JC Bloom. 1992. Inmunotoxicología clínica. Nueva York: Raven Press.

Pacheco, H. 1973. La farmacologie moleculaire. París: Presse Universitaire.

Piotrowski, JK. 1971. La aplicación de la cinética metabólica y excretora a problemas de toxicología industrial.. Washington, DC: Departamento de Salud, Educación y Bienestar de EE. UU.

—. 1983. Interacciones bioquímicas de metales pesados: Metalotioneína. En Efectos sobre la salud de la exposición combinada a sustancias químicas. Copenhague: Oficina Regional de la OMS para Europa.

Actas de la Conferencia de Arnold O. Beckman/IFCC sobre biomarcadores de toxicología ambiental de exposición química. 1994. Clin Chem. 40(7B).

Russell, WMS y RL Burch. 1959. Los principios de la técnica experimental humanitaria. Londres: Methuen & Co. Reimpreso por la Federación de Universidades para el Bienestar Animal, 1993.

Rycroft, RJG, T Menné, PJ Frosch y C Benezra. 1992. Libro de texto de dermatitis de contacto. Berlín: Springer-Verlag.

Schubert, J. 1951. Estimación de radioelementos en individuos expuestos. nucleónica 8: 13-28.

Shelby, MD y E Zeiger. 1990. Actividad de carcinógenos humanos en las pruebas citogenéticas de Salmonella y médula ósea de roedores. Resolución mutacional 234: 257-261.

Stone, R. 1995. Un enfoque molecular del riesgo de cáncer. Ciencia: 268: 356-357.

Teisinger, J. 1984. Prueba de exposición en der Industrietoxikologie [Pruebas de Exposición en Toxicología Industrial]. Berlín: VEB Verlag Volk und Gesundheit.

Congreso de Estados Unidos. 1990. Monitoreo y detección genética en el lugar de trabajo, OTA-BA-455. Washington, DC: Imprenta del Gobierno de los Estados Unidos.

VEB. 1981. Kleine Enzyklopaedie: Leben [Vida]. Leipzig: VEB Bibliographische Institut.

Weil, E. 1975. Elementos de toxicología industrial [Elementos de Toxicología Industrial]. París: Masson et Cie.

Organización Mundial de la Salud (OMS). 1975. Métodos utilizados en la URSS para establecer niveles seguros de sustancias tóxicas. Ginebra: OMS.

1978. Principios y métodos para evaluar la toxicidad de los productos químicos, Parte 1. Criterios de Salud Ambiental, nº6. Ginebra: OMS.

—. 1981. Exposición Combinada a Productos Químicos, Documento Provisional n.º 11. Copenhague: Oficina Regional de la OMS para Europa.

—. 1986. Principios de estudios toxicocinéticos. Criterios de Salud Ambiental, núm. 57. Ginebra: OMS.

Yoftrey, JM y FC Courtice. 1956. Linfáticos, linfa y tejido linfoide. Cambridge: Universidad de Harvard. Presionar.

Zakutinsky, DI. 1959. Voprosi toksikologii radioaktivnih veshchestv [Problemas de toxicología de materiales radiactivos]. Moscú: Medguiz.

Zurlo, J, D Rudacille y AM Goldberg. 1993. Animales y Alternativas en las Pruebas: Historia, Ciencia y Ética. Nueva York: Mary Ann Liebert.