Sábado, febrero 26 2011 01: 11

Medidas de seguridad y salud en el trabajo en zonas agrícolas contaminadas por radionucleidos: la experiencia de Chernóbil

Valora este artículo
(0 votos)

La contaminación masiva de tierras agrícolas por radionucleidos ocurre, por regla general, debido a grandes accidentes en las empresas de la industria nuclear o en las centrales nucleares. Tales accidentes ocurrieron en Windscale (Inglaterra) y Ural Sur (Rusia). El mayor accidente ocurrió en abril de 1986 en la central nuclear de Chernóbil. Este último supuso una contaminación intensiva de los suelos a lo largo de varios miles de kilómetros cuadrados.

Los principales factores que contribuyen a los efectos de la radiación en las zonas agrícolas son los siguientes:

  • si la radiación proviene de una exposición única o prolongada
  • cantidad total de sustancias radiactivas que entran en el medio ambiente
  • proporción de radionucleidos en la lluvia radiactiva
  • distancia desde la fuente de radiación hasta las tierras agrícolas y los asentamientos
  • características hidrogeológicas y del suelo de las tierras agrícolas y el propósito de su uso
  • peculiaridades del trabajo de la población rural; dieta, suministro de agua
  • tiempo desde el accidente radiológico.

 

Como resultado del accidente de Chernobyl, más de 50 millones de Curies (Ci) de radionucleidos, en su mayoría volátiles, ingresaron al medio ambiente. En la primera etapa, que abarcó dos meses y medio (el “período del yodo”), el yodo-2.5 produjo el mayor riesgo biológico, con dosis significativas de radiación gamma de alta energía.

El trabajo en tierras agrícolas durante el período de yodo debe estar estrictamente regulado. El yodo-131 se acumula en la glándula tiroides y la daña. Después del accidente de Chernobyl, se definió una zona de muy alta intensidad de radiación, donde nadie podía vivir ni trabajar, en un radio de 30 km alrededor de la estación.

Fuera de esta zona prohibida, se distinguieron cuatro zonas con diversos índices de radiación gamma sobre los suelos según los cuales se podían realizar tipos de labores agrícolas; durante el período de yodo, las cuatro zonas tenían los siguientes niveles de radiación medidos en roentgen (R):

  • zona 1: menos de 0.1 mR/h
  • zona 2: 0.1 a 1 mR/h
  • zona 3: 1.0 a 5 mR/h
  • zona 4—5 mR/h y más.

 

En realidad, debido a la contaminación “spot” por radionúclidos durante el período del yodo, el trabajo agrícola en estas zonas se realizó a niveles de radiación gamma de 0.2 a 25 mR/h. Aparte de la contaminación desigual, la variación en los niveles de radiación gamma fue causada por diferentes concentraciones de radionucleidos en diferentes cultivos. Los cultivos forrajeros en particular están expuestos a altos niveles de emisores gamma durante la cosecha, el transporte, el ensilaje y cuando se utilizan como forraje.

Después de la descomposición del yodo-131, el mayor peligro para los trabajadores agrícolas lo presentan los nucleidos de larga duración, el cesio-137 y el estroncio-90. El cesio-137, un emisor gamma, es un análogo químico del potasio; su ingesta por humanos o animales da como resultado una distribución uniforme por todo el cuerpo y se excreta con relativa rapidez con la orina y las heces. Por lo tanto, el estiércol en las áreas contaminadas es una fuente adicional de radiación y debe ser retirado lo más rápido posible de las granjas de ganado y almacenado en sitios especiales.

El estroncio-90, un emisor beta, es un análogo químico del calcio; se deposita en la médula ósea en humanos y animales. El estroncio-90 y el cesio-137 pueden ingresar al cuerpo humano a través de la leche, la carne o las verduras contaminadas.

La división de tierras agrícolas en zonas después de la desintegración de radionucleidos de vida corta se lleva a cabo de acuerdo con un principio diferente. Aquí, no es el nivel de radiación gamma, sino la cantidad de contaminación del suelo por cesio-137, estroncio-90 y plutonio-239 lo que se tiene en cuenta.

En el caso de una contaminación particularmente severa, la población es evacuada de dichas áreas y el trabajo agrícola se realiza en un programa de rotación de 2 semanas. Los criterios para la demarcación de zonas en las áreas contaminadas se dan en la tabla 1.

