Mercredi, Mars 09 2011 17: 05

Qualité de l'air intérieur : introduction

Évaluer cet élément
(3 votes)

Le lien entre l'utilisation d'un immeuble soit comme lieu de travail soit comme habitation et l'apparition, dans certains cas, d'inconforts et de symptômes qui peuvent être la définition même d'une maladie est un fait qui ne peut plus être contesté. Le principal coupable est la contamination de divers types à l'intérieur du bâtiment, et cette contamination est généralement appelée « mauvaise qualité de l'air intérieur ». Les effets néfastes dus à la mauvaise qualité de l'air dans les espaces clos touchent un nombre considérable de personnes, puisqu'il a été démontré que les citadins passent entre 58 et 78 % de leur temps dans un environnement intérieur plus ou moins pollué. Ces problèmes se sont accrus avec la construction de bâtiments conçus pour être plus étanches et qui recyclent l'air avec une plus faible proportion d'air neuf de l'extérieur afin d'être plus économes en énergie. Le fait que les bâtiments qui n'offrent pas de ventilation naturelle présentent des risques d'exposition aux contaminants est maintenant généralement admis.

Le terme air intérieur s'applique généralement aux environnements intérieurs non industriels : immeubles de bureaux, bâtiments publics (écoles, hôpitaux, théâtres, restaurants, etc.) et logements privés. Les concentrations de contaminants dans l'air intérieur de ces structures sont généralement du même ordre que celles couramment retrouvées dans l'air extérieur, et sont bien inférieures à celles retrouvées dans l'air des locaux industriels, où des normes relativement connues sont appliquées pour évaluer la qualité de l'air. qualité. Malgré cela, de nombreux occupants d'immeubles se plaignent de la qualité de l'air qu'ils respirent et il est donc nécessaire d'enquêter sur la situation. La qualité de l'air intérieur a commencé à être évoquée comme un problème à la fin des années 1960, même si les premières études n'ont paru qu'une dizaine d'années plus tard.

S'il semblerait logique de penser qu'une bonne qualité de l'air repose sur la présence dans l'air des composants nécessaires dans des proportions adéquates, en réalité c'est l'utilisateur, par la respiration, qui est le meilleur juge de sa qualité. En effet, l'air inhalé est parfaitement perçu par les sens, l'être humain étant sensible aux effets olfactifs et irritants d'environ un demi-million de composés chimiques. Par conséquent, si les occupants d'un bâtiment sont dans l'ensemble satisfaits de l'air, on dit qu'il est de bonne qualité ; s'ils ne sont pas satisfaits, c'est qu'il est de mauvaise qualité. Est-ce à dire qu'il est possible de prédire à partir de sa composition comment l'air sera perçu ? Oui, mais seulement en partie. Cette méthode fonctionne bien dans les environnements industriels, où les composés chimiques spécifiques liés à la production sont connus, et leurs concentrations dans l'air sont mesurées et comparées à des valeurs limites seuils. Mais dans les bâtiments non industriels où il peut y avoir des milliers de substances chimiques dans l'air mais à des concentrations si faibles qu'elles sont peut-être des milliers de fois inférieures aux limites fixées pour les environnements industriels, la situation est différente. Dans la plupart de ces cas, les informations sur la composition chimique de l'air intérieur ne nous permettent pas de prédire comment l'air sera perçu, car l'effet combiné de milliers de ces contaminants, ainsi que la température et l'humidité, peuvent produire un air perçu comme irritant. , infect ou périmé, c'est-à-dire de mauvaise qualité. La situation est comparable à ce qui se passe avec la composition détaillée d'un aliment et son goût : l'analyse chimique est insuffisante pour prédire si l'aliment aura bon ou mauvais goût. Pour cette raison, lors de la planification d'un système de ventilation et de son entretien régulier, une analyse chimique exhaustive de l'air intérieur est rarement nécessaire.

Un autre point de vue est que les personnes sont considérées comme les seules sources de contamination de l'air intérieur. Ce serait certainement vrai s'il s'agissait de matériaux de construction, de meubles et de systèmes de ventilation tels qu'ils étaient utilisés il y a 50 ans, lorsque la brique, le bois et l'acier prédominaient. Mais avec les matériaux modernes, la situation a changé. Tous les matériaux contaminent, les uns peu, les autres beaucoup, et ensemble ils contribuent à la détérioration de la qualité de l'air intérieur.

Les changements dans la santé d'une personne dus à une mauvaise qualité de l'air intérieur peuvent se manifester par un large éventail de symptômes aigus et chroniques et sous la forme d'un certain nombre de maladies spécifiques. Celles-ci sont illustrées à la figure 1. Bien qu'une mauvaise qualité de l'air intérieur n'entraîne que des maladies pleinement développées dans quelques cas seulement, elle peut entraîner des malaises, du stress, de l'absentéisme et une perte de productivité (avec des augmentations concomitantes des coûts de production) ; et les allégations de problèmes liés à l'immeuble peuvent rapidement se transformer en conflit entre les occupants, leurs employeurs et les propriétaires des immeubles.

Figure 1. Symptômes et maladies liés à la qualité de l'air intérieur.

