Vendredi, Mars 11 2011 16: 58

Mesure et évaluation des polluants chimiques

Évaluer cet élément
(0 votes)

Du point de vue de la pollution, l'air intérieur en milieu non industriel présente plusieurs caractéristiques qui le différencient de l'air extérieur, ou atmosphérique, et de l'air des lieux de travail industriels. Outre les contaminants présents dans l'air atmosphérique, l'air intérieur comprend également les contaminants générés par les matériaux de construction et par les activités qui s'y déroulent. Les concentrations de contaminants dans l'air intérieur ont tendance à être identiques ou inférieures aux concentrations trouvées dans l'air extérieur, selon la ventilation; les contaminants générés par les matériaux de construction sont généralement différents de ceux que l'on trouve dans l'air extérieur et peuvent être présents à des concentrations élevées, tandis que ceux générés par les activités à l'intérieur du bâtiment dépendent de la nature de ces activités et peuvent être les mêmes que ceux que l'on trouve dans l'air extérieur, car dans le cas du CO et du CO2.

Pour cette raison, le nombre de contaminants trouvés dans l'air intérieur non industriel est important et varié et les niveaux de concentration sont faibles (sauf dans les cas où il existe une source génératrice importante); ils varient en fonction des conditions atmosphériques/climatologiques, du type ou des caractéristiques du bâtiment, de sa ventilation et des activités qui y sont exercées.

Analyse

Une grande partie de la méthodologie utilisée pour mesurer la qualité de l'air intérieur découle de l'hygiène industrielle et des mesures d'immission de l'air extérieur. Il existe peu de méthodes analytiques validées spécifiquement pour ce type de tests, bien que certaines organisations, telles que l'Organisation mondiale de la santé et l'Environmental Protection Agency aux États-Unis mènent des recherches dans ce domaine. Un obstacle supplémentaire est le manque d'informations sur la relation exposition-effet lorsqu'il s'agit d'expositions à long terme à de faibles concentrations de polluants.

Les méthodes d'analyse utilisées pour l'hygiène industrielle sont conçues pour mesurer des concentrations élevées et ne sont pas définies pour de nombreux polluants, alors que le nombre de contaminants dans l'air intérieur peut être important et varié et que les niveaux de concentration peuvent être faibles, sauf dans certains cas. La plupart des méthodes utilisées en hygiène industrielle reposent sur le prélèvement d'échantillons et leur analyse ; nombre de ces méthodes peuvent être appliquées à l'air intérieur si plusieurs facteurs sont pris en compte : ajustement des méthodes aux concentrations typiques ; augmenter leur sensibilité sans nuire à la précision (par exemple, augmenter le volume d'air testé) ; et valider leur spécificité.

Les méthodes analytiques utilisées pour mesurer les concentrations de polluants dans l'air extérieur sont similaires à celles utilisées pour l'air intérieur, et donc certaines peuvent être utilisées directement pour l'air intérieur tandis que d'autres peuvent être facilement adaptées. Cependant, il est important de garder à l'esprit que certaines méthodes sont conçues pour une lecture directe d'un échantillon, tandis que d'autres nécessitent une instrumentation encombrante et parfois bruyante et utilisent de grands volumes d'air échantillonné qui peuvent fausser la lecture.

Planifier les lectures

La démarche traditionnelle dans le domaine de la maîtrise de l'environnement des lieux de travail permet d'améliorer la qualité de l'air intérieur. Elle consiste à identifier et quantifier un problème, proposer des mesures correctives, s'assurer que ces mesures sont mises en œuvre, puis évaluer leur efficacité après un certain temps. Cette procédure courante n'est pas toujours la plus adéquate car souvent une telle évaluation exhaustive, incluant le prélèvement de nombreux échantillons, n'est pas nécessaire. Des mesures exploratoires, qui peuvent aller d'une inspection visuelle à un dosage de l'air ambiant par des méthodes de lecture directe, et qui peuvent fournir une concentration approximative de polluants, sont suffisantes pour résoudre bon nombre des problèmes existants. Une fois que des mesures correctives ont été prises, les résultats peuvent être évalués par une deuxième mesure, et seulement lorsqu'il n'y a pas de preuve claire d'une amélioration, une inspection plus approfondie (avec des mesures approfondies) ou une étude analytique complète peut être entreprise (Swedish Work Fonds pour l'environnement 1988).

Les principaux avantages d'une telle procédure exploratoire par rapport à la plus traditionnelle sont l'économie, la rapidité et l'efficacité. Elle nécessite un personnel compétent et expérimenté et l'utilisation d'équipements adaptés. La figure 1 résume les objectifs des différentes étapes de cette procédure.

Figure 1. Planification des lectures pour l'évaluation exploratoire.

AIR050T1

Stratégie d'échantillonnage

Le contrôle analytique de la qualité de l'air intérieur doit être envisagé en dernier recours seulement après que la mesure exploratoire n'a pas donné de résultats positifs, ou si une évaluation ou un contrôle complémentaire des tests initiaux est nécessaire.

En supposant une connaissance préalable des sources de pollution et des types de contaminants, les échantillons, même en nombre limité, doivent être représentatifs des différents espaces étudiés. L'échantillonnage doit être planifié pour répondre aux questions Quoi ? Comment? Où? et quand?