Tabla 1. Criterios para las zonas de contaminación

Zonas de contaminación

Límites de contaminación del suelo

Límites de dosificación

Tipo de acción

1. Zona de 30 km

residir en
población y
el trabajo agrícola
son prohibidos.

2. incondicional
restablecimiento

15 (Ci)/km2
cesio- 137
3ci/km2
estroncio- 90
0.1ci/km2 plutonio

0.5 cSv/año

El trabajo agrícola se realiza con un horario de rotación de 2 semanas bajo estricto control radiológico.

3. Voluntario
restablecimiento

5–15 CI/km2
cesio-137
0.15–3.0 CI/km2
estroncio-90
0.01–0.1 CI/km2
plutonio

0.01-0.5
cSv/año

Se toman medidas para reducir
contaminación de
capa superior del suelo;
el trabajo agrícola
se lleva a cabo bajo estricto control radiológico
controlar.

4. Radio-ecológico
monitoreo

1–5 CI/km2
cesio-137
0.02–0.15 CI/km2
estroncio-90
0.05–0.01 CI/km2
plutonio

0.01 cSv/año

El trabajo agrícola es
llevado a cabo de la manera habitual pero bajo
control radiológico.

 

Cuando las personas trabajan en tierras agrícolas contaminadas por radionucleidos, puede ocurrir la absorción de radionucleidos por el cuerpo a través de la respiración y el contacto con el suelo y polvos vegetales. Aquí, tanto los emisores beta (estroncio-90) como los emisores alfa son extremadamente peligrosos.

Como resultado de los accidentes en las centrales nucleares, parte de los materiales radiactivos que ingresan al medio ambiente son partículas altamente activas y de baja dispersión del combustible del reactor: “partículas calientes”.

Cantidades considerables de polvo que contienen partículas calientes se generan durante el trabajo agrícola y en períodos ventosos. Esto fue confirmado por los resultados de las investigaciones de los filtros de aire de los tractores tomados de las máquinas que operaban en las tierras contaminadas.

La evaluación de las cargas de dosis en los pulmones de trabajadores agrícolas expuestos a partículas calientes reveló que fuera de la zona de 30 km las dosis ascendían a varios milisieverts (Loshchilov et al. 1993).

Según los datos de Bruk et al. (1989) la actividad total de cesio-137 y cesio-134 en el polvo inspirado en los operadores de máquinas ascendió a 0.005 a 1.5 nCi/m3. Según sus cálculos, durante el período total del trabajo de campo, la dosis efectiva en los pulmones osciló entre 2 y
70cSv.

Se estableció la relación entre la cantidad de contaminación del suelo por cesio-137 y la radiactividad del aire de la zona de trabajo. Según los datos del Instituto de Salud Ocupacional de Kiev, se encontró que cuando la contaminación del suelo por cesio-137 ascendía a 7.0 a 30.0 Ci/km2 la radiactividad del aire de la zona de respiración alcanzó los 13.0 Bq/m3. En el área de control, donde la densidad de contaminación fue de 0.23 a 0.61 Ci/km3, la radiactividad del aire de la zona de trabajo osciló entre 0.1 y 1.0 Bq/m3 (Krasnyuk, Chernyuk y Stezhka 1993).

Los reconocimientos médicos a los operadores de máquinas agrícolas de las zonas “clara” y contaminada revelaron un aumento de las enfermedades cardiovasculares en los trabajadores de las zonas contaminadas, en forma de cardiopatía isquémica y distonía neurocirculatoria. Entre otros trastornos, la displasia de la glándula tiroides y un aumento del nivel de monocitos en la sangre se registraron con mayor frecuencia.

Requisitos higiénicos

Programas de trabajo

Después de grandes accidentes en las centrales nucleares, se suelen adoptar regulaciones temporales para la población. Tras el accidente de Chernóbil se adoptaron normas temporales por un período de un año, con el TLV de 10 cSv. Se supone que los trabajadores reciben el 50% de su dosis debido a la radiación externa durante el trabajo. En este caso, el umbral de intensidad de la dosis de radiación durante la jornada laboral de ocho horas no debe superar los 2.1 mR/h.

Durante el trabajo agrícola, los niveles de radiación en los lugares de trabajo pueden fluctuar significativamente, dependiendo de las concentraciones de sustancias radiactivas en suelos y plantas; también fluctúan durante el procesamiento tecnológico (ensilado, preparación de forraje seco, etc.). Con el fin de reducir las dosis a los trabajadores, se introducen regulaciones de límites de tiempo para el trabajo agrícola. La figura 1 muestra las normas que se introdujeron después del accidente de Chernobyl.