AIR010T1

Normalement, il est difficile d'établir précisément dans quelle mesure une mauvaise qualité de l'air intérieur peut nuire à la santé, car il n'y a pas suffisamment d'informations disponibles concernant la relation entre l'exposition et l'effet aux concentrations dans lesquelles les contaminants se trouvent habituellement. Par conséquent, il est nécessaire de prendre les informations obtenues à des doses élevées - comme pour les expositions en milieu industriel - et d'extrapoler à des doses beaucoup plus faibles avec une marge d'erreur correspondante. De plus, pour de nombreux contaminants présents dans l'air, les effets d'une exposition aiguë sont bien connus, alors qu'il existe des lacunes considérables dans les données concernant à la fois les expositions à long terme à de faibles concentrations et les mélanges de différents contaminants. Les notions de no-effect-level (NOEL), d'effet nocif et d'effet tolérable, déjà confuses même dans le domaine de la toxicologie industrielle, sont ici encore plus difficiles à définir. Il existe peu d'études concluantes sur le sujet, qu'il s'agisse de bâtiments publics et de bureaux ou d'habitations privées.

Des séries de normes pour la qualité de l'air extérieur existent et sont utilisées pour protéger la population générale. Ils ont été obtenus en mesurant les effets néfastes sur la santé résultant de l'exposition à des contaminants dans l'environnement. Ces normes sont donc utiles comme lignes directrices générales pour une qualité acceptable de l'air intérieur, comme c'est le cas de celles proposées par l'Organisation mondiale de la santé. Des critères techniques tels que la valeur limite seuil de l'American Conference of Governmental Industrial Hygienists (ACGIH) aux États-Unis et les valeurs limites légalement établies pour les environnements industriels dans différents pays ont été fixés pour la population active, adulte et pour des durées d'exposition spécifiques , et ne peut donc être appliqué directement à la population générale. L'American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) aux États-Unis a élaboré une série de normes et de recommandations largement utilisées pour évaluer la qualité de l'air intérieur.

Un autre aspect à considérer dans le cadre de la qualité de l'air intérieur est son odeur, car l'odeur est souvent le paramètre qui finit par être le facteur déterminant. La combinaison d'une certaine odeur avec le léger effet irritant d'un composé dans l'air intérieur peut nous amener à définir sa qualité comme « frais » et « propre » ou comme « vicié » et « pollué ». L'odeur est donc très importante pour définir la qualité de l'air intérieur. Si les odeurs dépendent objectivement de la présence de composés en quantités supérieures à leurs seuils olfactifs, elles sont très souvent évaluées d'un point de vue strictement subjectif. Il convient également de garder à l'esprit que la perception d'une odeur peut résulter des odeurs de nombreux composés différents et que la température et l'humidité peuvent également affecter ses caractéristiques. Du point de vue de la perception, quatre caractéristiques permettent de définir et de mesurer les odeurs : intensité, qualité, tolérabilité et seuil. Cependant, lorsqu'on considère l'air intérieur, il est très difficile de « mesurer » les odeurs d'un point de vue chimique. Pour cette raison, la tendance est d'éliminer les odeurs «mauvaises» et d'utiliser à leur place celles considérées comme bonnes afin de donner à l'air une qualité agréable. La tentative de masquer les mauvaises odeurs par de bonnes se termine généralement par un échec, car des odeurs de qualités très différentes peuvent être reconnues séparément et conduire à des résultats imprévisibles.

Un phénomène connu sous le nom syndrome des bâtiments malsains survient lorsque plus de 20 % des occupants d'un immeuble se plaignent de la qualité de l'air ou présentent des symptômes certains. Il est mis en évidence par une variété de problèmes physiques et environnementaux associés aux environnements intérieurs non industriels. Les caractéristiques les plus courantes observées dans les cas de syndrome des bâtiments malsains sont les suivantes : les personnes concernées se plaignent de symptômes non spécifiques similaires au rhume ou aux maladies respiratoires ; les bâtiments sont économes en énergie et sont de conception et de construction modernes ou récemment rénovés avec de nouveaux matériaux ; et les occupants ne peuvent pas contrôler la température, l'humidité et l'éclairage du lieu de travail. La répartition estimée en pourcentage des causes les plus courantes du syndrome des bâtiments malsains est une ventilation inadéquate due à un manque d'entretien ; mauvaise répartition et apport d'air frais insuffisant (50 à 52 %) ; la contamination générée à l'intérieur, notamment par les machines de bureau, la fumée de tabac et les produits d'entretien (17 à 19 %) ; contamination provenant de l'extérieur du bâtiment en raison d'un placement inadéquat des bouches d'admission et d'évacuation d'air (11 %) ; contamination microbiologique par l'eau stagnante dans les conduits du système de ventilation, des humidificateurs et des tours de réfrigération (5 %) ; et le formaldéhyde et autres composés organiques émis par les matériaux de construction et de décoration (3 à 4 %). Ainsi, la ventilation est citée comme facteur contributif important dans la majorité des cas.

Une autre question d'une autre nature est celle des maladies liées au bâtiment, moins fréquentes mais souvent plus graves, et s'accompagnant de signes cliniques bien précis et de résultats de laboratoire clairs. Des exemples de maladies liées au bâtiment sont la pneumopathie d'hypersensibilité, la fièvre des humidificateurs, la légionellose et la fièvre de Pontiac. Une opinion assez générale parmi les chercheurs est que ces conditions doivent être considérées séparément du syndrome des bâtiments malsains.