Quoi

Les polluants en question doivent être identifiés à l'avance et, compte tenu des différents types d'informations qui peuvent être obtenues, il convient de décider s'il convient émission or immission mesures.

Les mesures d'émissions pour la qualité de l'air intérieur peuvent déterminer l'influence de différentes sources de pollution, des conditions climatiques, des caractéristiques du bâtiment et de l'intervention humaine, ce qui nous permet de contrôler ou de réduire les sources d'émissions et d'améliorer la qualité de l'air intérieur. Il existe différentes techniques pour effectuer ce type de mesure : placer un système de collecte à côté de la source de l'émission, définir une zone de travail limitée et étudier les émissions comme si elles représentaient des conditions générales de travail, ou travailler dans des conditions simulées en appliquant des systèmes de surveillance qui s'appuient sur mesures de l'espace de tête.

Les mesures d'immissions permettent de déterminer le niveau de pollution de l'air intérieur dans les différentes zones compartimentées du bâtiment, permettant de réaliser une cartographie des pollutions pour l'ensemble de la structure. A partir de ces mesures et en identifiant les différentes zones où les personnes ont exercé leurs activités et en calculant le temps qu'elles ont passé à chaque tâche, il sera possible de déterminer les niveaux d'exposition. Une autre façon de procéder consiste à demander aux travailleurs de porter des dispositifs de surveillance pendant qu'ils travaillent.

Il peut être plus pratique, si le nombre de polluants est important et varié, de sélectionner quelques substances représentatives afin que la lecture soit représentative et pas trop coûteuse.

Comment

Le choix du type de lecture à effectuer dépendra de la méthode disponible (lecture directe ou prélèvement et analyse) et de la technique de mesure : émission ou immission.

L'emplacement choisi doit être le plus approprié et le plus représentatif pour l'obtention d'échantillons. Cela nécessite de connaître le bâtiment étudié : son orientation par rapport au soleil, le nombre d'heures d'ensoleillement direct, le nombre d'étages, le type de compartimentage, si la ventilation est naturelle ou forcée, si ses fenêtres peuvent être ouvertes, etc. Connaître la source des plaintes et des problèmes est également nécessaire, par exemple, s'ils se produisent dans les étages supérieurs ou inférieurs, ou dans les zones proches ou éloignées des fenêtres, ou dans les zones mal ventilées ou éclairées, entre autres lieux. La sélection des meilleurs sites pour prélever les échantillons sera basée sur toutes les informations disponibles concernant les critères mentionnés ci-dessus.

Quand

Décider quand prendre les lectures dépendra de la façon dont les concentrations de polluants atmosphériques changent par rapport au temps. La pollution peut être détectée dès le matin, pendant la journée de travail ou en fin de journée ; il peut être détecté en début ou en fin de semaine ; pendant l'hiver ou l'été; lorsque la climatisation est allumée ou éteinte ; ainsi qu'à d'autres moments.

Pour répondre correctement à ces questions, la dynamique de l'environnement intérieur donné doit être connue. Il est également nécessaire de connaître les objectifs des mesures effectuées, qui seront basés sur les types de polluants qui sont étudiés. La dynamique des ambiances intérieures est influencée par la diversité des sources de pollution, les différences physiques des espaces concernés, le type de compartimentage, le type de ventilation et de climatisation utilisé, les conditions atmosphériques extérieures (vent, température, saison, etc. ) et les caractéristiques du bâtiment (nombre de fenêtres, leur orientation, etc.).

Les objectifs des mesures détermineront si l'échantillonnage sera effectué sur des intervalles courts ou longs. Si l'on pense que les effets sur la santé des contaminants donnés sont à long terme, il s'ensuit que les concentrations moyennes doivent être mesurées sur de longues périodes. Pour les substances qui ont des effets aigus mais non cumulatifs, des mesures sur de courtes périodes sont suffisantes. Si des émissions intenses de courte durée sont suspectées, un échantillonnage fréquent sur de courtes périodes est nécessaire afin de détecter le moment de l'émission. Il ne faut toutefois pas négliger le fait que, dans de nombreux cas, les choix possibles dans le type de méthodes d'échantillonnage utilisées peuvent être déterminés par les méthodes analytiques disponibles ou requises.

Si, après examen de toutes ces questions, il n'est pas suffisamment clair quelle est la source du problème, ou quand le problème survient le plus fréquemment, la décision quant à l'endroit et au moment de prélever des échantillons doit être prise au hasard, en calculant le nombre d'échantillons comme fonction de la fiabilité et du coût attendus.

Techniques de mesure

Les méthodes disponibles pour prélever des échantillons d'air intérieur et pour leur analyse peuvent être regroupées en deux types : les méthodes qui impliquent une lecture directe et celles qui impliquent le prélèvement d'échantillons pour une analyse ultérieure.

Les méthodes basées sur une lecture directe sont celles par lesquelles le prélèvement de l'échantillon et la mesure de la concentration des polluants se font simultanément ; ils sont rapides et la mesure est instantanée, ce qui permet d'obtenir des données précises à un coût relativement faible. Ce groupe comprend tubes colorimétriques ainsi que moniteurs spécifiques.