Figura 1. Límites de tiempo para el trabajo agrícola en función de la intensidad de la radiación de rayos gamma en los lugares de trabajo.

DIS090T2

Agrotecnologías

Al realizar trabajos agrícolas en condiciones de alta contaminación de suelos y plantas, es necesario observar estrictamente las medidas dirigidas a la prevención de la contaminación por polvo. La carga y descarga de sustancias secas y polvorientas debe estar mecanizada; el cuello del tubo transportador debe estar cubierto con tela. Se deben tomar medidas dirigidas a la disminución de la liberación de polvo para todo tipo de trabajo de campo.

Los trabajos con maquinaria agrícola deberían realizarse teniendo debidamente en cuenta la presurización de la cabina y la elección de la dirección adecuada de funcionamiento, siendo preferible el viento lateral. Si es posible, es deseable regar primero las áreas que se están cultivando. Se recomienda el uso generalizado de tecnologías industriales para eliminar en lo posible el trabajo manual en los campos.

Es conveniente aplicar a los suelos sustancias que puedan promover la absorción y fijación de radionucleidos, transformándolos en compuestos insolubles y evitando así la transferencia de radionucleidos a las plantas.

Maquinaria de agricultura

Uno de los principales peligros para los trabajadores es la maquinaria agrícola contaminada con radionúclidos. El tiempo de trabajo permitido en las máquinas depende de la intensidad de la radiación gamma emitida por las superficies de la cabina. No solo se requiere la presurización completa de las cabinas, sino también el debido control sobre los sistemas de ventilación y aire acondicionado. Después del trabajo, se debe realizar la limpieza en húmedo de las cabinas y el reemplazo de los filtros.

Al mantener y reparar las máquinas después de los procedimientos de descontaminación, la intensidad de la radiación gamma en las superficies exteriores no debe exceder los 0.3 mR/h.

Edificios

La limpieza húmeda de rutina debe realizarse dentro y fuera de los edificios. Los edificios deben estar equipados con duchas. Al preparar forrajes que contengan componentes de polvo, es necesario cumplir con los procedimientos destinados a evitar que los trabajadores ingieran polvo, así como a mantener el polvo alejado del piso, el equipo, etc.

La presurización del equipo debe estar bajo control. Los lugares de trabajo deben estar equipados con una ventilación general eficaz.

Uso de pesticidas y fertilizantes minerales.

Debe restringirse la aplicación de pesticidas en polvo y granulares y fertilizantes minerales, así como la fumigación desde aviones. Es preferible la pulverización mecánica y la aplicación de productos químicos granulados, así como fertilizantes líquidos mixtos. Los fertilizantes minerales en polvo deben almacenarse y transportarse únicamente en recipientes bien cerrados.

Los trabajos de carga y descarga, preparación de soluciones plaguicidas y otras actividades deben realizarse utilizando el máximo equipo de protección individual (mono, casco, gafas, respiradores, guantes de goma y botas).

Abastecimiento de agua y dieta.

Debe haber locales cerrados especiales o camionetas sin corrientes de aire donde los trabajadores puedan tomar sus comidas. Antes de comer, los trabajadores deben lavarse la ropa y lavarse bien las manos y la cara con jabón y agua corriente. Durante los períodos de verano, los trabajadores del campo deben tener agua potable. El agua debe mantenerse en recipientes cerrados. El polvo no debe entrar en los recipientes al llenarlos con agua.

Exámenes médicos preventivos de los trabajadores

Los exámenes médicos periódicos deben ser realizados por un médico; Los análisis de laboratorio de sangre, ECG y pruebas de función respiratoria son obligatorios. Cuando los niveles de radiación no superen los límites permisibles, la frecuencia de los exámenes médicos no debería ser inferior a una vez cada 12 meses. Donde haya niveles más altos de radiación ionizante, los exámenes deben realizarse con mayor frecuencia (después de la siembra, la cosecha, etc.) teniendo debidamente en cuenta la intensidad de la radiación en los lugares de trabajo y la dosis total absorbida.

Organización del Control Radiológico de las Zonas Agrícolas

Los principales índices que caracterizan la situación radiológica después de la lluvia radiactiva son la intensidad de la radiación gamma en la zona, la contaminación de las tierras agrícolas por los radionucleidos seleccionados y el contenido de radionucleidos en los productos agrícolas.