Des études ont été menées pour déterminer à la fois les causes des problèmes de qualité de l'air et leurs solutions possibles. Au cours des dernières années, les connaissances sur les contaminants présents dans l'air intérieur et les facteurs contribuant à la dégradation de la qualité de l'air intérieur ont considérablement augmenté, même s'il reste encore beaucoup de chemin à parcourir. Des études menées au cours des 20 dernières années ont montré que la présence de contaminants dans de nombreux environnements intérieurs est plus élevée que prévu, et de plus, différents contaminants ont été identifiés par rapport à ceux qui existent dans l'air extérieur. Cela contredit l'hypothèse selon laquelle les environnements intérieurs sans activité industrielle sont relativement exempts de contaminants et que, dans le pire des cas, ils peuvent refléter la composition de l'air extérieur. Les contaminants tels que le radon et le formaldéhyde sont identifiés presque exclusivement dans l'environnement intérieur.

La qualité de l'air intérieur, y compris celui des habitations, est devenue une question de santé environnementale au même titre que la maîtrise de la qualité de l'air extérieur et l'exposition au travail. Bien que, comme déjà mentionné, une personne urbaine passe 58 à 78 % de son temps à l'intérieur, il faut rappeler que les personnes les plus sensibles, à savoir les personnes âgées, les jeunes enfants et les malades, sont celles qui passent le plus clair de leur temps à l'intérieur. Ce sujet a commencé à être particulièrement d'actualité à partir de 1973 environ, lorsque, en raison de la crise énergétique, les efforts d'économie d'énergie se sont concentrés sur la réduction autant que possible de l'entrée d'air extérieur dans les espaces intérieurs afin de minimiser les coûts de chauffage et de refroidissement. bâtiments. Bien que tous les problèmes liés à la qualité de l'air intérieur ne soient pas le résultat d'actions visant à économiser l'énergie, il est un fait qu'à mesure que cette politique se généralise, les plaintes concernant la qualité de l'air intérieur se multiplient et tous les problèmes apparaissent.

Un autre élément nécessitant une attention est la présence de micro-organismes dans l'air intérieur qui peuvent causer des problèmes à la fois de nature infectieuse et allergique. Il ne faut pas oublier que les micro-organismes sont une composante normale et essentielle des écosystèmes. Par exemple, les bactéries et champignons saprophytes, qui se nourrissent de matières organiques mortes dans l'environnement, se trouvent normalement dans le sol et l'atmosphère, et leur présence peut également être détectée à l'intérieur. Ces dernières années, les problèmes de contamination biologique dans les environnements intérieurs ont reçu une attention considérable.

L'épidémie de légionellose en 1976 est le cas le plus discuté d'une maladie causée par un micro-organisme dans l'environnement intérieur. D'autres agents infectieux, tels que les virus qui peuvent provoquer des maladies respiratoires aiguës, sont détectables dans les environnements intérieurs, en particulier si la densité d'occupation est élevée et qu'il y a beaucoup de recirculation d'air. En fait, la mesure dans laquelle les micro-organismes ou leurs composants sont impliqués dans l'éclosion de conditions associées aux bâtiments n'est pas connue. Les protocoles de démonstration et d'analyse de nombreux types d'agents microbiens n'ont été développés que dans une mesure limitée, et dans les cas où ils sont disponibles, l'interprétation des résultats est parfois incohérente.

Aspects du système de ventilation

La qualité de l'air intérieur d'un bâtiment est fonction d'une série de variables parmi lesquelles la qualité de l'air extérieur, la conception du système de ventilation et de climatisation, les conditions de fonctionnement et d'entretien de ce système, le cloisonnement du bâtiment et la présence de sources intérieures de contaminants et leur ampleur. (Voir figure 2) En guise de résumé, on peut noter que les défauts les plus courants sont le résultat d'une ventilation inadéquate, d'une contamination générée à l'intérieur et d'une contamination provenant de l'extérieur.

Figure 2. Schéma d'un bâtiment montrant les sources de polluants intérieurs et extérieurs.

AIR010F1

En ce qui concerne le premier de ces problèmes, les causes d'une ventilation inadéquate peuvent inclure : un apport d'air frais insuffisant en raison d'un niveau élevé de recirculation de l'air ou d'un faible volume d'admission ; placement et orientation incorrects dans le bâtiment des prises d'air extérieur ; une mauvaise répartition et par conséquent un mélange incomplet avec l'air du local, ce qui peut produire une stratification, des zones non ventilées, des différences de pression imprévues entraînant des courants d'air indésirables et des changements continus des caractéristiques thermohygrométriques perceptibles au fur et à mesure des déplacements dans le bâtiment - et une mauvaise filtration du l'air en raison d'un manque d'entretien ou d'une conception inadéquate du système de filtrage, carence particulièrement grave lorsque l'air extérieur est de mauvaise qualité ou lorsque le niveau de recirculation est élevé.

Origines des contaminants

La contamination intérieure a différentes origines : les occupants eux-mêmes ; matériaux inadéquats ou matériaux présentant des défauts techniques utilisés dans la construction du bâtiment ; le travail effectué à l'intérieur ; utilisation excessive ou inappropriée de produits usuels (pesticides, désinfectants, produits de nettoyage et de polissage) ; gaz de combustion (provenant du tabagisme, des cuisines, des cafétérias et des laboratoires); et la contamination croisée provenant d'autres zones mal ventilées qui se diffuse ensuite vers les zones voisines et les affecte. Il faut garder à l'esprit que les substances émises dans l'air intérieur ont beaucoup moins de chance de se diluer que celles émises dans l'air extérieur, compte tenu de la différence des volumes d'air disponibles. Quant à la contamination biologique, son origine est le plus souvent due à la présence d'eau stagnante, de matériaux imprégnés d'eau, de gaz d'échappement, etc., et à un entretien défectueux des humidificateurs et des tours de réfrigération.

