يلعب علم السموم دورًا رئيسيًا في تطوير اللوائح وسياسات الصحة المهنية الأخرى. من أجل منع الإصابة والأمراض المهنية ، تعتمد القرارات بشكل متزايد على المعلومات التي يمكن الحصول عليها قبل أو في غياب أنواع التعرض البشري التي من شأنها أن تسفر عن معلومات نهائية عن المخاطر مثل دراسات علم الأوبئة. بالإضافة إلى ذلك ، يمكن للدراسات السمية ، كما هو موصوف في هذا الفصل ، أن توفر معلومات دقيقة عن الجرعة والاستجابة في ظل الظروف الخاضعة للرقابة من البحوث المختبرية ؛ غالبًا ما يكون من الصعب الحصول على هذه المعلومات في البيئة غير المنضبطة للتعرضات المهنية. ومع ذلك ، يجب تقييم هذه المعلومات بعناية من أجل تقدير احتمالية حدوث آثار ضارة على البشر ، وطبيعة هذه الآثار الضارة ، والعلاقة الكمية بين حالات التعرض والتأثيرات.

تم إيلاء اهتمام كبير في العديد من البلدان ، منذ الثمانينيات ، لتطوير طرق موضوعية لاستخدام المعلومات السمية في صنع القرار التنظيمي. الأساليب الرسمية ، يشار إليها كثيرًا باسم تقييم المخاطر، تم اقتراحها واستخدامها في هذه البلدان من قبل الكيانات الحكومية وغير الحكومية على حد سواء. تم تحديد تقييم المخاطر بشكل متفاوت ؛ إنها في الأساس عملية تقييمية تتضمن معلومات عن علم السموم وعلم الأوبئة والتعرض لتحديد وتقدير احتمالية الآثار الضارة المرتبطة بالتعرض للمواد أو الظروف الخطرة. قد يكون تقييم المخاطر نوعيًا بطبيعته ، ويشير إلى طبيعة التأثير الضار وتقديرًا عامًا للاحتمالية ، أو قد يكون كميًا ، مع تقديرات لأعداد الأشخاص المتضررين عند مستويات محددة من التعرض. في العديد من الأنظمة التنظيمية ، يتم إجراء تقييم المخاطر على أربع مراحل: تحديد المخاطر، وصف طبيعة التأثير السام ؛ تقييم الاستجابة للجرعة، تحليل شبه كمي أو كمي للعلاقة بين التعرض (أو الجرعة) وشدة أو احتمالية التأثير السام ؛ تقييم التعرض، وتقييم المعلومات حول نطاق التعرض المحتمل حدوثه للسكان بشكل عام أو لمجموعات فرعية ضمن السكان ؛ توصيف المخاطر، تجميع جميع المعلومات المذكورة أعلاه في تعبير عن حجم الخطر المتوقع حدوثه في ظل ظروف التعرض المحددة (انظر NRC 1983 لبيان هذه المبادئ).

في هذا القسم ، يتم تقديم ثلاثة مناهج لتقييم المخاطر على النحو التوضيحي. من المستحيل تقديم خلاصة وافية شاملة لطرق تقييم المخاطر المستخدمة في جميع أنحاء العالم ، ولا ينبغي اعتبار هذه الاختيارات إلزامية. وتجدر الإشارة إلى أن هناك اتجاهات نحو تنسيق أساليب تقييم المخاطر ، ويرجع ذلك جزئيًا إلى الأحكام الواردة في اتفاقيات الجات الأخيرة. تجري حاليا عمليتان للتنسيق الدولي لطرق تقييم المخاطر ، من خلال البرنامج الدولي للسلامة الكيميائية (IPCS) ومنظمة التعاون الاقتصادي والتنمية (OECD). تحتفظ هذه المنظمات أيضًا بالمعلومات الحالية حول الأساليب الوطنية لتقييم المخاطر.

 

الرجوع

الأحد، 16 يناير 2011 18: 56

هيكل علاقات النشاط

تحليل علاقات نشاط الهيكل (SAR) هو استخدام المعلومات المتعلقة بالتركيب الجزيئي للمواد الكيميائية للتنبؤ بالخصائص المهمة المتعلقة بالثبات والتوزيع والامتصاص والامتصاص والسمية. SAR هو طريقة بديلة لتحديد المواد الكيميائية الخطرة المحتملة ، والتي تبشر بمساعدة الصناعات والحكومات في تحديد أولويات المواد لمزيد من التقييم أو لاتخاذ القرارات في مرحلة مبكرة للمواد الكيميائية الجديدة. علم السموم هو مهمة مكلفة بشكل متزايد وكثيفة الموارد. وقد دفعت المخاوف المتزايدة بشأن إمكانية تسبب المواد الكيميائية في إحداث آثار ضارة على السكان المعرضين للخطر الوكالات التنظيمية والصحية إلى توسيع نطاق وحساسية الاختبارات للكشف عن المخاطر السمية. في الوقت نفسه ، أثارت الأعباء الحقيقية والمتصورة للتنظيم على الصناعة مخاوف بشأن التطبيق العملي لطرق اختبار السمية وتحليل البيانات. في الوقت الحاضر ، يعتمد تحديد السرطنة الكيميائية على اختبار مدى الحياة لنوعين على الأقل ، كلا الجنسين ، بجرعات متعددة ، مع تحليل نسيج مرضي دقيق لأعضاء متعددة ، وكذلك الكشف عن التغيرات السابقة للأورام في الخلايا والأعضاء المستهدفة. في الولايات المتحدة ، تقدر تكلفة اختبار السرطان الحيوي بأكثر من 3 ملايين دولار (1995 دولار).

حتى مع وجود موارد مالية غير محدودة ، فإن عبء اختبار ما يقرب من 70,000 مادة كيميائية منتجة في العالم اليوم سوف يتجاوز الموارد المتاحة لعلماء السموم المدربين. قد تكون هناك حاجة لقرون لإكمال حتى تقييم المستوى الأول لهذه المواد الكيميائية (NRC 1984). في العديد من البلدان ، ازدادت المخاوف الأخلاقية بشأن استخدام الحيوانات في اختبار السمية ، مما أدى إلى ضغوط إضافية على استخدامات الطرق القياسية لاختبار السمية. تم استخدام SAR على نطاق واسع في صناعة المستحضرات الصيدلانية لتحديد الجزيئات التي يمكن أن تفيد في العلاج (Hansch and Zhang 1993). في سياسة الصحة البيئية والمهنية ، يستخدم SAR للتنبؤ بتشتت المركبات في البيئة الفيزيائية والكيميائية ولفرز المواد الكيميائية الجديدة لمزيد من التقييم للسمية المحتملة. بموجب قانون مراقبة المواد السامة في الولايات المتحدة (TSCA) ، استخدمت وكالة حماية البيئة منذ عام 1979 نهج SAR باعتباره "الشاشة الأولى" للمواد الكيميائية الجديدة في عملية إخطار ما قبل التصنيع (PMN) ؛ تستخدم أستراليا نهجًا مشابهًا كجزء من إجراء الإخطار الجديد بالمواد الكيميائية (NICNAS). يعد تحليل معدل الامتصاص النوعي في الولايات المتحدة أساسًا مهمًا لتحديد وجود أساس معقول لاستنتاج أن تصنيع المادة أو معالجتها أو توزيعها أو استخدامها أو التخلص منها سيشكل خطرًا غير معقول للإضرار بصحة الإنسان أو البيئة ، وفقًا لما يقتضيه القسم 5 (و) من TSCA. على أساس هذه النتيجة ، يمكن لوكالة حماية البيئة أن تطلب بعد ذلك اختبارات فعلية للمادة بموجب القسم 6 من TSCA.

حيثيات SAR

يستند الأساس المنطقي العلمي لـ SAR على افتراض أن التركيب الجزيئي لمادة كيميائية سيتنبأ بالجوانب المهمة لسلوكها في الأنظمة الفيزيائية والكيميائية والبيولوجية (Hansch and Leo 1979).

عملية SAR

تتضمن عملية مراجعة SAR تحديد التركيب الكيميائي ، بما في ذلك التركيبات التجريبية بالإضافة إلى المركب النقي ؛ تحديد المواد المماثلة من الناحية الهيكلية ؛ البحث في قواعد البيانات والأدب للحصول على معلومات حول النظائر الهيكلية ؛ وتحليل السمية والبيانات الأخرى على النظائر الهيكلية. في بعض الحالات النادرة ، يمكن أن تكون المعلومات المتعلقة بهيكل المركب وحده كافية لدعم بعض تحليل معدل الامتصاص النوعي ، بناءً على آليات مفهومة جيدًا للسمية. تم تجميع العديد من قواعد البيانات الخاصة بـ SAR ، بالإضافة إلى الطرق المعتمدة على الكمبيوتر للتنبؤ بالبنية الجزيئية.

باستخدام هذه المعلومات ، يمكن تقدير نقاط النهاية التالية باستخدام SAR:

  • المعلمات الفيزيائية والكيميائية: نقطة الغليان ، ضغط البخار ، الذوبان في الماء ، معامل تقسيم الأوكتانول / الماء
  • معلمات المصير البيولوجي / البيئي: التحلل البيولوجي ، وامتصاص التربة ، والتحلل الضوئي ، والحرائك الدوائية
  • معايير السمية: سمية الكائنات المائية ، الامتصاص ، السمية الحادة للثدييات (اختبار الحد أو LD50) ، تهيج الجلد ، الرئة والعين ، التحسس ، السمية شبه المزمنة ، الطفرات.

 

وتجدر الإشارة إلى أن طرق SAR غير موجودة لنقاط النهاية الصحية الهامة مثل السرطنة ، والسمية التنموية ، والسمية الإنجابية ، والسمية العصبية ، والسمية المناعية أو غيرها من تأثيرات الأعضاء المستهدفة. ويرجع ذلك إلى ثلاثة عوامل: عدم وجود قاعدة بيانات كبيرة لاختبار فرضيات SAR ، ونقص المعرفة بالمحددات الهيكلية للعمل السام ، وتعدد الخلايا والآليات المستهدفة التي تشارك في هذه النقاط النهائية (انظر "الولايات المتحدة" نهج لتقييم مخاطر المواد السامة الإنجابية والعوامل السامة العصبية "). بعض المحاولات المحدودة لاستخدام معدل الامتصاص النوعي للتنبؤ بالحرائك الدوائية باستخدام معلومات عن معاملات التقسيم وقابلية الذوبان (Johanson and Naslund 1988). تم إجراء SAR كمي أكثر شمولاً للتنبؤ بالاستقلاب المعتمد على P450 لمجموعة من المركبات وربط الجزيئات الشبيهة بالديوكسين وثنائي الفينيل متعدد الكلور بمستقبلات العصارة الخلوية "الديوكسين" (Hansch and Zhang 1993).

تبين أن معدل SAR يحتوي على إمكانية متباينة للتنبؤ ببعض نقاط النهاية المذكورة أعلاه ، كما هو موضح في الجدول 1. يعرض هذا الجدول بيانات من مقارنتين للنشاط المتوقع مع النتائج الفعلية التي تم الحصول عليها عن طريق القياس التجريبي أو اختبار السمية. كان أداء SAR كما أجراه خبراء وكالة حماية البيئة الأمريكية أسوأ في التنبؤ بالخصائص الفيزيائية والكيميائية مقارنة بالتنبؤ بالنشاط البيولوجي ، بما في ذلك التحلل البيولوجي. بالنسبة لنقاط نهاية السمية ، كان أداء معدل الامتصاص النوعي أفضل في توقع حدوث الطفرات. وجد Ashby and Tennant (1991) أيضًا في دراسة موسعة إمكانية التنبؤ الجيد بالسمية الجينية قصيرة المدى في تحليلهما للمواد الكيميائية NTP. هذه النتائج ليست مفاجئة ، بالنظر إلى الفهم الحالي للآليات الجزيئية للسمية الجينية (انظر "علم السموم الوراثي") ودور الألفة الكهربية في ربط الحمض النووي. وعلى النقيض من ذلك ، يميل SAR إلى عدم التنبؤ بالسمية النظامية ودون المزمنة في الثدييات وإلى المبالغة في التنبؤ بالسمية الحادة للكائنات المائية.

الجدول 1. مقارنة SAR وبيانات الاختبار: تحليلات OECD / NTP

نقطة النهاية اتفاق (٪) الخلاف (٪) رقم الهاتف
نقطة الغليان 50 50 30
ضغط البخار 63 37 113
الذوبان في الماء 68 32 133
معامل التقسيم 61 39 82
التحلل البيولوجي 93 7 107
سمية الأسماك 77 22 130
سمية برغوث الماء 67 33 127
السمية الحادة للثدييات (LD50 ) 80 201 142
تهيج الجلد 82 18 144
تهيج العين 78 22 144
حساسية الجلد 84 16 144
السمية شبه المزمنة 57 32 143
الطفرات2 88 12 139
الطفرات3 82-944 1-10 301
السرطنة3 : اختبار بيولوجي لمدة عامين 72-954 - 301

المصدر: بيانات من OECD ، اتصال شخصي C. Auer ، US EPA. تم استخدام نقاط النهاية فقط التي توفرت لها تنبؤات SAR قابلة للمقارنة وبيانات اختبار فعلية في هذا التحليل. بيانات NTP مأخوذة من Ashby و Tennant 1991.

1 كان من دواعي القلق فشل SAR في التنبؤ بالسمية الحادة في 12٪ من المواد الكيميائية المختبرة.

2 بيانات منظمة التعاون والتنمية في الميدان الاقتصادي ، بناءً على توافق اختبار أميس مع معدل الامتصاص النوعي

3 بيانات NTP ، بناءً على مقايسات السموم الجينية مقارنة بتنبؤات معدل الامتصاص النوعي لعدة فئات من "المواد الكيميائية التنبيهية الهيكلية".

4 يختلف التوافق مع الطبقة ؛ كان أعلى توافق مع مركبات الأمينية / النيترو العطرية ؛ أدنى مع الهياكل "المتنوعة".

بالنسبة لنقاط النهاية السامة الأخرى ، كما هو مذكور أعلاه ، فإن معدل الامتصاص النوعي له فائدة أقل يمكن إثباتها. تتعقد تنبؤات السمية في الثدييات بسبب نقص معدل الامتصاص النوعي للحركية السمية للجزيئات المعقدة. ومع ذلك ، فقد بذلت بعض المحاولات لاقتراح مبادئ معدل الامتصاص النوعي لنقاط نهاية السمية المعقدة للثدييات (على سبيل المثال ، انظر برنشتاين (1984) لتحليل معدل الامتصاص النوعي للسموم التناسلية للذكور المحتملة). في معظم الحالات ، تكون قاعدة البيانات أصغر من أن تسمح باختبار صارم للتنبؤات القائمة على الهيكل.

في هذه المرحلة ، يمكن الاستنتاج أن SAR قد يكون مفيدًا بشكل أساسي لتحديد أولويات استثمار موارد اختبار السمية أو لإثارة مخاوف مبكرة بشأن المخاطر المحتملة. فقط في حالة الطفرات ، من المحتمل أن تحليل معدل الامتصاص النوعي في حد ذاته يمكن استخدامه بمصداقية لتوجيه قرارات أخرى. لعدم وجود نقطة نهاية ، من المحتمل أن يوفر SAR نوع المعلومات الكمية المطلوبة لأغراض تقييم المخاطر كما تمت مناقشته في مكان آخر في هذا الفصل و موسوعة.

 

الرجوع

الأحد، 16 يناير 2011 18: 53

اختبار السمية في المختبر

أدى ظهور تقنيات معقدة في البيولوجيا الجزيئية والخلوية إلى حدوث تطور سريع نسبيًا في علوم الحياة ، بما في ذلك علم السموم. في الواقع ، يتحول تركيز علم السموم من حيوانات كاملة ومجموعات من حيوانات كاملة إلى خلايا وجزيئات الحيوانات الفردية والبشر. منذ منتصف الثمانينيات ، بدأ علماء السموم في استخدام هذه المنهجيات الجديدة في تقييم آثار المواد الكيميائية على النظم الحية. كتقدم منطقي ، يتم تكييف هذه الأساليب لأغراض اختبار السمية. عملت هذه التطورات العلمية جنبًا إلى جنب مع العوامل الاجتماعية والاقتصادية لإحداث تغيير في تقييم سلامة المنتج والمخاطر المحتملة.

ترتبط العوامل الاقتصادية بشكل خاص بحجم المواد التي يجب اختبارها. يتم إدخال عدد كبير من مستحضرات التجميل والأدوية ومبيدات الآفات والمواد الكيميائية والمنتجات المنزلية الجديدة في السوق كل عام. يجب تقييم كل هذه المنتجات لسميتها المحتملة. بالإضافة إلى ذلك ، هناك تراكم للمواد الكيميائية المستخدمة بالفعل ولم يتم اختبارها بشكل كافٍ. ستكون المهمة الهائلة المتمثلة في الحصول على معلومات سلامة مفصلة عن جميع هذه المواد الكيميائية باستخدام طرق اختبار الحيوانات الكاملة التقليدية مكلفة من حيث المال والوقت ، إذا كان من الممكن تحقيق ذلك.

هناك أيضًا مشكلات مجتمعية تتعلق بالصحة والسلامة العامة ، فضلاً عن زيادة القلق العام بشأن استخدام الحيوانات في اختبار سلامة المنتجات. فيما يتعلق بسلامة الإنسان ، تمارس جماعات المصلحة العامة والدعوة البيئية ضغوطًا كبيرة على الوكالات الحكومية لتطبيق أنظمة أكثر صرامة على المواد الكيميائية. ومن الأمثلة الحديثة على ذلك تحرك بعض المجموعات البيئية لحظر الكلور والمركبات المحتوية على الكلور في الولايات المتحدة. تكمن إحدى الدوافع لمثل هذا الإجراء المتطرف في حقيقة أن معظم هذه المركبات لم يتم اختبارها بشكل كافٍ. من منظور علم السموم ، فإن مفهوم حظر فئة كاملة من المواد الكيميائية المتنوعة على أساس وجود الكلور هو مفهوم غير سليم علميًا وغير مسؤول. ومع ذلك ، فمن المفهوم أنه من منظور الجمهور ، يجب أن يكون هناك بعض التأكيد على أن المواد الكيميائية المنبعثة في البيئة لا تشكل مخاطر صحية كبيرة. مثل هذا الموقف يؤكد الحاجة إلى طرق أكثر كفاءة وسرعة لتقييم السمية.

القلق المجتمعي الآخر الذي أثر في مجال اختبار السمية هو الرفق بالحيوان. أعرب العدد المتزايد من مجموعات حماية الحيوان في جميع أنحاء العالم عن معارضة كبيرة لاستخدام حيوانات كاملة في اختبار سلامة المنتجات. تم شن حملات نشطة ضد الشركات المصنعة لمستحضرات التجميل ومنتجات العناية المنزلية والشخصية والمستحضرات الصيدلانية في محاولة لوقف التجارب على الحيوانات. أدت هذه الجهود في أوروبا إلى تمرير التعديل السادس للتوجيه 76/768 / EEC (توجيه مستحضرات التجميل). نتيجة هذا التوجيه هو أن مستحضرات التجميل أو مكونات مستحضرات التجميل التي تم اختبارها على الحيوانات بعد 1 يناير 1998 لا يمكن تسويقها في الاتحاد الأوروبي ، ما لم يتم التحقق من صحة الطرق البديلة بشكل غير كاف. في حين أن هذا التوجيه ليس له سلطة قضائية على بيع مثل هذه المنتجات في الولايات المتحدة أو دول أخرى ، فإنه سيؤثر بشكل كبير على تلك الشركات التي لديها أسواق دولية تشمل أوروبا.

يتم تعريف مفهوم البدائل ، الذي يشكل الأساس لتطوير الاختبارات بخلاف تلك التي يتم إجراؤها على الحيوانات الكاملة ، من خلال الثلاثة Rs: تخفيض في عدد الحيوانات المستخدمة ؛ التنقيح من البروتوكولات بحيث تعاني الحيوانات من إجهاد أو انزعاج أقل ؛ و إستبدال من الاختبارات الحالية على الحيوانات مع الاختبارات في المختبر (أي الاختبارات التي أجريت خارج الحيوان الحي) ، أو النماذج الحاسوبية أو الاختبارات على أنواع الفقاريات أو اللافقاريات الدنيا. الثلاثة Rتم تقديمه في كتاب نشره عام 1959 عالمان بريطانيان هما WMS Russell و Rex Burch ، مبادئ التقنية التجريبية الإنسانية. أكد راسل وبورتش أن الطريقة الوحيدة التي يمكن من خلالها الحصول على نتائج علمية صحيحة هي من خلال المعاملة الإنسانية للحيوانات ، واعتقدوا أنه يجب تطوير طرق لتقليل استخدام الحيوانات واستبدالها في النهاية. ومن المثير للاهتمام أن المبادئ التي حددها راسل وبورتش لم تحظ باهتمام كبير حتى عودة ظهور حركة رعاية الحيوان في منتصف السبعينيات. اليوم مفهوم الثلاثة Rs هي في المقدمة إلى حد كبير فيما يتعلق بالبحث والاختبار والتعليم.

باختصار ، لقد تأثر تطوير منهجيات الاختبار في المختبر بمجموعة متنوعة من العوامل التي تقاربت على مدى السنوات العشر إلى العشرين الماضية. من الصعب التأكد مما إذا كان أي من هذه العوامل وحدها كان له مثل هذا التأثير العميق على استراتيجيات اختبار السمية.

مفهوم اختبارات السمية في المختبر

سيركز هذا القسم فقط على الطرق المختبرية لتقييم السمية ، كأحد البدائل للاختبار على الحيوانات الكاملة. تمت مناقشة البدائل الإضافية غير الحيوانية مثل النمذجة الحاسوبية والعلاقات الكمية بين البنية والنشاط في مقالات أخرى من هذا الفصل.

تُجرى الدراسات في المختبر عمومًا على خلايا أو أنسجة حيوانية أو بشرية خارج الجسم. تعني كلمة في المختبر حرفياً "في الزجاج" ، وتشير إلى الإجراءات التي يتم إجراؤها على المواد الحية أو مكونات المواد الحية المزروعة في أطباق بتري أو في أنابيب الاختبار في ظل ظروف محددة. قد تتناقض مع الدراسات التي أجريت في الجسم الحي ، أو تلك التي أجريت على "الحيوان الحي". في حين أنه من الصعب ، إن لم يكن من المستحيل ، إسقاط تأثيرات مادة كيميائية على كائن حي معقد عندما تقتصر الملاحظات على نوع واحد من الخلايا في طبق ، فإن الدراسات في المختبر توفر قدرًا كبيرًا من المعلومات حول السمية الجوهرية أيضًا كآليات خلوية وجزيئية من السمية. بالإضافة إلى ذلك ، فإنها توفر العديد من المزايا مقارنة بالدراسات المجراة من حيث أنها أقل تكلفة بشكل عام ويمكن إجراؤها في ظل ظروف أكثر تحكمًا. علاوة على ذلك ، على الرغم من حقيقة أن أعدادًا صغيرة من الحيوانات لا تزال مطلوبة للحصول على خلايا للزراعة في المختبر ، يمكن اعتبار هذه الطرق بدائل اختزال (نظرًا لاستخدام عدد أقل من الحيوانات مقارنة بالدراسات في الجسم الحي) وبدائل التنقية (لأنها تلغي الحاجة لإخضاع الحيوانات للعواقب السامة الضارة التي تفرضها التجارب في الجسم الحي).

من أجل تفسير نتائج اختبارات السمية في المختبر ، وتحديد فائدتها المحتملة في تقييم السمية وربطها بعملية السموم الكلية في الجسم الحي ، من الضروري فهم أي جزء من العملية السمية يتم فحصه. تتكون العملية السمية بأكملها من أحداث تبدأ بتعرض الكائن الحي لعامل فيزيائي أو كيميائي ، وتتقدم من خلال التفاعلات الخلوية والجزيئية وتتجلى في النهاية في استجابة الكائن الحي بأكمله. تقتصر الاختبارات في المختبر بشكل عام على جزء من عملية السموم التي تحدث على المستوى الخلوي والجزيئي. تشمل أنواع المعلومات التي يمكن الحصول عليها من الدراسات المختبرية مسارات التمثيل الغذائي ، وتفاعل المستقلبات النشطة مع الأهداف الخلوية والجزيئية ونقاط النهاية السامة التي يمكن قياسها والتي يمكن أن تكون بمثابة مؤشرات حيوية جزيئية للتعرض. في الحالة المثالية ، ستكون آلية سمية كل مادة كيميائية من التعرض لمظاهر الكائن الحي معروفة ، بحيث يمكن تفسير المعلومات التي تم الحصول عليها من الاختبارات المعملية بشكل كامل وترتبط باستجابة الكائن الحي بأكمله. ومع ذلك ، فإن هذا يكاد يكون مستحيلًا ، حيث تم توضيح عدد قليل نسبيًا من آليات السموم الكاملة. وبالتالي ، يواجه علماء السموم موقفًا لا يمكن فيه استخدام نتائج الاختبار المخبري كتنبؤ دقيق تمامًا للسمية في الجسم الحي لأن الآلية غير معروفة. ومع ذلك ، في كثير من الأحيان أثناء عملية تطوير اختبار في المختبر ، يتم توضيح مكونات الآلية (الآليات) الخلوية والجزيئية للسمية.

تتعلق إحدى القضايا الرئيسية التي لم يتم حلها والتي تحيط بتطوير وتنفيذ الاختبارات المعملية بالاعتبارات التالية: هل يجب أن تكون قائمة على أساس ميكانيكي أم أنها كافية لتكون وصفية؟ من الأفضل بلا شك من منظور علمي استخدام الاختبارات القائمة على ميكانيكي فقط كبدائل للاختبارات في الجسم الحي. ولكن في حالة عدم وجود معرفة آلية كاملة ، فإن احتمال تطوير اختبارات في المختبر لتحل محل الاختبارات الحيوانية بالكامل في المستقبل القريب يكاد يكون معدومًا. ومع ذلك ، فإن هذا لا يستبعد استخدام أنواع أكثر وصفية من المقايسات كأدوات فحص مبكرة ، وهذا هو الحال في الوقت الحاضر. أدت هذه الشاشات إلى انخفاض كبير في استخدام الحيوانات. لذلك ، حتى يحين الوقت الذي يتم فيه إنشاء المزيد من المعلومات الآلية ، قد يكون من الضروري استخدام اختبارات محدودة ترتبط نتائجها بشكل جيد مع تلك التي تم الحصول عليها في الجسم الحي.