L'utilisation de tubes colorimétriques est basée sur le changement de couleur d'un réactif spécifique lorsqu'il entre en contact avec un polluant donné. Les plus couramment utilisés sont les tubes qui contiennent un réactif solide et l'air est aspiré à travers eux à l'aide d'une pompe manuelle. Évaluer la qualité de l'air intérieur avec des tubes colorimétriques n'est utile que pour des mesures exploratoires et pour mesurer des émissions sporadiques car leur sensibilité est généralement faible, sauf pour certains polluants comme le CO et le CO2 que l'on peut trouver à fortes concentrations dans l'air intérieur. Il est important de garder à l'esprit que la précision de cette méthode est faible et que l'interférence de contaminants inattendus est souvent un facteur.

Dans le cas de moniteurs spécifiques, la détection des polluants est basée sur des principes physiques, électriques, thermiques, électromagnétiques et chimioélectromagnétiques. La plupart des moniteurs de ce type permettent d'effectuer des mesures de courte ou longue durée et d'obtenir un profil de contamination sur un site donné. Leur précision est déterminée par leurs fabricants respectifs et leur utilisation correcte nécessite des étalonnages périodiques au moyen d'atmosphères contrôlées ou de mélanges gazeux certifiés. Les moniteurs deviennent de plus en plus précis et leur sensibilité plus fine. Beaucoup ont une mémoire intégrée pour stocker les lectures, qui peuvent ensuite être téléchargées sur des ordinateurs pour la création de bases de données et l'organisation et la récupération faciles des résultats.

Les méthodes d'échantillonnage et les analyses peuvent être classées en infection (ou dynamique) et passif, selon la technique.

Avec les systèmes actifs, cette pollution peut être collectée en forçant l'air à travers des dispositifs collecteurs dans lesquels le polluant est capté, concentrant l'échantillon. Ceci est accompli avec des filtres, des solides adsorbants et des solutions absorbantes ou réactives qui sont placés dans des barboteurs ou sont imprégnés sur un matériau poreux. L'air est ensuite forcé à travers et le contaminant, ou les produits de sa réaction, sont analysés. Pour l'analyse de l'air échantillonné avec des systèmes actifs, les exigences sont un fixateur, une pompe pour déplacer l'air et un système pour mesurer le volume d'air échantillonné, soit directement, soit en utilisant les données de débit et de durée.

Le débit et le volume d'air prélevé sont spécifiés dans les manuels de référence ou doivent être déterminés par des essais préalables et dépendront de la quantité et du type d'absorbant ou d'adsorbant utilisé, des polluants mesurés, du type de mesure (émission ou immission ) et l'état de l'air ambiant lors du prélèvement de l'échantillon (humidité, température, pression). L'efficacité du prélèvement augmente en diminuant le taux d'apport ou en augmentant la quantité de fixateur utilisé, directement ou en tandem.

Un autre type de prélèvement actif est la capture directe de l'air dans un sac ou tout autre contenant inerte et imperméable. Ce type de prélèvement est utilisé pour certains gaz (CO, CO2H2ALORS2) et est utile comme mesure exploratoire lorsque le type de polluant est inconnu. L'inconvénient est que sans concentration de l'échantillon, la sensibilité peut être insuffisante et un traitement en laboratoire supplémentaire peut être nécessaire pour augmenter la concentration.

Les systèmes passifs captent les polluants par diffusion ou perméation sur une base qui peut être un adsorbant solide, seul ou imprégné d'un réactif spécifique. Ces systèmes sont plus pratiques et faciles à utiliser que les systèmes actifs. Ils ne nécessitent pas de pompes pour capturer l'échantillon ni de personnel hautement qualifié. Mais la capture de l'échantillon peut prendre beaucoup de temps et les résultats ont tendance à ne fournir que des niveaux de concentration moyens. Cette méthode ne peut pas être utilisée pour mesurer les concentrations maximales; dans ces cas, des systèmes actifs doivent être utilisés à la place. Pour utiliser correctement les systèmes passifs, il est important de connaître la vitesse à laquelle chaque polluant est capté, qui dépendra du coefficient de diffusion du gaz ou de la vapeur et de la conception du moniteur.

Le tableau 1 présente les principales caractéristiques de chaque méthode d'échantillonnage et le tableau 2 décrit les différentes méthodes utilisées pour recueillir et analyser les échantillons pour les polluants de l'air intérieur les plus importants.

Tableau 1. Méthodologie de prélèvement des échantillons

Caractéristiques

Actif

Revenu

Lecture directe

Mesures d'intervalles temporisés

+

 

+

Mesures à long terme

 

+

+

Le Monitoring

   

+

Concentration de l'échantillon

+

+

 

Mesure des immissions

+

+

+

Mesure des émissions

+

+

+

Réponse immédiate

   

+

+ Signifie que la méthode donnée est adaptée à la méthode de mesure ou aux critères de mesure souhaités.