Enfin, la contamination provenant de l'extérieur doit également être prise en compte. En ce qui concerne l'activité humaine, trois sources principales peuvent être mentionnées : la combustion dans des sources fixes (centrales électriques) ; combustion dans des sources mobiles (véhicules); et procédés industriels. Les cinq principaux contaminants émis par ces sources sont le monoxyde de carbone, les oxydes de soufre, les oxydes d'azote, les composés organiques volatils (dont les hydrocarbures), les hydrocarbures aromatiques polycycliques et les particules. La combustion interne dans les véhicules est la principale source de monoxyde de carbone et d'hydrocarbures et est une source importante d'oxydes d'azote. La combustion dans des sources fixes est la principale source d'oxydes de soufre. Les procédés industriels et les sources fixes de combustion génèrent plus de la moitié des particules émises dans l'air par l'activité humaine, et les procédés industriels peuvent être une source de composés organiques volatils. Il existe également des contaminants générés naturellement qui sont propulsés dans l'air, tels que les particules de poussière volcanique, le sol et le sel marin, ainsi que les spores et les micro-organismes. La composition de l'air extérieur varie d'un endroit à l'autre, en fonction à la fois de la présence et de la nature des sources de contamination à proximité et de la direction du vent dominant. S'il n'y a pas de sources générant des contaminants, la concentration de certains contaminants que l'on retrouve généralement dans l'air extérieur « propre » est la suivante : dioxyde de carbone, 320 ppm; ozone, 0.02 ppm : monoxyde de carbone, 0.12 ppm ; oxyde nitrique, 0.003 ppm; et dioxyde d'azote, 0.001 ppm. Cependant, l'air urbain contient toujours des concentrations beaucoup plus élevées de ces contaminants.

Outre la présence de contaminants provenant de l'extérieur, il arrive parfois que l'air contaminé du bâtiment lui-même soit expulsé vers l'extérieur puis retourne à l'intérieur par les prises d'air du système de climatisation. Une autre voie possible par laquelle les contaminants peuvent pénétrer de l'extérieur est l'infiltration à travers les fondations du bâtiment (par exemple, le radon, les vapeurs de carburant, les effluves d'égout, les engrais, les insecticides et les désinfectants). Il a été démontré que lorsque la concentration d'un contaminant dans l'air extérieur augmente, sa concentration dans l'air intérieur du bâtiment augmente également, bien que plus lentement (une relation correspondante s'obtient lorsque la concentration diminue) ; on dit donc que les bâtiments exercent un effet écran contre les contaminants extérieurs. Cependant, l'environnement intérieur n'est bien sûr pas le reflet exact des conditions extérieures.

Les contaminants présents dans l'air intérieur sont dilués dans l'air extérieur qui entre dans le bâtiment et l'accompagnent à sa sortie. Lorsque la concentration d'un contaminant est inférieure dans l'air extérieur que dans l'air intérieur, l'échange d'air intérieur et extérieur entraînera une réduction de la concentration du contaminant dans l'air à l'intérieur du bâtiment. Si un contaminant provient de l'extérieur et non de l'intérieur, cet échange se traduira par une augmentation de sa concentration intérieure, comme mentionné ci-dessus.

Les modèles pour l'équilibre des quantités de contaminants dans l'air intérieur sont basés sur le calcul de leur accumulation, en unités de masse par rapport au temps, à partir de la différence entre la quantité qui entre plus ce qui est généré à l'intérieur, et ce qui sort avec l'air plus ce qui est éliminé par d'autres moyens. Si des valeurs appropriées sont disponibles pour chacun des facteurs de l'équation, la concentration intérieure peut être estimée pour une large gamme de conditions. L'utilisation de cette technique permet de comparer différentes alternatives pour maîtriser un problème de contamination intérieure.

Les bâtiments à faible taux d'échange avec l'air extérieur sont classés comme étanches ou économes en énergie. Ils sont économes en énergie car moins d'air froid entre en hiver, ce qui réduit l'énergie nécessaire pour chauffer l'air à la température ambiante, réduisant ainsi les coûts de chauffage. Lorsqu'il fait chaud, moins d'énergie est également utilisée pour refroidir l'air. Si le bâtiment ne possède pas cette propriété, il est ventilé par des portes et fenêtres ouvertes par un procédé de ventilation naturelle. Bien qu'elles puissent être fermées, les différences de pression, résultant à la fois du vent et du gradient thermique existant entre l'intérieur et l'extérieur, forcent l'air à pénétrer par les crevasses et les fissures, les joints de fenêtres et de portes, les cheminées et autres ouvertures, provoquant à ce qu'on appelle la ventilation par infiltration.

