Mercredi, Mars 16 2011 20: 28

Fonderie et affinage

Évaluer cet élément
(0 votes)

Adapté de la 3e édition, Encyclopédie de la santé et de la sécurité au travail.

Lors de la production et de l'affinage des métaux, les composants de valeur sont séparés des matériaux sans valeur dans une série de réactions physiques et chimiques différentes. Le produit final est un métal contenant des quantités contrôlées d'impuretés. La fusion et l'affinage primaires produisent des métaux directement à partir de concentrés de minerai, tandis que la fusion et l'affinage secondaires produisent des métaux à partir de déchets et de déchets de procédé. La ferraille comprend les morceaux de pièces métalliques, les barres, les tournures, les tôles et les fils hors spécifications ou usés mais qui peuvent être recyclés (voir l'article « Récupération des métaux » dans ce chapitre).

Présentation des processus

Deux technologies de récupération des métaux sont généralement utilisées pour produire des métaux raffinés, pyrométallurgique ainsi que hydrométallurgique. Les procédés pyrométallurgiques utilisent la chaleur pour séparer les métaux souhaités des autres matériaux. Ces procédés utilisent des différences entre les potentiels d'oxydation, les points de fusion, les pressions de vapeur, les densités et/ou la miscibilité des composants du minerai lorsqu'ils sont fondus. Les technologies hydrométallurgiques diffèrent des procédés pyrométallurgiques en ce que les métaux souhaités sont séparés des autres matériaux à l'aide de techniques qui capitalisent sur les différences entre les solubilités des constituants et/ou les propriétés électrochimiques dans des solutions aqueuses.

Pyrométallurgie

 Lors du traitement pyrométallique, un minerai, après avoir été bénéficié (concentré par concassage, broyage, flottaison et séchage), est fritté ou torréfié (calciné) avec d'autres matériaux tels que la poussière et le fondant de filtre à manches. Le concentré est ensuite fondu, ou fondu, dans un haut fourneau afin de fusionner les métaux souhaités en un lingot fondu impur. Ce lingot subit ensuite un troisième processus pyrométallique pour affiner le métal au niveau de pureté souhaité. Chaque fois que le minerai ou le lingot est chauffé, des déchets sont créés. La poussière provenant de la ventilation et des gaz de procédé peut être capturée dans un filtre à manches et est soit éliminée soit renvoyée au procédé, selon la teneur en métal résiduel. Le soufre contenu dans le gaz est également capturé et, lorsque les concentrations sont supérieures à 4 %, il peut être transformé en acide sulfurique. Selon l'origine du minerai et sa teneur en métaux résiduels, divers métaux tels que l'or et l'argent peuvent également être produits comme sous-produits.

La torréfaction est un processus pyrométallurgique important. Le grillage sulfatant est utilisé dans la production de cobalt et de zinc. Son but est de séparer les métaux afin qu'ils puissent être transformés en une forme soluble dans l'eau pour un traitement hydrométallurgique ultérieur.

La fusion des minerais sulfurés produit un concentré métallique partiellement oxydé (matte). Lors de la fusion, le matériau sans valeur, généralement du fer, forme un laitier avec un fondant et est converti en oxyde. Les métaux précieux acquièrent la forme métallique à l'étape de conversion, qui a lieu dans les fours de conversion. Cette méthode est utilisée dans la production de cuivre et de nickel. Le fer, le ferrochrome, le plomb, le magnésium et les composés ferreux sont produits par réduction du minerai avec du charbon de bois et un fondant (calcaire), le processus de fusion se déroulant généralement dans un four électrique. (Voir aussi le Industrie du fer et de l'acier chapitre.) L'électrolyse des sels fondus, utilisée dans la production d'aluminium, est un autre exemple de procédé pyrométallurgique.

La température élevée requise pour le traitement pyrométallurgique des métaux est obtenue en brûlant des combustibles fossiles ou en utilisant la réaction exothermique du minerai lui-même (par exemple, dans le procédé de fusion éclair). Le procédé de fusion éclair est un exemple de procédé pyrométallurgique économe en énergie dans lequel le fer et le soufre du concentré de minerai sont oxydés. La réaction exothermique couplée à un système de récupération de chaleur permet d'économiser beaucoup d'énergie pour la fusion. La récupération élevée de soufre du procédé est également bénéfique pour la protection de l'environnement. La plupart des fonderies de cuivre et de nickel récemment construites utilisent ce procédé.