الاختبارات المعملية للسمية الخلوية

في هذا القسم ، سيتم وصف العديد من الاختبارات في المختبر التي تم تطويرها لتقييم قدرة المادة الكيميائية على تسمم الخلايا. بالنسبة للجزء الأكبر ، تكون هذه الاختبارات سهلة الأداء ويمكن أتمتة التحليل. اختبار واحد شائع الاستخدام في المختبر للسمية الخلوية هو المقايسة الحمراء المحايدة. يتم إجراء هذا الاختبار على الخلايا الموجودة في المزرعة ، وبالنسبة لمعظم التطبيقات ، يمكن الحفاظ على الخلايا في أطباق المزرعة التي تحتوي على 96 بئراً صغيراً ، قطر كل منها 6.4 مم. نظرًا لأنه يمكن استخدام كل بئر لتحديد واحد ، فإن هذا الترتيب يمكن أن يستوعب تركيزات متعددة من المادة الكيميائية للاختبار بالإضافة إلى عناصر التحكم الإيجابية والسلبية مع عدد كافٍ من التكرارات لكل منها. بعد معالجة الخلايا بتركيزات مختلفة من المادة الكيميائية الاختبارية التي تتراوح على الأقل مرتين من حيث الحجم (على سبيل المثال ، من 0.01 م إلى 1 م م) ، بالإضافة إلى المواد الكيميائية الضابطة الإيجابية والسلبية ، يتم شطف الخلايا ومعالجتها باللون الأحمر المحايد ، صبغة لا يمكن تناولها والاحتفاظ بها إلا بواسطة الخلايا الحية. يمكن إضافة الصبغة عند إزالة المادة الكيميائية المختبرة لتحديد التأثيرات الفورية ، أو يمكن إضافتها في أوقات مختلفة بعد إزالة مادة الاختبار الكيميائية لتحديد التأثيرات التراكمية أو المتأخرة. تتوافق شدة اللون في كل بئر مع عدد الخلايا الحية في ذلك البئر. يتم قياس شدة اللون بواسطة مقياس طيف ضوئي يمكن أن يكون مزودًا بقارئ لوحة. تمت برمجة قارئ اللوحة لتوفير قياسات فردية لكل من الآبار الـ 96 في طبق الثقافة. تسمح هذه المنهجية الآلية للمحقق بإجراء تجربة تركيز - استجابة سريعًا والحصول على بيانات مفيدة إحصائيًا.

اختبار آخر بسيط نسبيًا للسمية الخلوية هو اختبار MTT. MTT (3 [4,5،2-dimethylthiazol-2,5-yl] -XNUMX،XNUMX-diphenyltetrazolium bromide) عبارة عن صبغة تترازوليوم يتم تقليلها بواسطة إنزيمات الميتوكوندريا إلى اللون الأزرق. فقط الخلايا التي تحتوي على ميتوكوندريا قابلة للحياة هي التي تحتفظ بالقدرة على تنفيذ هذا التفاعل ؛ لذلك ترتبط شدة اللون ارتباطًا مباشرًا بدرجة سلامة الميتوكوندريا. هذا اختبار مفيد للكشف عن المركبات السامة للخلايا العامة وكذلك تلك العوامل التي تستهدف الميتوكوندريا على وجه التحديد.

يستخدم قياس نشاط اللاكتات ديهيدروجينيز (LDH) أيضًا كمقايسة واسعة النطاق للسمية الخلوية. يوجد هذا الإنزيم عادة في سيتوبلازم الخلايا الحية ويتم إطلاقه في وسط استنبات الخلية من خلال أغشية الخلايا المتسربة للخلايا الميتة أو المحتضرة التي تأثرت سلبًا بعامل سام. يمكن إزالة كميات صغيرة من وسط المزرعة في أوقات مختلفة بعد المعالجة الكيميائية للخلايا لقياس كمية LDH المنبعثة وتحديد المسار الزمني للسمية. في حين أن مقايسة إطلاق LDH هي تقييم عام جدًا للسمية الخلوية ، إلا أنها مفيدة لأنها سهلة التنفيذ ويمكن إجراؤها في الوقت الفعلي.

هناك العديد من الطرق الجديدة التي يتم تطويرها لاكتشاف الضرر الخلوي. تستخدم الطرق الأكثر تعقيدًا مجسات الفلورسنت لقياس مجموعة متنوعة من المعلمات داخل الخلايا ، مثل إطلاق الكالسيوم والتغيرات في درجة الحموضة وإمكانات الغشاء. بشكل عام ، هذه المجسات حساسة للغاية وقد تكتشف تغييرات خلوية أكثر دقة ، مما يقلل من الحاجة إلى استخدام موت الخلية كنقطة نهاية. بالإضافة إلى ذلك ، قد تتم أتمتة العديد من فحوصات الفلورسنت هذه باستخدام لوحات 96-بئر وقارئات لوحة الفلورسنت.

بمجرد جمع البيانات عن سلسلة من المواد الكيميائية باستخدام أحد هذه الاختبارات ، يمكن تحديد السمية النسبية. يمكن التعبير عن السمية النسبية لمادة كيميائية ، كما هو محدد في اختبار في المختبر ، على أنها التركيز الذي يمارس تأثيرًا بنسبة 50٪ على استجابة نقطة النهاية للخلايا غير المعالجة. يشار إلى هذا التحديد باسم المفوضية الأوروبية50 (Eخامل Cالتركيز ل 50٪ من الخلايا) ويمكن استخدامها لمقارنة سمية المواد الكيميائية المختلفة في المختبر. (مصطلح مشابه يستخدم في تقييم السمية النسبية هو IC50، يشير إلى تركيز مادة كيميائية تسبب تثبيطًا بنسبة 50 ٪ لعملية خلوية ، على سبيل المثال ، القدرة على تناول اللون الأحمر المحايد.) ليس من السهل تقييم ما إذا كانت السمية النسبية للمواد الكيميائية في المختبر قابلة للمقارنة مع قريبها في سمية الجسم الحي ، نظرًا لوجود العديد من العوامل المربكة في نظام الجسم الحي ، مثل الحركية السمية ، والتمثيل الغذائي ، وآليات الإصلاح والدفاع. بالإضافة إلى ذلك ، نظرًا لأن معظم هذه المقايسات تقيس نقاط نهاية السمية الخلوية العامة ، فإنها لا تستند إلى ميكانيكي. لذلك ، فإن الاتفاق بين السمية النسبية في المختبر وفي الجسم الحي هو ببساطة متلازم. على الرغم من التعقيدات والصعوبات العديدة في الاستقراء من المختبر إلى الجسم الحي ، فقد أثبتت هذه الاختبارات في المختبر أنها ذات قيمة كبيرة لأنها بسيطة وغير مكلفة في الأداء ويمكن استخدامها كشاشات لتحديد الأدوية أو المواد الكيميائية شديدة السمية في المراحل المبكرة من تطوير.

سمية الجهاز المستهدف

يمكن أيضًا استخدام الاختبارات المعملية لتقييم سمية الأعضاء المستهدفة المحددة. هناك عدد من الصعوبات المرتبطة بتصميم مثل هذه الاختبارات ، وأبرزها عدم قدرة الأنظمة المختبرية على الحفاظ على العديد من سمات العضو في الجسم الحي. في كثير من الأحيان ، عندما تؤخذ الخلايا من الحيوانات وتوضع في المزرعة ، فإنها تميل إما إلى التدهور بسرعة و / أو عدم التمايز ، أي تفقد وظائفها الشبيهة بالعضو وتصبح أكثر عمومية. وهذا يمثل مشكلة في أنه في غضون فترة قصيرة من الوقت ، عادةً بضعة أيام ، لم تعد الثقافات مفيدة لتقييم التأثيرات الخاصة بالأعضاء للسم.

يتم التغلب على العديد من هذه المشكلات بسبب التطورات الحديثة في البيولوجيا الجزيئية والخلوية. يمكن استخدام المعلومات التي يتم الحصول عليها حول البيئة الخلوية في الجسم الحي في تعديل ظروف الثقافة في المختبر. منذ منتصف الثمانينيات ، تم اكتشاف عوامل نمو وسيتوكينات جديدة ، والعديد منها متاح الآن تجاريًا. تساعد إضافة هذه العوامل إلى الخلايا في المزرعة على الحفاظ على سلامتها وقد تساعد أيضًا في الاحتفاظ بوظائف أكثر تمايزًا لفترات زمنية أطول. زادت الدراسات الأساسية الأخرى من المعرفة بالمتطلبات الغذائية والهرمونية للخلايا في المزرعة ، بحيث يمكن صياغة وسائط جديدة. تم إحراز تقدم حديث أيضًا في تحديد كل من المصفوفات خارج الخلية الطبيعية والاصطناعية التي يمكن استنبات الخلايا عليها. يمكن أن يكون لثقافة الخلايا على هذه المصفوفات المختلفة تأثيرات عميقة على كل من هيكلها ووظيفتها. الميزة الرئيسية المستمدة من هذه المعرفة هي القدرة على التحكم بشكل معقد في بيئة الخلايا في الثقافة والفحص الفردي لتأثيرات هذه العوامل على عمليات الخلية الأساسية وعلى استجاباتها للعوامل الكيميائية المختلفة. باختصار ، يمكن أن توفر هذه الأنظمة نظرة ثاقبة لآليات السمية الخاصة بالأعضاء.

يتم إجراء العديد من دراسات سمية الأعضاء المستهدفة في الخلايا الأولية ، والتي يتم عزلها حديثًا من عضو ما ، وعادةً ما تظهر عمرًا محدودًا في المزرعة. هناك العديد من المزايا لوجود مزارع أولية لنوع خلية واحدة من عضو لتقييم السمية. من منظور آلي ، هذه الثقافات مفيدة لدراسة أهداف خلوية محددة لمادة كيميائية. في بعض الحالات ، يمكن زراعة نوعين أو أكثر من أنواع الخلايا من العضو معًا ، وهذا يوفر ميزة إضافية تتمثل في القدرة على النظر في تفاعلات الخلايا الخلوية استجابةً للسم. تم تصميم بعض أنظمة الاستزراع المشترك للبشرة بحيث تشكل بنية ثلاثية الأبعاد تشبه الجلد في الجسم الحي. من الممكن أيضًا الاستزراع المشترك لخلايا من أعضاء مختلفة - على سبيل المثال ، الكبد والكلى. قد يكون هذا النوع من الزرع مفيدًا في تقييم التأثيرات الخاصة بخلايا الكلى ، لمادة كيميائية يجب تنشيطها بيولوجيًا في الكبد.

لعبت الأدوات البيولوجية الجزيئية أيضًا دورًا مهمًا في تطوير خطوط الخلايا المستمرة التي يمكن أن تكون مفيدة لاختبار سمية الأعضاء المستهدفة. يتم إنشاء خطوط الخلايا هذه عن طريق نقل الحمض النووي إلى الخلايا الأولية. في إجراء تعداء ، يتم معالجة الخلايا والحمض النووي بحيث يمكن للخلايا امتصاص الحمض النووي. عادة ما يكون الحمض النووي من فيروس ويحتوي على جين أو جينات ، عند التعبير عنها ، تسمح للخلايا بأن تصبح خالدة (أي قادرة على العيش والنمو لفترات طويلة في الثقافة). يمكن أيضًا تصميم الحمض النووي بحيث يتم التحكم في الجين الخالد بواسطة محفز محفز. ميزة هذا النوع من البناء هي أن الخلايا سوف تنقسم فقط عندما تتلقى المحفز الكيميائي المناسب للسماح بالتعبير عن الجين الخالد. مثال على هذا البناء هو جين مستضد T الكبير من Simian Virus 40 (SV40) (الجين الخالد) ، مسبوقًا بمنطقة المروج لجين الميتالوثيونين ، والذي يحدث بسبب وجود معدن في وسط الثقافة. وهكذا ، بعد نقل الجين إلى الخلايا ، يمكن معالجة الخلايا بتركيزات منخفضة من الزنك لتحفيز محفز MT وتشغيل التعبير عن جين مستضد T. في ظل هذه الظروف ، تتكاثر الخلايا. عند إزالة الزنك من الوسط ، تتوقف الخلايا عن الانقسام وتعود في ظل الظروف المثالية إلى الحالة التي تعبر فيها عن وظائفها الخاصة بالأنسجة.

ساهمت القدرة على إنتاج خلايا خالدة جنبًا إلى جنب مع التقدم في تقنية زراعة الخلايا بشكل كبير في إنشاء خطوط خلوية من العديد من الأعضاء المختلفة ، بما في ذلك الدماغ والكلى والكبد. ومع ذلك ، قبل أن يتم استخدام خطوط الخلايا هذه كبديل لأنواع الخلايا الحسنة النية ، يجب وصفها بعناية لتحديد مدى "طبيعتها" حقًا.

أنظمة أخرى في المختبر لدراسة سمية الأعضاء المستهدفة تنطوي على زيادة التعقيد. نظرًا لأن الأنظمة المختبرية تتقدم في التعقيد من خلية واحدة إلى زراعة أعضاء كاملة ، فإنها تصبح أكثر قابلية للمقارنة مع البيئة في الجسم الحي ، ولكن في نفس الوقت يصبح التحكم فيها أكثر صعوبة نظرًا للعدد المتزايد من المتغيرات. لذلك ، فإن ما يمكن اكتسابه من الانتقال إلى مستوى أعلى من التنظيم يمكن أن يضيع في عدم قدرة الباحث على التحكم في البيئة التجريبية. يقارن الجدول 1 بعض خصائص الأنظمة المختبرية المختلفة التي تم استخدامها لدراسة السمية الكبدية.

الجدول 1. مقارنة الأنظمة في المختبر لدراسات السمية الكبدية

System تعقيد
(مستوى التفاعل)
القدرة على الاحتفاظ بوظائف الكبد المدة المحتملة للثقافة القدرة على التحكم في البيئة
خطوط الخلايا الخالدة من خلية إلى أخرى (تختلف باختلاف خط الخلية) فقير إلى جيد (يختلف باختلاف خط الخلية) غير محدد ممتاز
ثقافات خلايا الكبد الأولية خلية إلى أخرى عادل إلى ممتاز (يختلف باختلاف ظروف الثقافة) أيام إلى أسابيع ممتاز
الثقافات المشتركة لخلايا الكبد خلية إلى أخرى (بين نفس أنواع الخلايا وأنواع مختلفة) من جيد إلى رائع أسابيع ممتاز
شرائح الكبد خلية إلى أخرى (بين جميع أنواع الخلايا) من جيد إلى رائع ساعات إلى أيام خير
كبد معزول ومروي خلية إلى خلية (من بين جميع أنواع الخلايا) ، وداخل العضو ممتاز ساعات عادل

 

يتم استخدام شرائح الأنسجة الدقيقة على نطاق واسع لدراسات السموم. هناك أدوات جديدة متاحة تمكن الباحث من قطع شرائح أنسجة موحدة في بيئة معقمة. تقدم شرائح الأنسجة بعض المزايا على أنظمة زراعة الخلايا من حيث أن جميع أنواع الخلايا في العضو موجودة وتحافظ على بنيتها في الجسم الحي وتواصلها بين الخلايا. وبالتالي ، يمكن إجراء دراسات في المختبر لتحديد نوع الخلية المستهدفة داخل العضو وكذلك للتحقيق في سمية العضو المستهدف المحدد. من عيوب الشرائح أنها تتحلل بسرعة بعد الـ 24 ساعة الأولى من الاستنبات ، ويرجع ذلك أساسًا إلى ضعف انتشار الأكسجين إلى الخلايا الموجودة داخل الشرائح. ومع ذلك ، فقد أشارت الدراسات الحديثة إلى أنه يمكن تحقيق تهوية أكثر كفاءة عن طريق الدوران اللطيف. هذا ، إلى جانب استخدام وسط أكثر تعقيدًا ، يسمح للشرائح بالبقاء لمدة تصل إلى 96 ساعة.

تتشابه إإكسبلنتس الأنسجة من حيث المفهوم مع شرائح الأنسجة ويمكن أيضًا استخدامها لتحديد سمية المواد الكيميائية في أعضاء مستهدفة محددة. يتم إنشاء إإكسبلنتس الأنسجة عن طريق إزالة قطعة صغيرة من الأنسجة (لدراسات المسخ ، جنين سليم) ووضعها في المزرعة لمزيد من الدراسة. كانت الزراعة المستأصلة مفيدة لدراسات السمية قصيرة المدى بما في ذلك التهيج والتآكل في الجلد ودراسات الأسبستوس في القصبة الهوائية ودراسات السمية العصبية في أنسجة المخ.

يمكن أيضًا استخدام الأعضاء المروية المعزولة لتقييم سمية الأعضاء المستهدفة. تقدم هذه الأنظمة ميزة مماثلة لتلك الخاصة بشرائح الأنسجة والإكسبلنتس في أن جميع أنواع الخلايا موجودة ، ولكن بدون إجهاد الأنسجة التي أدخلتها التلاعبات المشاركة في تحضير الشرائح. بالإضافة إلى ذلك ، فهي تسمح بالحفاظ على التفاعلات داخل الأعضاء. العيب الرئيسي هو قابليتها للبقاء على المدى القصير ، مما يحد من استخدامها في اختبار السمية في المختبر. من حيث العمل كبديل ، يمكن اعتبار هذه الثقافات تحسينًا لأن الحيوانات لا تعاني من العواقب السلبية للمعالجة في الجسم الحي بالسموم. ومع ذلك ، فإن استخدامها لا يقلل بشكل كبير من عدد الحيوانات المطلوبة.

باختصار ، هناك عدة أنواع من الأنظمة المختبرية المتاحة لتقييم سمية الأعضاء المستهدفة. من الممكن الحصول على الكثير من المعلومات حول آليات السمية باستخدام واحدة أو أكثر من هذه التقنيات. تظل الصعوبة في معرفة كيفية الاستقراء من نظام في المختبر ، والذي يمثل جزءًا صغيرًا نسبيًا من العملية السمية ، إلى العملية برمتها التي تحدث في الجسم الحي.

اختبارات في المختبر لتهيج العين

ربما يكون اختبار السمية للحيوان الأكثر إثارة للجدل من منظور الرفق بالحيوان هو اختبار Draize لتهيج العين ، والذي يتم إجراؤه في الأرانب. في هذا الاختبار ، يتم وضع جرعة ثابتة صغيرة من مادة كيميائية في إحدى عيني الأرنب بينما يتم استخدام العين الأخرى كعنصر تحكم. يتم تسجيل درجة التهيج والالتهاب في أوقات مختلفة بعد التعرض. يتم بذل جهد كبير لتطوير منهجيات لتحل محل هذا الاختبار ، والذي تم انتقاده ليس فقط لأسباب إنسانية ، ولكن أيضًا بسبب ذاتية الملاحظات وتنوع النتائج. من المثير للاهتمام أن نلاحظ أنه على الرغم من الانتقادات القاسية التي تلقاها اختبار Draize ، فقد أثبت أنه ناجح بشكل ملحوظ في توقع مهيجات العين البشرية ، خاصة المواد المهيجة بشكل طفيف إلى معتدل ، والتي يصعب التعرف عليها بطرق أخرى. وبالتالي ، فإن الطلب على البدائل في المختبر كبير.

البحث عن بدائل لاختبار درايز أمر معقد ، وإن كان من المتوقع أن يكون ناجحًا. تم تطوير العديد من البدائل في المختبر وغيرها وفي بعض الحالات تم تنفيذها. بدائل الصقل لاختبار Draize ، والتي بحكم تعريفها ، أقل إيلامًا أو إزعاجًا للحيوانات ، تشمل اختبار العين منخفض الحجم ، حيث يتم وضع كميات أصغر من مواد الاختبار في عيون الأرانب ، ليس فقط لأسباب إنسانية ، ولكن أيضًا يحاكي عن كثب الكميات التي قد يتعرض لها الأشخاص عن طريق الخطأ. تحسين آخر هو أن المواد التي تحتوي على درجة حموضة أقل من 2 أو أكبر من 11.5 لم تعد مختبرة على الحيوانات حيث من المعروف أنها تسبب تهيجًا شديدًا للعين.

بين عامي 1980 و 1989 ، كان هناك انخفاض يقدر بنسبة 87 ٪ في عدد الأرانب المستخدمة لاختبار تهيج العين لمستحضرات التجميل. تم دمج الاختبارات في المختبر كجزء من نهج اختبار المستوى لتحقيق هذا الانخفاض الهائل في الاختبارات التي أجريت على الحيوانات بأكملها. هذا النهج هو عملية متعددة الخطوات تبدأ بفحص شامل لبيانات تهيج العين التاريخية والتحليل الفيزيائي والكيميائي للمادة الكيميائية المراد تقييمها. إذا لم تسفر هاتان العمليتان عن معلومات كافية ، فسيتم إجراء مجموعة من الاختبارات المعملية. قد تكون البيانات الإضافية التي تم الحصول عليها من الاختبارات المعملية كافية لتقييم سلامة المادة. إذا لم يكن الأمر كذلك ، فستكون الخطوة الأخيرة هي إجراء اختبارات محدودة في الجسم الحي. من السهل أن نرى كيف يمكن لهذا النهج أن يقضي على أو على الأقل يقلل بشكل كبير من أعداد الحيوانات اللازمة للتنبؤ بسلامة مادة الاختبار.

تعتمد بطارية الاختبارات المختبرية المستخدمة كجزء من استراتيجية اختبار الطبقة هذه على احتياجات الصناعة المعينة. يتم إجراء اختبار تهيج العين بواسطة مجموعة متنوعة من الصناعات من مستحضرات التجميل إلى الأدوية إلى الكيماويات الصناعية. يختلف نوع المعلومات التي تتطلبها كل صناعة ، وبالتالي لا يمكن تحديد بطارية واحدة من الاختبارات المعملية. تم تصميم بطارية الاختبار بشكل عام لتقييم خمسة معايير: السمية الخلوية ، والتغيرات في فسيولوجيا الأنسجة والكيمياء الحيوية ، والعلاقات الكمية بين التركيب والنشاط ، ووسطاء الالتهاب ، والتعافي والإصلاح. مثال على اختبار السمية الخلوية ، وهو أحد الأسباب المحتملة للتهيج ، هو الفحص الأحمر المحايد باستخدام الخلايا المستنبتة (انظر أعلاه). يمكن تقييم التغيرات في فسيولوجيا الخلايا والكيمياء الحيوية الناتجة عن التعرض لمادة كيميائية في مزارع الخلايا الظهارية للقرنية البشرية. بدلاً من ذلك ، استخدم الباحثون أيضًا الأبقار أو مقل أعين الدجاج التي تم الحصول عليها من المسالخ سليمة أو مقطوعة. العديد من نقاط النهاية المقاسة في مزارع الأعضاء هذه هي نفسها التي تم قياسها في الجسم الحي ، مثل عتامة القرنية وتورم القرنية.

غالبًا ما يكون الالتهاب أحد مكونات إصابة العين الناتجة عن المواد الكيميائية ، وهناك عدد من الاختبارات المتاحة لفحص هذه المعلمة. تكتشف فحوصات كيميائية حيوية مختلفة وجود وسطاء تم إطلاقها أثناء العملية الالتهابية مثل حمض الأراكيدونيك والسيتوكينات. يمكن أيضًا استخدام الغشاء المشيمي (CAM) لبيضة الدجاجة كمؤشر على الالتهاب. في اختبار CAM ، تتم إزالة قطعة صغيرة من قشرة جنين كتكوت من 14 إلى XNUMX يومًا لفضح CAM. ثم يتم تطبيق المادة الكيميائية على الطبابة البديلة ويتم تسجيل علامات الالتهاب ، مثل نزيف الأوعية الدموية ، في أوقات مختلفة بعد ذلك.

واحدة من أصعب العمليات في الجسم الحي للتقييم في المختبر هي التعافي وإصلاح إصابة العين. أداة مطورة حديثًا ، مقياس السيليكون الدقيق ، تقيس التغيرات الصغيرة في درجة الحموضة خارج الخلية ويمكن استخدامها لمراقبة الخلايا المستنبتة في الوقت الفعلي. لقد ثبت أن هذا التحليل يرتبط بشكل جيد إلى حد ما مع الانتعاش في الجسم الحي وقد تم استخدامه كاختبار في المختبر لهذه العملية. كانت هذه لمحة موجزة عن أنواع الاختبارات المستخدمة كبدائل لاختبار Draize لتهيج العين. من المحتمل أنه خلال السنوات العديدة القادمة سيتم تحديد سلسلة كاملة من بطاريات الاختبار في المختبر وسيتم التحقق من صحة كل منها لغرضها المحدد.

التحقق

إن مفتاح القبول التنظيمي وتنفيذ منهجيات الاختبار في المختبر هو التحقق من الصحة ، وهي العملية التي يتم من خلالها تحديد مصداقية الاختبار المرشح لغرض محدد. بذلت جهود لتحديد وتنسيق عملية التحقق في كل من الولايات المتحدة وأوروبا. أنشأ الاتحاد الأوروبي المركز الأوروبي للتحقق من صحة الطرق البديلة (ECVAM) في عام 1993 لتنسيق الجهود هناك وللتفاعل مع المنظمات الأمريكية مثل مركز جونز هوبكنز لبدائل اختبار الحيوانات (CAAT) ، وهو مركز أكاديمي في الولايات المتحدة ، ولجنة التنسيق المشتركة بين الوكالات للتحقق من صحة الطرق البديلة (ICCVAM) ، المؤلفة من ممثلين من المعاهد الوطنية للصحة ، ووكالة حماية البيئة الأمريكية ، وإدارة الغذاء والدواء الأمريكية ، ولجنة سلامة المنتجات الاستهلاكية.

يتطلب التحقق من صحة الاختبارات المعملية تنظيمًا وتخطيطًا كبيرًا. يجب أن يكون هناك إجماع بين المنظمين الحكوميين والعلماء الصناعيين والأكاديميين حول الإجراءات المقبولة ، وإشراف كاف من قبل مجلس استشاري علمي لضمان أن البروتوكولات تفي بالمعايير المحددة. يجب إجراء دراسات التحقق من الصحة في سلسلة من المختبرات المرجعية باستخدام مجموعات معايرة من المواد الكيميائية من بنك كيميائي وخلايا أو أنسجة من مصدر واحد. يجب إثبات كل من قابلية التكرار داخل المختبر والتكاثر البيني للاختبار المرشح وإخضاع النتائج للتحليل الإحصائي المناسب. بمجرد تجميع النتائج من المكونات المختلفة لدراسات التحقق من الصحة ، يمكن للمجلس الاستشاري العلمي تقديم توصيات بشأن صحة اختبار (اختبارات) المرشح لغرض محدد. بالإضافة إلى ذلك ، يجب نشر نتائج الدراسات في المجلات التي راجعها النظراء ووضعها في قاعدة بيانات.