La ventilation d'un bâtiment se mesure en renouvellements par heure. Un renouvellement par heure signifie qu'un volume d'air égal au volume du bâtiment entre de l'extérieur toutes les heures ; de la même manière, un volume égal d'air intérieur est expulsé vers l'extérieur toutes les heures. S'il n'y a pas de ventilation forcée (avec un ventilateur) cette valeur est difficile à déterminer, bien qu'on considère qu'elle varie entre 0.2 et 2.0 renouvellements par heure. Si les autres paramètres sont supposés inchangés, la concentration de contaminants générés à l'intérieur sera moindre dans les bâtiments à forte valeur de renouvellement, bien qu'une valeur de renouvellement élevée ne soit pas une garantie complète de la qualité de l'air intérieur. Sauf dans les zones à forte pollution atmosphérique, les bâtiments plus ouverts auront une concentration de contaminants dans l'air intérieur plus faible que ceux construits de manière plus fermée. Cependant, les bâtiments plus ouverts sont moins éconergétiques. Le conflit entre l'efficacité énergétique et la qualité de l'air est d'une grande importance.

De nombreuses actions entreprises pour réduire les coûts énergétiques affectent plus ou moins la qualité de l'air intérieur. En plus de réduire la vitesse de circulation de l'air à l'intérieur du bâtiment, les efforts pour augmenter l'isolation et l'étanchéité du bâtiment impliquent l'installation de matériaux qui peuvent être des sources de contamination intérieure. D'autres actions, comme compléter les systèmes de chauffage central anciens et souvent inefficaces avec des sources secondaires qui chauffent ou consomment l'air intérieur, peuvent également augmenter les niveaux de contaminants dans l'air intérieur.

Les contaminants dont la présence dans l'air intérieur est le plus fréquemment mentionnée, outre ceux provenant de l'extérieur, comprennent les métaux, l'amiante et autres matériaux fibreux, le formaldéhyde, l'ozone, les pesticides et les composés organiques en général, le radon, les poussières domestiques et les aérosols biologiques. Avec ceux-ci, une grande variété de types de micro-organismes peuvent être trouvés, tels que des champignons, des bactéries, des virus et des protozoaires. Parmi ceux-ci, les champignons et bactéries saprophytes sont relativement bien connus, probablement parce qu'il existe une technologie permettant de les mesurer dans l'air. Il n'en est pas de même d'agents tels que les virus, les rickettsies, les chlamydias, les protozoaires et de nombreux champignons et bactéries pathogènes, pour lesquels aucune méthodologie n'est encore disponible pour la mise en évidence et le dénombrement. Parmi les agents infectieux, il convient de mentionner en particulier : Legionella pneumophila, Mycobactérie avium, les virus, Coxiella burnetii ainsi que Histoplasma capsulatum; et parmi les allergènes : Cladosporium, Penicillium ainsi que Cytophage.

Enquête sur la qualité de l'air intérieur

L'expérience acquise à ce jour suggère que les techniques traditionnelles utilisées en hygiène industrielle et en chauffage, ventilation et climatisation ne fournissent pas toujours à l'heure actuelle des résultats satisfaisants pour résoudre les problèmes de plus en plus courants de qualité de l'air intérieur, bien que la connaissance de base de ces techniques permette de bonnes approximations pour traiter ou réduire les problèmes rapidement et à peu de frais. La solution aux problèmes de qualité de l'air intérieur nécessite souvent, en plus d'un ou plusieurs experts en chauffage, ventilation et climatisation et en hygiène industrielle, des spécialistes du contrôle de la qualité de l'air intérieur, de la chimie analytique, de la toxicologie, de la médecine environnementale, de la microbiologie, mais aussi de l'épidémiologie. et la psychologie.

Lorsqu'une étude est menée sur la qualité de l'air intérieur, les objectifs qui lui sont assignés influenceront profondément sa conception et les activités orientées vers l'échantillonnage et l'évaluation, puisque dans certains cas des procédures donnant une réponse rapide seront nécessaires, tandis que dans d'autres des valeurs globales seront d'intérêt. La durée du programme sera dictée par le temps nécessaire pour obtenir des échantillons représentatifs, et dépendra également de la saison et des conditions météorologiques. Si l'objectif est de réaliser une étude exposition-effet, en plus des prélèvements long terme et court terme pour l'évaluation des pics, des prélèvements individuels seront nécessaires pour connaître l'exposition directe des individus.

Pour certains contaminants, des méthodes bien validées et largement utilisées sont disponibles, mais pour la majorité ce n'est pas le cas. Les techniques de mesure des niveaux de nombreux contaminants trouvés à l'intérieur sont normalement dérivées d'applications en hygiène industrielle mais, étant donné que les concentrations d'intérêt dans l'air intérieur sont généralement bien inférieures à celles qui se produisent dans les environnements industriels, ces méthodes sont souvent inappropriées. Quant aux méthodes de mesure utilisées en contamination atmosphérique, elles fonctionnent avec des marges de concentrations similaires, mais sont disponibles pour relativement peu de contaminants et présentent des difficultés d'utilisation en intérieur, comme cela se poserait, par exemple, avec un échantillonneur de grand volume pour la détermination des particules , ce qui d'une part serait trop bruyant et d'autre part pourrait modifier la qualité de l'air intérieur lui-même.