Tableau 2. Méthodes de détection des gaz dans l'air intérieur

De polluants

Lecture directe

Méthodologie

Analyse

 

Capture par diffusion

Capture par concentration

Capture directe

 

Monoxyde de carbone

Cellule électrochimique
Spectroscopie infrarouge

   

Sac ou récipient inerte

GCa

Ozone

Chimiluminescence

 

Bubbler

 

UV-Visb

le dioxyde de soufre

Cellule électrochimique

 

Bubbler

 

UV-Vis

Dioxyde d'azote

Chimiluminescence
Cellule électrochimique

Filtre imprégné d'un
réactif

Bubbler

 

UV-Vis

Gaz carbonique

Spectroscopie infrarouge

   

Sac ou récipient inerte

GC

Formaldéhyde

-

Filtre imprégné d'un
réactif

Bubbler
Solides adsorbants

 

HPLCc
Polarographie
UV-Vis

COV

CPG portable

Solides adsorbants

Solides adsorbants

Sac ou récipient inerte

CG (ECDd-FIDe-NPDf-PIDg)
GC-MSh

Pesticides

-

 

Solides adsorbants
Bubbler
Filtre
de couche standard

 

GC (ECD-FPD-NPD)
GC-EM

Affaire particulière

-

Capteur optique

Filtre

Impacteur
cyclone

Gravimétrie
Microscopie

— = Méthode inadaptée au polluant.
a GC = chromatographie en phase gazeuse.
b UV-Vis = spectrophotométrie ultraviolette visible.
c HPLC = chromatographie liquide de haute précision.
d CD = détecteur à capture d'électrons.
e FID = détecteur de flamme à ionisation.
f NPD = détecteur azote/phosphore.
g PID = détecteur à photoionisation.
h MS = spectrométrie de masse.

Sélection de la méthode

Pour choisir la meilleure méthode d'échantillonnage, il faut d'abord déterminer qu'il existe des méthodes validées pour les polluants étudiés et s'assurer que les instruments et matériaux appropriés sont disponibles pour recueillir et analyser le polluant. Il faut généralement connaître leur coût et la sensibilité requise pour le travail, ainsi que les éléments qui peuvent interférer avec la mesure, compte tenu de la méthode choisie.

Une estimation des concentrations minimales de ce que l'on souhaite mesurer est très utile lors de l'évaluation de la méthode utilisée pour analyser l'échantillon. La concentration minimale requise est directement liée à la quantité de polluant qui peut être recueillie compte tenu des conditions spécifiées par la méthode utilisée (c.-à-d. le type de système utilisé pour capter le polluant ou la durée du prélèvement et le volume d'air échantillonné). Cette quantité minimale est ce qui détermine la sensibilité requise de la méthode utilisée pour l'analyse ; il peut être calculé à partir de données de référence trouvées dans la littérature pour un polluant ou un groupe de polluants particulier, si elles ont été obtenues par une méthode similaire à celle qui sera utilisée. Par exemple, s'il s'avère que des concentrations d'hydrocarbures de 30 (mg/m3) se trouvent couramment dans la zone étudiée, la méthode d'analyse utilisée doit permettre de mesurer facilement ces concentrations. Si l'échantillon est obtenu avec un tube de charbon actif en quatre heures et avec un débit de 0.5 litre par minute, la quantité d'hydrocarbures recueillie dans l'échantillon est calculée en multipliant le débit de la substance par la période de temps contrôlée. Dans l'exemple donné, cela équivaut à :

d'hydrocarbures  

Toute méthode de détection d'hydrocarbures nécessitant que la quantité dans l'échantillon soit inférieure à 3.6 μg peut être utilisée pour cette application.

Une autre estimation pourrait être calculée à partir de la limite maximale établie comme limite admissible pour l'air intérieur pour le polluant mesuré. Si ces chiffres n'existent pas et que les concentrations habituelles trouvées dans l'air intérieur ne sont pas connues, ni la vitesse à laquelle le polluant est rejeté dans l'espace, des approximations peuvent être utilisées en fonction des niveaux potentiels du polluant qui peuvent affecter négativement la santé . La méthode choisie doit être capable de mesurer 10 % de la limite établie ou de la concentration minimale pouvant affecter la santé. Même si la méthode d'analyse choisie a un degré de sensibilité acceptable, il est possible de trouver des concentrations de polluants inférieures à la limite inférieure de détection de la méthode choisie. Ceci doit être gardé à l'esprit lors du calcul des concentrations moyennes. Par exemple, si sur dix lectures prises trois sont en dessous de la limite de détection, deux moyennes doivent être calculées, l'une attribuant à ces trois lectures la valeur de zéro et une autre leur donnant la limite de détection la plus basse, ce qui donne une moyenne minimale et une moyenne maximale. La vraie moyenne mesurée se trouvera entre les deux.