تعريف عملية التحقق من الصحة هو حاليا عمل قيد التقدم. ستوفر كل دراسة تحقق جديدة معلومات مفيدة لتصميم الدراسة التالية. يعد الاتصال والتعاون الدوليان ضروريين للتطوير السريع لسلسلة من البروتوكولات المقبولة على نطاق واسع ، لا سيما بالنظر إلى الإلحاح المتزايد الذي يفرضه مرور توجيه EC Cosmetics. قد يوفر هذا التشريع في الواقع الزخم المطلوب لبذل جهود تحقق جادة. لا يمكن البدء بقبول الأساليب المختبرية من قبل المجتمعات التنظيمية المختلفة إلا من خلال إكمال هذه العملية.

وفي الختام

قدمت هذه المقالة نظرة عامة واسعة على الوضع الحالي لاختبار السمية في المختبر. يعتبر علم السموم في المختبر حديثًا نسبيًا ، لكنه ينمو باطراد. يتمثل التحدي في السنوات المقبلة في دمج المعرفة الآلية الناتجة عن الدراسات الخلوية والجزيئية في المخزون الواسع للبيانات في الجسم الحي لتوفير وصف أكثر اكتمالاً لآليات السموم بالإضافة إلى إنشاء نموذج يمكن من خلاله استخدام البيانات المختبرية للتنبؤ بالسمية في الجسم الحي. لن يمكن تحقيق القيمة المتأصلة لهذه الأساليب في المختبر إلا من خلال الجهود المتضافرة لعلماء السموم وممثلي الحكومة.

 

الرجوع

الأحد، 16 يناير 2011 18: 49

تقييم السمية الجينية

تقييم السمية الجينية هو تقييم العوامل لقدرتها على إحداث أي من الأنواع الثلاثة العامة للتغييرات (الطفرات) في المادة الوراثية (DNA): الجين والكروموسومات والجينوم. في الكائنات الحية مثل البشر ، تتكون الجينات من الحمض النووي ، والذي يتكون من وحدات فردية تسمى قواعد النوكليوتيدات. يتم ترتيب الجينات في هياكل فيزيائية منفصلة تسمى الكروموسومات. يمكن أن تؤدي السمية الجينية إلى تأثيرات كبيرة لا رجعة فيها على صحة الإنسان. يعتبر الضرر الناجم عن السمية الجينية خطوة حاسمة في تحريض السرطان ويمكن أن يشارك أيضًا في تحريض العيوب الخلقية وموت الجنين. يمكن أن تحدث الفئات الثلاث من الطفرات المذكورة أعلاه داخل أي من نوعي الأنسجة التي تمتلكها الكائنات الحية مثل البشر: الحيوانات المنوية أو البويضات (الخلايا الجرثومية) والأنسجة المتبقية (الخلايا الجسدية).

المقايسات التي تقيس طفرة الجينات هي تلك التي تكشف عن استبدال أو إضافة أو حذف النيوكليوتيدات داخل الجين. المقايسات التي تقيس طفرة الكروموسومات هي تلك التي تكشف عن الانكسارات أو إعادة ترتيب الكروموسومات التي تنطوي على كروموسوم واحد أو أكثر. المقايسات التي تقيس الطفرات الجينومية هي تلك التي تكتشف التغيرات في عدد الكروموسومات ، وهي حالة تسمى اختلال الصيغة الصبغية. لقد تغير تقييم السمية الجينية بشكل كبير منذ أن قام هيرمان مولر في عام 1927 بتطوير أول مقايسة لاكتشاف العوامل السامة للجينات (المطفرة). ومنذ ذلك الحين ، تم تطوير أكثر من 200 فحص تقيس الطفرات في الحمض النووي. ومع ذلك ، يتم استخدام أقل من عشرة فحوصات بشكل شائع اليوم لتقييم السمية الوراثية. تستعرض هذه المقالة هذه المقايسات ، وتصف ما تقيسه ، وتستكشف دور هذه المقايسات في تقييم السمية.

تحديد مخاطر السرطان قبل تطوير علم السموم الوراثي الميداني

أصبح علم السموم الوراثي جزءًا لا يتجزأ من عملية تقييم المخاطر الشاملة واكتسب مكانة في الآونة الأخيرة كمؤشر موثوق للنشاط المسبّب للسرطان. ومع ذلك ، قبل تطوير علم السموم الوراثي (قبل عام 1970) ، كانت طرق أخرى وما زالت تستخدم لتحديد مخاطر السرطان المحتملة على البشر. هناك ست فئات رئيسية من الأساليب المستخدمة حاليًا لتحديد مخاطر الإصابة بالسرطان البشري: الدراسات الوبائية ، والمقايسات الحيوية طويلة المدى في الجسم الحي ، والمقايسات الحيوية متوسطة المدى في الجسم الحي ، والمقايسات الحيوية قصيرة المدى في الجسم الحي وفي المختبر ، والذكاء الاصطناعي (نشاط الهيكل) ، والاستدلال القائم على الآلية.

يعطي الجدول 1 مزايا وعيوب هذه الأساليب.

الجدول 1. مزايا وعيوب الأساليب الحالية لتحديد مخاطر الإصابة بالسرطان البشري

  المزايا عيوب
دراسات وبائية (1) البشر هم المؤشرات النهائية للمرض ؛
(2) تقييم المجموعات السكانية الحساسة أو المعرضة للإصابة ؛
(3) مجموعات التعرض المهني ؛ (4) تنبيهات الحراسة البيئية
(1) بأثر رجعي بشكل عام (شهادات الوفاة ، سحب التحيزات ، إلخ) ؛ (2) غير حساس ، مكلف ، طويل ؛ (3) بيانات التعرض الموثوقة غير متوفرة في بعض الأحيان أو يصعب الحصول عليها ؛ (4) التعرضات المركبة والمتعددة والمعقدة ؛ عدم وجود مجموعات مراقبة مناسبة ؛ (5) لم يتم إجراء تجارب على البشر ؛ (6) الكشف عن السرطان وليس الوقاية
الاختبارات الحيوية طويلة المدى في الجسم الحي (1) التقييمات (المصادقة) المستقبلية بأثر رجعي ؛ (2) الارتباط الممتاز مع المواد المسببة للسرطان البشرية المحددة ؛ (3) مستويات التعرض وظروفه المعروفة ؛ (4) يحدد السمية الكيميائية وآثار الإصابة بالسرطان ؛ (5) النتائج التي تم الحصول عليها بسرعة نسبية ؛ (6) المقارنات النوعية بين الفئات الكيميائية ؛ (7) أنظمة بيولوجية تكاملية وتفاعلية وثيقة الصلة بالبشر (1) نادرًا ما يتم تكرارها ، وتتطلب موارد كثيرة ؛ (3) مرافق محدودة مناسبة لمثل هذه التجارب ؛ (4) مناقشة استقراء الأنواع ؛ (5) حالات التعرض المستخدمة غالبًا ما تكون بمستويات تزيد كثيرًا عن تلك التي يتعرض لها البشر ؛ (6) لا يحاكي التعرض لمادة كيميائية واحدة التعرض البشري ، والذي يكون عمومًا لمواد كيميائية متعددة في وقت واحد
الاختبارات الحيوية على المدى المتوسط ​​والقصير في الجسم الحي وفي المختبر (1) أسرع وأقل تكلفة من المقايسات الأخرى ؛ (2) عينات كبيرة يسهل نسخها ؛
(3) يتم قياس نقاط النهاية ذات المعنى البيولوجي (الطفرة ، إلخ) ؛ (4) يمكن استخدامها كمقايسات غربلة لاختيار مواد كيميائية للمقايسات الحيوية طويلة الأجل
(1) في المختبر لا تنبئ بشكل كامل في الجسم الحي ؛ (2) عادة كائن حي أو عضو محدد ؛ (3) قدرات لا يمكن مقارنتها بالحيوانات الكاملة أو البشر
التركيب الكيميائي - جمعيات النشاط البيولوجي (1) سهل نسبيًا وسريع وغير مكلف ؛ (2) يمكن الاعتماد عليها بالنسبة لفئات كيميائية معينة (على سبيل المثال ، أصباغ النيتروسامين والبنزيدين) ؛ (3) تم تطويرها من البيانات البيولوجية ولكنها لا تعتمد على التجارب البيولوجية الإضافية (1) ليست "بيولوجية" ؛ (2) استثناءات عديدة للقواعد المصاغة ؛ (3) بأثر رجعي ونادراً (لكن تصبح) مستقبلية
الاستدلالات الآلية (1) دقيقة بشكل معقول لفئات معينة من المواد الكيميائية ؛ (2) يسمح بتنقيح الفرضيات ؛ (3) يمكن أن يوجه تقييمات المخاطر إلى الفئات السكانية الحساسة (1) آليات التسرطن الكيميائي غير محدد ، ومتعدد ، ومن المحتمل أن يكون مادة كيميائية أو فئة محددة ؛ (2) قد تفشل في إبراز الاستثناءات من الآليات العامة

 

الأساس المنطقي والمفاهيمي لمقايسات علم السموم الوراثي

على الرغم من أن الأنواع والأعداد الدقيقة للمقايسات المستخدمة لتقييم السمية الجينية تتطور باستمرار وتختلف من بلد إلى آخر ، فإن أكثرها شيوعًا تشمل فحوصات (1) طفرة جينية في البكتيريا و / أو خلايا الثدييات المستزرعة و (2) طفرة صبغية في خلايا الثدييات المستزرعة و / أو نخاع العظام داخل الفئران الحية. يمكن لبعض الاختبارات ضمن هذه الفئة الثانية أيضًا اكتشاف اختلال الصيغة الصبغية. على الرغم من أن هذه المقايسات لا تكتشف الطفرات في الخلايا الجرثومية ، إلا أنها تستخدم في المقام الأول بسبب التكلفة الإضافية والتعقيد في إجراء فحوصات الخلايا الجرثومية. ومع ذلك ، يتم استخدام فحوصات الخلايا الجرثومية في الفئران عندما تكون المعلومات حول تأثيرات الخلايا الجرثومية مطلوبة.

أدت الدراسات المنهجية على مدى فترة 25 عامًا (1970-1995) ، خاصة في البرنامج الوطني الأمريكي لعلم السموم في ولاية كارولينا الشمالية ، إلى استخدام عدد منفصل من المقايسات للكشف عن نشاط العوامل المسببة للطفرات. استند الأساس المنطقي لتقييم فائدة المقايسات إلى قدرتها على اكتشاف العوامل التي تسبب السرطان في القوارض والتي يشتبه في أنها تسبب السرطان لدى البشر (أي المواد المسرطنة). وذلك لأن الدراسات التي أجريت خلال العقود العديدة الماضية أشارت إلى أن الخلايا السرطانية تحتوي على طفرات في جينات معينة وأن العديد من المواد المسرطنة هي أيضًا مطفرة. وبالتالي ، يُنظر إلى الخلايا السرطانية على أنها تحتوي على طفرات في الخلايا الجسدية ، ويُنظر إلى التسرطن على أنه نوع من طفرات الخلايا الجسدية.

تم اختيار مقايسات السمية الوراثية الأكثر شيوعًا اليوم ليس فقط بسبب قاعدة بياناتها الكبيرة ، والتكلفة المنخفضة نسبيًا ، وسهولة الأداء ، ولكن لأنه ثبت أنها تكشف عن العديد من القوارض ، ومن المفترض أنها تكتشف مسببات السرطان البشرية. وبالتالي ، يتم استخدام فحوصات السمية الوراثية للتنبؤ بإمكانية التسبب في الإصابة بالسرطان من العوامل.

كان التطور المفاهيمي والعملي المهم في مجال علم السموم الوراثي هو الاعتراف بأن العديد من المواد المسرطنة قد تم تعديلها بواسطة الإنزيمات داخل الجسم ، مما أدى إلى تكوين أشكال متغيرة (نواتج الأيض) التي كانت في كثير من الأحيان الشكل النهائي المسرطنة والمطفرة للمادة الكيميائية الأم. لتكرار هذا التمثيل الغذائي في طبق بتري ، أظهر Heinrich Malling أن تضمين مستحضر من كبد القوارض يحتوي على العديد من الإنزيمات اللازمة لإجراء هذا التحويل الأيضي أو التنشيط. وبالتالي ، فإن العديد من فحوصات السمية الوراثية التي يتم إجراؤها في الأطباق أو الأنابيب (في المختبر) تستخدم إضافة مستحضرات إنزيمية مماثلة. تسمى الاستعدادات البسيطة S9 mix ، والمستحضرات النقية تسمى microsomes. تمت الآن هندسة بعض الخلايا البكتيرية والثديية وراثيًا لاحتواء بعض الجينات من القوارض أو البشر التي تنتج هذه الإنزيمات ، مما يقلل من الحاجة إلى إضافة مزيج S9 أو ميكروسومات.

فحوصات وتقنيات علم السموم الوراثي

النظم البكتيرية الأولية المستخدمة في فحص السمية الوراثية هي مقايسة الطفرات السالمونيلا (أميس) ، وبدرجة أقل بكثير ، سلالة WP2 من السالمونيلا (Ames). كولاي. أشارت الدراسات في منتصف الثمانينيات إلى أن استخدام سلالتين فقط من نظام السالمونيلا (TA1980 و TA98) كان كافياً لاكتشاف ما يقرب من 100٪ من مطفرات السالمونيلا المعروفة. وبالتالي ، يتم استخدام هاتين السلالتين في معظم أغراض الفحص ؛ ومع ذلك ، تتوفر سلالات أخرى مختلفة لإجراء اختبارات أكثر شمولاً.

يتم إجراء هذه المقايسات بعدة طرق ، ولكن هناك إجراءان عامان هما مقايسات التضمين الصفيحي ومقايسات التعليق السائل. في اختبار دمج الصفيحة ، تتم إضافة الخلايا والمادة الكيميائية للاختبار و (عند الرغبة) S9 معًا في أجار مُسال ويُسكب على سطح صفيحة بتري أجار. يصلب الأجار العلوي في غضون بضع دقائق ، ويتم تحضين الصفائح لمدة يومين إلى ثلاثة أيام ، وبعد ذلك نمت الخلايا الطافرة لتشكل مجموعات من الخلايا يمكن اكتشافها بصريًا تسمى المستعمرات ، والتي يتم حسابها بعد ذلك. يحتوي وسط الأجار على عوامل انتقائية أو يتكون من مكونات بحيث تنمو الخلايا المتحولة حديثًا فقط. يتشابه مقايسة الحضانة السائلة ، باستثناء الخلايا وعامل الاختبار و S9 معًا في سائل لا يحتوي على أجار مسال ، ثم يتم غسل الخلايا خالية من عامل الاختبار و S9 وبذرها على أجار.

تم الكشف عن الطفرات في خلايا الثدييات المستزرعة بشكل أساسي في أحد الجينين: com.hprt و tk. على غرار المقايسات البكتيرية ، تتعرض سلالات خلايا الثدييات (التي تم تطويرها من القوارض أو الخلايا البشرية) لعامل الاختبار في أطباق أو أنابيب الزراعة البلاستيكية ثم يتم زرعها في أطباق المزرعة التي تحتوي على وسيط مع عامل انتقائي يسمح فقط للخلايا الطافرة بالنمو . تشمل الاختبارات المستخدمة لهذا الغرض CHO / HPRT ، و TK6 ، والورم الليمفاوي للفأر L5178Y / TK+/- المقاييس. تُستخدم أيضًا خطوط خلوية أخرى تحتوي على طفرات إصلاح مختلفة للحمض النووي وكذلك تحتوي على بعض الجينات البشرية المشاركة في عملية التمثيل الغذائي. تسمح هذه الأنظمة باستعادة الطفرات داخل الجين (الطفرة الجينية) وكذلك الطفرات التي تشمل مناطق من الكروموسوم المرافقة للجين (طفرة صبغية). ومع ذلك ، يتم استرداد هذا النوع الأخير من الطفرة إلى حد أكبر بكثير بواسطة tk أنظمة الجينات من com.hprt أنظمة الجينات بسبب موقع tk الجينات.

على غرار مقايسة الحضانة السائلة للطفرات البكتيرية ، تتضمن فحوصات الطفرات الجينية لخلايا الثدييات عمومًا تعرض الخلايا في أطباق أو أنابيب المزرعة في وجود عامل الاختبار و S9 لعدة ساعات. يتم بعد ذلك غسل الخلايا واستزراعها لعدة أيام أخرى للسماح بتحلل المنتجات الجينية الطبيعية (من النوع البري) والتعبير عن المنتجات الجينية الطافرة حديثًا وتجميعها ، ثم يتم زرعها في وسط يحتوي على عامل انتقائي يسمح فقط الخلايا الطافرة لتنمو. مثل المقايسات البكتيرية ، تنمو الخلايا الطافرة في مستعمرات يمكن اكتشافها بصريًا يتم عدها بعد ذلك.

يتم التعرف على طفرة الكروموسومات بشكل أساسي عن طريق المقايسات الوراثية الخلوية ، والتي تتضمن تعريض القوارض و / أو القوارض أو الخلايا البشرية في أطباق المزرعة لمادة كيميائية اختبار ، مما يسمح بحدوث انقسام خلوي واحد أو أكثر ، وتلطيخ الكروموسومات ، ثم فحص الكروموسومات بصريًا من خلال المجهر للكشف عن التغيرات في بنية أو عدد الكروموسومات. على الرغم من أنه يمكن فحص مجموعة متنوعة من نقاط النهاية ، فإن النقطتين اللتين تم قبولهما حاليًا من قبل الهيئات التنظيمية باعتبارها الأكثر أهمية هما الانحرافات الصبغية وفئة فرعية تسمى النوى الصغيرة.

مطلوب قدر كبير من التدريب والخبرة لتسجيل الخلايا لوجود الانحرافات الصبغية ، مما يجعل هذا الإجراء مكلفًا من حيث الوقت والمال. في المقابل ، تتطلب النوى الصغيرة القليل من التدريب ، ويمكن أتمتة اكتشافها. تظهر النوى الصغيرة كنقاط صغيرة داخل الخلية تختلف عن النواة التي تحتوي على الكروموسومات. تنتج النوى الدقيقة إما عن كسر الكروموسوم أو من اختلال الصيغة الصبغية. نظرًا لسهولة تسجيل النوى الصغيرة مقارنةً بالانحرافات الصبغية ، ولأن الدراسات الحديثة تشير إلى أن العوامل التي تحفز الانحرافات الصبغية في نخاع العظام للفئران الحية تحفز عمومًا النوى الصغيرة في هذا النسيج ، يتم الآن قياس النوى الصغيرة بشكل شائع كمؤشر على قدرة عامل للحث على طفرة الكروموسومات.

على الرغم من استخدام مقايسات الخلايا الجرثومية بشكل أقل تكرارًا من المقايسات الأخرى الموصوفة أعلاه ، إلا أنها لا غنى عنها في تحديد ما إذا كان العامل يشكل خطرًا على الخلايا الجرثومية ، وهي الطفرات التي يمكن أن تؤدي إلى آثار صحية في الأجيال التالية. أكثر فحوصات الخلايا الجرثومية شيوعًا هي في الفئران ، وتتضمن الأنظمة التي تكتشف (1) النقلات الوراثية (التبادلات) بين الكروموسومات (مقايسة الانتقال الوراثي) ، (2) الطفرات الجينية أو الصبغية التي تنطوي على جينات محددة (موضع محدد أو كيميائي حيوي محدد) المقايسات) ، و (3) الطفرات التي تؤثر على قابلية الحياة (المقايسة القاتلة السائدة). كما هو الحال مع فحوصات الخلايا الجسدية ، فإن الافتراض العملي مع فحوصات الخلايا الجرثومية هو أن العوامل الإيجابية في هذه المقايسات يُفترض أنها مطافرات محتملة للخلايا الجرثومية البشرية.

الوضع الراهن وآفاق المستقبل

أشارت الدراسات الحديثة إلى أن ثلاثة أجزاء فقط من المعلومات كانت ضرورية لاكتشاف ما يقرب من 90٪ من مجموعة من 41 مادة مسرطنة للقوارض (مثل مسببات السرطان المفترضة للإنسان ومطفرات الخلايا الجسدية). وشملت هذه (1) معرفة التركيب الكيميائي للعامل ، خاصةً إذا كان يحتوي على شقوق محبة للكهرباء (انظر القسم الخاص بعلاقات التركيب والنشاط) ؛ (2) بيانات طفرات السالمونيلا ؛ و (3) بيانات من فحص السمية المزمنة لمدة 90 يومًا في القوارض (الفئران والجرذان). في الواقع ، يمكن اكتشاف جميع مسببات السرطان البشرية المُعلن عنها من قبل IARC كمطفرات باستخدام مقايسة السالمونيلا وفحص نقي عظم الفأر. يتم دعم استخدام فحوصات الطفرات هذه للكشف عن مسببات السرطان البشرية المحتملة من خلال اكتشاف أن معظم المواد المسرطنة البشرية هي مواد مسرطنة في كل من الجرذان والفئران (مسببات السرطان العابرة للأنواع) وأن معظم مسببات السرطان العابرة للأنواع مسببة للطفرات في السالمونيلا و / أو تحفز النوى الدقيقة في نخاع عظم الفأر.

مع التقدم في تكنولوجيا الحمض النووي ، ومشروع الجينوم البشري ، والفهم المحسن لدور الطفرة في السرطان ، يتم تطوير فحوصات السمية الجينية الجديدة التي من المحتمل أن يتم دمجها في إجراءات الفحص القياسية. من بينها استخدام الخلايا المعدلة وراثيا والقوارض. الأنظمة المعدلة وراثيًا هي تلك التي يتم فيها إدخال جين من نوع آخر إلى خلية أو كائن حي. على سبيل المثال ، تُستخدم الفئران المعدلة وراثيًا حاليًا في الاستخدام التجريبي الذي يسمح باكتشاف الطفرة في أي عضو أو نسيج للحيوان ، بناءً على إدخال جين بكتيري في الفأر. تتوفر الآن الخلايا البكتيرية ، مثل السالمونيلا ، وخلايا الثدييات (بما في ذلك خطوط الخلايا البشرية) التي تحتوي على الجينات المشاركة في عملية التمثيل الغذائي للعوامل المسببة للسرطان / الطفرات ، مثل جينات P450. التحليل الجزيئي للطفرات الفعلية المستحثة في الجين العابر داخل القوارض المعدلة وراثيا ، أو داخل الجينات الأصلية مثل com.hprt، أو يمكن الآن إجراء الجينات المستهدفة داخل السالمونيلا ، بحيث يمكن تحديد الطبيعة الدقيقة للطفرات التي تحدثها المواد الكيميائية ، مما يوفر نظرة ثاقبة على آلية عمل المادة الكيميائية ويسمح بإجراء مقارنات مع الطفرات في البشر المعرضين المفترض للعامل. .

تتيح التطورات الجزيئية في علم الوراثة الخلوية الآن تقييمًا أكثر تفصيلاً للطفرات الصبغية. وتشمل هذه استخدام المجسات (قطع صغيرة من الحمض النووي) التي تربط (تهجين) بجينات معينة. يمكن بعد ذلك الكشف عن إعادة ترتيب الجينات على الكروموسوم من خلال الموقع المتغير للمسبارات ، والتي تكون متألقة ويمكن تصورها بسهولة على أنها قطاعات ملونة على الكروموسومات. يسمح اختبار الرحلان الكهربي أحادي الخلية لكسر الحمض النووي (المعروف باسم مقايسة "المذنب") باكتشاف فواصل الحمض النووي داخل الخلايا المفردة وقد يصبح أداة مفيدة للغاية بالاشتراك مع تقنيات الوراثة الخلوية للكشف عن تلف الكروموسومات.

بعد سنوات عديدة من الاستخدام وإنشاء قاعدة بيانات كبيرة ومتطورة بشكل منهجي ، يمكن الآن إجراء تقييم السمية الجينية ببضع فحوصات بتكلفة صغيرة نسبيًا في فترة زمنية قصيرة (أسابيع قليلة). يمكن استخدام البيانات التي تم إنتاجها للتنبؤ بقدرة العامل على أن يكون قوارضًا ، ومن المفترض أنه مادة مسرطنة بشرية / مطفرة للخلايا الجسدية. هذه القدرة تجعل من الممكن الحد من إدخال العوامل المسببة للطفرات والمسرطنات في البيئة وتطوير عوامل بديلة غير مسببة للطفرات. يجب أن تؤدي الدراسات المستقبلية إلى طرق أفضل مع قدر أكبر من التنبؤ من المقايسات الحالية.

 

الرجوع

الأحد، 16 يناير 2011 18: 45

المؤشرات الحيوية

الكلمة العلامات البيولوجية هو اختصار للعلامة البيولوجية ، وهو مصطلح يشير إلى حدث قابل للقياس يحدث في نظام بيولوجي ، مثل جسم الإنسان. ثم يتم تفسير هذا الحدث على أنه انعكاس ، أو علامة ، لحالة أكثر عمومية للكائن الحي أو لمتوسط ​​العمر المتوقع. في مجال الصحة المهنية ، يتم استخدام المرقم الحيوي بشكل عام كمؤشر على الحالة الصحية أو مخاطر المرض.

تستخدم المؤشرات الحيوية في الدراسات المختبرية وكذلك في الجسم الحي التي قد تشمل البشر. عادة ، يتم تحديد ثلاثة أنواع محددة من العلامات البيولوجية. على الرغم من صعوبة تصنيف عدد قليل من المؤشرات الحيوية ، إلا أنه يتم فصلها عادةً إلى مؤشرات حيوية للتعرض أو مؤشرات حيوية للتأثير أو مؤشرات حيوية للتأثر (انظر الجدول 1).

الجدول 1. أمثلة على المؤشرات الحيوية للتعرض أو المؤشرات الحيوية للتأثير المستخدمة في دراسات السمية في الصحة المهنية

عينة مقاسات الهدف
المؤشرات الحيوية للتعرض
الأنسجة الدهنية الديوكسين التعرض للديوكسين
دم قيادة التعرض للرصاص
عظم الألومنيوم التعرض للألمنيوم
الزفير التولوين التعرض للتولوين
الشعر ميركوري التعرض لميثيل الزئبق
سيروم البنزين التعرض للبنزين
بول الفينول التعرض للبنزين
تأثير المؤشرات الحيوية
دم كاربوكسي هيموجلوبين التعرض لأول أكسيد الكربون
خلايا الدم الحمراء الزنك بروتوبرفيرين التعرض للرصاص
سيروم الكولين استريز التعرض للفوسفات العضوي
بول ميكروغلوبولين التعرض الكلوي
خلايا الدم البيضاء مقاربات الحمض النووي التعرض للطفرات

 

بالنظر إلى درجة مقبولة من الصلاحية ، يمكن استخدام المرقمات الحيوية لعدة أغراض. على أساس فردي ، يمكن استخدام المرقم الحيوي لدعم أو دحض تشخيص نوع معين من التسمم أو أي تأثير ضار ناتج كيميائيًا. في موضوع صحي ، قد يعكس المرقم الحيوي أيضًا فرط الحساسية الفردية لتعرضات كيميائية محددة ، وبالتالي قد يكون بمثابة أساس للتنبؤ بالمخاطر وتقديم المشورة. في مجموعات العمال المعرضين ، يمكن تطبيق بعض المؤشرات الحيوية للتعرض لتقييم مدى الامتثال للوائح مكافحة التلوث أو فعالية الجهود الوقائية بشكل عام.