La détermination des contaminants dans l'air intérieur est généralement effectuée en utilisant différentes procédures : avec des moniteurs continus, des échantillonneurs actifs permanents, des échantillonneurs passifs permanents, un échantillonnage direct et des échantillonneurs personnels. Des procédures adéquates existent actuellement pour mesurer les niveaux de formaldéhyde, d'oxydes de carbone et d'azote, de composés organiques volatils et de radon, entre autres. Les contaminants biologiques sont dosés par des techniques de sédimentation sur plaques de culture ouvertes ou, plus fréquemment de nos jours, par l'utilisation de systèmes actifs faisant impacter l'air sur des plaques contenant du nutriment, qui sont ensuite cultivées, la quantité de micro-organismes présents étant exprimée en colonies. formant des unités par mètre cube.

Lorsqu'un problème de qualité de l'air intérieur est à l'étude, il est d'usage de concevoir au préalable une stratégie pratique consistant en une approximation par phases. Ce rapprochement commence par une première phase, l'investigation initiale, qui peut être réalisée à l'aide de techniques d'hygiène industrielle. Il doit être structuré de manière à ce que l'enquêteur n'ait pas besoin d'être un spécialiste dans le domaine de la qualité de l'air intérieur pour mener à bien son travail. Une inspection générale de l'immeuble est entreprise et ses installations sont vérifiées, notamment en ce qui concerne la régulation et le bon fonctionnement du système de chauffage, ventilation et climatisation, selon les normes fixées lors de son installation. Il est important à cet égard de se demander si les personnes concernées sont capables de modifier les conditions de leur environnement. Si le bâtiment ne dispose pas de systèmes de ventilation forcée, le degré d'efficacité de la ventilation naturelle existante doit être étudié. Si après révision - et ajustement si nécessaire - les conditions de fonctionnement des systèmes de ventilation sont conformes aux normes, et si malgré cela les plaintes persistent, une enquête technique d'ordre général devra s'ensuivre pour déterminer l'importance et la nature du problème . Cette première enquête doit également permettre d'évaluer si les problèmes peuvent être envisagés uniquement du point de vue fonctionnel du bâtiment, ou si l'intervention de spécialistes en hygiène, en psychologie ou dans d'autres disciplines sera nécessaire.

Si le problème n'est pas identifié et résolu dans cette première phase, d'autres phases peuvent suivre impliquant des enquêtes plus spécialisées se concentrant sur les problèmes potentiels identifiés dans la première phase. Les investigations ultérieures peuvent comprendre une analyse plus détaillée du système de chauffage, de ventilation et de climatisation du bâtiment, une évaluation plus approfondie de la présence de matériaux suspectés d'émettre des gaz et des particules, une analyse chimique détaillée de l'air ambiant du bâtiment et des évaluations médicales ou épidémiologiques pour détecter des signes de maladie.

En ce qui concerne le système de chauffage, de ventilation et de climatisation, les équipements de réfrigération doivent être contrôlés afin de s'assurer qu'il n'y a pas de croissance microbienne ou d'accumulation d'eau dans leurs bacs de récupération, les unités de ventilation doivent être contrôlées pour s'assurer qu'elles sont fonctionnent correctement, les systèmes d'admission et de reprise d'air doivent être examinés en divers points pour s'assurer qu'ils sont étanches et l'intérieur d'un nombre représentatif de conduits doit être vérifié pour confirmer l'absence de micro-organismes. Cette dernière considération est particulièrement importante lorsque des humidificateurs sont utilisés. Ces unités nécessitent des programmes d'entretien, de fonctionnement et d'inspection particulièrement soignés afin d'empêcher la croissance de micro-organismes, qui peuvent se propager dans tout le système de climatisation.

Les options généralement envisagées pour améliorer la qualité de l'air intérieur d'un bâtiment sont l'élimination de la source ; son isolation ou sa ventilation indépendante ; séparer la source de ceux qui peuvent être affectés ; nettoyage général du bâtiment; et une vérification et une amélioration accrues du système de chauffage, de ventilation et de climatisation. Cela peut nécessiter n'importe quoi, des modifications à des points particuliers à une nouvelle conception. Le processus est souvent de nature répétitive, de sorte que l'étude doit être relancée plusieurs fois, en utilisant à chaque fois des techniques plus sophistiquées. Une description plus détaillée des techniques de contrôle se trouve ailleurs dans ce Encyclopédie.

Enfin, il convient de souligner que, même avec les enquêtes les plus complètes sur la qualité de l'air intérieur, il peut être impossible d'établir une relation claire entre les caractéristiques et la composition de l'air intérieur et la santé et le confort des occupants du bâtiment à l'étude. . Seules l'accumulation d'expérience d'une part, et la conception rationnelle de la ventilation, de l'occupation et du cloisonnement des bâtiments d'autre part, sont des garanties possibles d'emblée pour obtenir une qualité d'air intérieur adéquate pour la majorité des occupants d'un bâtiment.

 

Noir

Lire 10417 fois Dernière modification le jeudi 13 octobre 2011 21:27

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références sur la qualité de l'air intérieur

Conférence américaine des hygiénistes industriels gouvernementaux (ACGIH). 1989. Lignes directrices pour l'évaluation des bioaérosols dans l'environnement intérieur. Cincinnati, Ohio : ACGIH.

Société américaine pour les essais de matériaux (ASTM). 1989. Guide standard pour les déterminations environnementales à petite échelle des émissions organiques des matériaux/produits intérieurs. Atlanta : ASTM.

Société américaine des ingénieurs en chauffage, réfrigération et climatisation (ASHRAE). 1989. Ventilation pour une qualité d'air intérieur acceptable. Atlanta : ASHRAE.