La determinación de los niveles de radiación gamma en las áreas permite trazar los límites de las áreas severamente contaminadas, estimar las dosis de radiación externa a las personas que se dedican a las labores agrícolas y establecer los correspondientes horarios que prevean la seguridad radiológica.

Las funciones de vigilancia radiológica en la agricultura suelen estar a cargo de los laboratorios radiológicos del servicio sanitario, así como de los laboratorios radiológicos veterinarios y agroquímicos. La capacitación y educación del personal dedicado al control dosimétrico y consultas a la población rural son realizadas por estos laboratorios.

 

Atrás

Leer 6625 veces Ultima modificacion el Martes, julio 26 2022 21: 11

" EXENCIÓN DE RESPONSABILIDAD: La OIT no se responsabiliza por el contenido presentado en este portal web que se presente en un idioma que no sea el inglés, que es el idioma utilizado para la producción inicial y la revisión por pares del contenido original. Ciertas estadísticas no se han actualizado desde la producción de la 4ª edición de la Enciclopedia (1998)."

Contenido

Desastres Naturales y Tecnológicos Referencias

Asociación Americana de Psiquiatría (APA). 1994. DSM-IV Manual Diagnóstico y Estadístico de los Trastornos Mentales. Washington, DC: APA.

 

Andersson, N, M Kerr Muir, MK Ajwani, S Mahashabde, A Salmon y K Vaidyanathan. 1986. Lagrimeo persistente entre los supervivientes de Bhopal. Lanceta 2:1152.

 

Baker, EL, M Zack, JW Miles, L Alderman, M Warren, RD Dobbin, S Miller y WR Teeters. 1978. Epidemia de envenenamiento por malatión en el trabajo contra la malaria en Pakistán. Lanceta 1:31-34.

 

Baum, A, L Cohen y M Hall. 1993. Control y recuerdos intrusivos como posibles determinantes del estrés crónico. Psychosom Med 55:274-286.

 

Bertazzi, PA. 1989. Desastres industriales y epidemiología. Una revisión de las experiencias recientes. Scand J Work Environ Health 15:85-100.

 

—. 1991. Efectos a largo plazo de los desastres químicos. Lecciones y resultado de Seveso. Sci Total Medio Ambiente 106:5-20.

 

Bromet, EJ, DK Parkinson, HC Schulberg, LO Dunn y PC Condek. 1982. Salud mental de los residentes cerca del reactor de Three Mile Island: un estudio comparativo de grupos seleccionados. J Prev Psychiat 1(3):225-276.

 

Bruk, GY, NG Kaduka y VI Parkhomenko. 1989. Contaminación del aire por radionucleidos como consecuencia del accidente en la central eléctrica de Chernóbil y su contribución a la irradiación interior de la población (en ruso). Materiales del Primer Congreso Radiológico de toda la Unión, 21-27 de agosto, Moscú. Resúmenes (en ruso). Puschkino, 1989, vol. II: 414-416.

 

Bruzzi, P. 1983. Impacto en la salud de la liberación accidental de TCDD en Seveso. En Exposición Accidental a Dioxinas. Aspectos de salud humana, editado por F Coulston y F Pocchiari. Nueva York: Prensa Académica.

 

Cardis, E, ES Gilbert y L Carpenter. 1995. Efectos de dosis bajas y tasas de dosis bajas de radiación ionizante externa: Mortalidad por cáncer entre los trabajadores de la industria nuclear en tres países. Rad Res 142:117-132.

 

Centros para el Control de Enfermedades (CDC). 1989. Las consecuencias de los desastres para la salud pública. Atlanta: CDC.

 

Centro Peruano-Japonés de Investigaciones Sísmicas y Mitigación de Desastres. Universidad Nacional de Ingeniería (CISMID). 1989. Seminario Internacional De Planeamiento Diseño,

 

Reparación Y Administración De Hospitales En Zonas Sísmicas: Conclusiones Y Recomendaciones. Lima: CISMID/Univ Nacional de Ingeniería.

 

Chagnon, SAJR, RJ Schicht y RJ Semorin. 1983. Un Plan de Investigación sobre Inundaciones y su Mitigación en los Estados Unidos. Champaign, Ill: Encuesta sobre el agua del estado de Illinois.

 

Chen, PS, ML Luo, CK Wong y CJ Chen. 1984. Bifenilos, dibenzofuranos y cuaterfenilos policlorados en aceite de salvado de arroz tóxico y PCB en la sangre de pacientes con envenenamiento por PCB en Taiwán. Am J Ind Med 5:133-145.