المؤشرات الحيوية للتعرض

قد يكون المرقم الحيوي للتعرض مركبًا خارجيًا (أو مستقلبًا) داخل الجسم ، أو منتجًا تفاعليًا بين المركب (أو المستقلب) ومكون داخلي ، أو حدث آخر مرتبط بالتعرض. الأكثر شيوعًا ، تشتمل المؤشرات الحيوية للتعرض للمركبات المستقرة ، مثل المعادن ، على قياسات تركيزات المعادن في عينات مناسبة ، مثل الدم أو المصل أو البول. مع المواد الكيميائية المتطايرة ، يمكن تقييم تركيزها في الزفير (بعد استنشاق هواء خالٍ من التلوث). إذا تم استقلاب المركب في الجسم ، فيمكن اختيار واحد أو أكثر من المستقلبات كمؤشر حيوي للتعرض ؛ غالبًا ما يتم تحديد المستقلبات في عينات البول.

قد تسمح طرق التحليل الحديثة بفصل الأيزومرات أو متجانسات المركبات العضوية ، وتحديد انتواع المركبات المعدنية أو النسب النظيرية لعناصر معينة. تسمح التحليلات المتطورة بتحديد التغيرات في بنية الحمض النووي أو الجزيئات الكبيرة الأخرى الناتجة عن الارتباط بالمواد الكيميائية التفاعلية. لا شك في أن مثل هذه التقنيات المتقدمة ستكتسب أهمية كبيرة للتطبيقات في دراسات العلامات الحيوية ، ومن المحتمل أن تجعل حدود الكشف المنخفضة والصلاحية التحليلية الأفضل هذه المرقمات الحيوية أكثر فائدة.

حدثت تطورات واعدة بشكل خاص مع المؤشرات الحيوية للتعرض للمواد الكيميائية المسببة للطفرات. هذه المركبات تفاعلية ويمكن أن تشكل مقاربات مع جزيئات كبيرة ، مثل البروتينات أو الحمض النووي. يمكن الكشف عن مقاربات الحمض النووي في خلايا الدم البيضاء أو خزعات الأنسجة ، وقد تفرز أجزاء معينة من الحمض النووي في البول. على سبيل المثال ، يؤدي التعرض لأكسيد الإيثيلين إلى تفاعلات مع قواعد الحمض النووي ، وبعد استئصال القاعدة التالفة ، سيتم التخلص من الجوانين N-7 (2-hydroxyethyl) في البول. قد لا تشير بعض المقاربات مباشرة إلى تعرض معين. على سبيل المثال ، يعكس 8-hydroxy-2´-deoxyguanosine الضرر التأكسدي للحمض النووي ، وقد يتم تشغيل هذا التفاعل بواسطة عدة مركبات كيميائية ، يحفز معظمها أيضًا على أكسدة الدهون.

يمكن أيضًا تغيير الجزيئات الكبيرة الأخرى عن طريق تكوين التقارب أو الأكسدة. ذات أهمية خاصة ، مثل هذه المركبات التفاعلية قد تولد مقاربات الهيموجلوبين التي يمكن تحديدها كواسمات حيوية للتعرض للمركبات. الميزة هي أنه يمكن الحصول على كميات كبيرة من الهيموجلوبين من عينة الدم ، وبالنظر إلى عمر خلايا الدم الحمراء لمدة أربعة أشهر ، فإن التقارب المتكون من الأحماض الأمينية للبروتين سيشير إلى إجمالي التعرض خلال هذه الفترة.

يمكن تحديد المُقَدِّمات بواسطة تقنيات حساسة مثل كروماتوغرافيا الدهون عالية الأداء ، كما تتوفر أيضًا بعض الطرق المناعية. بشكل عام ، تعتبر الطرق التحليلية جديدة ومكلفة وتحتاج إلى مزيد من التطوير والتحقق من الصحة. يمكن الحصول على حساسية أفضل باستخدام 32فحص ما بعد وضع العلامات P ، وهو مؤشر غير محدد على حدوث تلف في الحمض النووي. من المحتمل أن تكون كل هذه التقنيات مفيدة للرصد البيولوجي وقد تم تطبيقها في عدد متزايد من الدراسات. ومع ذلك ، هناك حاجة إلى طرق تحليلية أبسط وأكثر حساسية. نظرًا للخصوصية المحدودة لبعض الطرق عند التعرض منخفض المستوى ، فقد يؤثر تدخين التبغ أو عوامل أخرى بشكل كبير على نتائج القياس ، مما يتسبب في صعوبات في التفسير.

يمكن أيضًا تحديد التعرض للمركبات المطفرة ، أو المركبات التي يتم استقلابها إلى مطفرات ، من خلال تقييم الطفرات الجينية في البول من فرد معرض. يتم تحضين عينة البول بسلالة من البكتيريا يتم فيها التعبير عن طفرة نقطية معينة بطريقة يمكن قياسها بسهولة. إذا كانت هناك مواد كيميائية مطفرة في عينة البول ، فسيحدث زيادة في معدل الطفرات في البكتيريا.

يجب تقييم المؤشرات الحيوية للتعرض فيما يتعلق بالتغير الزمني في التعرض والعلاقة مع الأجزاء المختلفة. وبالتالي ، يجب تحديد الإطار (الأطر) الزمنية التي يمثلها المرقم الحيوي ، أي إلى أي مدى يعكس قياس المرقم الحيوي التعرض (التعرّض) السابق و / أو عبء الجسم المتراكم ، من البيانات الحركية السمية من أجل تفسير النتيجة. على وجه الخصوص ، ينبغي النظر في الدرجة التي يشير بها المرقم الحيوي إلى الاحتفاظ في أعضاء مستهدفة محددة. على الرغم من أن عينات الدم تُستخدم غالبًا في دراسات العلامات الحيوية ، إلا أن الدم المحيطي لا يُنظر إليه عمومًا على أنه مقصورة على هذا النحو ، على الرغم من أنه يعمل كوسيط نقل بين الأجزاء. تختلف الدرجة التي يعكس بها التركيز في الدم المستويات في الأعضاء المختلفة اختلافًا كبيرًا بين المواد الكيميائية المختلفة ، وعادةً ما تعتمد أيضًا على طول فترة التعرض وكذلك الوقت منذ التعرض.

في بعض الأحيان يتم استخدام هذا النوع من الأدلة لتصنيف المرقم الحيوي كمؤشر للجرعة الممتصة (الإجمالية) أو مؤشر للجرعة الفعالة (أي الكمية التي وصلت إلى النسيج المستهدف). على سبيل المثال ، يمكن تقييم التعرض لمذيب معين من خلال بيانات عن التركيز الفعلي للمذيب في الدم في وقت معين بعد التعرض. سيعكس هذا القياس كمية المذيب التي تم امتصاصها في الجسم. سيتم زفير بعض الكمية الممتصة بسبب ضغط بخار المذيب. أثناء الدوران في الدم ، سيتفاعل المذيب مع مكونات مختلفة من الجسم ، وسيصبح في النهاية عرضة للتحلل بواسطة الإنزيمات. يمكن تقييم نتائج عمليات التمثيل الغذائي عن طريق تحديد أحماض مركبتوريك معينة تنتج عن الاقتران مع الجلوتاثيون. قد يعكس الإفراز التراكمي لأحماض مركابتوريك الجرعة الفعالة بشكل أفضل من تركيز الدم.

قد تؤثر أحداث الحياة ، مثل التكاثر والشيخوخة ، على توزيع مادة كيميائية. يتأثر توزيع المواد الكيميائية داخل الجسم بشكل كبير بالحمل ، وقد تمر العديد من المواد الكيميائية حاجز المشيمة ، مما يتسبب في تعرض الجنين. قد تؤدي الرضاعة إلى إفراز المواد الكيميائية القابلة للذوبان في الدهون ، مما يؤدي إلى انخفاض احتباس الأم مع زيادة امتصاص الرضيع. أثناء فقدان الوزن أو تطور مرض هشاشة العظام ، قد يتم إطلاق مواد كيميائية مخزنة ، والتي يمكن أن تؤدي بعد ذلك إلى تعرض الأعضاء المستهدفة المتجدد والمطول. قد تؤثر العوامل الأخرى على الامتصاص الفردي ، والتمثيل الغذائي ، والاحتفاظ وتوزيع المركبات الكيميائية ، وتتوفر بعض المؤشرات الحيوية للحساسية (انظر أدناه).

المؤشرات الحيوية للتأثير

قد تكون علامة التأثير مكونًا داخليًا ، أو مقياسًا للقدرة الوظيفية ، أو بعض المؤشرات الأخرى لحالة أو توازن الجسم أو نظام العضو ، كما يتأثر بالتعرض. علامات التأثير هذه بشكل عام مؤشرات ما قبل السريرية للشذوذ.

قد تكون هذه المؤشرات الحيوية محددة أو غير محددة. تعتبر المؤشرات الحيوية المحددة مفيدة لأنها تشير إلى تأثير بيولوجي لتعرض معين ، وبالتالي توفر أدلة يمكن استخدامها لأغراض وقائية. لا تشير المؤشرات الحيوية غير المحددة إلى سبب فردي للتأثير ، ولكنها قد تعكس التأثير الكلي والمتكامل بسبب التعرض المختلط. لذلك قد يكون لكلا النوعين من المؤشرات الحيوية فائدة كبيرة في الصحة المهنية.

لا يوجد تمييز واضح بين المؤشرات الحيوية للتعرض والمؤشرات الحيوية للتأثير. على سبيل المثال ، يمكن القول أن تكوين التقارب يعكس تأثيرًا بدلاً من التعرض. ومع ذلك ، تشير المؤشرات الحيوية للتأثير عادةً إلى تغييرات في وظائف الخلايا أو الأنسجة أو الجسم الكلي. يُدرج بعض الباحثين تغييرات جسيمة ، مثل زيادة وزن الكبد لحيوانات المختبر المكشوفة أو انخفاض نمو الأطفال ، كمؤشرات حيوية للتأثير. لغرض الصحة المهنية ، يجب أن تقتصر المؤشرات الحيوية للتأثير على تلك التي تشير إلى تغيرات كيميائية حيوية تحت إكلينيكية أو قابلة للعكس ، مثل تثبيط الإنزيمات. من المحتمل أن يكون المرقم الحيوي للتأثير الأكثر استخدامًا هو تثبيط إنزيم الكولينستيراز الناجم عن بعض المبيدات الحشرية ، أي الفوسفات العضوي والكاربامات. في معظم الحالات ، يكون هذا التأثير قابلاً للانعكاس تمامًا ، ويعكس تثبيط الإنزيم التعرض الكلي لهذه المجموعة المعينة من المبيدات الحشرية.

لا تؤدي بعض حالات التعرض إلى تثبيط الإنزيم بل تؤدي إلى زيادة نشاط الإنزيم. هذا هو الحال مع العديد من الإنزيمات التي تنتمي إلى عائلة P450 (انظر "المحددات الجينية للاستجابة السامة"). قد تكون ناتجة عن التعرض لبعض المذيبات والهيدروكربونات متعددة الحلقات (PAHs). نظرًا لأن هذه الإنزيمات يتم التعبير عنها بشكل أساسي في الأنسجة التي قد يكون من الصعب الحصول على خزعة منها ، يتم تحديد نشاط الإنزيم بشكل غير مباشر في الجسم الحي عن طريق إدارة مركب يتم استقلابه بواسطة هذا الإنزيم المعين ، ثم يتم قياس منتج الانهيار في البول أو البلازما.

قد تؤدي حالات التعرض الأخرى إلى تخليق بروتين وقائي في الجسم. ربما يكون أفضل مثال على ذلك هو الميتالوثيونين ، الذي يربط الكادميوم ويعزز إفراز هذا المعدن ؛ يعد التعرض للكادميوم أحد العوامل التي تؤدي إلى زيادة التعبير عن جين الميتالوثيونين. قد توجد بروتينات وقائية مماثلة ولكن لم يتم استكشافها بعد بشكل كافٍ لتصبح مقبولة كمؤشرات حيوية. من بين المواد المرشحة للاستخدام المحتمل كمؤشرات حيوية ما يسمى ببروتينات الإجهاد ، والتي يشار إليها في الأصل ببروتينات الصدمة الحرارية. يتم إنشاء هذه البروتينات من قبل مجموعة من الكائنات الحية المختلفة استجابة لمجموعة متنوعة من التعرض الضار.

يمكن تقييم الضرر التأكسدي عن طريق تحديد تركيز malondialdehyde في مصل الدم أو زفير الإيثان. وبالمثل ، يمكن استخدام إفراز البول للبروتينات ذات الوزن الجزيئي الصغير ، مثل الألبومين ، كعلامة بيولوجية لتلف الكلى المبكر. قد تكون العديد من المعلمات المستخدمة بشكل روتيني في الممارسة السريرية (على سبيل المثال ، هرمون المصل أو مستويات الإنزيم) مفيدة أيضًا كمؤشرات حيوية. ومع ذلك ، فإن العديد من هذه المعلمات قد لا تكون حساسة بدرجة كافية لاكتشاف الضعف المبكر.

مجموعة أخرى من معلمات التأثير تتعلق بالتأثيرات السامة للجينات (التغيرات في بنية الكروموسومات). يمكن الكشف عن هذه الآثار عن طريق الفحص المجهري لخلايا الدم البيضاء التي تخضع لانقسام الخلايا. يمكن رؤية الأضرار الجسيمة للكروموسومات - انحرافات الكروموسومات أو تكوين النوى الدقيقة - بالمجهر. يمكن أيضًا الكشف عن التلف عن طريق إضافة صبغة إلى الخلايا أثناء انقسام الخلية. يمكن بعد ذلك تصور التعرض لعامل سام للجينات على أنه تبادل متزايد للصبغة بين كروماتيدات كل كروموسوم (التبادل الكروماتيد الشقيق). ترتبط الانحرافات الصبغية بزيادة خطر الإصابة بالسرطان ، ولكن أهمية زيادة معدل التبادل الكروماتيد الشقيق أقل وضوحًا.

يعتمد التقييم الأكثر تعقيدًا للسمية الجينية على طفرات نقطية معينة في الخلايا الجسدية ، أي خلايا الدم البيضاء أو الخلايا الظهارية المأخوذة من الغشاء المخاطي للفم. قد تؤدي الطفرة في مكان معين إلى جعل الخلايا قادرة على النمو في مزرعة تحتوي على مادة كيميائية سامة (مثل 6-ثيوجوانين). بدلاً من ذلك ، يمكن تقييم منتج جيني معين (على سبيل المثال ، تركيزات مصل أو أنسجة البروتينات المسرطنة المشفرة بواسطة جينات مسرطنة معينة). من الواضح أن هذه الطفرات تعكس إجمالي الضرر الناجم عن السمية الجينية ولا تشير بالضرورة إلى أي شيء حول التعرض المسبب. هذه الأساليب ليست جاهزة بعد للاستخدام العملي في مجال الصحة المهنية ، ولكن التقدم السريع في هذا النوع من البحث يشير إلى أن مثل هذه الأساليب ستصبح متاحة في غضون بضع سنوات.

المؤشرات الحيوية للإصابة

علامة القابلية للإصابة ، سواء كانت وراثية أو مستحثة ، هي مؤشر على أن الفرد حساس بشكل خاص لتأثير الكائنات الحية الغريبة أو لتأثيرات مجموعة من هذه المركبات. تم تركيز معظم الاهتمام على القابلية الوراثية ، على الرغم من أن العوامل الأخرى قد تكون على الأقل بنفس الأهمية. قد تكون الحساسية المفرطة ناتجة عن سمة موروثة أو تكوين الفرد أو عوامل بيئية.

إن القدرة على استقلاب بعض المواد الكيميائية متغيرة ويتم تحديدها وراثيًا (انظر "المحددات الجينية للاستجابة السامة"). يبدو أن جينًا واحدًا يتحكم في العديد من الإنزيمات ذات الصلة. على سبيل المثال ، يتم إجراء أكسدة المواد الكيميائية الأجنبية بشكل أساسي من عائلة من الإنزيمات التي تنتمي إلى عائلة P450. تجعل الإنزيمات الأخرى المستقلبات أكثر قابلية للذوبان في الماء عن طريق الاقتران (على سبيل المثال ، N-acetyltransferase و μ-glutathion-S-ناقل). يتم التحكم في نشاط هذه الإنزيمات وراثيًا ويختلف بشكل كبير. كما ذكرنا سابقًا ، يمكن تحديد النشاط بإعطاء جرعة صغيرة من الدواء ثم تحديد كمية المستقلب في البول. تم الآن توصيف بعض الجينات ، وهناك تقنيات متاحة لتحديد النمط الجيني. تشير الدراسات المهمة إلى أن خطر الإصابة بأشكال معينة من السرطان يرتبط بإمكانية استقلاب المركبات الأجنبية. لا تزال العديد من الأسئلة بلا إجابة ، وبالتالي في هذا الوقت يحد من استخدام هذه المؤشرات الحيوية للتأثر المحتمل في الصحة المهنية.

الصفات الموروثة الأخرى ، مثل ألفا1- نقص أنتيتريبسين أو نقص نازعة هيدروجين الجلوكوز 6 فوسفات يؤدي أيضًا إلى ضعف آليات الدفاع في الجسم ، مما يسبب فرط الحساسية لتعرضات معينة.

تعاملت معظم الأبحاث المتعلقة بالحساسية مع الاستعداد الوراثي. تلعب العوامل الأخرى دورًا أيضًا وقد تم إهمالها جزئيًا. على سبيل المثال ، قد يكون الأفراد المصابون بمرض مزمن أكثر حساسية للتعرض المهني. أيضًا ، إذا تسببت عملية مرضية أو التعرض السابق للمواد الكيميائية السامة في بعض تلف الأعضاء تحت الإكلينيكي ، فمن المحتمل أن تكون القدرة على تحمل التعرض السام الجديد أقل. يمكن استخدام المؤشرات البيوكيميائية لوظيفة العضو في هذه الحالة كمؤشرات حيوية للتأثر. ربما يكون أفضل مثال على الحساسية المفرطة يتعلق باستجابات الحساسية. إذا أصبح الفرد حساسًا لتعرض معين ، فيمكن اكتشاف أجسام مضادة معينة في مصل الدم. حتى إذا لم يصبح الفرد حساسًا ، فإن التعرضات الحالية أو السابقة قد تزيد من مخاطر تطوير تأثير سلبي مرتبط بالتعرض المهني.

تتمثل المشكلة الرئيسية في تحديد التأثير المشترك للتعرضات المختلطة في العمل. بالإضافة إلى ذلك ، قد تؤدي العادات الشخصية وتعاطي المخدرات إلى زيادة القابلية للإصابة. على سبيل المثال ، يحتوي دخان التبغ عادة على كمية كبيرة من الكادميوم. وبالتالي ، مع التعرض المهني للكادميوم ، فإن المدخن الشره الذي تراكمت كميات كبيرة من هذا المعدن في الجسم سيكون أكثر عرضة للإصابة بأمراض الكلى المرتبطة بالكادميوم.

التطبيق في الصحة المهنية

تعتبر المؤشرات الحيوية مفيدة للغاية في أبحاث السموم ، وقد يكون الكثير منها قابلاً للتطبيق في المراقبة البيولوجية. ومع ذلك ، يجب أيضًا الاعتراف بالقيود. تمت دراسة العديد من المؤشرات الحيوية حتى الآن في حيوانات المختبر فقط. قد لا تعكس أنماط الحركة السمية في الأنواع الأخرى بالضرورة الوضع في البشر ، وقد يتطلب الاستقراء دراسات تأكيدية في متطوعين من البشر. أيضًا ، يجب مراعاة الاختلافات الفردية بسبب العوامل الوراثية أو الدستورية.

في بعض الحالات ، قد لا تكون المؤشرات الحيوية للتعرض ممكنة على الإطلاق (على سبيل المثال ، للمواد الكيميائية قصيرة العمر في الجسم الحي). قد يتم تخزين مواد كيميائية أخرى في ، أو قد تؤثر على ، أعضاء لا يمكن الوصول إليها عن طريق الإجراءات الروتينية ، مثل الجهاز العصبي. قد يؤثر مسار التعرض أيضًا على نمط التوزيع وبالتالي أيضًا على قياس المرقم الحيوي وتفسيره. على سبيل المثال ، من المرجح أن يفلت التعرض المباشر للدماغ عبر العصب الشمي من الكشف عن طريق قياس المؤشرات الحيوية للتعرض. فيما يتعلق بتأثير المؤشرات الحيوية ، فإن العديد منها ليس محددًا على الإطلاق ، ويمكن أن يكون التغيير بسبب مجموعة متنوعة من الأسباب ، بما في ذلك عوامل نمط الحياة. ربما على وجه الخصوص مع المؤشرات الحيوية للتأثر ، يجب أن يكون التفسير حذرًا للغاية في الوقت الحالي ، حيث لا تزال هناك العديد من الشكوك حول الأهمية الصحية العامة للأنماط الجينية الفردية.

في مجال الصحة المهنية ، يجب أن يفي المرقم الحيوي المثالي بعدة متطلبات. بادئ ذي بدء ، يجب أن يكون جمع العينات وتحليلها بسيطًا وموثوقًا به. للحصول على جودة تحليلية مثالية ، يلزم التوحيد القياسي ، لكن المتطلبات المحددة تختلف اختلافًا كبيرًا. مجالات الاهتمام الرئيسية تشمل: إعداد الأفراد ، وإجراءات أخذ العينات ومعالجة العينة ، وإجراءات القياس. وتشمل الأخيرة العوامل الفنية ، مثل إجراءات المعايرة وضمان الجودة ، والعوامل المتعلقة بالفرد ، مثل تعليم وتدريب المشغلين.

لتوثيق الصلاحية التحليلية وإمكانية التتبع ، يجب أن تستند المواد المرجعية إلى المصفوفات ذات الصلة وبتركيزات مناسبة من المواد السامة أو المستقلبات ذات الصلة عند المستويات المناسبة. لاستخدام المؤشرات الحيوية في المراقبة البيولوجية أو لأغراض التشخيص ، يجب أن يكون لدى المختبرات المسؤولة إجراءات تحليلية جيدة التوثيق مع خصائص أداء محددة ، وسجلات يمكن الوصول إليها للسماح بالتحقق من النتائج. في الوقت نفسه ، ومع ذلك ، يجب مراعاة اقتصاديات توصيف واستخدام المواد المرجعية لاستكمال إجراءات ضمان الجودة بشكل عام. وبالتالي ، فإن جودة النتائج التي يمكن تحقيقها ، والاستخدامات التي يتم استخدامها ، يجب أن تكون متوازنة مع التكاليف الإضافية لضمان الجودة ، بما في ذلك المواد المرجعية والقوى العاملة والأجهزة.

مطلب آخر هو أن المرمز الحيوي يجب أن يكون محددًا ، على الأقل في ظل ظروف الدراسة ، لنوع معين من التعرض ، مع علاقة واضحة بدرجة التعرض. خلاف ذلك ، قد يكون من الصعب للغاية تفسير نتيجة قياس المرقم الحيوي. من أجل التفسير الصحيح لنتيجة قياس المرقم الحيوي للتعرض ، يجب أن تكون الصلاحية التشخيصية معروفة (أي ترجمة قيمة المرقم الحيوي إلى حجم المخاطر الصحية المحتملة). في هذا المجال ، تعمل المعادن كنموذج لأبحاث العلامات الحيوية. أظهرت الأبحاث الحديثة مدى تعقيد ودقة علاقات الاستجابة للجرعة ، مع وجود صعوبة كبيرة في تحديد مستويات عدم التأثير ، وبالتالي أيضًا في تحديد التعرضات التي يمكن تحملها. ومع ذلك ، فقد أوضح هذا النوع من البحث أيضًا أنواع التحقيق والتحسين الضروريين للكشف عن المعلومات ذات الصلة. بالنسبة لمعظم المركبات العضوية ، لا تتوفر بعد الارتباطات الكمية بين حالات التعرض والآثار الصحية الضارة المقابلة ؛ في كثير من الحالات ، حتى الأعضاء المستهدفة الأولية غير معروفة على وجه اليقين. بالإضافة إلى ذلك ، غالبًا ما يكون تقييم بيانات السمية وتركيزات المرقم الحيوي معقدًا بسبب التعرض لمزيج من المواد ، بدلاً من التعرض لمركب واحد في ذلك الوقت.

قبل تطبيق المرقم الحيوي لأغراض الصحة المهنية ، هناك بعض الاعتبارات الإضافية ضرورية. أولاً ، يجب أن يعكس المرقم الحيوي تغييرًا دون إكلينيكيًا وقابلًا للانعكاس فقط. ثانيًا ، نظرًا لإمكانية تفسير نتائج المرقم الحيوي فيما يتعلق بالمخاطر الصحية ، يجب أن تكون الجهود الوقائية متاحة ويجب اعتبارها واقعية في حالة ما إذا كانت بيانات المرقم الحيوي تشير إلى الحاجة إلى تقليل التعرض. ثالثًا ، يجب اعتبار الاستخدام العملي للعلامة الحيوية بشكل عام مقبولًا أخلاقياً.

يمكن مقارنة قياسات الصحة الصناعية بحدود التعرض المطبقة. وبالمثل ، يمكن مقارنة النتائج المتعلقة بالعلامات الحيوية للتعرض أو المؤشرات الحيوية للتأثير بحدود الفعل البيولوجي ، والتي يشار إليها أحيانًا بمؤشرات التعرض البيولوجي. يجب أن تستند هذه الحدود إلى أفضل نصيحة للأطباء والعلماء من التخصصات المناسبة ، ويجب على المسؤولين المسؤولين مثل "مديري المخاطر" أن يأخذوا في الاعتبار العوامل الأخلاقية والاجتماعية والثقافية والاقتصادية ذات الصلة. يجب أن يتضمن الأساس العلمي ، إن أمكن ، علاقات الاستجابة للجرعة تكملها معلومات عن الاختلافات في القابلية للتأثر داخل السكان المعرضين للخطر. في بعض البلدان ، يشارك العمال وأفراد الجمهور في عملية وضع المعايير ويقدمون مدخلات مهمة ، لا سيما عندما يكون عدم اليقين العلمي كبيرًا. تتمثل إحدى نقاط عدم اليقين الرئيسية في كيفية تحديد التأثير الصحي الضار الذي يجب منعه - على سبيل المثال ، ما إذا كان تكوين التقريب باعتباره مرمزًا حيويًا للتعرض يمثل بحد ذاته تأثيرًا ضارًا (أي تأثير المرقم الحيوي) الذي ينبغي منعه. من المحتمل أن تنشأ أسئلة صعبة عند تقرير ما إذا كان من الممكن الدفاع أخلاقيا ، لنفس المركب ، أن يكون له حدود مختلفة للتعرض العارض ، من ناحية ، والتعرض المهني ، من ناحية أخرى.