Brownson, RC, MCR Alavanja, ET Hock et TS Loy. 1992. Tabagisme passif et cancer du poumon chez les femmes non-fumeuses. Am J Public Health 82:1525-1530.

Brownson, RC, MCR Alavanja et ET Hock. 1993. Fiabilité des antécédents d'exposition passive à la fumée dans une étude cas-témoins du cancer du poumon. Int J Epidemiol 22:804-808.

Brunnemann, KD et D Hoffmann. 1974. Le pH de la fumée de tabac. Aliment Cosmet Toxicol 12:115-124.

—. 1991. Études analytiques sur les N-nitrosamines dans le tabac et la fumée de tabac. Rec Adv Tobacco Sci 17:71-112.

COST 613. 1989. Émissions de formaldéhyde provenant de matériaux à base de bois : Lignes directrices pour la détermination des concentrations à l'état d'équilibre dans les chambres d'essai. Dans Qualité de l'air intérieur et son impact sur l'homme. Luxembourg : CE.

—. 1991. Lignes directrices pour la caractérisation des composés organiques volatils émis par les matériaux et produits d'intérieur à l'aide de petites chambres d'essai. Dans Qualité de l'air intérieur et son impact sur l'homme. Luxembourg : CE.

Eudy, LW, FW Thome, DK Heavner, CR Green et BJ Ingebrethsen. 1986. Études sur la distribution en phase vapeur-particules de la nicotine environnementale par des méthodes de piégeage et de détection sélectives. Dans Actes de la soixante-dix-neuvième réunion annuelle de l'Air Pollution Control Association, 20-27 juin.

Feely, JC. 1988. Légionellose : Risque associé à la conception des bâtiments. Dans Architectural Design and Indoor Microbial Pollution, édité par RB Kundsin. Oxford : OUP.

Flannigan, B. 1992. Polluants microbiologiques intérieurs—sources, espèces, caractérisation : Une évaluation. Dans Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality—State of the Art in SBS, édité par H Knöppel et P Wolkoff. Dordrecht : Kluwer.

—. 1993. Approches d'évaluation de la flore microbienne des bâtiments. Environnements pour les personnes : IAQ '92. Atlanta : ASHRAE.

Freixa, A. 1993. Calidad Del Aire: Gases Presentes a Bajas Concentraciones En Ambientes Cerrados. Madrid : Instituto Nacional de Seguridad e Higiene en el Trabajo.

Gomel, M, B Oldenburg, JM Simpson et N Owen. 1993. Réduction des risques cardiovasculaires sur le lieu de travail : un essai randomisé d'évaluation des risques pour la santé, d'éducation, de conseil et d'incitations. Am J Public Health 83:1231-1238.

Guérin, MR, RA Jenkins et BA Tomkins. 1992. La chimie de la fumée de tabac ambiante. Chelsea, Michigan : Lewis.

Hammond, SK, J Coghlin, PH Gann, M Paul, K Taghizadek, PL Skipper et SR Tannenbaum. 1993. Relation entre la fumée de tabac ambiante et les niveaux d'adduits cancérogènes-hémoglobine chez les non-fumeurs. J Natl Cancer Inst 85:474-478.

Hecht, SS, SG Carmella, SE Murphy, S Akerkar, KD Brunnemann et D Hoffmann. 1993. Un carcinogène pulmonaire spécifique au tabac chez les hommes exposés à la fumée de cigarette. New Engl J Med 329:1543-1546.

Heller, WD, E Sennewald, JG Gostomzyk, G Scherer et F Adlkofer. 1993. Validation de l'exposition à la FTA dans une population représentative du sud de l'Allemagne. Indoor Air Publ Conf 3:361-366.

Hilt, B, S Langard, A Anderson et J Rosenberg. 1985. Exposition à l'amiante, tabagisme et incidence du cancer chez les travailleurs de la production et de l'entretien d'une usine électrique. Am J Ind Med 8:565-577.

Hoffmann, D et SS Hecht. 1990. Progrès dans la carcinogenèse du tabac. Dans Handbook of Experimental Pharmacology, édité par CS Cooper et PL Grover. New York : Springer.

Hoffmann, D et EL Wynder. 1976. Tabagisme et cancer professionnel. Prevent Med 5:245-261.
Centre international de recherche sur le cancer (CIRC). 1986. Tabagisme. Vol. 38. Lyon : CIRC.

—. 1987a. Bis(chlorométhyl)éther et chlorométhylméthyléther. Vol. 4 (1974), Suppl. 7 (1987). Lyon : CIRC.

—. 1987b. Production de coke. Vol. 4 (1974), Suppl. 7 (1987). Lyon : CIRC.

—. 1987c. Cancérigènes environnementaux : méthodes d'analyse et d'exposition. Vol. 9. Tabagisme passif. Publications scientifiques du CIRC, no. 81. Lyon : CIRC.

—. 1987d. Nickel et composés de nickel. Vol. 11 (1976), suppl. 7 (1987). Lyon : CIRC.

—. 1988. Évaluation globale de la cancérogénicité : mise à jour des monographies 1 à 42 du CIRC. Vol. 43. Lyon : CIRC.