Procédures analytiques

Le nombre de polluants de l'air intérieur est important et on les trouve en petites concentrations. La méthodologie qui a été disponible est basée sur l'adaptation des méthodes utilisées pour surveiller la qualité de l'extérieur, de l'atmosphère, de l'air et de l'air en situation industrielle. L'adaptation de ces méthodes pour l'analyse de l'air intérieur implique de changer la gamme de concentration recherchée, lorsque la méthode le permet, en utilisant des temps de prélèvement plus longs et des quantités plus importantes d'absorbants ou d'adsorbants. Toutes ces modifications sont appropriées lorsqu'elles n'entraînent pas de perte de fiabilité ou de précision. La mesure d'un mélange de contaminants est généralement coûteuse et les résultats obtenus imprécis. Dans de nombreux cas, tout ce qui sera déterminé sera un profil de pollution qui indiquera le niveau de contamination pendant les intervalles d'échantillonnage, par rapport à l'air pur, à l'air extérieur ou à d'autres espaces intérieurs. Les moniteurs à lecture directe sont utilisés pour surveiller le profil de pollution et peuvent ne pas convenir s'ils sont trop bruyants ou trop grands. Des moniteurs de plus en plus petits et silencieux, offrant plus de précision et de sensibilité, sont en cours de conception. Le tableau 3 présente sommairement l'état actuel des méthodes utilisées pour mesurer les différents types de contaminants.

Tableau 3. Méthodes utilisées pour l'analyse des polluants chimiques

De polluants

Moniteur à lecture directea

Échantillonnage et analyse

Monoxyde de carbone

+

+

Gaz carbonique

+

+

Dioxyde d'azote

+

+

Formaldéhyde

-

+

le dioxyde de soufre

+

+

Ozone

+

+

COV

+

+

Pesticides

-

+

Particules

+

+

a ++ = le plus couramment utilisé ; + = moins couramment utilisé ; – = sans objet.

Analyse des gaz

Les méthodes actives sont les plus courantes pour l'analyse des gaz, et sont réalisées à l'aide de solutions absorbantes ou de solides adsorbants, ou en prélevant directement un échantillon d'air avec une poche ou tout autre récipient inerte et étanche. Afin d'éviter la perte d'une partie de l'échantillon et d'augmenter la précision de la lecture, le volume de l'échantillon doit être plus faible et la quantité d'absorbant ou d'adsorbant utilisée doit être plus importante que pour les autres types de pollution. Des précautions doivent également être prises lors du transport et du stockage de l'échantillon (en le maintenant à basse température) et en minimisant le temps avant que l'échantillon ne soit testé. Les méthodes de lecture directe sont largement utilisées pour mesurer les gaz en raison de l'amélioration considérable des capacités des moniteurs modernes, qui sont plus sensibles et plus précis qu'auparavant. En raison de leur facilité d'utilisation et du niveau et du type d'informations qu'ils fournissent, ils remplacent de plus en plus les méthodes d'analyse traditionnelles. Le tableau 4 présente les seuils minimaux de détection des différents gaz étudiés compte tenu de la méthode de prélèvement et d'analyse utilisée.

Tableau 4. Limites de détection inférieures pour certains gaz par les moniteurs utilisés pour évaluer la qualité de l'air intérieur

De polluants

Moniteur à lecture directea

Prélèvement d'échantillons et
analyse active/passive

Monoxyde de carbone

1.0 ppm

0.05 ppm

Dioxyde d'azote

2 ppb

1.5 ppb (1 semaine)b

Ozone

4 ppb

5.0 ppb

Formaldéhyde

 

5.0 ppb (1 semaine)b

a Les moniteurs de dioxyde de carbone qui utilisent la spectroscopie infrarouge sont toujours suffisamment sensibles.
b Moniteurs passifs (durée d'exposition).

Ces gaz sont des polluants courants dans l'air intérieur. Ils sont mesurés à l'aide de moniteurs qui les détectent directement par des moyens électrochimiques ou infrarouges, même si les détecteurs infrarouges ne sont pas très sensibles. Ils peuvent également être mesurés en prélevant des échantillons d'air directement avec des sacs inertes et en analysant l'échantillon par chromatographie en phase gazeuse avec un détecteur à ionisation de flamme, transformant d'abord les gaz en méthane au moyen d'une réaction catalytique. Les détecteurs à conduction thermique sont généralement suffisamment sensibles pour mesurer des concentrations normales de CO2.

Dioxyde d'azote

Des méthodes ont été développées pour détecter le dioxyde d'azote, NO2, dans l'air intérieur en utilisant des moniteurs passifs et en prélevant des échantillons pour une analyse ultérieure, mais ces méthodes ont présenté des problèmes de sensibilité qui, espérons-le, seront surmontés à l'avenir. La méthode la plus connue est le tube Palmes, qui a une limite de détection de 300 ppb. Pour les situations non industrielles, l'échantillonnage doit être d'au moins cinq jours afin d'obtenir une limite de détection de 1.5 ppb, soit trois fois la valeur du blanc pour une exposition d'une semaine. Des moniteurs portables qui mesurent en temps réel ont également été développés sur la base de la réaction de chimiluminescence entre le NO2 et le réactif luminol, mais les résultats obtenus par cette méthode peuvent être affectés par la température et leur linéarité et sensibilité dépendent des caractéristiques de la solution de luminol utilisée. Les moniteurs dotés de capteurs électrochimiques ont une sensibilité améliorée, mais sont sujets aux interférences des composés contenant du soufre (Freixa 1993).