يجب عمومًا نقل المعلومات الناتجة عن استخدام المؤشرات الحيوية إلى الأفراد الذين تم فحصهم ضمن العلاقة بين الطبيب والمريض. يجب مراعاة المخاوف الأخلاقية على وجه الخصوص فيما يتعلق بتحليلات العلامات الحيوية التجريبية للغاية والتي لا يمكن تفسيرها حاليًا بالتفصيل من حيث المخاطر الصحية الفعلية. بالنسبة لعامة السكان ، على سبيل المثال ، توجد إرشادات محدودة في الوقت الحالي فيما يتعلق بتفسير المؤشرات الحيوية للتعرض بخلاف تركيز الرصاص في الدم. من المهم أيضًا الثقة في البيانات الناتجة (أي ، ما إذا كان قد تم أخذ العينات المناسبة ، وما إذا تم استخدام إجراءات ضمان الجودة السليمة في المختبر المعني). هناك مجال إضافي للقلق الخاص يتعلق بفرط الحساسية الفردية. يجب أن تؤخذ هذه القضايا في الاعتبار عند تقديم التغذية الراجعة من الدراسة.

يجب إشراك جميع قطاعات المجتمع المتأثرة أو المهتمة بإجراء دراسة العلامات الحيوية في عملية صنع القرار حول كيفية التعامل مع المعلومات الناتجة عن الدراسة. يجب وضع إجراءات محددة لمنع أو التغلب على النزاعات الأخلاقية التي لا مفر منها ضمن الأطر القانونية والاجتماعية للمنطقة أو البلد. ومع ذلك ، فإن كل موقف يمثل مجموعة مختلفة من الأسئلة والمزالق ، ولا يمكن تطوير إجراء واحد للمشاركة العامة لتغطية جميع تطبيقات المؤشرات الحيوية للتعرض.

 

الرجوع

الأحد، 16 يناير 2011 18: 43

علم السموم الجهاز المستهدف

غالبًا ما يتم إجراء دراسة وتوصيف المواد الكيميائية والعوامل الأخرى للخصائص السامة على أساس أعضاء وأنظمة عضوية محددة. في هذا الفصل ، تم اختيار هدفين للمناقشة المتعمقة: الجهاز المناعي والجين. تم اختيار هذه الأمثلة لتمثيل نظام عضو مستهدف معقد وهدف جزيئي داخل الخلايا. لمزيد من المناقشة الشاملة لعلم السموم للأعضاء المستهدفة ، تتم إحالة القارئ إلى نصوص السموم القياسية مثل Casarett و Doull و Hayes. كما قام البرنامج الدولي للسلامة الكيميائية (IPCS) بنشر العديد من وثائق المعايير المتعلقة بسمية الأعضاء المستهدفة ، حسب نظام الأعضاء.

عادة ما يتم إجراء دراسات سموم الأعضاء المستهدفة على أساس المعلومات التي تشير إلى احتمالية حدوث تأثيرات سمية محددة لمادة ، إما من البيانات الوبائية أو من دراسات السمية العامة الحادة أو المزمنة ، أو على أساس مخاوف خاصة لحماية وظائف أعضاء معينة ، مثل مثل التكاثر أو نمو الجنين. في بعض الحالات ، تُفرض السلطات القانونية صراحةً اختبارات سمية الأعضاء المستهدفة المحددة ، مثل اختبار السمية العصبية بموجب قانون مبيدات الآفات بالولايات المتحدة (راجع "نهج الولايات المتحدة لتقييم مخاطر المواد السمية الإنجابية والعوامل السامة للأعصاب" ، واختبار الطفرات بموجب المادة الكيميائية اليابانية قانون مراقبة المواد (انظر "مبادئ تحديد المخاطر: النهج الياباني").

كما نوقش في "العضو المستهدف والتأثيرات الحرجة" ، يعتمد تحديد العضو الحرج على اكتشاف العضو أو نظام العضو الذي يستجيب أولاً بشكل عكسي أو لأقل الجرعات أو التعرض. ثم يتم استخدام هذه المعلومات لتصميم تحقيقات سموم محددة أو اختبارات سمية أكثر تحديدًا مصممة لاستنباط مؤشرات أكثر حساسية للتسمم في العضو المستهدف. يمكن أيضًا استخدام دراسات سموم الأعضاء المستهدفة لتحديد آليات العمل ، واستخدامها في تقييم المخاطر (انظر "نهج الولايات المتحدة لتقييم مخاطر المواد السمية الإنجابية والعوامل السامة للأعصاب").

طرق دراسات سمية الأعضاء المستهدفة

يمكن دراسة الأعضاء المستهدفة من خلال التعرض للكائنات السليمة والتحليل التفصيلي للوظيفة والتشريح المرضي في العضو المستهدف ، أو عن طريق التعرض في المختبر للخلايا أو شرائح الأنسجة أو الأعضاء الكاملة التي يتم الاحتفاظ بها لفترات قصيرة أو طويلة في المزرعة (انظر "آليات علم السموم: مقدمة ومفاهيم "). في بعض الحالات ، قد تكون الأنسجة المأخوذة من البشر متاحة أيضًا لدراسات سمية الأعضاء المستهدفة ، وقد توفر هذه الفرص للتحقق من صحة افتراضات الاستقراء عبر الأنواع. ومع ذلك ، يجب أن يوضع في الاعتبار أن مثل هذه الدراسات لا تقدم معلومات عن حركية السموم النسبية.

بشكل عام ، تشترك دراسات سمية الأعضاء المستهدفة في الخصائص المشتركة التالية: الفحص النسيجي المرضي المفصل للعضو المستهدف ، بما في ذلك الفحص بعد الوفاة ، ووزن الأنسجة ، وفحص الأنسجة الثابتة ؛ الدراسات البيوكيميائية للمسارات الحرجة في العضو المستهدف ، مثل أنظمة الإنزيمات الهامة ؛ دراسات وظيفية لقدرة العضو والمكونات الخلوية على أداء وظائف التمثيل الغذائي وغيرها من الوظائف المتوقعة ؛ وتحليل المؤشرات الحيوية للتعرض والتأثيرات المبكرة في خلايا الأعضاء المستهدفة.

يمكن دمج المعرفة التفصيلية لفسيولوجيا العضو المستهدف والكيمياء الحيوية والبيولوجيا الجزيئية في دراسات الأعضاء المستهدفة. على سبيل المثال ، نظرًا لأن تخليق وإفراز البروتينات ذات الوزن الجزيئي الصغير هو جانب مهم من وظائف الكلى ، فإن دراسات السمية الكلوية غالبًا ما تتضمن اهتمامًا خاصًا بهذه المعلمات (IPCS 1991). نظرًا لأن الاتصال من خلية إلى خلية هو عملية أساسية لوظيفة الجهاز العصبي ، فقد تتضمن دراسات الأعضاء المستهدفة في السمية العصبية قياسات كيميائية عصبية وفيزيائية حيوية مفصلة لتخليق الناقل العصبي ، وامتصاصه ، وتخزينه ، وإطلاقه ، وربط المستقبلات ، بالإضافة إلى القياس الكهربية للتغيرات في الغشاء المحتملة المرتبطة بهذه الأحداث.

يتم وضع درجة عالية من التركيز على تطوير طرق في المختبر لسمية الأعضاء المستهدفة ، لاستبدال أو تقليل استخدام الحيوانات الكاملة. لقد تم تحقيق تقدم كبير في هذه الأساليب فيما يتعلق بالسموم الإنجابية (Heindel and Chapin 1993).

باختصار ، يتم إجراء دراسات سمية الأعضاء المستهدفة بشكل عام كاختبار عالي المستوى لتحديد السمية. يعتمد اختيار أعضاء مستهدفة محددة لمزيد من التقييم على نتائج اختبارات مستوى الفحص ، مثل الاختبارات الحادة أو شبه المزمنة التي تستخدمها منظمة التعاون والتنمية في الميدان الاقتصادي والاتحاد الأوروبي ؛ قد تكون بعض الأعضاء وأنظمة الأعضاء المستهدفة مرشحة مسبقًا لفحص خاص بسبب مخاوف لمنع أنواع معينة من الآثار الصحية الضارة.

 

الرجوع

الأحد، 16 يناير 2011 18: 35

علم السموم المناعية

تتمثل وظائف الجهاز المناعي في حماية الجسم من غزو العوامل المعدية وتوفير المراقبة المناعية ضد الخلايا السرطانية الناشئة. له خط دفاع أول غير محدد ويمكن أن يبدأ تفاعلات المستجيب نفسه ، وفرعًا محددًا مكتسبًا ، تحمل فيه الخلايا الليمفاوية والأجسام المضادة خصوصية التعرف والتفاعل اللاحق تجاه المستضد.

تم تعريف علم السموم المناعية على أنه "التخصص المعني بدراسة الأحداث التي يمكن أن تؤدي إلى تأثيرات غير مرغوب فيها نتيجة تفاعل الكائنات الحيوية الغريبة مع جهاز المناعة. قد تنتج هذه الأحداث غير المرغوب فيها نتيجة (1) تأثير مباشر و / أو غير مباشر للحيوية الغريبة (و / أو منتج التحول البيولوجي الخاص بها) على جهاز المناعة ، أو (2) استجابة مضيفة تعتمد على المناعة للمركب و / أو المستقلب (المستقلبات) أو المستضدات المضيفة المعدلة بواسطة المركب أو مستقلباته "(برلين وآخرون 1987).

عندما يعمل الجهاز المناعي كهدف سلبي للإهانات الكيميائية ، يمكن أن تكون النتيجة انخفاض المقاومة للعدوى وأنواع معينة من الأورام ، أو عدم تنظيم / تحفيز المناعة الذي يمكن أن يؤدي إلى تفاقم الحساسية أو المناعة الذاتية. في حالة أن الجهاز المناعي يستجيب لخصوصية المستضد للأجانب الحيوية أو مستضد العائل المعدل بواسطة المركب ، يمكن أن تظهر السمية كأنواع الحساسية أو أمراض المناعة الذاتية.

تم تطوير نماذج حيوانية للتحقيق في قمع المناعة الناجم عن المواد الكيميائية ، وتم التحقق من صحة عدد من هذه الطرق (Burleson ، Munson ، و Dean 1995 ؛ IPCS 1996). لأغراض الاختبار ، يتم اتباع نهج متدرج لإجراء اختيار مناسب من العدد الهائل من المقايسات المتاحة. بشكل عام ، الهدف من المستوى الأول هو تحديد المواد السامة للمناعة المحتملة. إذا تم تحديد السمية المناعية المحتملة ، يتم إجراء المستوى الثاني من الاختبار لتأكيد وتوصيف التغييرات الملحوظة. تشمل تحقيقات المستوى الثالث دراسات خاصة حول آلية عمل المركب. تم تحديد العديد من الكائنات الحية الغريبة على أنها مواد سامة للمناعة تسبب كبت المناعة في مثل هذه الدراسات التي أجريت على حيوانات المختبر.

قاعدة البيانات الخاصة باضطرابات وظائف المناعة لدى البشر بسبب المواد الكيميائية البيئية محدودة (Descotes 1986؛ NRC Subcommittee on Immunotoxicology 1992). لم يحظ استخدام علامات السمية المناعية باهتمام كبير في الدراسات السريرية والوبائية للتحقيق في تأثير هذه المواد الكيميائية على صحة الإنسان. لم يتم إجراء مثل هذه الدراسات بشكل متكرر ، ولا يسمح تفسيرها في كثير من الأحيان باستخلاص استنتاجات لا لبس فيها ، على سبيل المثال بسبب الطبيعة غير المنضبطة للتعرض. لذلك ، في الوقت الحاضر ، يشكل تقييم السمية المناعية في القوارض ، مع الاستقراء اللاحق للإنسان ، أساس القرارات المتعلقة بالخطر والمخاطر.

تفاعلات فرط الحساسية ، لا سيما الربو التحسسي والتهاب الجلد التماسي ، هي مشاكل صحية مهنية مهمة في البلدان الصناعية (Vos، Younes and Smith 1995). تم التحقيق في ظاهرة التحسس التلامسي أولاً في خنزير غينيا (Andersen and Maibach 1985). حتى وقت قريب ، كان هذا هو النوع المفضل للاختبار التنبئي. تتوفر العديد من طرق اختبار خنازير غينيا ، وأكثرها استخدامًا هو اختبار تعظيم خنزير غينيا واختبار الرقعة المغطاة لـ Buehler. تزود اختبارات خنازير غينيا والأساليب الأحدث التي تم تطويرها في الفئران ، مثل اختبارات تورم الأذن وفحص العقدة الليمفاوية المحلية ، أخصائي السموم بالأدوات اللازمة لتقييم مخاطر حساسية الجلد. يختلف الوضع فيما يتعلق بتوعية الجهاز التنفسي اختلافًا كبيرًا. لا توجد حتى الآن طرق معتمدة جيدًا أو مقبولة على نطاق واسع لتحديد المواد المسببة للحساسية التنفسية الكيميائية على الرغم من إحراز تقدم في تطوير نماذج حيوانية للتحقيق في الحساسية التنفسية الكيميائية في خنزير غينيا والفأر.

تظهر البيانات البشرية أن العوامل الكيميائية ، وخاصة الأدوية ، يمكن أن تسبب أمراض المناعة الذاتية (Kammüller، Bloksma and Seinen 1989). هناك عدد من النماذج الحيوانية التجريبية لأمراض المناعة الذاتية البشرية. يشمل هذا كلا من علم الأمراض العفوي (على سبيل المثال الذئبة الحمامية الجهازية في الفئران السوداء النيوزيلندية) وظواهر المناعة الذاتية الناتجة عن التحصين التجريبي باستخدام مستضد ذاتي تفاعلي (على سبيل المثال التهاب المفاصل المستحث H37Ra في فئران سلالة لويس). يتم تطبيق هذه النماذج في التقييم قبل السريري للأدوية المثبطة للمناعة. تناول عدد قليل جدًا من الدراسات إمكانات هذه النماذج لتقييم ما إذا كان أحد الكائنات الحية الغريبة يؤدي إلى تفاقم المناعة الذاتية المستحثة أو الخلقية. النماذج الحيوانية المناسبة للتحقيق في قدرة المواد الكيميائية على إحداث أمراض المناعة الذاتية غير متوفرة تقريبًا. أحد النماذج المستخدمة إلى حدٍ محدود هو اختبار العقدة الليمفاوية المأبضية في الفئران. كما هو الحال عند البشر ، تلعب العوامل الوراثية دورًا حاسمًا في تطور أمراض المناعة الذاتية (AD) في حيوانات المختبر ، مما سيحد من القيمة التنبؤية لمثل هذه الاختبارات.

الجهاز المناعي

تتمثل الوظيفة الرئيسية لجهاز المناعة في الدفاع ضد البكتيريا والفيروسات والطفيليات والفطريات والخلايا الورمية. ويتحقق ذلك من خلال أعمال أنواع مختلفة من الخلايا ووسائطها القابلة للذوبان في حفل موسيقي مضبوط بدقة. يمكن تقسيم دفاع المضيف تقريبًا إلى مقاومة غير محددة أو فطرية ومناعة محددة أو مكتسبة بوساطة الخلايا الليمفاوية (Roitt، Brostoff and Male 1989).

مكونات الجهاز المناعي موجودة في جميع أنحاء الجسم (جونز وآخرون 1990). تم العثور على حجرة الخلايا الليمفاوية داخل الأعضاء الليمفاوية (الشكل 1). يتم تصنيف نخاع العظم والغدة الصعترية كأعضاء لمفاوية أولية أو مركزية. تشمل الأعضاء الليمفاوية الثانوية أو المحيطية العقد الليمفاوية والطحال والأنسجة اللمفاوية على طول الأسطح الإفرازية مثل الجهاز الهضمي والجهاز التنفسي ، ما يسمى بالأنسجة اللمفاوية المرتبطة بالغشاء المخاطي (MALT). يوجد حوالي نصف الخلايا الليمفاوية في الجسم في أي وقت في MALT. بالإضافة إلى ذلك ، يعد الجلد عضوًا مهمًا لتحفيز الاستجابات المناعية لمولدات المضادات الموجودة على الجلد. من المهم في هذه العملية خلايا لانجرهانز الموجودة في البشرة والتي لها وظيفة تقديم المستضد.

الشكل 1. الأعضاء والأنسجة اللمفاوية الأولية والثانوية

TOX110F1

تحدث الخلايا البلعمية من سلالة الوحيدات / البلاعم ، والتي تسمى نظام البلعمة أحادي النواة (MPS) ، في الأعضاء اللمفاوية وأيضًا في المواقع الخارجية ؛ تشمل الخلايا البلعمية الخارجية خلايا كوبفر في الكبد ، والضامة السنخية في الرئة ، والضامة المسراق في الكلية ، والخلايا الدبقية في الدماغ. توجد الكريات البيض متعددة الأشكال (PMNs) بشكل رئيسي في الدم ونخاع العظام ، ولكنها تتراكم في مواقع الالتهاب.

 

 

 

 

 

 

 

دفاع غير محدد

يتم تنفيذ خط الدفاع الأول للكائنات الحية الدقيقة بواسطة حاجز فيزيائي وكيميائي ، مثل الجلد والجهاز التنفسي والجهاز الهضمي. يتم مساعدة هذا الحاجز من خلال آليات وقائية غير محددة بما في ذلك الخلايا البلعمية ، مثل البلاعم والخلايا البيضاء متعددة الأشكال ، القادرة على قتل مسببات الأمراض ، والخلايا القاتلة الطبيعية ، والتي يمكنها أن تتلاشى الخلايا السرطانية والخلايا المصابة بالفيروس. كما يشارك النظام التكميلي وبعض مثبطات الميكروبات (مثل الليزوزيم) في الاستجابة غير النوعية.

مناعة محددة

بعد الاتصال الأولي للمضيف مع الممرض ، يتم إحداث استجابات مناعية محددة. السمة المميزة لخط الدفاع الثاني هذا هي التعرف على المحددات ، ما يسمى بالمستضدات أو الحواتم ، لمسببات الأمراض عن طريق المستقبلات الموجودة على سطح الخلية للخلايا اللمفاوية B و T. بعد التفاعل مع المستضد المحدد ، يتم تحفيز الخلية الحاملة للمستقبلات للخضوع للتكاثر والتمايز ، مما ينتج عنه استنساخ من الخلايا السلالة الخاصة بالمستضد المستخرج. تساعد الاستجابات المناعية المحددة في الدفاع غير المحدد المقدم لمسببات الأمراض عن طريق تحفيز فعالية الاستجابات غير المحددة. السمة الأساسية لمناعة معينة هي أن الذاكرة تتطور. يؤدي الاتصال الثانوي مع نفس المستضد إلى استجابة أسرع وأكثر قوة ولكن منظمة بشكل جيد.

لا يمتلك الجينوم القدرة على حمل رموز مجموعة من مستقبلات المستضدات الكافية للتعرف على عدد المستضدات التي يمكن مواجهتها. يتطور ذخيرة الخصوصية من خلال عملية إعادة ترتيب الجينات. هذه عملية عشوائية ، يتم خلالها خلق خصائص مختلفة. يتضمن هذا خصوصيات المكونات الذاتية ، والتي هي غير مرغوب فيها. عملية الانتقاء التي تحدث في الغدة الصعترية (الخلايا التائية) أو نخاع العظام (الخلايا البائية) تعمل على حذف هذه الخصائص غير المرغوب فيها.

تعتمد وظيفة المستجيب المناعي الطبيعي والتنظيم الاستتباري للاستجابة المناعية على مجموعة متنوعة من المنتجات القابلة للذوبان ، والمعروفة مجتمعة باسم السيتوكينات ، والتي يتم تصنيعها وإفرازها بواسطة الخلايا الليمفاوية وأنواع الخلايا الأخرى. السيتوكينات لها تأثيرات متعددة الموجات على الاستجابات المناعية والالتهابية. التعاون بين مجموعات الخلايا المختلفة مطلوب للاستجابة المناعية - تنظيم استجابات الأجسام المضادة ، وتراكم الخلايا والجزيئات المناعية في مواقع الالتهاب ، وبدء استجابات المرحلة الحادة ، والتحكم في وظيفة البلاعم السامة للخلايا والعديد من العمليات الأخرى المركزية لمقاومة المضيف . تتأثر هذه السيتوكينات ، وتعتمد عليها في كثير من الحالات ، بشكل فردي أو جماعي.

يتم التعرف على ذراعي مناعة محددة - المناعة الخلطية والحصانة الخلوية أو الخلوية:

الحصانة الخلطية. يتم تحفيز الخلايا الليمفاوية B في الذراع الخلطية بعد التعرف على المستضد بواسطة مستقبلات سطح الخلية. مستقبلات المستضد على الخلايا الليمفاوية B هي الغلوبولين المناعي (Ig). تبدأ الخلايا البائية الناضجة (خلايا البلازما) في إنتاج الغلوبولين المناعي الخاص بالمستضد الذي يعمل كأجسام مضادة في مصل الدم أو على طول الأسطح المخاطية. هناك خمس فئات رئيسية من الغلوبولين المناعي: (1) IgM ، Ig خماسي مع قدرة التراص المثلى ، والتي يتم إنتاجها لأول مرة بعد تحفيز المستضد ؛ (2) IgG ، Ig الرئيسي المتداول ، والذي يمكن أن يمر عبر المشيمة ؛ (3) IgA ، إفرازي Ig لحماية الأسطح المخاطية ؛ (4) IgE، Ig fixing to mast cells or basophilic granulocytes المشاركة في تفاعلات فرط الحساسية الفورية و (5) IgD ، وظيفتها الرئيسية كمستقبل على الخلايا اللمفاوية البائية.

مناعة خلوية. يتم التوسط في الذراع الخلوية لجهاز المناعة المحدد بواسطة الخلايا اللمفاوية التائية. تحتوي هذه الخلايا أيضًا على مستقبلات مستضد على أغشيتها. يتعرفون على المستضد إذا تم تقديمه بواسطة الخلايا العارضة للمستضد في سياق مستضدات التوافق النسيجي. ومن ثم ، فإن هذه الخلايا لها قيود بالإضافة إلى خصوصية المستضد. تعمل الخلايا التائية كخلايا مساعدة للعديد من الاستجابات المناعية (بما في ذلك الخلطية) ، وتتوسط في تجنيد الخلايا الالتهابية ، ويمكنها ، كخلايا تي سامة للخلايا ، أن تقتل الخلايا المستهدفة بعد التعرف على مستضد معين.

آليات السمية المناعية

المناعة

تعتمد مقاومة المضيف الفعالة على السلامة الوظيفية لجهاز المناعة ، والتي تتطلب بدورها أن تكون الخلايا والجزيئات المكونة للاستجابات المناعية متوفرة بأعداد كافية وفي شكل تشغيلي. غالبًا ما يتسم نقص المناعة الخلقي عند البشر بعيوب في بعض سلالات الخلايا الجذعية ، مما يؤدي إلى ضعف أو غياب إنتاج الخلايا المناعية. عن طريق القياس مع أمراض نقص المناعة الخلقية والمكتسبة ، قد ينتج كبت المناعة الناتج عن المواد الكيميائية ببساطة عن انخفاض عدد الخلايا الوظيفية (IPCS ، 1996). قد يكون لغياب الخلايا الليمفاوية أو انخفاض عددها تأثيرات عميقة أكثر أو أقل على حالة المناعة. ارتبطت بعض حالات نقص المناعة والتثبيط المناعي الشديد ، كما يمكن أن يحدث في عمليات الزرع أو العلاج المثبط للخلايا ، على وجه الخصوص بزيادة حالات العدوى الانتهازية وبعض الأمراض الورمية. يمكن أن تكون العدوى بكتيرية أو فيروسية أو فطرية أو من الأوالي ، ويعتمد النوع السائد من العدوى على نقص المناعة المرتبط. قد يُتوقع أن يؤدي التعرض للمواد الكيميائية البيئية المثبطة للمناعة إلى أشكال أكثر دقة من كبت المناعة ، والتي قد يكون من الصعب اكتشافها. قد يؤدي ذلك ، على سبيل المثال ، إلى زيادة معدل الإصابة بعدوى مثل الأنفلونزا أو نزلات البرد.

نظرًا لتعقيد جهاز المناعة ، مع وجود مجموعة متنوعة من الخلايا والوسطاء والوظائف التي تشكل شبكة معقدة وتفاعلية ، تتمتع المركبات السامة للمناعة بفرص عديدة لإحداث تأثير. على الرغم من أن طبيعة الآفات الأولية التي تسببها العديد من المواد الكيميائية السامة للمناعة لم يتم توضيحها بعد ، إلا أن هناك معلومات متزايدة متاحة ، مشتقة في الغالب من الدراسات التي أجريت على حيوانات المختبر ، فيما يتعلق بالتغيرات المناعية التي تؤدي إلى اكتئاب وظيفة المناعة (دين وآخرون 1994) . قد تحدث التأثيرات السامة في الوظائف الحاسمة التالية (وبعض الأمثلة معروضة لمركبات سامة للمناعة تؤثر على هذه الوظائف):

  •  تطوير وتوسيع مجموعات الخلايا الجذعية المختلفة (يؤدي البنزين إلى تأثيرات سامة للمناعة على مستوى الخلايا الجذعية ، مما يتسبب في قلة اللمفاويات)
  •  تكاثر الخلايا الليمفاوية والخلايا النخاعية المختلفة وكذلك الأنسجة الداعمة التي تنضج فيها هذه الخلايا وتعمل (مركبات القصدير العضوي السامة للمناعة تكبح النشاط التكاثري للخلايا الليمفاوية في قشرة الغدة الصعترية من خلال السمية الخلوية المباشرة ؛ التأثير السام للغدة من 2,3,7,8،XNUMX،XNUMX،XNUMX-رباعي الكلور -ديبنزو- ب- ديوكسين (TCDD) والمركبات ذات الصلة من المحتمل أن يكون بسبب خلل في وظيفة الخلايا الظهارية الصعترية ، بدلاً من السمية المباشرة للخلايا التوتية)
  •  امتصاص المستضد ومعالجته وعرضه بواسطة الضامة والخلايا الأخرى التي تقدم المستضد (أحد أهداف 7,12،XNUMX-ثنائي ميثيل بنز (أ) أنثراسين (DMBA) والرصاص هو عرض مستضد بواسطة الضامة ؛ هدف الأشعة فوق البنفسجية هو المستضد- تقديم خلية لانجرهانز)
  •  الوظيفة التنظيمية للخلايا T-helper و T-suppressor (تتأثر وظيفة الخلية المساعدة T بسبب القصدير العضوي والألديكارب وثنائي الفينيل متعدد الكلور (PCBs) و TCDD و DMBA ؛ يتم تقليل وظيفة الخلايا التائية القاتلة عن طريق العلاج بجرعة منخفضة من السيكلوفوسفاميد)
  •  إنتاج السيتوكينات المختلفة أو الإنترلوكينات (benzo (a) pyrene (BP) يثبط إنتاج interleukin-1 ؛ الأشعة فوق البنفسجية تغير إنتاج السيتوكينات بواسطة الخلايا الكيراتينية)
  •  يتم قمع تخليق فئات مختلفة من الغلوبولين المناعي IgM و IgG بعد علاج ثنائي الفينيل متعدد الكلور وأكسيد ثلاثي بوتيل القصدير (TBT) ، ويزيد بعد التعرض لسداسي كلورو البنزين (HCB)).
  •  التنظيم التكميلي والتفعيل (يتأثر بـ TCDD)
  •  وظيفة الخلايا التائية السامة للخلايا (3-ميثيل كولانثرين (3-MC) ، DMBA ، و TCDD تثبط نشاط الخلايا التائية السامة للخلايا)
  •  وظيفة الخلية القاتلة الطبيعية (NK) (يتم قمع نشاط NK الرئوي بواسطة الأوزون ؛ نشاط NK الطحال يضعف بالنيكل)
  •  البلاعم والتركيز الكيميائي للكريات البيض متعددة الأشكال والوظائف السامة للخلايا (الأوزون وثاني أكسيد النيتروجين يضعفان النشاط البلعمي للبلاعم السنخية).