Hydrométallurgie

Des exemples de procédés hydrométallurgiques sont la lixiviation, la précipitation, la réduction électrolytique, l'échange d'ions, la séparation par membrane et l'extraction par solvant. La première étape des procédés hydrométallurgiques est la lixiviation des métaux précieux à partir de matériaux moins précieux, par exemple avec de l'acide sulfurique. La lixiviation est souvent précédée d'un prétraitement (p. ex. grillage sulfaté). Le processus de lixiviation nécessite souvent une pression élevée, l'ajout d'oxygène ou des températures élevées. La lixiviation peut également être réalisée à l'électricité. A partir de la solution de lixiviation, le métal souhaité ou son composé est récupéré par précipitation ou réduction en utilisant différentes méthodes. La réduction est effectuée, par exemple, dans la production de cobalt et de nickel avec du gaz.

L'électrolyse des métaux dans des solutions aqueuses est également considérée comme un procédé hydrométallurgique. Dans le processus d'électrolyse, l'ion métallique est réduit en métal. Le métal se trouve dans une solution d'acide faible à partir de laquelle il précipite sur les cathodes sous l'influence d'un courant électrique. La plupart des métaux non ferreux peuvent également être raffinés par électrolyse.

Souvent, les procédés métallurgiques sont une combinaison de procédés pyro- et hydrométallurgiques, selon le concentré de minerai à traiter et le type de métal à raffiner. Un exemple est la production de nickel.

Les dangers et leur prévention

La prévention des risques sanitaires et des accidents dans l'industrie métallurgique est avant tout une question pédagogique et technique. Les examens médicaux sont secondaires et n'ont qu'un rôle complémentaire dans la prévention des risques sanitaires. Un échange d'informations harmonieux et une collaboration entre les services de planification, de ligne, de sécurité et de santé au travail au sein de l'entreprise donnent le résultat le plus efficace dans la prévention des risques pour la santé.

Les mesures préventives les meilleures et les moins coûteuses sont celles prises au stade de la planification d'une nouvelle usine ou d'un nouveau procédé. Lors de la planification de nouvelles installations de production, les aspects suivants doivent être pris en compte au minimum :

  • Les sources potentielles de contaminants atmosphériques doivent être fermées et isolées.
  • La conception et l'emplacement de l'équipement de traitement doivent permettre un accès facile à des fins de maintenance.
  • Les zones dans lesquelles un danger soudain et inattendu peut survenir doivent être surveillées en permanence. Des avertissements adéquats doivent être inclus. Par exemple, les zones dans lesquelles une exposition à l'arsine ou au cyanure d'hydrogène pourrait être possible doivent faire l'objet d'une surveillance continue.
  • L'ajout et la manipulation de produits chimiques de procédé toxiques doivent être planifiés de manière à éviter la manipulation manuelle.
  • Des dispositifs d'échantillonnage d'hygiène personnelle au travail devraient être utilisés afin d'évaluer l'exposition réelle du travailleur individuel, dans la mesure du possible. La surveillance fixe régulière des gaz, des poussières et du bruit donne une vue d'ensemble de l'exposition mais n'a qu'un rôle complémentaire dans l'évaluation de la dose d'exposition.
  • Dans l'aménagement de l'espace, les exigences de futurs changements ou extensions du processus doivent être prises en compte afin que les normes d'hygiène au travail de l'usine ne se détériorent pas.
  • Il devrait y avoir un système continu de formation et d'éducation pour le personnel de sécurité et d'hygiène, ainsi que pour les contremaîtres et les ouvriers. Les nouveaux travailleurs, en particulier, devraient être parfaitement informés des risques potentiels pour la santé et de la manière de les prévenir dans leur propre environnement de travail. En outre, une formation doit être dispensée chaque fois qu'un nouveau processus est introduit.
  • Les pratiques de travail sont importantes. Par exemple, une mauvaise hygiène personnelle en mangeant et en fumant sur le lieu de travail peut augmenter considérablement l'exposition personnelle.
  • La direction doit disposer d'un système de surveillance de la santé et de la sécurité qui produit des données adéquates pour la prise de décisions techniques et économiques.

 

Voici quelques-uns des dangers et précautions spécifiques rencontrés lors de la fusion et de l'affinage.

blessures

L'industrie de la fonte et de l'affinage a un taux de blessures plus élevé que la plupart des autres industries. Les sources de ces blessures comprennent : les éclaboussures et les déversements de métal en fusion et de scories entraînant des brûlures; explosions de gaz et explosions au contact de métal en fusion avec de l'eau ; collisions avec des locomotives, des wagons, des ponts roulants et d'autres équipements mobiles en mouvement ; chutes d'objets lourds; tombe d'une hauteur (par exemple, en accédant à une cabine de grue); et les blessures par glissade et trébuchement dues à l'obstruction des planchers et des passages.