Johanning, E, PR Morey et BB Jarvis. 1993. Enquête clinique et épidémiologique sur les effets sur la santé causés par la contamination des bâtiments par Stachybotrys atra. Dans Actes de la sixième conférence internationale sur la qualité de l'air intérieur et le climat, Helsinki.

Kabat, GC et EL Wynder. 1984. Incidence du cancer du poumon chez les non-fumeurs. Cancer 53:1214-1221.

Luceri, G, G Peiraccini, G Moneti et P Dolara. 1993. Les amines aromatiques primaires de la fumée secondaire de cigarette sont des contaminants courants de l'air intérieur. Toxicol Ind Health 9:405-413.

Mainville, C, PL Auger, W Smorgawiewicz, D Neculcea, J Neculcea et M Lévesque. 1988. Mycotoxines et syndrome d'extrême fatigue dans un hôpital. Dans Healthy Buildings, édité par B Petterson et T Lindvall. Stockholm : Conseil suédois pour la recherche en construction.

Masi, MA et al. 1988. Exposition environnementale à la fumée de tabac et fonction pulmonaire chez les jeunes adultes. Am Rev Respir Dis 138:296-299.

McLaughlin, JK, MS Dietz, ES Mehl et WJ Blot. 1987. Fiabilité des informations de substitution sur le tabagisme par type d'informateur. Am J Epidemiol 126:144-146.

McLaughlin, JK, JS Mandel, ES Mehl et WJ Blot. 1990. Comparaison des proches parents avec les auto-répondants concernant la question sur la consommation de cigarettes, de café et d'alcool. Épidémiologie 1(5):408-412.

Medina, E, R Medina et AM Kaempffer. 1988. Effets du tabagisme domestique sur la fréquence des maladies respiratoires infantiles. Rev Chilena Pediatrica 59:60-64.

Miller, JD. 1993. Les champignons et l'ingénieur du bâtiment. Environnements pour les personnes : IAQ '92. Atlanta : ASHRAE.

Morey, PR. 1993a. Événements microbiologiques après un incendie dans un immeuble de grande hauteur. Dans Air intérieur '93. Helsinki : Air intérieur '93.

—. 1993b. Utilisation de la norme de communication des dangers et de la clause d'obligation générale lors de l'assainissement de la contamination fongique. Dans Air intérieur '93. Helsinki : Air intérieur '93.

Nathanson, T. 1993. Qualité de l'air intérieur dans les immeubles de bureaux : un guide technique. Ottawa : Santé Canada.

Département de la santé de la ville de New York. 1993. Lignes directrices sur l'évaluation et l'assainissement de Stachybotrys Atra dans les environnements intérieurs. New York : Département de la santé de la ville de New York.

Pershagen, G, S Wall, A Taube et I Linnman. 1981. Sur l'interaction entre l'exposition professionnelle à l'arsenic et le tabagisme et sa relation avec le cancer du poumon. Scand J Work Environ Health 7:302-309.

Riedel, F, C Bretthauer et CHL Rieger. 1989. Einfluss von paasivem Rauchen auf die bronchiale Reaktivitact bei Schulkindern. Prax Pneumol 43:164-168.

Saccomanno, G, GC Huth et O Auerbach. 1988. Relation entre les produits de filiation radioactifs du radon et le tabagisme dans la genèse du cancer du poumon chez les mineurs d'uranium. Cancer 62:402-408.

Sorenson, WG. 1989. Impact sur la santé des mycotoxines à la maison et au travail : un aperçu. Dans Biodeterioration Research 2, édité par CE O'Rear et GC Llewellyn. New York : Plénum.

Fonds suédois pour l'environnement de travail. 1988. Mesurer ou prendre des mesures correctives directes ? Stratégies d'investigation et de mesure en milieu de travail. Stockholm : Arbetsmiljöfonden [Fonds suédois pour l'environnement de travail].

Agence américaine de protection de l'environnement (US EPA). 1992. Effets sur la santé respiratoire du tabagisme passif : cancer du poumon et autres troubles. Washington, DC : EPA des États-Unis.

Conseil national de la recherche des États-Unis. 1986. Fumée de tabac ambiante : mesure des expositions et évaluation des effets sur la santé. Washington, DC : Académie nationale des sciences.

Chirurgien général américain. 1985. Les conséquences du tabagisme sur la santé : cancer et maladies pulmonaires chroniques en milieu de travail. Washington, DC : DHHS (PHS).

—. 1986. Les conséquences sur la santé du tabagisme involontaire. Washington, D.C. : DHHS (CDC).

Wald, NJ, J Borcham, C Bailey, C Ritchie, JE Haddow et J Knight. 1984. Cotinine urinaire comme marqueur de la respiration de la fumée de tabac des autres. Lancet 1:230-231.

Wanner, HU, AP Verhoeff, A Colombi, B Flannigan, S Gravesen, A Mouilleseux, A Nevalainen, J Papadakis et K Seidel. 1993. Particules biologiques dans les environnements intérieurs. La qualité de l'air intérieur et son impact sur l'homme. Bruxelles : Commission des Communautés européennes.

Blanc, JR et HF Froeb. 1980. Dysfonctionnement des petites voies respiratoires chez les non-fumeurs exposés de manière chronique à la fumée de tabac. New Engl J Med 302:720-723.

Organisation mondiale de la santé (OMS). 1987. Lignes directrices sur la qualité de l'air pour l'Europe. Série européenne, non. 23. Copenhague : Publications régionales de l'OMS.