 

Coburn, A y R Spence. 1992. Protección contra terremotos. Chichester: Wiley.

 

Consejo de las Comunidades Europeas (CEC). 1982. Directiva del Consejo de 24 de junio sobre los riesgos de accidentes graves de determinadas actividades industriales (82/501/CEE). Off J Eur Communities L230:1-17.

 

—. 1987. Directiva del Consejo de 19 de marzo por la que se modifica la Directiva 82/501/CEE sobre los riesgos de accidentes graves de determinadas actividades industriales (87/216/CEE). Off J Eur Communities L85:36-39.

 

Das, JJ. 1985a. Consecuencias de la tragedia de Bhopal. J Indian Med Assoc 83:361-362.

 

—. 1985b. La tragedia de Bhopal. J Indian Med Assoc 83:72-75.

 

Rocío, MA y EJ Bromet. 1993. Predictores de patrones temporales de angustia psiquiátrica durante diez años después del accidente nuclear en Three Mile Island. Social Psych Psiquiátrico Epidemiol 28:49-55.

 

Agencia Federal para el Manejo de Emergencias (FEMA). 1990. Consideraciones sísmicas: Instalaciones para el cuidado de la salud. Serie de Reducción de Riesgos de Terremotos, No. 35. Washington, DC: FEMA.

 

Frazier, K. 1979. El Rostro Violento de la Naturaleza: Fenómenos Severos y Desastres Naturales. Inundaciones. Nueva York: William Morrow & Co.

 

Fundación Friedrich Naumann. 1987. Riesgos industriales en el trabajo transnacional: riesgo, equidad y empoderamiento. Nueva York: Consejo de Asuntos Internacionales y Públicos.

 

Francés, J y K Holt. 1989. Inundaciones: Consecuencias de los desastres para la salud pública. Monografía de los Centros para el Control de Enfermedades. Atlanta: CDC.

 

French, J, R Ing, S Von Allman y R Wood. 1983. Mortalidad por inundaciones repentinas: una revisión de los informes del Servicio Meteorológico Nacional, 1969-1981. Publ Health Rep 6 (noviembre/diciembre): 584-588.

 

Fuller, M. 1991. Incendios Forestales. Nueva York: John Wiley.

 

Gilsanz, V, J Lopez Alverez, S Serrano, and J Simon. 1984. Evolución del síndrome del aceite tóxico alimentario por ingestión de aceite de colza desnaturalizado. Arco Int Med 144:254-256.

 

Glass, RI, RB Craven y DJ Bregman. 1980. Lesiones por el tornado de Wichita Falls: Implicaciones para la prevención. Ciencia 207:734-738.

 

Subvención, CC. 1993. El incendio del triángulo suscita indignación y reforma. NFPA J 87(3):72-82.

 

Grant, CC y TJ Klem. 1994. Incendio en una fábrica de juguetes en Tailandia mata a 188 trabajadores. NFPA J 88(1):42-49.

 

Greene, WAJ. 1954. Factores psicológicos y enfermedad reticuloendotelial: observaciones preliminares sobre un grupo de hombres con linfoma y leucemia. Psicosom Med: 16-20.

 

Grisham, JW. 1986. Aspectos sanitarios de la eliminación de residuos químicos. Nueva York: Pergamon Press.

 

Herbert, P y G Taylor. 1979. Todo lo que siempre quiso saber sobre los huracanes: Parte 1. Weatherwise (abril).

 

High, D, JT Blodgett, EJ Croce, EO Horne, JW McKoan y CS Whelan. 1956. Aspectos médicos del desastre del tornado de Worcester. New Engl J Med 254: 267-271.

 

Holden, C. 1980. Los residentes de Love Canal bajo estrés. Ciencia 208:1242-1244.

 

Homberger, E, G Reggiani, J Sambeth y HK Wipf. 1979. El accidente de Seveso: Su naturaleza, extensión y consecuencias. Ann Occup Hyg 22:327-370.

 

Hunter, D. 1978. Las enfermedades de las ocupaciones. Londres: Hodder & Stoughton.

 

Organismo Internacional de Energía Atómica (OIEA). 1988. Principios básicos de seguridad para centrales nucleares INSAG-3. Serie Seguridad, N° 75. Viena: OIEA.

 

—. 1989a. El accidente radiológico de Goiânia. Viena: OIEA.