Les précautions comprennent : une formation adéquate, un équipement de protection individuelle (EPI) approprié (par exemple, des casques, des chaussures de sécurité, des gants de travail et des vêtements de protection) ; bon rangement, entretien ménager et entretien de l'équipement; règles de circulation pour les équipements en mouvement (y compris des itinéraires définis et un système de signalisation et d'avertissement efficace); et un programme de protection contre les chutes.

Moocall Heat

Les maladies liées au stress thermique telles que les coups de chaleur sont un risque courant, principalement en raison du rayonnement infrarouge des fours et du métal en fusion. Ceci est particulièrement un problème lorsque des travaux pénibles doivent être effectués dans des environnements chauds.

La prévention des maladies liées à la chaleur peut impliquer des écrans d'eau ou des rideaux d'air devant les fours, un refroidissement ponctuel, des cabines climatisées fermées, des vêtements de protection contre la chaleur et des combinaisons refroidies par air, laissant suffisamment de temps pour l'acclimatation, des pauses de travail dans des zones fraîches et un approvisionnement adéquat de boissons à boire fréquemment.

Risques chimiques

L'exposition à une grande variété de poussières, fumées, gaz et autres produits chimiques dangereux peut se produire pendant les opérations de fusion et d'affinage. Le concassage et le broyage du minerai en particulier peuvent entraîner de fortes expositions à la silice et aux poussières métalliques toxiques (par exemple, contenant du plomb, de l'arsenic et du cadmium). Il peut également y avoir des expositions à la poussière lors des opérations de maintenance du four. Pendant les opérations de fusion, les fumées métalliques peuvent être un problème majeur.

Les émissions de poussières et de fumées peuvent être contrôlées par une enceinte, l'automatisation des processus, une ventilation par aspiration locale et par dilution, le mouillage des matériaux, une manipulation réduite des matériaux et d'autres changements de processus. Là où ceux-ci ne sont pas adéquats, une protection respiratoire serait nécessaire.

De nombreuses opérations de fusion impliquent la production de grandes quantités de dioxyde de soufre à partir de minerais sulfurés et de monoxyde de carbone à partir de processus de combustion. La dilution et la ventilation par aspiration locale (LEV) sont essentielles.

L'acide sulfurique est produit comme sous-produit des opérations de fusion et est utilisé dans le raffinage électrolytique et la lixiviation des métaux. L'exposition peut se produire à la fois au liquide et aux brouillards d'acide sulfurique. Une protection de la peau et des yeux et une LEV sont nécessaires.

La fusion et l'affinage de certains métaux peuvent présenter des risques particuliers. Les exemples incluent le nickel carbonyle dans le raffinage du nickel, les fluorures dans la fusion de l'aluminium, l'arsenic dans la fusion et le raffinage du cuivre et du plomb, et les expositions au mercure et au cyanure lors du raffinage de l'or. Ces processus nécessitent leurs propres précautions particulières.

Autres dangers

L'éblouissement et le rayonnement infrarouge des fours et du métal en fusion peuvent causer des lésions oculaires, notamment des cataractes. Des lunettes et des écrans faciaux appropriés doivent être portés. Des niveaux élevés de rayonnement infrarouge peuvent également provoquer des brûlures de la peau à moins que des vêtements de protection ne soient portés.

Les niveaux de bruit élevés provenant du concassage et du broyage du minerai, des soufflantes à décharge de gaz et des fours électriques à haute puissance peuvent entraîner une perte auditive. Si la source du bruit ne peut pas être confinée ou isolée, des protections auditives doivent être portées. Un programme de conservation de l'ouïe comprenant des tests audiométriques et une formation devrait être institué.

Des risques électriques peuvent survenir pendant les processus électrolytiques. Les précautions comprennent une maintenance électrique appropriée avec des procédures de verrouillage/étiquetage ; gants, vêtements et outils isolants; et des disjoncteurs de fuite à la terre si nécessaire.

Le levage manuel et la manipulation de matériaux peuvent causer des blessures au dos et aux membres supérieurs. Des aides mécaniques au levage et une formation appropriée aux méthodes de levage peuvent réduire ce problème.

Pollution et protection de l'environnement

Les émissions de gaz irritants et corrosifs comme le dioxyde de soufre, le sulfure d'hydrogène et le chlorure d'hydrogène peuvent contribuer à la pollution de l'air et provoquer la corrosion des métaux et du béton à l'intérieur de l'usine et dans le milieu environnant. La tolérance de la végétation au dioxyde de soufre varie selon le type de forêt et de sol. En général, les arbres à feuilles persistantes tolèrent des concentrations de dioxyde de soufre plus faibles que les arbres à feuilles caduques. Les émissions de particules peuvent contenir des particules non spécifiques, des fluorures, du plomb, de l'arsenic, du cadmium et de nombreux autres métaux toxiques. Les effluents d'eaux usées peuvent contenir une variété de métaux toxiques, d'acide sulfurique et d'autres impuretés. Les déchets solides peuvent être contaminés par l'arsenic, le plomb, les sulfures de fer, la silice et d'autres polluants.