le dioxyde de soufre

Une méthode spectrophotométrique est utilisée pour mesurer le dioxyde de soufre, SO2, dans un environnement intérieur. L'échantillon d'air est barboté à travers une solution de tétrachloromercuriate de potassium pour former un complexe stable qui est à son tour mesuré par spectrophotométrie après réaction avec la pararosaniline. D'autres méthodes sont basées sur la photométrie de flamme et la fluorescence ultraviolette pulsée, et il existe également des méthodes basées sur la dérivation de la mesure avant l'analyse spectroscopique. Ce type de détection, qui a été utilisé pour les moniteurs d'air extérieur, n'est pas adapté à l'analyse de l'air intérieur en raison d'un manque de spécificité et parce que beaucoup de ces moniteurs nécessitent un système de ventilation pour éliminer les gaz qu'ils génèrent. Parce que les émissions de SO2 ont été considérablement réduits et qu'il n'est pas considéré comme un polluant important de l'air intérieur, le développement de moniteurs pour sa détection n'a pas beaucoup avancé. Cependant, il existe des instruments portables disponibles sur le marché qui peuvent détecter le SO2 basée sur la détection de pararosaniline (Freixa 1993).

Ozone

Ozone, Ô3, ne peut être trouvé dans des environnements intérieurs que dans des situations particulières dans lesquelles il est généré en continu, car il se désintègre rapidement. Elle est mesurée par des méthodes de lecture directe, par des tubes colorimétriques et par des méthodes de chimiluminescence. Il peut également être détecté par des méthodes utilisées en hygiène industrielle facilement adaptables à l'air intérieur. L'échantillon est obtenu avec une solution absorbante d'iodure de potassium en milieu neutre puis soumis à une analyse spectrophotométrique.

Formaldéhyde

Le formaldéhyde est un polluant important de l'air intérieur et, en raison de ses caractéristiques chimiques et toxiques, une évaluation individualisée est recommandée. Il existe différentes méthodes de détection du formaldéhyde dans l'air, toutes basées sur des prélèvements pour analyse ultérieure, avec fixation active ou par diffusion. La méthode de capture la plus appropriée sera déterminée par le type d'échantillon (émission ou immission) utilisé et la sensibilité de la méthode d'analyse. Les méthodes traditionnelles sont basées sur l'obtention d'un échantillon en faisant barboter de l'air dans de l'eau distillée ou une solution de bisulfate de sodium à 1 % à 5°C, puis en l'analysant par des méthodes spectrofluorimétriques. Pendant que l'échantillon est stocké, il doit également être conservé à 5°C. ALORS2 et les composants de la fumée de tabac peuvent créer des interférences. Les systèmes ou méthodes actifs captant les polluants par diffusion avec des adsorbants solides sont de plus en plus utilisés dans l'analyse de l'air intérieur ; ils sont tous constitués d'une base qui peut être un filtre ou un solide saturé d'un réactif, tel que le bisulfate de sodium ou la 2,4-diphénylhydrazine. Les méthodes qui capturent le polluant par diffusion, outre les avantages généraux de cette méthode, sont plus sensibles que les méthodes actives car le temps nécessaire pour obtenir l'échantillon est plus long (Freixa 1993).

Détection des composés organiques volatils (COV)

Les méthodes utilisées pour mesurer ou surveiller les vapeurs organiques dans l'air intérieur doivent répondre à une série de critères : elles doivent avoir une sensibilité de l'ordre de parties par milliard (ppb) à parties par billion (ppt), les instruments utilisés pour prélever l'échantillon ou faire une lecture directe doit être portable et facile à manipuler sur le terrain, et les résultats obtenus doivent être précis et reproductibles. Il existe un grand nombre de méthodes répondant à ces critères, mais les plus utilisées pour analyser l'air intérieur sont basées sur le prélèvement et l'analyse d'échantillons. Il existe des méthodes de détection directe qui consistent en des chromatographes en phase gazeuse portables avec différentes méthodes de détection. Ces instruments sont coûteux, leur manipulation est sophistiquée et ils ne peuvent être utilisés que par du personnel qualifié. Pour les composés organiques polaires et non polaires qui ont un point d'ébullition entre 0°C et 300°C, l'adsorbant le plus largement utilisé à la fois pour les systèmes d'échantillonnage actifs et passifs a été le charbon actif. Des polymères poreux et des résines polymères, telles que Tenax GC, XAD-2 et Ambersorb sont également utilisés. Le plus utilisé d'entre eux est le Tenax. Les échantillons obtenus avec du charbon actif sont extraits au sulfure de carbone et ils sont analysés par chromatographie en phase gazeuse avec des détecteurs à ionisation de flamme, à capture d'électrons ou à spectrométrie de masse, suivis d'analyses qualitatives et quantitatives. Les échantillons obtenus avec Tenax sont généralement extraits par désorption thermique à l'hélium et sont condensés dans un piège froid à azote avant d'être introduits dans le chromatographe. Une autre méthode courante consiste à obtenir directement des échantillons, en utilisant des sacs ou des récipients inertes, en alimentant directement en air le chromatographe en phase gazeuse ou en concentrant d'abord l'échantillon avec un adsorbant et un piège à froid. Les limites de détection de ces méthodes dépendent du composé analysé, du volume de l'échantillon prélevé, de la pollution de fond et des limites de détection de l'instrument utilisé. Parce qu'il est impossible de quantifier chacun des composés présents, la quantification se fait normalement par familles, en utilisant comme référence des composés caractéristiques de chaque famille de composés. Lors de la détection des COV dans l'air intérieur, la pureté des solvants utilisés est très importante. Si la désorption thermique est utilisée, la pureté des gaz est également importante.