 

—. 1989b. Un caso de contaminación por Co-60 a gran escala: México 1984. En Planificación de Emergencias y Preparación para Accidentes con Materiales Radiactivos Utilizados en Medicina, Industria, Investigación y Docencia. Viena: OIEA.

 

—. 1990. Recomendaciones para el Uso Seguro y Regulación de Fuentes de Radiación en la Industria, Medicina, Investigación y Docencia. Serie Seguridad, N° 102. Viena: OIEA.

 

—. 1991. El Proyecto Internacional Chernóbil. Informe técnico, evaluación de consecuencias radiológicas y evaluación de medidas de protección, informe de un Comité Asesor Internacional. Viena: OIEA.

 

—. 1994. Criterios de Intervención en Emergencia Nuclear o Radiológica. Serie Seguridad, N° 109. Viena: OIEA.

 

Comisión Internacional de Protección Radiológica (ICRP). 1991. Anales de la ICRP. Publicación ICRP No. 60. Oxford: Pergamon Press.

 

Federación Internacional de Sociedades de la Cruz Roja y de la Media Luna Roja (IFRCRCS). 1993. El Informe Mundial sobre Desastres. Dordrecht: Martinus Nijhoff.

 

Organización Internacional del Trabajo (OIT). 1988. Control de peligros mayores. Un Manual Práctico. Ginebra: OIT.

 

—. 1991. Prevención de Accidentes Industriales Mayores. Ginebra: OIT.

 

—. 1993. Convenio sobre la prevención de accidentes industriales mayores, 1993 (núm. 174). Ginebra: OIT.

 

Janerich, DT, AD Stark, P Greenwald, WS Bryant, HI Jacobson y J McCusker. 1981. Aumento de leucemia, linfoma y aborto espontáneo en el oeste de Nueva York después de un desastre. Representante de salud pública 96:350-356.

 

Jeyaratnam, J. 1985. 1984 y la salud ocupacional en los países en desarrollo. Scand J Work Environ Health 11:229-234.

 

Jovel, JR. 1991. Los efectos económicos y sociales de los desastres naturales en América Latina y el Caribe. Santiago, Chile: Documento presentado en el Primer Programa Regional de Capacitación en Gestión de Desastres PNUD/UNDRO en Bogotá, Colombia.

 

Kilbourne, EM, JG Rigau-Perez, J Heath CW, MM Zack, H Falk, M Martin-Marcos y A De Carlos. 1983. Epidemiología clínica del síndrome del aceite tóxico. New Engl J Med 83: 1408-1414.

 

Klem, TJ. 1992. 25 mueren en incendio en planta de alimentos. NFPA J 86(1):29-35.

 

Klem, TJ y CC Grant. 1993. Tres Trabajadores Mueren en Incendio en Planta Eléctrica. NFPA J 87(2):44-47.

 

Krasnyuk, EP, VI Chernyuk y VA Stezhka. 1993. Condiciones de trabajo y estado de salud de los operadores de máquinas agrícolas en áreas bajo control debido al accidente de Chernobyl (en ruso). En resúmenes Chernobyl and Human Health Conference, 20-22 de abril.

 

Krishna Murti, CR. 1987. Prevención y control de accidentes químicos: Problemas de los países en desarrollo. En Istituto Superiore Sanita', Organización Mundial de la Salud, Programa Internacional sobre Seguridad Química. Edimburgo: CEP Consultants.

 

Lanceta. 1983. Síndrome del aceite tóxico. 1:1257-1258.

 

Lechat, MF. 1990. La epidemiología de los efectos de los desastres en la salud. Epidemiol Rev 12:192.

 

Logue, JN. 1972. Efectos a largo plazo de un gran desastre natural: la inundación del huracán Agnes en el valle de Wyoming de Pensilvania, junio de 1972. Ph.D. Disertación, Universidad de Columbia. Escuela de Salud Pública.

 

Logue, JN y HA Hansen. 1980. Un estudio de casos y controles de mujeres hipertensas en una comunidad después de un desastre: Wyoming Valley, Pensilvania. J Hum Estrés 2:28-34.

 

Logue, JN, ME Melick y H Hansen. 1981. Temas de investigación y direcciones en la epidemiología de los efectos de los desastres en la salud. Epidemiol Rev 3:140.