 

حساسية

حساسية يمكن تعريفها على أنها الآثار الصحية الضارة التي تنتج عن تحريض واستنباط استجابات مناعية محددة. عندما تحدث تفاعلات فرط الحساسية دون تدخل الجهاز المناعي ، فإن هذا المصطلح الحساسية الزائفة يستخدم. في سياق علم السموم المناعية ، تنتج الحساسية من استجابة مناعية محددة للمواد الكيميائية والأدوية ذات الأهمية. ترتبط قدرة مادة كيميائية على توعية الأفراد عمومًا بقدرتها على الارتباط تساهميًا ببروتينات الجسم. قد تتخذ تفاعلات الحساسية أشكالًا متنوعة وتختلف هذه فيما يتعلق بكل من الآليات المناعية الأساسية وسرعة التفاعل. تم التعرف على أربعة أنواع رئيسية من تفاعلات الحساسية: تفاعلات فرط الحساسية من النوع الأول ، والتي يتم تفعيلها بواسطة الأجسام المضادة IgE حيث تظهر الأعراض في غضون دقائق من تعرض الشخص المصاب بالحساسية. تنجم تفاعلات فرط الحساسية من النوع الثاني عن تلف أو تدمير الخلايا المضيفة بواسطة الجسم المضاد. في هذه الحالة تظهر الأعراض في غضون ساعات. تفاعلات فرط الحساسية من النوع الثالث ، أو آرثوس ، هي أيضًا تفاعلات جسم مضاد ، ولكن ضد مستضد قابل للذوبان ، وتنتج عن العمل المحلي أو النظامي للمجمعات المناعية. النوع الرابع ، أو فرط الحساسية من النوع المتأخر ، تتأثر بالخلايا اللمفاوية التائية وتتطور الأعراض عادة من 24 إلى 48 ساعة بعد تعرض الشخص المصاب بالحساسية.

نوعان من الحساسية الكيميائية الأكثر صلة بالصحة المهنية هما حساسية التلامس أو حساسية الجلد وحساسية الجهاز التنفسي.

فرط الحساسية التلامسية. هناك عدد كبير من المواد الكيميائية القادرة على التسبب في حساسية الجلد. بعد التعرض الموضعي لفرد حساس لمسببات الحساسية الكيميائية ، يتم تحفيز استجابة الخلايا اللمفاوية التائية في العقد الليمفاوية النازفة. يتفاعل مسبب الحساسية في الجلد بشكل مباشر أو غير مباشر مع خلايا لانجرهانز الموجودة في البشرة ، والتي تنقل المادة الكيميائية إلى الغدد الليمفاوية وتقدمها في شكل مناعي إلى الخلايا اللمفاوية التائية المستجيبة. تتكاثر الخلايا اللمفاوية التائية المنشطة للحساسية ، مما يؤدي إلى توسع نسيلي. أصبح الفرد الآن حساسًا وسيستجيب لتعرض جلدي ثانٍ لنفس المادة الكيميائية باستجابة مناعية أكثر عدوانية ، مما يؤدي إلى التهاب الجلد التماسي التحسسي. يكون التفاعل الالتهابي الجلدي الذي يميز التهاب الجلد التماسي التحسسي ثانويًا للتعرف على مسببات الحساسية في الجلد بواسطة الخلايا اللمفاوية التائية المحددة. يتم تنشيط هذه الخلايا الليمفاوية ، وتطلق السيتوكينات وتتسبب في التراكم المحلي للكريات البيض وحيدة النواة الأخرى. تظهر الأعراض بعد حوالي 24 إلى 48 ساعة بعد تعرض الشخص المصاب بالحساسية ، وبالتالي فإن التهاب الجلد التماسي التحسسي يمثل شكلاً من أشكال فرط الحساسية المتأخرة. تشمل الأسباب الشائعة لالتهاب الجلد التماسي التحسسي المواد الكيميائية العضوية (مثل 2,4،XNUMX-dinitrochlorobenzene) والمعادن (مثل النيكل والكروم) والمنتجات النباتية (مثل urushiol من اللبلاب السام).

فرط الحساسية التنفسية. عادة ما تعتبر فرط الحساسية التنفسية تفاعل فرط الحساسية من النوع الأول. ومع ذلك ، قد تتضمن تفاعلات المرحلة المتأخرة والأعراض المزمنة المرتبطة بالربو عمليات مناعية بوساطة الخلايا (النوع الرابع). الأعراض الحادة المصاحبة لحساسية الجهاز التنفسي تتأثر بالجسم المضاد IgE ، الذي يتم تحفيز إنتاجه بعد تعرض الفرد المعرض للحساسية الكيميائية المحرضة. يتوزع الجسم المضاد IgE بشكل منهجي ويرتبط ، عبر مستقبلات الغشاء ، بالخلايا البدينة الموجودة في الأنسجة الوعائية ، بما في ذلك الجهاز التنفسي. بعد استنشاق نفس المادة الكيميائية سيحدث تفاعل فرط حساسية في الجهاز التنفسي. ترتبط المواد المسببة للحساسية بالبروتين وتتصل بالجسم المضاد IgE المرتبط بالخلايا البدينة ويرتبط بها. وهذا بدوره يتسبب في تحلل الخلايا البدينة وإطلاق الوسطاء الالتهابيين مثل الهيستامين والليوكوترين. يسبب هؤلاء الوسطاء تضيق القصبات وتوسع الأوعية ، مما يؤدي إلى أعراض حساسية الجهاز التنفسي ؛ الربو و / أو التهاب الأنف. تشمل المواد الكيميائية المعروفة بأنها تسبب فرط الحساسية في الجهاز التنفسي لدى الإنسان أنهيدريد حامض (مثل أنهيدريد التريميليت) ، وبعض ثنائي أيزوسيانات (مثل التولوين ثنائي أيزوسيانات) ، وأملاح البلاتين وبعض الأصباغ التفاعلية. ومن المعروف أيضًا أن التعرض المزمن للبريليوم يسبب فرط الحساسية لأمراض الرئة.

المناعة الذاتية

المناعة الذاتية يمكن تعريفه على أنه تحفيز الاستجابات المناعية المحددة الموجهة ضد المستضدات الذاتية "الذاتية". يمكن أن تنتج المناعة الذاتية المستحثة إما عن تغيرات في توازن الخلايا الليمفاوية التائية التنظيمية أو من ارتباط كائن حيوي غريب بمكونات الأنسجة الطبيعية مثل جعلها مناعية ("الذات المتغيرة"). الأدوية والمواد الكيميائية المعروفة بإحداث أو تفاقم تأثيرات مثل أمراض المناعة الذاتية (AD) في الأفراد المعرضين للإصابة هي مركبات منخفضة الوزن الجزيئي (الوزن الجزيئي 100 إلى 500) والتي تعتبر بشكل عام غير مناعية. آلية مرض الزهايمر عن طريق التعرض للمواد الكيميائية غير معروفة في الغالب. يمكن أن ينتج المرض مباشرة عن طريق تدوير الجسم المضاد ، بشكل غير مباشر من خلال تكوين معقدات مناعية ، أو كنتيجة لمناعة خلوية ، ولكن من المحتمل أن يحدث من خلال مجموعة من الآليات. يُعرف التسبب في المرض بشكل أفضل في اضطرابات انحلال الدم المناعي التي تحدثها الأدوية:

  •  يمكن أن يلتصق الدواء بغشاء الخلية الحمراء ويتفاعل مع الجسم المضاد الخاص بالعقار.
  •  يمكن للدواء أن يغير غشاء الخلية الحمراء بحيث يعتبر الجهاز المناعي الخلية غريبة.
  •  يشكل الدواء والأجسام المضادة الخاصة به مركبات مناعية تلتصق بغشاء الخلية الحمراء لتسبب الإصابة.
  •  تحدث حساسية الخلايا الحمراء بسبب إنتاج الأجسام المضادة للخلايا الحمراء.

 

تم العثور على مجموعة متنوعة من المواد الكيميائية والعقاقير ، ولا سيما الأخيرة ، للحث على استجابات تشبه المناعة الذاتية (Kamüller، Bloksma and Seinen 1989). قد يؤدي التعرض المهني للمواد الكيميائية بشكل عرضي إلى متلازمات شبيهة بمرض الزهايمر. قد يؤدي التعرض لكلوريد الفينيل الأحادي وثلاثي كلورو الإيثيلين والبيركلورو إيثيلين وراتنجات الإيبوكسي وغبار السيليكا إلى حدوث متلازمات تشبه تصلب الجلد. تم وصف متلازمة شبيهة بالذئبة الحمامية الجهازية (SLE) بعد التعرض للهيدرازين. ارتبط التعرض لمادة ثنائي أيزوسيانات التولوين بتحريض فرفرية نقص الصفيحات. المعادن الثقيلة مثل الزئبق متورطة في بعض حالات التهاب كبيبات الكلى المعقد المناعي.

تقييم المخاطر البشرية

يتم إجراء تقييم حالة المناعة البشرية بشكل أساسي باستخدام الدم المحيطي لتحليل المواد الخلطية مثل الغلوبولين المناعي والمكملات ، وكريات الدم البيضاء لتكوين المجموعات الفرعية ووظائف المجموعات السكانية الفرعية. عادة ما تكون هذه الطرق هي نفسها المستخدمة في فحص المناعة الخلطية والخلوية بالإضافة إلى المقاومة غير النوعية للمرضى الذين يشتبه في إصابتهم بمرض نقص المناعة الخلقي. بالنسبة للدراسات الوبائية (على سبيل المثال ، للسكان المعرضين مهنياً) ، يجب اختيار المعلمات على أساس قيمتها التنبؤية في التجمعات البشرية ، والنماذج الحيوانية التي تم التحقق من صحتها ، والبيولوجيا الأساسية للواسمات (انظر الجدول 1). تعتمد استراتيجية فحص التأثيرات السمية المناعية بعد التعرض (العرضي) للملوثات البيئية أو غيرها من المواد السامة إلى حد كبير على الظروف ، مثل نوع نقص المناعة المتوقع ، والوقت بين التعرض وتقييم الحالة المناعية ، ودرجة التعرض وعدد الأفراد المعرضين. عملية تقييم مخاطر السمية المناعية لحيوان أجنبي معين في البشر صعبة للغاية وغالباً ما تكون مستحيلة ، ويرجع ذلك إلى حد كبير إلى وجود عوامل مربكة مختلفة من أصل داخلي أو خارجي المنشأ التي تؤثر على استجابة الأفراد للضرر السام. هذا صحيح بشكل خاص للدراسات التي تبحث في دور التعرض للمواد الكيميائية في أمراض المناعة الذاتية ، حيث تلعب العوامل الوراثية دورًا حاسمًا.

الجدول 1. تصنيف الاختبارات لعلامات المناعة

فئة الاختبار الخصائص اختبارات محددة
أساسيات عامة
يجب تضمينها مع اللوحات العامة
مؤشرات الصحة العامة وحالة نظام الجهاز نيتروجين اليوريا في الدم ، جلوكوز الدم ، إلخ.
المناعة الأساسية
يجب تضمينها مع اللوحات العامة
المؤشرات العامة للحالة المناعية
تكلفة منخفضة نسبيًا
يتم توحيد طرق الفحص بين المختبرات
النتائج خارج النطاقات المرجعية قابلة للتفسير سريريًا
تعداد الدم الكامل
مستويات مصل IgG و IgA و IgM
الأنماط الظاهرية للعلامة السطحية لمجموعات فرعية من الخلايا الليمفاوية الرئيسية
التركيز / المنعكس
يجب تضمينها عند الإشارة إليها من خلال النتائج السريرية أو حالات التعرض المشتبه بها أو نتائج الاختبار السابقة
مؤشرات وظائف / أحداث مناعية محددة
التكلفة تختلف
يتم توحيد طرق الفحص بين المختبرات
النتائج خارج النطاقات المرجعية قابلة للتفسير سريريًا
التركيب الجيني التوافق النسيجي
الأجسام المضادة للعوامل المعدية
إجمالي مصل IgE
IgE الخاص بمسببات الحساسية
الأجسام المضادة
اختبارات الجلد لفرط الحساسية
انفجار مؤكسد المحببات
علم التشريح المرضي (خزعة الأنسجة)
أبحاث
يجب تضمينها فقط مع مجموعات التحكم وتصميم الدراسة الدقيق
مؤشرات وظائف / أحداث مناعية عامة أو محددة
التكلفة تختلف. غالبًا ما تكون باهظة الثمن
عادة لا يتم توحيد طرق الفحص بين المختبرات
غالبًا ما تكون النتائج خارج النطاقات المرجعية غير قابلة للتفسير سريريًا
فحوصات التحفيز في المختبر
علامات سطح تنشيط الخلية
تركيزات مصل السيتوكين
فحوصات استنساخ (جسم مضاد ، خلوي ، وراثي)
اختبارات السمية الخلوية

 

نظرًا لأن البيانات البشرية المناسبة نادرًا ما تتوفر ، فإن تقييم مخاطر التثبيط المناعي الناجم عن المواد الكيميائية لدى البشر يعتمد في معظم الحالات على دراسات أجريت على الحيوانات. يتم تحديد xenobiotics المحتملة السامة للمناعة في المقام الأول في الدراسات الخاضعة للرقابة في القوارض. تقدم دراسات التعرض في الجسم الحي ، في هذا الصدد ، النهج الأمثل لتقدير إمكانات السمية المناعية للمركب. هذا يرجع إلى الطبيعة المتعددة العوامل والمعقدة لجهاز المناعة والاستجابات المناعية. الدراسات في المختبر لها قيمة متزايدة في توضيح آليات السمية المناعية. بالإضافة إلى ذلك ، من خلال التحقيق في تأثيرات المركب باستخدام خلايا من أصل حيواني وبشري ، يمكن إنشاء بيانات لمقارنة الأنواع ، والتي يمكن استخدامها في نهج "متوازي الأضلاع" لتحسين عملية تقييم المخاطر. إذا كانت البيانات متاحة لثلاثة أحجار زاوية في متوازي الأضلاع (في الحيوان الحي ، وفي الحيوانات المختبرية والإنسان) ، فقد يكون من الأسهل التنبؤ بالنتيجة في حجر الزاوية المتبقي ، أي الخطر على البشر.

عندما يجب أن يعتمد تقييم مخاطر التثبيط المناعي الناجم عن المواد الكيميائية فقط على البيانات من الدراسات على الحيوانات ، يمكن اتباع نهج في الاستقراء للإنسان عن طريق تطبيق عوامل عدم اليقين على مستوى التأثير الضار غير الملحوظ (NOAEL). يمكن أن يعتمد هذا المستوى على معلمات محددة في النماذج ذات الصلة ، مثل فحوصات مقاومة المضيف والتقييم في الجسم الحي لتفاعلات فرط الحساسية وإنتاج الجسم المضاد. من الناحية المثالية ، تتطلب أهمية هذا النهج لتقييم المخاطر تأكيدًا من خلال الدراسات التي أجريت على البشر. يجب أن تجمع هذه الدراسات بين تحديد وقياس السمية والبيانات الوبائية وتقييمات الحالة المناعية.

للتنبؤ بفرط الحساسية التلامسية ، تتوفر نماذج لخنازير غينيا وقد تم استخدامها في تقييم المخاطر منذ السبعينيات. على الرغم من أن هذه الاختبارات حساسة وقابلة للتكرار ، إلا أن لها قيودًا لأنها تعتمد على التقييم الذاتي ؛ يمكن التغلب على هذا من خلال طرق أحدث وأكثر كمية تم تطويرها في الماوس. فيما يتعلق بفرط الحساسية الناتج عن المواد الكيميائية الناجم عن استنشاق أو ابتلاع المواد المسببة للحساسية ، يجب تطوير الاختبارات وتقييمها من حيث قيمتها التنبؤية في الإنسان. عندما يتعلق الأمر بتحديد مستويات التعرض المهني الآمن لمسببات الحساسية المحتملة ، يجب مراعاة الطبيعة ثنائية الطور للحساسية: مرحلة التحسس ومرحلة الاستثارة. التركيز المطلوب لإثارة رد فعل تحسسي لدى فرد حساس سابقًا أقل بكثير من التركيز اللازم للحث على التحسس لدى الفرد الساذج مناعيًا ولكنه حساس.

نظرًا لعدم وجود نماذج حيوانية للتنبؤ بالمناعة الذاتية الناتجة عن المواد الكيميائية ، يجب التركيز على تطوير مثل هذه النماذج. لتطوير مثل هذه النماذج ، يجب تطوير معرفتنا بالمناعة الذاتية التي تسببها المواد الكيميائية في البشر ، بما في ذلك دراسة العلامات الجينية وعلامات الجهاز المناعي لتحديد الأفراد المعرضين للإصابة. يقدم البشر الذين يتعرضون للعقاقير التي تحفز المناعة الذاتية مثل هذه الفرصة.

 

الرجوع

الأحد، 16 يناير 2011 16: 34

علم السموم الوراثي

علم السموم الجيني ، بحكم التعريف ، هو دراسة كيفية تأثير العوامل الكيميائية أو الفيزيائية على عملية الوراثة المعقدة. تُعرَّف المواد الكيميائية السامة للجينات بأنها مركبات قادرة على تعديل المادة الوراثية للخلايا الحية. يعتمد احتمال أن تسبب مادة كيميائية معينة ضررًا وراثيًا حتمًا على عدة متغيرات ، بما في ذلك مستوى تعرض الكائن الحي للمادة الكيميائية ، وتوزيع المادة الكيميائية والاحتفاظ بها بمجرد دخولها الجسم ، وكفاءة التنشيط الأيضي و / أو أنظمة إزالة السموم في الأنسجة المستهدفة ، وتفاعل المادة الكيميائية أو نواتجها مع الجزيئات الكبيرة الحرجة داخل الخلايا. يعتمد احتمال أن يتسبب الضرر الجيني في المرض في نهاية المطاف على طبيعة الضرر ، وقدرة الخلية على إصلاح أو تضخيم الضرر الجيني ، وفرصة التعبير عن أي تغيير تم إحداثه ، وقدرة الجسم على التعرف على تكاثر وتثبيته. الخلايا الشاذة.

في الكائنات الحية الأعلى ، يتم تنظيم المعلومات الوراثية في الكروموسومات. تتكون الكروموسومات من خيوط مكثفة بإحكام من الحمض النووي المرتبط بالبروتين. داخل كروموسوم واحد ، يوجد كل جزيء DNA كزوج من سلاسل طويلة غير متفرعة من الوحدات الفرعية للنيوكليوتيدات المرتبطة ببعضها البعض بواسطة روابط phosphodiester التي تنضم إلى الكربون الخامس لشق ديوكسيريبوز واحد إلى الكربون الثالث التالي (الشكل 5). بالإضافة إلى ذلك ، يتم إرفاق واحدة من أربع قواعد نيوكليوتيدات مختلفة (الأدينين ، السيتوزين ، الجوانين أو الثايمين) بكل وحدة فرعية ديوكسيريبوز مثل الخرز على سلسلة. ثلاثي الأبعاد ، يشكل كل زوج من خيوط الحمض النووي حلزونًا مزدوجًا مع توجيه جميع القواعد نحو داخل اللولب. داخل اللولب ، ترتبط كل قاعدة بقاعدتها التكميلية على خيط DNA المقابل ؛ تملي الرابطة الهيدروجينية الاقتران القوي غير التساهمي للأدينين مع الثايمين والجوانين مع السيتوزين (الشكل 3). نظرًا لأن تسلسل قواعد النوكليوتيدات مكمل طوال طول جزيء الحمض النووي المزدوج ، فإن كلا الخيطين يحملان نفس المعلومات الجينية بشكل أساسي. في الواقع ، أثناء تكرار الحمض النووي ، يعمل كل خيط كقالب لإنتاج حبلا شريك جديد.

الشكل 1. (أ) الأساسي ، (ب) الثانوي ، (ج) التنظيم العالي للمعلومات الوراثية البشرية

TOX090F1باستخدام RNA ومجموعة من البروتينات المختلفة ، تقوم الخلية في النهاية بفك شفرة المعلومات المشفرة بواسطة التسلسل الخطي للقواعد داخل مناطق معينة من الحمض النووي (الجينات) وتنتج بروتينات ضرورية لبقاء الخلية الأساسية وكذلك النمو الطبيعي والتمايز. في جوهرها ، تعمل النيوكليوتيدات مثل الأبجدية البيولوجية التي تُستخدم لترميز الأحماض الأمينية ، وهي اللبنات الأساسية للبروتينات.

عندما يتم إدخال نيوكليوتيدات غير صحيحة أو فقدان نيوكليوتيدات ، أو عند إضافة نيوكليوتيدات غير ضرورية أثناء تخليق الحمض النووي ، يسمى الخطأ طفرة. تشير التقديرات إلى حدوث أقل من طفرة واحدة لكل 109 تم دمج النيوكليوتيدات أثناء التكاثر الطبيعي للخلايا. على الرغم من أن الطفرات ليست بالضرورة ضارة ، فإن التغييرات التي تسبب تعطيل أو زيادة التعبير عن الجينات المهمة يمكن أن تؤدي إلى مجموعة متنوعة من الاضطرابات ، بما في ذلك السرطان والأمراض الوراثية والتشوهات التنموية والعقم والموت الجنيني أو في الفترة المحيطة بالولادة. في حالات نادرة جدًا ، يمكن أن تؤدي الطفرة إلى تعزيز البقاء على قيد الحياة ؛ مثل هذه التكرارات هي أساس الانتقاء الطبيعي.

على الرغم من أن بعض المواد الكيميائية تتفاعل مباشرة مع الحمض النووي ، إلا أن معظمها يتطلب تنشيط التمثيل الغذائي. في الحالة الأخيرة ، تكون الوسائط المحبة للكهرباء مثل الإيبوكسيدات أو أيونات الكربون هي المسؤولة في النهاية عن إحداث الآفات في مجموعة متنوعة من المواقع المحبة للنواة داخل المادة الوراثية (الشكل 2). في حالات أخرى ، يتم التوسط في السمية الجينية من خلال المنتجات الثانوية للتفاعل المركب مع الدهون داخل الخلايا أو البروتينات أو الأكسجين.

الشكل 2. التنشيط الحيوي لما يلي: أ) بنزو (أ) بيرين ؛ و ب) N- نيتروسودي ميثيل أمين

TOX090F2

بسبب وفرتها النسبية في الخلايا ، فإن البروتينات هي الهدف الأكثر شيوعًا للتفاعلات السامة. ومع ذلك ، يعد تعديل الحمض النووي مصدر قلق أكبر بسبب الدور المركزي لهذا الجزيء في تنظيم النمو والتمايز من خلال أجيال متعددة من الخلايا.

على المستوى الجزيئي ، تميل المركبات المحبة للكهرباء إلى مهاجمة الأكسجين والنيتروجين في الحمض النووي. المواقع الأكثر عرضة للتعديل موضحة في الشكل 3. على الرغم من أن الأكسجين داخل مجموعات الفوسفات في العمود الفقري للحمض النووي هي أيضًا أهداف للتعديل الكيميائي ، يُعتقد أن الضرر الذي يلحق بالقواعد أكثر صلة من الناحية البيولوجية نظرًا لأن هذه المجموعات تعتبر المعلومات الأساسية عناصر في جزيء الحمض النووي.

الشكل 3. المواقع الأولية لتلف الحمض النووي الناجم كيميائياً

TOX090F3

عادةً ما تمارس المركبات التي تحتوي على جزء محب للكهرباء السمية الجينية عن طريق إنتاج أحاديات المقربة في الحمض النووي. وبالمثل ، يمكن للمركبات التي تحتوي على شقين تفاعليين أو أكثر أن تتفاعل مع مركزين مختلفين للنواة ، وبالتالي تنتج روابط متقاطعة داخل أو بين الجزيئات في المادة الوراثية (الشكل 4). يمكن أن تكون الارتباطات المتقاطعة بين DNA-DNA و DNA-البروتين سامة للخلايا بشكل خاص لأنها يمكن أن تشكل كتل كاملة لتكرار الحمض النووي. ولأسباب واضحة ، فإن موت الخلية يقضي على احتمالية تحورها أو تحوّلها الورمي. يمكن أن تعمل العوامل السامة للجينات أيضًا عن طريق إحداث فواصل في العمود الفقري للفوسفوديستر ، أو بين القواعد والسكريات (إنتاج مواقع غير أساسية) في الحمض النووي. قد تكون هذه الفواصل نتيجة مباشرة للتفاعل الكيميائي في موقع الضرر ، أو قد تحدث أثناء إصلاح أحد الأنواع المذكورة أعلاه من آفة الحمض النووي.

الشكل 4. أنواع مختلفة من الأضرار التي لحقت بمركب البروتين والحمض النووي

TOX090F4

على مدى الثلاثين إلى الأربعين عامًا الماضية ، تم تطوير مجموعة متنوعة من التقنيات لرصد نوع الضرر الجيني الناجم عن المواد الكيميائية المختلفة. يتم وصف هذه الاختبارات بالتفصيل في مكان آخر من هذا الفصل و موسوعة.