La gestion de la fonderie devrait inclure l'évaluation et le contrôle des émissions de l'usine. Il s'agit d'un travail spécialisé qui ne doit être effectué que par du personnel parfaitement familiarisé avec les propriétés chimiques et la toxicité des matières rejetées par les procédés de l'usine. L'état physique du matériau, la température à laquelle il quitte le processus, les autres matériaux dans le flux de gaz et d'autres facteurs doivent tous être pris en compte lors de la planification des mesures de contrôle de la pollution de l'air. Il est également souhaitable de maintenir une station météorologique, de tenir des registres météorologiques et d'être prêt à réduire la production lorsque les conditions météorologiques sont défavorables à la dispersion des effluents de la cheminée. Des sorties sur le terrain sont nécessaires pour observer l'effet de la pollution de l'air sur les zones résidentielles et agricoles.

Le dioxyde de soufre, l'un des principaux contaminants, est récupéré sous forme d'acide sulfurique lorsqu'il est présent en quantité suffisante. Sinon, pour respecter les normes d'émission, le dioxyde de soufre et les autres déchets gazeux dangereux sont contrôlés par épuration. Les émissions de particules sont généralement contrôlées par des filtres en tissu et des précipitateurs électrostatiques.

De grandes quantités d'eau sont utilisées dans les procédés de flottation tels que la concentration du cuivre. La majeure partie de cette eau est recyclée dans le processus. Les résidus du processus de flottation sont pompés sous forme de boue dans des bassins de sédimentation. L'eau est recyclée dans le processus. Les eaux de process et les eaux pluviales contenant des métaux sont nettoyées dans des stations d'épuration avant d'être rejetées ou recyclées.

Les déchets en phase solide comprennent les scories de fonderie, les boues de purge provenant de la conversion du dioxyde de soufre en acide sulfurique et les boues provenant des retenues de surface (par exemple, les bassins de sédimentation). Certaines scories peuvent être reconcentrées et renvoyées aux fonderies pour retraitement ou récupération des autres métaux présents. Bon nombre de ces déchets en phase solide sont des déchets dangereux qui doivent être stockés conformément aux réglementations environnementales.

 

Retour

Lire 13938 fois Dernière mise à jour le mardi, Juin 28 2011 14: 13

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références de l'industrie de la transformation et du travail des métaux

Buonicore, AJ et WT Davis (éd.). 1992. Manuel d'ingénierie de la pollution atmosphérique. New York : Van Nostrand Reinhold/Association de gestion de l'air et des déchets.

Agence de protection de l'environnement (EPA). 1995. Profil de l'industrie des métaux non ferreux. EPA/310-R-95-010. Washington, DC : EPA.

Association internationale de recherche sur le cancer (CIRC). 1984. Monographies sur l'évaluation des risques cancérigènes pour l'homme. Vol. 34. Lyon : CIRC.

Johnson A, CY Moira, L MacLean, E Atkins, A Dybunico, F Cheng et D Enarson. 1985. Anomalies respiratoires chez les travailleurs de la sidérurgie. Brit J Ind Med 42:94–100.

Kronenberg RS, JC Levin, RF Dodson, JGN Garcia et DE Griffith. 1991. Maladie liée à l'amiante chez les employés d'une aciérie et d'une usine de fabrication de bouteilles en verre. Ann NY Acad Sei 643:397–403.

Landrigan, PJ, MG Cherniack, FA Lewis, LR Catlett et RW Hornung. 1986. Silicose dans une fonderie de fonte grise. La persistance d'une maladie ancienne. Scand J Work Environ Health 12:32–39.

Institut national pour la sécurité et la santé au travail (NIOSH). 1996. Critères pour une norme recommandée : expositions professionnelles aux fluides de travail des métaux. Cincinatti, Ohio : NIOSH.

Palheta, D et A Taylor. 1995. Mercure dans des échantillons environnementaux et biologiques d'une zone d'extraction d'or dans la région amazonienne du Brésil. Science de l'environnement total 168: 63-69.

Thomas, PR et D Clarke. 1992 Vibration doigt blanc et maladie de Dupuytren : sont-elles liées ? Occup Med 42(3):155–158.