 

Loshchilov, NA, VA Kashparov, YB Yudin, VP Proshchak y VI Yushchenko. 1993. Incorporación por inhalación de radionucleidos durante trabajos agrícolas en las áreas contaminadas por radionucleidos debido al accidente de Chernobyl (en ruso). Gigiena i sanitarija (Moscú) 7:115-117.

 

Mandlebaum, I, D Nahrwold y DW Boyer. 1966. Manejo de víctimas de tornados. J Trauma 6:353-361.

 

Marrero, J. 1979. Peligro: Inundaciones repentinas: el asesino número uno de los años 70. Weatherwise (febrero): 34-37.

 

Masuda, Y y H Yoshimura. 1984. Bifenilos policlorados y dibenzofuranos en pacientes con Yusho y su significado toxicológico: una revisión. Am J Ind Med 5:31-44.

 

Melick, MF. 1976. Aspectos sociales, psicológicos y médicos de las enfermedades relacionadas con el estrés en el período de recuperación de un desastre natural. Disertación, Albany, State Univ. de Nueva York

 

Mogil, M, J Monro y H Groper. 1978. Programas de alerta de inundaciones repentinas y preparación para desastres del NWS. B Am Meteorol Soc :59-66.

 

Morrison, AS. 1985. Cribado en Enfermedad Crónica. Oxford: OUP.

 

Asociación Nacional de Protección contra Incendios (NFPA). 1993. Código Nacional de Alarmas contra Incendios. NFPA No. 72. Quincy, Massachusetts: NFPA.

 

—. 1994. Norma para la Instalación de Sistemas de Rociadores. NFPA No. 13. Quincy, Massachusetts: NFPA.

 

—. 1994. Código de Seguridad Humana. NFPA No. 101. Quincy, Massachusetts: NFPA.

 

—. 1995. Norma para la inspección, prueba y mantenimiento de sistemas de protección contra incendios a base de agua. NFPA No. 25. Quincy, Massachusetts: NFPA.

 

Nénot, JC. 1993. Les surexpositions accidentelles. CEA, Institut de Protection et de Sûreté Nucléaire. Informe DPHD/93-04.a, 1993, 3-11.

 

Agencia de Energía Nuclear. 1987. El impacto radiológico del accidente de Chernobyl en los países de la OCDE. París: Agencia de Energía Nuclear.

 

Otake, M y WJ Schull. 1992. Tamaños de cabeza pequeños relacionados con la radiación entre sobrevivientes de bombas atómicas expuestos prenatalmente. Serie de informes técnicos, RERF 6-92.

 

Otake, M, WJ Schull y H Yoshimura. 1989. Una revisión del daño relacionado con la radiación en los sobrevivientes de la bomba atómica expuestos prenatalmente. Serie de revisión de comentarios, RERF CR 4-89.

 

Organización Panamericana de la Salud (OPS). 1989. Análisis del Programa de Preparación para Emergencias y Socorro en Casos de Desastre de la OPS. Documento del Comité Ejecutivo SPP12/7. Washington, DC: OPS.

 

—. 1987. Crónicas de desastre: terremoto en México. Washington, DC: OPS.

 

Parrish, RG, H Falk y JM Melius. 1987. Desastres industriales: clasificación, investigación y prevención. En Recent Advances in Occupational Health, editado por JM Harrington. Edimburgo: Churchill Livingstone.

 

Peisert, M comp, RE Cross y LM Riggs. 1984. El papel del hospital en los sistemas de servicios médicos de emergencia. Chicago: Publicación del Hospital Americano.

 

Pesatori, AC. 1995. Contaminación por dioxinas en Seveso: La tragedia social y el desafío científico. Med Lavoro 86:111-124.

 

Peter, RU, O Braun-Falco y A Birioukov. 1994. Daño cutáneo crónico después de exposición accidental a radiación ionizante: La experiencia de Chernobyl. J Am Acad Dermatol 30:719-723.

 

Pocchiari, F, A DiDomenico, V Silano y G Zapponi. 1983. Impacto ambiental de la liberación accidental de tetraclorodibenzo-p-dioxina (TCDD) en Seveso. En Exposición accidental a dioxinas: aspectos de la salud humana, editado por F Coulston y F Pocchiari. Nueva York: Prensa Académica.

 

—. 1986. El accidente de Seveso y sus secuelas. En Asegurar y gestionar riesgos peligrosos: de Seveso a Bhopal y más allá, editado por PR Kleindorfer y HC Kunreuther. Berlín: Springer-Verlag.