قد يؤدي اختلال "التكاثر الدقيق" مثل المقاربات الأحادية أو المواقع اللاهوائية أو الفواصل أحادية الخيط في النهاية إلى بدائل زوج القاعدة النوكليوتيدية ، أو إدخال أو حذف شظايا عديد النوكليوتيد القصيرة في الحمض النووي الصبغي. في المقابل ، قد تؤدي "التحولات الكبيرة" ، مثل التقريب الضخم ، أو الروابط المتقاطعة ، أو الفواصل المزدوجة الجديلة إلى اكتساب أو فقدان أو إعادة ترتيب قطع كبيرة نسبيًا من الكروموسومات. على أي حال ، يمكن أن تكون العواقب مدمرة للكائن الحي لأن أيًا من هذه الأحداث يمكن أن يؤدي إلى موت الخلايا أو فقدان الوظيفة أو التحول الخبيث للخلايا. إن الكيفية الدقيقة التي يتسبب بها تلف الحمض النووي في الإصابة بالسرطان غير معروفة إلى حد كبير. يُعتقد حاليًا أن العملية قد تنطوي على تنشيط غير مناسب للجينات المسرطنة الأولية مثل myc و رأسو / أو تعطيل الجينات المثبطة للورم التي تم تحديدها مؤخرًا مثل p53. يؤدي التعبير غير الطبيعي لأي نوع من الجينات إلى إبطال الآليات الخلوية الطبيعية للتحكم في تكاثر الخلايا و / أو التمايز.

تشير كثرة الأدلة التجريبية إلى أن تطور السرطان بعد التعرض للمركبات المحبة للكهرباء يعد حدثًا نادرًا نسبيًا. يمكن تفسير ذلك جزئيًا بالقدرة الذاتية للخلية على التعرف على الحمض النووي التالف وإصلاحه أو فشل الخلايا ذات الحمض النووي التالف في البقاء على قيد الحياة. أثناء الإصلاح ، تتم إزالة القاعدة التالفة أو النيوكليوتيدات أو الامتداد القصير من النيوكليوتيدات المحيطة بموقع الضرر و (باستخدام الشريط المعاكس كقالب) يتم تصنيع قطعة جديدة من الحمض النووي وتقسيمها في مكانها. لكي تكون فعالة ، يجب أن يتم إصلاح الحمض النووي بدقة كبيرة قبل انقسام الخلية ، قبل فرص انتشار الطفرة.

أظهرت الدراسات السريرية أن الأشخاص الذين يعانون من عيوب وراثية في القدرة على إصلاح تلف الحمض النووي غالبًا ما يصابون بالسرطان و / أو تشوهات النمو في سن مبكرة (الجدول 1). توفر مثل هذه الأمثلة دليلاً قوياً يربط بين تراكم تلف الحمض النووي والأمراض التي تصيب الإنسان. وبالمثل ، فإن العوامل التي تعزز تكاثر الخلايا (مثل خلات tetradecanoylphorbol) غالبًا ما تعزز التسرطن. بالنسبة لهذه المركبات ، قد يكون الاحتمال المتزايد للتحول الورمي نتيجة مباشرة لانخفاض الوقت المتاح للخلية لإجراء إصلاح مناسب للحمض النووي.

الجدول 1. الاضطرابات الوراثية المعرضة للسرطان والتي يبدو أنها تنطوي على عيوب في إصلاح الحمض النووي

أعراض أعراض النمط الظاهري الخلوي
ترنح توسع الشعريات التدهور العصبي
نقص المناعة
ارتفاع معدل الإصابة بسرطان الغدد الليمفاوية
فرط الحساسية للإشعاع المؤين وبعض عوامل الألكلة.
تكرار غير منظم للحمض النووي التالف (قد يشير إلى تقصير الوقت لإصلاح الحمض النووي)
متلازمة بلوم تشوهات النمو
آفات على الجلد المكشوف
ارتفاع نسبة الإصابة بأورام الجهاز المناعي والجهاز الهضمي
ارتفاع معدل الانحرافات الصبغية
خلل في الربط المرتبط بإصلاح الحمض النووي
فقر فانسوني تأخر النمو
ارتفاع معدل الإصابة بسرطان الدم
فرط الحساسية لعوامل التشابك
ارتفاع معدل الانحرافات الصبغية
الإصلاح المعيب للروابط المتقاطعة في الحمض النووي
سرطان القولون الوراثي nonpolyposis ارتفاع نسبة الإصابة بسرطان القولون خلل في إصلاح عدم تطابق الحمض النووي (عندما يحدث إدخال نيوكليوتيد خاطئ أثناء النسخ المتماثل)
جفاف الجلد المصطبغ ارتفاع نسبة الإصابة بورم الظهارة في المناطق المكشوفة من الجلد
ضعف عصبي (في كثير من الحالات)
فرط الحساسية للأشعة فوق البنفسجية والعديد من المواد الكيميائية المسرطنة
عيوب في إصلاح الختان و / أو تكرار الحمض النووي التالف

 

يمكن إرجاع النظريات المبكرة حول كيفية تفاعل المواد الكيميائية مع الحمض النووي إلى الدراسات التي أجريت أثناء تطوير غاز الخردل لاستخدامه في الحرب. نما مزيد من الفهم من الجهود المبذولة لتحديد العوامل المضادة للسرطان التي من شأنها أن توقف بشكل انتقائي تكاثر الخلايا السرطانية سريعة الانقسام. أدى القلق العام المتزايد بشأن المخاطر في بيئتنا إلى إجراء مزيد من البحث في آليات وعواقب التفاعل الكيميائي مع المادة الوراثية. يتم عرض أمثلة على أنواع مختلفة من المواد الكيميائية التي تمارس السمية الجينية في الجدول 2.

الجدول 2. أمثلة على المواد الكيميائية التي تظهر السمية الجينية في الخلايا البشرية

فئة المواد الكيميائية مثال مصدر التعرض الآفة المحتملة السمية الجينية
الأفلاتوكسين أفلاتوكسين ب 1 طعام ملوث تقارب الحمض النووي الضخم
الأمينات العطرية 2-أسيتامينوفلورين بيئي تقارب الحمض النووي الضخم
كينونات أزيريديني ميتوميسين ج العلاج الكيميائي للسرطان المقاربات الأحادية ، الروابط المتشابكة المتداخلة والفواصل أحادية الخيط في الحمض النووي.
الهيدروكربونات المكلورة كلوريد الفينيل بيئي المقاربات الأحادية في الحمض النووي
المعادن والمركبات المعدنية سيسبلاتين العلاج الكيميائي للسرطان كل من الروابط المتقاطعة داخل وبين حبلا في الحمض النووي
  مركبات النيكل بيئي المقاربات الأحادية والكسر أحادي الخيط في الحمض النووي
خردل النيتروجين سيكلوفوسفاميد العلاج الكيميائي للسرطان المقاربات الأحادية والارتباطات المتشابكة في الحمض النووي
النتروزامين N- نيتروسوديميثيل أمين طعام ملوث المقاربات الأحادية في الحمض النووي
الهيدروكربونات العطرية متعددة الحلقات بنزو (أ) بيرين بيئي تقارب الحمض النووي الضخم

 

الرجوع

الأحد، 16 يناير 2011 16: 29

الإصابة الخلوية والموت الخلوي

كل الأدوية تقريبًا مكرسة إما لمنع موت الخلايا في أمراض مثل احتشاء عضلة القلب والسكتة الدماغية والصدمات والصدمات ، أو التسبب في ذلك ، كما في حالة الأمراض المعدية والسرطان. لذلك ، من الضروري فهم الطبيعة والآليات المعنية. تم تصنيف موت الخلية على أنه "عرضي" ، أي بسبب عوامل سامة ونقص تروية وما إلى ذلك ، أو "مبرمج" ، كما يحدث أثناء التطور الجنيني ، بما في ذلك تكوين الأصابع وارتشاف ذيل الشرغوف.

لذلك ، فإن إصابة الخلايا وموتها مهمان في كل من علم وظائف الأعضاء والفيزيولوجيا المرضية. موت الخلايا الفسيولوجي مهم للغاية أثناء التطور الجنيني والتطور الجنيني. أدت دراسة موت الخلايا أثناء التطور إلى معلومات مهمة وجديدة عن الجينات الجزيئية المعنية ، خاصة من خلال دراسة التطور في الحيوانات اللافقارية. في هذه الحيوانات ، تمت دراسة الموقع الدقيق وأهمية الخلايا التي ستخضع لموت الخلايا بعناية ، وباستخدام تقنيات الطفرات التقليدية ، تم الآن تحديد العديد من الجينات المعنية. في الأعضاء البالغة ، يتحكم التوازن بين موت الخلايا وتكاثر الخلايا في حجم الأعضاء. في بعض الأعضاء ، مثل الجلد والأمعاء ، هناك دوران مستمر للخلايا. في الجلد ، على سبيل المثال ، تتمايز الخلايا عند وصولها إلى السطح ، وتخضع أخيرًا للتمايز النهائي وموت الخلايا بينما يستمر التقرن في تكوين مغلفات متشابكة.

العديد من فئات المواد الكيميائية السامة قادرة على إحداث إصابة الخلايا الحادة تليها الموت. وتشمل هذه نقص الأكسجين ونقص التروية ونظائرها الكيميائية مثل سيانيد البوتاسيوم ؛ المواد الكيميائية المسرطنة ، والتي تشكل مركبات كهربائية ترتبط تساهميًا بالبروتينات الموجودة في الأحماض النووية ؛ المواد الكيميائية المؤكسدة ، مما يؤدي إلى تكوين الجذور الحرة والأضرار المؤكسدة ؛ تفعيل المكمل. ومجموعة متنوعة من حامض أيون الكالسيوم. موت الخلية هو أيضا عنصر مهم في التسرطن الكيميائي. العديد من المواد الكيميائية المسرطنة الكاملة ، عند الجرعات المسببة للسرطان ، تنتج نخرًا حادًا والتهابًا يتبعه التجدد وتكوين الأورام.

التعريفات

إصابة الخلية

تُعرَّف إصابة الخلية بأنها حدث أو حافز ، مثل مادة كيميائية سامة ، تزعج التوازن الطبيعي للخلية ، مما يتسبب في حدوث عدد من الأحداث (الشكل 1). الأهداف الرئيسية للإصابة المميتة الموضحة هي تثبيط تخليق ATP أو تعطيل سلامة غشاء البلازما أو سحب عوامل النمو الأساسية.

الشكل 1. إصابة الخلية

TOX060F1

تؤدي الإصابات المميتة إلى موت الخلية بعد فترة زمنية متغيرة ، حسب درجة الحرارة ونوع الخلية والمحفز ؛ أو يمكن أن تكون غير مميتة أو مزمنة - أي أن الإصابة تؤدي إلى حالة استتباب متغيرة والتي ، على الرغم من كونها غير طبيعية ، لا تؤدي إلى موت الخلايا (Trump and Arstila 1971؛ Trump and Berezesky 1992؛ Trump and Berezesky 1995؛ Trump، Berezesky and أوسورنيو فارغاس 1981). في حالة الإصابة المميتة ، هناك مرحلة تسبق وقت موت الخلية

خلال هذا الوقت ، ستتعافى الخلية ؛ ومع ذلك ، بعد نقطة زمنية معينة ("نقطة اللاعودة" أو نقطة موت الخلية) ، فإن إزالة الإصابة لا تؤدي إلى الشفاء ولكن بدلاً من ذلك تخضع الخلية للتدهور والتحلل المائي ، مما يؤدي في النهاية إلى تحقيق التوازن الفيزيائي والكيميائي مع بيئة. هذه هي المرحلة المعروفة بالنخر. خلال المرحلة الأولية ، تحدث عدة أنواع رئيسية من التغيير ، اعتمادًا على الخلية ونوع الإصابة. تُعرف هذه باسم موت الخلايا المبرمج والأورام.

 

 

 

 

 

موت الخلايا المبرمج

موت الخلايا المبرمج مشتق من الكلمات اليونانية APO، مما يعني بعيدًا عن ، و إطراق، مما يعني السقوط. المصطلح السقوط من مشتق من حقيقة أنه ، خلال هذا النوع من التغيير الأولي ، تتقلص الخلايا وتخضع لنزيف ملحوظ في المحيط. ثم تنفصل الفقاعات وتطفو بعيدًا. يحدث موت الخلايا المبرمج في مجموعة متنوعة من أنواع الخلايا بعد أنواع مختلفة من الإصابات السامة (Wyllie، Kerr and Currie 1980). إنه بارز بشكل خاص في الخلايا الليمفاوية ، حيث يكون الآلية السائدة لدوران الخلايا الليمفاوية المستنسخة. تؤدي الشظايا الناتجة إلى الأجسام القاعدية التي تُرى داخل الضامة في الغدد الليمفاوية. في الأعضاء الأخرى ، يحدث موت الخلايا المبرمج عادةً في الخلايا المفردة التي يتم إزالتها سريعًا قبل وبعد الموت عن طريق البلعمة من الشظايا بواسطة الخلايا المتنيّة المجاورة أو الضامة. عادة لا يؤدي موت الخلايا المبرمج الذي يحدث في الخلايا المفردة مع البلعمة اللاحقة إلى حدوث التهاب. قبل الموت ، تُظهر الخلايا المبرمجية عصارة خلوية كثيفة جدًا مع ميتوكوندريا طبيعية أو مكثفة. الشبكة الإندوبلازمية (ER) طبيعية أو متوسعة قليلاً فقط. يتكتل الكروماتين النووي بشكل ملحوظ على طول الغلاف النووي وحول النواة. الكفاف النووي هو أيضا غير منتظم ويحدث التشرذم النووي. يرتبط تكاثف الكروماتين بتفتيت الحمض النووي الذي يحدث في كثير من الحالات بين النوكليوزومات ، مما يعطي مظهر سلم مميزًا عند الرحلان الكهربي.

في موت الخلايا المبرمج ، زادت [Ca2+]i قد يحفز K.+ أدى التدفق إلى تقلص الخلية ، والذي ربما يتطلب ATP. وبالتالي ، فإن الإصابات التي تثبط تمامًا تخليق ATP ، من المرجح أن تؤدي إلى موت الخلايا المبرمج. زيادة مطردة في [Ca2+]i له عدد من الآثار الضارة بما في ذلك تنشيط البروتياز والنوكليازات الداخلية والفوسفوليباز. يؤدي تنشيط نوكلياز داخلي إلى حدوث فواصل في شرائط الحمض النووي المفردة والمزدوجة والتي بدورها تحفز المستويات المتزايدة من البروتين p53 وفي الارتباط بالريبوزيل متعدد ADP والبروتينات النووية الضرورية لإصلاح الحمض النووي. يؤدي تنشيط البروتياز إلى تعديل عدد من الركائز بما في ذلك الأكتين والبروتينات ذات الصلة التي تؤدي إلى تكوين البليب. ركيزة أخرى مهمة هي بوليميريز بولي (ADP-ribose) (PARP) ، الذي يثبط إصلاح الحمض النووي. زيادة [Ca2+]i يرتبط أيضًا بتنشيط عدد من كينازات البروتين ، مثل MAP kinase و calodulin kinase وغيرها. تشارك هذه الكينازات في تنشيط عوامل النسخ التي تبدأ النسخ الفوري للجينات المبكرة ، على سبيل المثال ، c-fos و c-jun و c-myc ، وفي تنشيط phospholipase A2 مما يؤدي إلى نفاذية غشاء البلازما والأغشية داخل الخلايا مثل الغشاء الداخلي للميتوكوندريا.

الأورام

Oncosis مشتق من الكلمة اليونانية com.onkos، للتضخم ، سمي بهذا الاسم لأنه في هذا النوع من التغيير الأولي تبدأ الخلية في الانتفاخ على الفور تقريبًا بعد الإصابة (Majno and Joris 1995). سبب التورم هو زيادة الكاتيونات في الماء داخل الخلية. إن الكاتيون الرئيسي المسؤول هو الصوديوم ، والذي يتم تنظيمه عادة للحفاظ على حجم الخلية. ومع ذلك ، في حالة عدم وجود ATP أو إذا تم تثبيط Na-ATPase في البلازما ، يتم فقدان التحكم في الحجم بسبب البروتين داخل الخلايا ، ويستمر الصوديوم في الزيادة في الماء. من بين الأحداث المبكرة في الأورام ، وبالتالي ، زادت [Na+]i مما يؤدي إلى تورم الخلايا وزيادة [Ca2+]i ناتج إما عن التدفق من الفضاء خارج الخلية أو الإفراج عن المخازن داخل الخلايا. ينتج عن هذا تورم في العصارة الخلوية ، وتورم في الشبكة الإندوبلازمية وجهاز جولجي ، وتشكيل فقاعات مائية حول سطح الخلية. تخضع الميتوكوندريا في البداية للتكثيف ، لكنها تظهر أيضًا في وقت لاحق تورمًا عالي السعة بسبب تلف الغشاء الداخلي للميتوكوندريا. في هذا النوع من التغيير الأولي ، يخضع الكروماتين للتكثيف والتدهور في النهاية ؛ ومع ذلك ، لا يُرى نمط السلم المميز لموت الخلايا المبرمج.

نخر

يشير النخر إلى سلسلة من التغييرات التي تحدث بعد موت الخلية عندما يتم تحويل الخلية إلى حطام يتم إزالته عادةً عن طريق الاستجابة الالتهابية. يمكن التمييز بين نوعين: نخر الورم ونخر موت الخلايا المبرمج. يحدث النخر الورمي عادةً في مناطق كبيرة ، على سبيل المثال ، في احتشاء عضلة القلب أو على المستوى الإقليمي في عضو بعد السمية الكيميائية ، مثل النبيبات القريبة الكلوية بعد إعطاء HgCl2. تتأثر مناطق واسعة من العضو والخلايا الميتة تحرض بسرعة تفاعلًا التهابيًا ، حادًا أولاً ثم مزمنًا. في حالة بقاء الكائن الحي ، يتبع النخر في العديد من الأعضاء إزالة الخلايا الميتة والتجدد ، على سبيل المثال ، في الكبد أو الكلى بعد التسمم الكيميائي. على النقيض من ذلك ، يحدث نخر موت الخلايا المبرمج عادةً على أساس خلية واحدة ويتشكل الحطام النخر داخل الخلايا البلعمية للبلاعم أو الخلايا المتني المجاورة. تشمل الخصائص المبكرة للخلايا النخرية الانقطاعات في استمرارية غشاء البلازما وظهور كثافات ندفية ، تمثل البروتينات المشوهة داخل مصفوفة الميتوكوندريا. في بعض أشكال الإصابة التي لا تتداخل مبدئيًا مع تراكم الكالسيوم في الميتوكوندريا ، يمكن رؤية رواسب فوسفات الكالسيوم داخل الميتوكوندريا. تتفتت أنظمة الأغشية الأخرى بالمثل ، مثل ER ، والجسيمات الحالة ، وجهاز جولجي. في نهاية المطاف ، يخضع الكروماتين النووي للتحلل الناتج عن هجوم بواسطة هيدروليسات الليزوزومات. بعد موت الخلايا ، تلعب هيدروليسات الليزوزومات دورًا مهمًا في إزالة الحطام باستخدام الكاتيبسين والنيوكليولاز والليباز نظرًا لأن هذه تحتوي على درجة الحموضة المثلى ويمكنها البقاء على قيد الحياة من انخفاض درجة الحموضة للخلايا الميتة بينما يتم تغيير خصائص الإنزيمات الخلوية الأخرى وتعطيلها.

آليات

التحفيز الأولي

في حالة الإصابات المميتة ، فإن التفاعلات الأولية الأكثر شيوعًا التي تؤدي إلى الإصابة التي تؤدي إلى موت الخلايا هي التداخل مع استقلاب الطاقة ، مثل نقص الأكسجين ، ونقص التروية أو مثبطات التنفس ، وتحلل السكر مثل سيانيد البوتاسيوم ، وأول أكسيد الكربون ، وخلات اليود ، و حالا. كما ذكرنا سابقًا ، الجرعات العالية من المركبات التي تثبط استقلاب الطاقة عادةً ما تؤدي إلى الإصابة بالأورام. النوع الشائع الآخر من الإصابات الأولية التي تؤدي إلى موت الخلايا الحاد هو تعديل وظيفة غشاء البلازما (Trump and Arstila 1971؛ Trump، Berezesky and Osornio-Vargas 1981). يمكن أن يكون هذا إما ضررًا مباشرًا ونفاذية ، كما هو الحال في حالة الصدمة أو تنشيط مجمع C5b-C9 من المكمل ، أو التلف الميكانيكي لغشاء الخلية أو تثبيط الصوديوم والبوتاسيوم (Na).+-K+) ضخ مع الجليكوسيدات مثل ouabain. أيونات الكالسيوم مثل أيونوميسين أو A23187 ، والتي تحمل بسرعة [Ca2+] أسفل الانحدار إلى داخل الخلية ، يسبب أيضًا إصابة مميتة حادة. في بعض الحالات ، يكون النمط في التغيير الأولي هو موت الخلايا المبرمج. في حالات أخرى ، هو الأورام.

مسارات الإشارات

مع العديد من أنواع الإصابات ، يتأثر تنفس الميتوكوندريا والفسفرة التأكسدية بسرعة. في بعض الخلايا ، يحفز هذا التحلل اللاهوائي ، القادر على الحفاظ على ATP ، ولكن مع العديد من الإصابات يتم تثبيط هذا. يؤدي عدم وجود ATP إلى الفشل في تنشيط عدد من العمليات الاستتبابية المهمة ، ولا سيما التحكم في التوازن الأيوني داخل الخلايا (Trump and Berezesky 1992 ؛ Trump و Berezesky and Osornio-Vargas 1981). ينتج عن هذا زيادات سريعة في [Ca2+]i، وزاد [Na+] و [Cl-] ينتج عنه تورم الخلايا. يزيد في [Ca2+]i يؤدي إلى تنشيط عدد من آليات الإشارة الأخرى التي تمت مناقشتها أدناه ، بما في ذلك سلسلة من الكينازات ، والتي يمكن أن تؤدي إلى زيادة النسخ الجيني المبكر الفوري. زيادة [Ca2+]i يقوم أيضًا بتعديل وظيفة الهيكل الخلوي ، مما يؤدي جزئيًا إلى تكوين الفقاعات وتنشيط نوكليازات داخلية وبروتياز وفوسفوليباز. يبدو أن هذه تؤدي إلى العديد من التأثيرات المهمة التي نوقشت أعلاه ، مثل تلف الغشاء من خلال تنشيط البروتياز والليباز ، والتدهور المباشر للحمض النووي من تنشيط نوكلياز داخلية ، وتفعيل كينازات مثل MAP kinase و kalodulin kinase ، والتي تعمل كعوامل نسخ.

من خلال العمل المكثف على التنمية في اللافقاريات جيم ايليجانس و ذبابة الفاكهةبالإضافة إلى الخلايا البشرية والحيوانية ، تم تحديد سلسلة من الجينات المؤيدة للموت. تم العثور على بعض هذه الجينات اللافقارية لها نظائر من الثدييات. على سبيل المثال ، الجين ced-3 ، وهو ضروري لموت الخلايا المبرمج في ايليجانس ، له نشاط إنزيم البروتياز وتماثل قوي مع الإنزيم المحول للإنترلوكين في الثدييات (ICE). تم التعرف مؤخرًا على جين وثيق الصلة يسمى apopain أو prICE مع تماثل أقرب (Nicholson et al. 1995). في ذبابة الفاكهة، يبدو أن جين الحاصدة متورط في إشارة تؤدي إلى موت الخلية المبرمج. تشمل الجينات الأخرى المؤيدة للموت بروتين غشاء Fas والجين المهم المثبط للورم ، p53 ، والذي يتم حفظه على نطاق واسع. يتم إحداث p53 على مستوى البروتين بعد تلف الحمض النووي وعندما يعمل الفسفرة كعامل نسخ لجينات أخرى مثل gadd45 و waf-1 ، والتي تشارك في إشارات موت الخلية. يبدو أن الجينات المبكرة الأخرى مثل c-fos و c-jun و c-myc تشارك أيضًا في بعض الأنظمة.

في الوقت نفسه ، هناك جينات مضادة للموت يبدو أنها تعارض الجينات المؤيدة للموت. كان أول من تم التعرف عليه هو ced-9 من جيم ايليجانس، وهو متماثل لـ bcl-2 في البشر. تعمل هذه الجينات بطريقة غير معروفة حتى الآن لمنع قتل الخلايا عن طريق السموم الجينية أو الكيميائية. تشير بعض الأدلة الحديثة إلى أن bcl-2 قد يعمل كمضاد للأكسدة. حاليًا ، هناك الكثير من الجهود الجارية لتطوير فهم الجينات المعنية وتطوير طرق لتنشيط أو تثبيط هذه الجينات ، اعتمادًا على الموقف.

 

الرجوع

الأحد، 16 يناير 2011 16: 18

مقدمة ومفاهيم

علم السموم الميكانيكي هو دراسة كيفية تفاعل العوامل الكيميائية أو الفيزيائية مع الكائنات الحية لتسبب السمية. إن معرفة آلية سمية مادة ما تعزز القدرة على منع السمية وتصميم مواد كيميائية مرغوبة بدرجة أكبر ؛ يشكل الأساس للعلاج عند التعرض المفرط ، ويتيح في كثير من الأحيان مزيدًا من الفهم للعمليات البيولوجية الأساسية. لأغراض هذا موسوعة سيتم التركيز على الحيوانات للتنبؤ بسمية الإنسان. تشمل المجالات المختلفة لعلم السموم علم السموم الميكانيكي والوصفي والتنظيمي والطب الشرعي والبيئي (كلاسن وأمدور ودول 1991). كل هذه الفوائد من فهم الآليات الأساسية للسمية.

لماذا نفهم آليات السمية؟

إن فهم الآلية التي تسبب بها مادة ما سمية يعزز مجالات مختلفة من علم السموم بطرق مختلفة. يساعد الفهم الآلي المنظم الحكومي على وضع حدود آمنة ملزمة قانونًا للتعرض البشري. يساعد علماء السموم في التوصية بمسارات العمل المتعلقة بتنظيف أو معالجة المواقع الملوثة ، بالإضافة إلى الخصائص الفيزيائية والكيميائية للمادة أو الخليط ، يمكن استخدامها لتحديد درجة معدات الحماية المطلوبة. المعرفة الآلية مفيدة أيضًا في تشكيل الأساس للعلاج وتصميم عقاقير جديدة لعلاج الأمراض التي تصيب الإنسان. بالنسبة لطبيب السموم الشرعي ، غالبًا ما توفر آلية السمية نظرة ثاقبة حول كيفية تسبب عامل كيميائي أو فيزيائي في الوفاة أو العجز.