Détection de pesticides

Pour détecter les pesticides dans l'air intérieur, les méthodes couramment employées consistent à prélever des échantillons avec des adsorbants solides, bien que l'utilisation de barboteurs et de systèmes mixtes ne soit pas exclue. L'adsorbant solide le plus couramment utilisé a été le polymère poreux Chromosorb 102, bien que les mousses de polyuréthane (PUF) capables de capturer un plus grand nombre de pesticides soient de plus en plus utilisées. Les méthodes d'analyse varient selon la méthode d'échantillonnage et le pesticide. Habituellement, ils sont analysés en utilisant la chromatographie en phase gazeuse avec différents détecteurs spécifiques, de la capture d'électrons à la spectrométrie de masse. Le potentiel de ces derniers pour identifier des composés est considérable. L'analyse de ces composés pose certains problèmes, parmi lesquels la contamination des pièces en verre des systèmes de prélèvement par des traces de polychlorobiphényles (PCB), de phtalates ou de pesticides.

Détection de poussières ou de particules environnementales

Pour la capture et l'analyse des particules et des fibres dans l'air, une grande variété de techniques et d'équipements sont disponibles et adaptés pour évaluer la qualité de l'air intérieur. Les moniteurs qui permettent une lecture directe de la concentration de particules dans l'air utilisent des détecteurs à lumière diffuse, et les méthodes qui utilisent le prélèvement et l'analyse d'échantillons utilisent la pondération et l'analyse au microscope. Ce type d'analyse nécessite un séparateur, tel qu'un cyclone ou un impacteur, pour filtrer les particules plus grosses avant qu'un filtre puisse être utilisé. Les méthodes qui utilisent un cyclone peuvent traiter de petits volumes, ce qui entraîne de longues sessions de prélèvement d'échantillons. Les moniteurs passifs offrent une excellente précision, mais ils sont affectés par la température ambiante et ont tendance à donner des lectures avec des valeurs plus élevées lorsque les particules sont petites.

 

Retour

Lire 11306 fois Dernière modification le jeudi 13 octobre 2011 21:27

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Références sur la qualité de l'air intérieur

Conférence américaine des hygiénistes industriels gouvernementaux (ACGIH). 1989. Lignes directrices pour l'évaluation des bioaérosols dans l'environnement intérieur. Cincinnati, Ohio : ACGIH.

Société américaine pour les essais de matériaux (ASTM). 1989. Guide standard pour les déterminations environnementales à petite échelle des émissions organiques des matériaux/produits intérieurs. Atlanta : ASTM.

Société américaine des ingénieurs en chauffage, réfrigération et climatisation (ASHRAE). 1989. Ventilation pour une qualité d'air intérieur acceptable. Atlanta : ASHRAE.

Brownson, RC, MCR Alavanja, ET Hock et TS Loy. 1992. Tabagisme passif et cancer du poumon chez les femmes non-fumeuses. Am J Public Health 82:1525-1530.

Brownson, RC, MCR Alavanja et ET Hock. 1993. Fiabilité des antécédents d'exposition passive à la fumée dans une étude cas-témoins du cancer du poumon. Int J Epidemiol 22:804-808.

Brunnemann, KD et D Hoffmann. 1974. Le pH de la fumée de tabac. Aliment Cosmet Toxicol 12:115-124.

—. 1991. Études analytiques sur les N-nitrosamines dans le tabac et la fumée de tabac. Rec Adv Tobacco Sci 17:71-112.

COST 613. 1989. Émissions de formaldéhyde provenant de matériaux à base de bois : Lignes directrices pour la détermination des concentrations à l'état d'équilibre dans les chambres d'essai. Dans Qualité de l'air intérieur et son impact sur l'homme. Luxembourg : CE.

—. 1991. Lignes directrices pour la caractérisation des composés organiques volatils émis par les matériaux et produits d'intérieur à l'aide de petites chambres d'essai. Dans Qualité de l'air intérieur et son impact sur l'homme. Luxembourg : CE.

Eudy, LW, FW Thome, DK Heavner, CR Green et BJ Ingebrethsen. 1986. Études sur la distribution en phase vapeur-particules de la nicotine environnementale par des méthodes de piégeage et de détection sélectives. Dans Actes de la soixante-dix-neuvième réunion annuelle de l'Air Pollution Control Association, 20-27 juin.

Feely, JC. 1988. Légionellose : Risque associé à la conception des bâtiments. Dans Architectural Design and Indoor Microbial Pollution, édité par RB Kundsin. Oxford : OUP.

Flannigan, B. 1992. Polluants microbiologiques intérieurs—sources, espèces, caractérisation : Une évaluation. Dans Chemical, Microbiological, Health and Comfort Aspects of Indoor Air Quality—State of the Art in SBS, édité par H Knöppel et P Wolkoff. Dordrecht : Kluwer.

—. 1993. Approches d'évaluation de la flore microbienne des bâtiments. Environnements pour les personnes : IAQ '92. Atlanta : ASHRAE.