 

Rodrigues de Oliveira, A. 1987. Un répertoire des accidents radiologiques 1945-1985. Radioprotección 22(2):89-135.

 

Sainani, GS, VR Joshi, PJ Mehta y P Abraham. 1985. Tragedia de Bhopal -Un año después. J Assoc Phys India 33:755-756.

 

Salzmann, JJ. 1987. ìSchweizerhalleî y sus consecuencias. Edimburgo: CEP Consultants.

 

Costa, RE. 1992. Problemas y evidencias epidemiológicas sobre el cáncer de tiroides inducido por radiación. Rad Res 131:98-111.

 

Spurzem, JR y JE Lockey. 1984. Síndrome del aceite tóxico. Arco Int Med 144:249-250.

 

Stsjazhko, VA, AF Tsyb, ND Tronko, G Souchkevitch y KF Baverstock. 1995. Cáncer de tiroides infantil desde los accidentes de Chernobyl. Brit Med J 310:801.

 

Tachakra, SS. 1987. El desastre de Bhopal. Edimburgo: CEP Consultants.

 

Thierry, D, P Gourmelon, C Parmentier y JC Nenot. 1995. Factores de crecimiento hematopoyético en el tratamiento de la aplasia inducida por irradiación terapéutica y accidental. Int J Rad Biol (en prensa).

 

Comprender la ciencia y la naturaleza: el tiempo y el clima. 1992. Alexandria, Virginia: Time-Life.

 

Oficina del Coordinador de las Naciones Unidas para el Socorro en Casos de Desastre (UNDRO). 1990. Terremoto en Irán. UNDRO Noticias 4 (septiembre).

 

Comité Científico de las Naciones Unidas sobre los Efectos de la Radiación Atómica (UNSCEAR). 1988. Fuentes, efectos y riesgos de la radiación ionizante. Nueva York: UNSCEAR.

 

—. 1993. Fuentes y efectos de la radiación ionizante. Nueva York: UNSCEAR.

 

—. 1994. Fuentes y efectos de la radiación ionizante. Nueva York: UNSCEAR.

 

Ursano, RJ, BG McCaughey y CS Fullerton. 1994. Respuestas individuales y comunitarias al trauma y al desastre: la estructura del caos humano. Cambridge: Universidad de Cambridge. Presionar.

 

Agencia de los Estados Unidos para el Desarrollo Internacional (USAID). 1989. Unión Soviética: Terremoto. Informe Anual OFDA/AID, FY1989. Arlington, Virginia: USAID.

 

Walker, P. 1995. Informe Mundial sobre Desastres. Ginebra: Federación Internacional de Sociedades de la Cruz Roja y de la Media Luna Roja.

 

Wall Street J. 1993 Incendio en Tailandia muestra que la región toma atajos en materia de seguridad para aumentar las ganancias, 13 de mayo.

 

Weiss, B y TW Clarkson. 1986. Desastre químico tóxico y la implicación de Bhopal para la transferencia de tecnología. Milbank Q 64:216.

 

Whitlow, J. 1979. Desastres: la anatomía de los peligros ambientales. Atenas, Georgia: Universidad. de Prensa de Georgia.

 

Williams, D, A Pinchera, A Karaoglou y KH Chadwick. 1993. Cáncer de tiroides en niños que viven cerca de Chernobyl. Informe del panel de expertos sobre las consecuencias del accidente de Chernóbil, EUR 15248 EN. Bruselas: Comisión de las Comunidades Europeas (CEC).

 

Organización Mundial de la Salud (OMS). 1984. Síndrome del aceite tóxico. Intoxicaciones alimentarias masivas en España. Copenhague: Oficina Regional de la OMS para Europa.

 

Wyllie, L y M Durkin. 1986. El terremoto de Chile del 3 de marzo de 1985: Víctimas y efectos en el sistema de salud. Terremoto Spec 2 (2): 489-495.

 

Zeballos, JL. 1993a. Los desastres quimicos, capacidad de respuesta de los paises en vias de desarrollo. Washington, DC: Organización Panamericana de la Salud (OPS).

 

—. 1993b. Efectos de los desastres naturales en la infraestructura de salud: Lecciones desde una perspectiva médica. Bull Pan Am Health Organ 27: 389-396.

 

Zerbib, JC. 1993. Les accidents radiologiques survenus lors d'usages industriels de source radiactives ou de générateurs électirques de rayonnement. En Sécurité des sources radiactives scellées et des générateurs électriques de rayonnement. París: Société française de radioprotection.