إذا تم فهم آلية السمية ، يصبح علم السموم الوصفي مفيدًا في التنبؤ بالتأثيرات السامة للمواد الكيميائية ذات الصلة. من المهم أن نفهم ، مع ذلك ، أن نقص المعلومات الآلية لا يمنع المهنيين الصحيين من حماية صحة الإنسان. تُستخدم القرارات الحكيمة المستندة إلى الدراسات التي أجريت على الحيوانات والخبرة البشرية لتحديد مستويات التعرض الآمنة. تقليديا ، تم إنشاء هامش أمان باستخدام "مستوى لا تأثير ضار" أو "أدنى مستوى تأثير ضار" من الدراسات على الحيوانات (باستخدام تصميمات التعرض المتكرر) وقسمة هذا المستوى على 100 للتعرض المهني أو 1,000 من أجل التعرض البشري البيئي الآخر. يتضح نجاح هذه العملية من الحوادث القليلة للتأثيرات الصحية الضارة التي تُعزى إلى التعرض للمواد الكيميائية لدى العمال حيث تم تحديد حدود التعرض المناسبة والالتزام بها في الماضي. بالإضافة إلى ذلك ، يستمر عمر الإنسان في الازدياد ، وكذلك نوعية الحياة. بشكل عام ، أدى استخدام بيانات السمية إلى رقابة تنظيمية وطوعية فعالة. ستعمل المعرفة التفصيلية بالآليات السامة على تعزيز إمكانية التنبؤ بنماذج المخاطر الجديدة التي يتم تطويرها حاليًا وستؤدي إلى التحسين المستمر.

إن فهم الآليات البيئية أمر معقد ويفترض معرفة باضطراب النظام البيئي والتوازن (التوازن). على الرغم من عدم مناقشته في هذه المقالة ، فإن الفهم المعزز للآليات السامة وعواقبها النهائية في النظام البيئي من شأنه أن يساعد العلماء على اتخاذ قرارات حكيمة فيما يتعلق بالتعامل مع النفايات البلدية والصناعية. تعد إدارة النفايات مجالًا متناميًا للبحث وستظل مهمة جدًا في المستقبل.

تقنيات دراسة آليات السمية

تبدأ غالبية الدراسات الآلية بدراسة وصفية للسموم على الحيوانات أو بملاحظات إكلينيكية على البشر. من الناحية المثالية ، تشمل الدراسات التي أجريت على الحيوانات ملاحظات سلوكية وسريرية دقيقة ، وفحصًا كيميائيًا حيويًا دقيقًا لعناصر الدم والبول بحثًا عن علامات الوظيفة السلبية للأنظمة البيولوجية الرئيسية في الجسم ، وتقييم ما بعد الذبح لجميع أنظمة الأعضاء عن طريق الفحص المجهري للتحقق من الإصابة (انظر إرشادات اختبار منظمة التعاون الاقتصادي والتنمية ؛ توجيهات المفوضية الأوروبية بشأن التقييم الكيميائي ؛ قواعد اختبار وكالة حماية البيئة الأمريكية ؛ لوائح المواد الكيميائية في اليابان). هذا مشابه لفحص جسدي بشري شامل يتم إجراؤه في المستشفى خلال فترة زمنية تتراوح من يومين إلى ثلاثة أيام باستثناء فحص ما بعد الوفاة.

إن فهم آليات السمية هو فن وعلم الملاحظة ، والإبداع في اختيار التقنيات لاختبار الفرضيات المختلفة ، والدمج المبتكر للعلامات والأعراض في علاقة سببية. تبدأ الدراسات الآلية بالتعرض ، وتتبع التوزيع المرتبط بالوقت والمصير في الجسم (الحرائك الدوائية) ، وتقيس التأثير السام الناتج على مستوى معين من النظام وعند مستوى جرعة ما. يمكن أن تعمل المواد المختلفة على مستويات مختلفة من النظام البيولوجي في التسبب في السمية.

تعرض

عادة ما يكون مسار التعرض في الدراسات الآلية هو نفسه بالنسبة للتعرض البشري. الطريق مهم لأنه يمكن أن تكون هناك تأثيرات تحدث محليًا في موقع التعرض بالإضافة إلى تأثيرات جهازية بعد امتصاص المادة الكيميائية في الدم وتوزيعها في جميع أنحاء الجسم. مثال بسيط ولكنه مقنع للتأثير الموضعي هو التهيج والتآكل النهائي للجلد بعد تطبيق المحاليل الحمضية أو القلوية القوية المصممة لتنظيف الأسطح الصلبة. وبالمثل ، يمكن أن يحدث التهيج والموت الخلوي في الخلايا المبطنة للأنف و / أو الرئتين بعد التعرض لأبخرة أو غازات مهيجة مثل أكاسيد النيتروجين أو الأوزون. (كلاهما من مكونات تلوث الهواء ، أو الضباب الدخاني). بعد امتصاص مادة كيميائية في الدم من خلال الجلد أو الرئتين أو الجهاز الهضمي ، يتم التحكم في التركيز في أي عضو أو نسيج من خلال العديد من العوامل التي تحدد الحرائك الدوائية للمادة الكيميائية في الجسم. الجسم لديه القدرة على التنشيط وكذلك إزالة السموم من المواد الكيميائية المختلفة كما هو مذكور أدناه.

دور حركية الدواء في السمية

تصف حركية الدواء العلاقات الزمنية للامتصاص الكيميائي ، والتوزيع ، والتمثيل الغذائي (التغيرات الكيميائية الحيوية في الجسم) والتخلص أو الإخراج من الجسم. بالنسبة لآليات السمية ، يمكن أن تكون هذه المتغيرات الدوائية مهمة للغاية وفي بعض الحالات تحدد ما إذا كانت السمية ستحدث أم لا. على سبيل المثال ، إذا لم يتم امتصاص المادة بكمية كافية ، فلن تحدث سمية جهازية (داخل الجسم). على العكس من ذلك ، فإن المادة الكيميائية عالية التفاعل التي يتم إزالتها بسرعة (ثوانٍ أو دقائق) عن طريق إنزيمات الجهاز الهضمي أو الكبد قد لا يكون لديها الوقت لتسبب السمية. بعض المواد والمخاليط المهلجنة متعددة الحلقات وكذلك معادن معينة مثل الرصاص لن تسبب سمية كبيرة إذا كان الإخراج سريعًا ؛ لكن التراكم إلى مستويات عالية بما فيه الكفاية يحدد مدى سميتها لأن الإخراج ليس سريعًا (يُقاس أحيانًا بالسنوات). لحسن الحظ ، لا تمتلك معظم المواد الكيميائية مثل هذا الاحتباس الطويل في الجسم. لا يزال تراكم مادة غير ضارة لا يسبب السمية. غالبًا ما يشار إلى معدل التخلص من الجسم وإزالة السموم على أنه نصف عمر المادة الكيميائية ، وهو الوقت الذي يتم فيه إفراز 50٪ من المادة الكيميائية أو تغييرها إلى صورة غير سامة.

ومع ذلك ، إذا تراكمت مادة كيميائية في خلية أو عضو معين ، فقد يشير ذلك إلى سبب لإجراء مزيد من الفحص لسميتها المحتملة في ذلك العضو. في الآونة الأخيرة ، تم تطوير نماذج رياضية لاستقراء المتغيرات الحركية الدوائية من الحيوانات إلى البشر. هذه النماذج الحركية الدوائية مفيدة للغاية في وضع الفرضيات واختبار ما إذا كان حيوان التجارب يمثل تمثيلًا جيدًا للبشر. تمت كتابة العديد من الفصول والنصوص حول هذا الموضوع (Gehring et al. 1976 ؛ Reitz et al. 1987 ؛ Nolan et al. 1995). يوضح الشكل 1 مثالًا مبسطًا للنموذج الفسيولوجي.

الشكل 1. نموذج حركي دوائي مبسط

TOX210F1

يمكن أن تتأثر المستويات والأنظمة المختلفة سلبًا

يمكن وصف السمية على مستويات بيولوجية مختلفة. يمكن تقييم الإصابة في الشخص بأكمله (أو الحيوان) ، أو في نظام العضو ، أو الخلية أو الجزيء. تشمل أجهزة الجهاز المناعي والجهاز التنفسي والقلب والأوعية الدموية والكلى والغدد الصماء والجهاز الهضمي والجهاز العضلي والهيكل العظمي والدم والجهاز العصبي الإنجابي والمركزي. تشمل بعض الأعضاء الرئيسية الكبد ، والكلى ، والرئة ، والدماغ ، والجلد ، والعينين ، والقلب ، والخصيتين أو المبيضين ، والأعضاء الرئيسية الأخرى. على المستوى الخلوي / الكيميائي الحيوي ، تشمل التأثيرات الضائرة التداخل مع وظيفة البروتين الطبيعية ، ووظيفة مستقبلات الغدد الصماء ، وتثبيط الطاقة الأيضية ، أو تثبيط أو تحريض إنزيم غريب الأطوار (مادة غريبة). تشمل التأثيرات الضائرة على المستوى الجزيئي تغيير الوظيفة الطبيعية لنسخ DNA-RNA ، وارتباط مستقبلات حشوية ونووية معينة ، وتغيير الجينات أو المنتجات الجينية. في النهاية ، من المحتمل أن يكون سبب الخلل الوظيفي في نظام عضو رئيسي هو تغيير جزيئي في خلية مستهدفة معينة داخل هذا العضو. ومع ذلك ، فليس من الممكن دائمًا تتبع آلية رجوعًا إلى الأصل الجزيئي للسببية ، كما أنه ليس ضروريًا. يمكن تصميم التدخل والعلاج دون فهم كامل للهدف الجزيئي. ومع ذلك ، فإن المعرفة حول الآلية المحددة للسمية تزيد من القيمة التنبؤية والدقة للاستقراء للمواد الكيميائية الأخرى. الشكل 2 هو تمثيل تخطيطي للمستويات المختلفة حيث يمكن اكتشاف تداخل العمليات الفسيولوجية العادية. تشير الأسهم إلى أن العواقب على الفرد يمكن تحديدها من أعلى إلى أسفل (التعرض ، الحرائك الدوائية لسمية النظام / العضو) أو من الأسفل إلى الأعلى (التغيير الجزيئي ، التأثير الخلوي / الكيميائي الحيوي على سمية الجهاز / العضو).

الشكل 2. إعادة تمثيل آليات السمية

TOX210F2

أمثلة على آليات السمية

يمكن أن تكون آليات السمية مباشرة أو معقدة للغاية. في كثير من الأحيان ، هناك اختلاف بين نوع السمية ، وآلية السمية ، ومستوى التأثير ، فيما يتعلق بما إذا كانت الآثار الضارة ناتجة عن جرعة عالية وحادة مفردة (مثل التسمم العرضي) ، أو جرعة أقل. التعرض المتكرر (من التعرض المهني أو البيئي). تقليديًا ، لأغراض الاختبار ، تُعطى جرعة مفردة حادة عن طريق التنبيب المباشر في معدة القوارض أو التعرض لجو غاز أو بخار لمدة ساعتين إلى أربع ساعات ، أيهما يشبه التعرض البشري على أفضل وجه. تتم مراقبة الحيوانات على مدى أسبوعين بعد التعرض ، ثم يتم فحص الأعضاء الخارجية والداخلية الرئيسية بحثًا عن الإصابة. يتراوح اختبار الجرعات المتكررة من شهور إلى سنوات. بالنسبة لأنواع القوارض ، تعتبر سنتان دراسة مزمنة (مدى الحياة) كافية لتقييم السمية والسرطنة ، بينما بالنسبة إلى الرئيسيات غير البشرية ، يمكن اعتبار عامين دراسة دون المزمنة (أقل من العمر) لتقييم سمية الجرعات المتكررة. بعد التعرض ، يتم إجراء فحص كامل لجميع الأنسجة والأعضاء والسوائل لتحديد أي آثار ضارة.

آليات السمية الحادة

الأمثلة التالية خاصة بالجرعات العالية والآثار الحادة التي يمكن أن تؤدي إلى الوفاة أو العجز الشديد. ومع ذلك ، في بعض الحالات ، سينتج عن التدخل آثار عابرة وقابلة للعكس تمامًا. ستحدد جرعة أو شدة التعرض النتيجة.

الاختناقات البسيطة. آلية السمية للغازات الخاملة وبعض المواد الأخرى غير التفاعلية هي نقص الأكسجين (نقص الأكسجين). تسمى هذه المواد الكيميائية ، التي تسبب حرمان الجهاز العصبي المركزي من الأكسجين (CNS) الخانقات البسيطة. إذا دخل شخص إلى مكان مغلق يحتوي على النيتروجين دون كمية كافية من الأكسجين ، يحدث استنفاد فوري للأكسجين في الدماغ ويؤدي إلى فقدان الوعي والموت في نهاية المطاف إذا لم يتم إزالة الشخص بسرعة. في الحالات القصوى (بالقرب من صفر أكسجين) يمكن أن يحدث فقدان الوعي في بضع ثوان. يعتمد الإنقاذ على الإزالة السريعة لبيئة مؤكسجة. يمكن أن يحدث البقاء على قيد الحياة مع تلف دماغي لا يمكن إصلاحه من تأخر الإنقاذ ، بسبب موت الخلايا العصبية التي لا يمكن أن تتجدد.

الخانقات الكيماوية. يتنافس أول أكسيد الكربون (CO) مع الأكسجين في الارتباط بالهيموجلوبين (في خلايا الدم الحمراء) وبالتالي يحرم الأنسجة من الأكسجين من أجل استقلاب الطاقة ؛ يمكن أن يؤدي الموت الخلوي. يشمل التدخل إزالة مصدر ثاني أكسيد الكربون والعلاج بالأكسجين. يعتمد الاستخدام المباشر للأكسجين على التأثير السام لثاني أكسيد الكربون. وهناك مادة كيميائية أخرى خانقة قوية وهي السيانيد. يتداخل أيون السيانيد مع التمثيل الغذائي الخلوي واستخدام الأكسجين للطاقة. يتسبب العلاج باستخدام نتريت الصوديوم في حدوث تغيير في الهيموجلوبين في خلايا الدم الحمراء إلى ميثيموجلوبين. يمتلك الميثيموغلوبين تقارب ارتباط أكبر مع أيون السيانيد من الهدف الخلوي للسيانيد. وبالتالي ، فإن الميثيموغلوبين يربط السيانيد ويبقي السيانيد بعيدًا عن الخلايا المستهدفة. هذا يشكل الأساس للعلاج بالترياق.

مثبطات الجهاز العصبي المركزي. تتميز السمية الحادة بالتخدير أو فقدان الوعي لعدد من المواد مثل المذيبات غير التفاعلية أو التي تتحول إلى مواد وسيطة تفاعلية. من المفترض أن يكون التهدئة / التخدير ناتجًا عن تفاعل المذيب مع أغشية الخلايا في الجهاز العصبي المركزي ، مما يضعف قدرتها على نقل الإشارات الكهربائية والكيميائية. في حين أن التخدير قد يبدو شكلاً خفيفًا من السمية وكان أساسًا لتطوير أدوية التخدير المبكرة ، فإن "الجرعة لا تزال تصنع السم". إذا تم إعطاء جرعة كافية عن طريق الابتلاع أو الاستنشاق ، فقد يموت الحيوان بسبب توقف التنفس. إذا لم يحدث موت المخدر ، فعادة ما يكون هذا النوع من السمية قابلاً للعكس بسهولة عند إزالة الموضوع من البيئة أو إعادة توزيع المادة الكيميائية أو إزالتها من الجسم.

آثار الجلد. يمكن أن تتراوح الآثار الضارة للجلد من التهيج إلى التآكل ، اعتمادًا على المادة المصادفة. الأحماض القوية والمحاليل القلوية غير متوافقة مع الأنسجة الحية وهي مسببة للتآكل ، وتسبب حروقًا كيميائية وتندبًا محتملاً. يحدث التندب نتيجة موت خلايا الجلد العميقة المسؤولة عن التجدد. قد تؤدي التركيزات المنخفضة فقط إلى تهيج الطبقة الأولى من الجلد.

آلية سامة أخرى للجلد هي التحسس الكيميائي. على سبيل المثال ، يحدث التحسس عندما يرتبط 2,4،XNUMX-dinitrochlorobenzene بالبروتينات الطبيعية في الجلد ويتعرف الجهاز المناعي على المركب المتغير المرتبط بالبروتين باعتباره مادة غريبة. في الاستجابة لهذه المادة الغريبة ، يقوم الجهاز المناعي بتنشيط خلايا خاصة للتخلص من المادة الغريبة عن طريق إطلاق الوسطاء (السيتوكينات) التي تسبب طفح جلدي أو التهاب الجلد (انظر "علم السموم المناعية"). هذا هو نفس رد فعل الجهاز المناعي عند حدوث التعرض لبلاب السام. التحسس المناعي خاص جدًا بمادة كيميائية معينة ويتطلب تعريضين على الأقل قبل إثارة الاستجابة. يؤدي التعرض الأول إلى التحسس (يُهيئ الخلايا للتعرف على المادة الكيميائية) ، ويؤدي التعرض اللاحق إلى تحفيز استجابة الجهاز المناعي. عادة ما تكون إزالة الملامسة وعلاج الأعراض باستخدام الكريمات المضادة للالتهابات المحتوية على الستيرويد فعالة في علاج الأفراد المعرضين للحساسية. في الحالات الخطيرة أو المقاومة للحرارة ، يتم استخدام مثبطات المناعة الجهازية المفعول مثل بريدنيزون بالتزامن مع العلاج الموضعي.

توعية الرئة. يتم إثارة استجابة التحسس المناعي بواسطة ثنائي أيزوسيانات التولوين (TDI) ، لكن الموقع المستهدف هو الرئتين. يؤدي التعرض المفرط لـ TDI لدى الأفراد المعرضين للإصابة إلى وذمة الرئة (تراكم السوائل) وتضيق الشعب الهوائية وضعف التنفس. هذه حالة خطيرة وتتطلب إزالة الفرد من التعرضات اللاحقة المحتملة. العلاج هو في المقام الأول من الأعراض. حساسية الجلد والرئة تتبع استجابة للجرعة. يمكن أن يؤدي تجاوز المستوى المحدد للتعرض المهني إلى تأثيرات ضارة.

آثار العين. تتراوح إصابة العين من احمرار الطبقة الخارجية (احمرار حمام السباحة) إلى تشكل الساد في القرنية وتلف القزحية (الجزء الملون من العين). تُجرى اختبارات تهيج العين عندما يُعتقد أن الإصابة الخطيرة لن تحدث. يمكن أن تتسبب العديد من الآليات التي تسبب تآكل الجلد أيضًا في إصابة العينين. المواد المسببة للتآكل للجلد ، مثل الأحماض القوية (درجة الحموضة أقل من 2) والقلويات (الرقم الهيدروجيني أكبر من 11.5) ، لا يتم اختبارها في عيون الحيوانات لأن معظمها يسبب التآكل والعمى بسبب آلية مماثلة لتلك التي تسبب تآكل الجلد . بالإضافة إلى ذلك ، يمكن أن تتسبب العوامل النشطة السطحية مثل المنظفات والمواد الخافضة للتوتر السطحي في إصابة العين تتراوح من التهيج إلى التآكل. مجموعة المواد التي تتطلب الحذر هي المواد الخافضة للتوتر السطحي موجبة الشحنة (الموجبة) ، والتي يمكن أن تسبب حروقًا وعتامة دائمة للقرنية وتكوين الأوعية الدموية (تكوين الأوعية الدموية). مادة كيميائية أخرى ، دينيتروفينول ، لها تأثير محدد لتكوين الساد. يبدو أن هذا مرتبط بتركيز هذه المادة الكيميائية في العين ، وهو مثال على خصوصية توزيع الحرائك الدوائية.

في حين أن القائمة أعلاه ليست شاملة ، إلا أنها مصممة لمنح القارئ تقديرًا لمختلف آليات السمية الحادة.

آليات السمية شبه المزمنة والمزمنة

عند إعطائها كجرعة عالية واحدة ، فإن بعض المواد الكيميائية ليس لها نفس آلية السمية كما هو الحال عند إعطائها مرارًا وتكرارًا كجرعة أقل ولكن لا تزال سامة. عندما يتم إعطاء جرعة عالية واحدة ، فهناك دائمًا احتمال تجاوز قدرة الشخص على إزالة السموم أو إفراز المادة الكيميائية ، وقد يؤدي ذلك إلى استجابة سامة مختلفة عن تلك التي تحدث عند إعطاء جرعات متكررة أقل. الكحول مثال جيد. تؤدي الجرعات العالية من الكحول إلى تأثيرات أولية على الجهاز العصبي المركزي ، بينما تؤدي الجرعات المنخفضة المتكررة إلى إصابة الكبد.

تثبيط Anticholinesterase. معظم مبيدات الفوسفات العضوي ، على سبيل المثال ، لها سمية قليلة للثدييات حتى يتم تنشيطها الأيضي ، بشكل أساسي في الكبد. تتمثل الآلية الأساسية لعمل الفوسفات العضوي في تثبيط إنزيم أستيل كولينستراز (AChE) في الدماغ والجهاز العصبي المحيطي. AChE هو الإنزيم الطبيعي الذي ينهي تحفيز الناقل العصبي أستيل كولين. لم يرتبط التثبيط الطفيف لـ AChE على مدى فترة طويلة بتأثيرات ضارة. عند مستويات عالية من التعرض ، يؤدي عدم القدرة على إنهاء هذا التحفيز العصبي إلى تحفيز مفرط للجهاز العصبي الكوليني. يؤدي التحفيز الكوليني المفرط في النهاية إلى مجموعة من الأعراض ، بما في ذلك توقف التنفس ، يليه الموت إذا لم يتم علاجه. العلاج الأساسي هو إعطاء الأتروبين ، الذي يمنع آثار الأسيتيل كولين ، وإعطاء البراليدوكسيم كلوريد ، الذي يعيد تنشيط AChE المثبط. لذلك ، تتم معالجة كل من سبب وعلاج سمية الفوسفات العضوي من خلال فهم الأساس الكيميائي الحيوي للسمية.

تنشيط التمثيل الغذائي. يتم تنشيط العديد من المواد الكيميائية ، بما في ذلك رابع كلوريد الكربون ، والكلوروفورم ، وأسيتيل أمين فلورين ، والنيتروزامين ، والباراكوات بشكل استقلابي إلى الجذور الحرة أو غيرها من المواد الوسيطة التفاعلية التي تثبط الوظيفة الخلوية الطبيعية وتتداخل معها. عند مستويات عالية من التعرض ، يؤدي هذا إلى موت الخلايا (انظر "الإصابة الخلوية والموت الخلوي"). بينما تظل التفاعلات المحددة والأهداف الخلوية غير معروفة ، فإن أنظمة الأعضاء التي لديها القدرة على تنشيط هذه المواد الكيميائية ، مثل الكبد والكلى والرئة ، كلها أهداف محتملة للإصابة. على وجه التحديد ، تتمتع خلايا معينة داخل العضو بقدرة أكبر أو أقل على تنشيط أو إزالة السموم من هذه المواد الوسيطة ، وهذه القدرة تحدد القابلية داخل الخلايا داخل العضو. الأيض هو أحد الأسباب التي تجعل فهم الحرائك الدوائية ، الذي يصف هذه الأنواع من التحولات وتوزيع هذه المواد الوسيطة والقضاء عليها ، مهمًا في التعرف على آلية عمل هذه المواد الكيميائية.

آليات السرطان. السرطان هو تعدد الأمراض ، وبينما يتزايد فهم أنواع معينة من السرطان بسرعة بسبب العديد من التقنيات البيولوجية الجزيئية التي تم تطويرها منذ عام 1980 ، لا يزال هناك الكثير لنتعلمه. ومع ذلك ، من الواضح أن تطور السرطان هو عملية متعددة المراحل ، والجينات الحرجة هي المفتاح لأنواع مختلفة من السرطان. يمكن أن تؤدي التعديلات في الدنا (الطفرات الجسدية) في عدد من هذه الجينات الحرجة إلى زيادة القابلية للإصابة أو الآفات السرطانية (انظر "علم السموم الوراثي"). التعرض للمواد الكيميائية الطبيعية (في الأطعمة المطبوخة مثل لحوم البقر والأسماك) أو المواد الكيميائية الاصطناعية (مثل البنزيدين المستخدم كصبغة) أو العوامل الفيزيائية (الأشعة فوق البنفسجية من الشمس ، الرادون من التربة ، أشعة جاما من الإجراءات الطبية أو النشاط الصناعي) كلها المساهمين في الطفرات الجينية الجسدية. ومع ذلك ، هناك مواد طبيعية وصناعية (مثل مضادات الأكسدة) وعمليات إصلاح الحمض النووي التي تحمي وتحافظ على التوازن. من الواضح أن الوراثة عامل مهم في الإصابة بالسرطان ، لأن متلازمات الأمراض الوراثية مثل جفاف الجلد المصطبغ ، حيث يوجد نقص في إصلاح الحمض النووي الطبيعي ، تزيد بشكل كبير من القابلية للإصابة بسرطان الجلد من التعرض للأشعة فوق البنفسجية من الشمس.

آليات الإنجاب. على غرار السرطان ، فإن العديد من آليات السمية الإنجابية و / أو التنموية معروفة ، ولكن هناك الكثير مما يجب تعلمه. من المعروف أن بعض الفيروسات (مثل الحصبة الألمانية) والالتهابات البكتيرية والأدوية (مثل الثاليدومايد وفيتامين أ) ستؤثر سلبًا على النمو. في الآونة الأخيرة ، أظهر عمل Khera (1991) ، الذي راجعه Carney (1994) ، دليلًا جيدًا على أن التأثيرات التطورية غير الطبيعية في الاختبارات الحيوانية باستخدام جلايكول الإيثيلين تُعزى إلى المستقلبات الحمضية الأيضية للأم. يحدث هذا عندما يتم استقلاب الإيثيلين جلايكول إلى مستقلبات الحمض بما في ذلك حمض الجليكوليك وحمض الأكساليك. يبدو أن التأثيرات اللاحقة على المشيمة والجنين ناتجة عن عملية التسمم الأيضي.

وفي الختام

الهدف من هذه المقالة هو إعطاء منظور حول العديد من الآليات المعروفة للسمية والحاجة إلى الدراسة المستقبلية. من المهم أن نفهم أن المعرفة الآلية ليست ضرورية تمامًا لحماية صحة الإنسان أو البيئة. ستعزز هذه المعرفة قدرة المحترف على التنبؤ وإدارة السمية بشكل أفضل. تعتمد التقنيات الفعلية المستخدمة في توضيح أي آلية معينة على المعرفة الجماعية للعلماء وتفكير أولئك الذين يتخذون القرارات المتعلقة بصحة الإنسان.

 

الرجوع

"إخلاء المسؤولية: لا تتحمل منظمة العمل الدولية المسؤولية عن المحتوى المعروض على بوابة الويب هذه والذي يتم تقديمه بأي لغة أخرى غير الإنجليزية ، وهي اللغة المستخدمة للإنتاج الأولي ومراجعة الأقران للمحتوى الأصلي. لم يتم تحديث بعض الإحصائيات منذ ذلك الحين. إنتاج الطبعة الرابعة من الموسوعة (4). "

المحتويات