Freixa, A. 1993. Calidad Del Aire: Gases Presentes a Bajas Concentraciones En Ambientes Cerrados. Madrid : Instituto Nacional de Seguridad e Higiene en el Trabajo.

Gomel, M, B Oldenburg, JM Simpson et N Owen. 1993. Réduction des risques cardiovasculaires sur le lieu de travail : un essai randomisé d'évaluation des risques pour la santé, d'éducation, de conseil et d'incitations. Am J Public Health 83:1231-1238.

Guérin, MR, RA Jenkins et BA Tomkins. 1992. La chimie de la fumée de tabac ambiante. Chelsea, Michigan : Lewis.

Hammond, SK, J Coghlin, PH Gann, M Paul, K Taghizadek, PL Skipper et SR Tannenbaum. 1993. Relation entre la fumée de tabac ambiante et les niveaux d'adduits cancérogènes-hémoglobine chez les non-fumeurs. J Natl Cancer Inst 85:474-478.

Hecht, SS, SG Carmella, SE Murphy, S Akerkar, KD Brunnemann et D Hoffmann. 1993. Un carcinogène pulmonaire spécifique au tabac chez les hommes exposés à la fumée de cigarette. New Engl J Med 329:1543-1546.

Heller, WD, E Sennewald, JG Gostomzyk, G Scherer et F Adlkofer. 1993. Validation de l'exposition à la FTA dans une population représentative du sud de l'Allemagne. Indoor Air Publ Conf 3:361-366.

Hilt, B, S Langard, A Anderson et J Rosenberg. 1985. Exposition à l'amiante, tabagisme et incidence du cancer chez les travailleurs de la production et de l'entretien d'une usine électrique. Am J Ind Med 8:565-577.

Hoffmann, D et SS Hecht. 1990. Progrès dans la carcinogenèse du tabac. Dans Handbook of Experimental Pharmacology, édité par CS Cooper et PL Grover. New York : Springer.

Hoffmann, D et EL Wynder. 1976. Tabagisme et cancer professionnel. Prevent Med 5:245-261.
Centre international de recherche sur le cancer (CIRC). 1986. Tabagisme. Vol. 38. Lyon : CIRC.

—. 1987a. Bis(chlorométhyl)éther et chlorométhylméthyléther. Vol. 4 (1974), Suppl. 7 (1987). Lyon : CIRC.

—. 1987b. Production de coke. Vol. 4 (1974), Suppl. 7 (1987). Lyon : CIRC.

—. 1987c. Cancérigènes environnementaux : méthodes d'analyse et d'exposition. Vol. 9. Tabagisme passif. Publications scientifiques du CIRC, no. 81. Lyon : CIRC.

—. 1987d. Nickel et composés de nickel. Vol. 11 (1976), suppl. 7 (1987). Lyon : CIRC.

—. 1988. Évaluation globale de la cancérogénicité : mise à jour des monographies 1 à 42 du CIRC. Vol. 43. Lyon : CIRC.

Johanning, E, PR Morey et BB Jarvis. 1993. Enquête clinique et épidémiologique sur les effets sur la santé causés par la contamination des bâtiments par Stachybotrys atra. Dans Actes de la sixième conférence internationale sur la qualité de l'air intérieur et le climat, Helsinki.

Kabat, GC et EL Wynder. 1984. Incidence du cancer du poumon chez les non-fumeurs. Cancer 53:1214-1221.

Luceri, G, G Peiraccini, G Moneti et P Dolara. 1993. Les amines aromatiques primaires de la fumée secondaire de cigarette sont des contaminants courants de l'air intérieur. Toxicol Ind Health 9:405-413.

Mainville, C, PL Auger, W Smorgawiewicz, D Neculcea, J Neculcea et M Lévesque. 1988. Mycotoxines et syndrome d'extrême fatigue dans un hôpital. Dans Healthy Buildings, édité par B Petterson et T Lindvall. Stockholm : Conseil suédois pour la recherche en construction.

Masi, MA et al. 1988. Exposition environnementale à la fumée de tabac et fonction pulmonaire chez les jeunes adultes. Am Rev Respir Dis 138:296-299.

McLaughlin, JK, MS Dietz, ES Mehl et WJ Blot. 1987. Fiabilité des informations de substitution sur le tabagisme par type d'informateur. Am J Epidemiol 126:144-146.

McLaughlin, JK, JS Mandel, ES Mehl et WJ Blot. 1990. Comparaison des proches parents avec les auto-répondants concernant la question sur la consommation de cigarettes, de café et d'alcool. Épidémiologie 1(5):408-412.

Medina, E, R Medina et AM Kaempffer. 1988. Effets du tabagisme domestique sur la fréquence des maladies respiratoires infantiles. Rev Chilena Pediatrica 59:60-64.

Miller, JD. 1993. Les champignons et l'ingénieur du bâtiment. Environnements pour les personnes : IAQ '92. Atlanta : ASHRAE.

Morey, PR. 1993a. Événements microbiologiques après un incendie dans un immeuble de grande hauteur. Dans Air intérieur '93. Helsinki : Air intérieur '93.

—. 1993b. Utilisation de la norme de communication des dangers et de la clause d'obligation générale lors de l'assainissement de la contamination fongique. Dans Air intérieur '93. Helsinki : Air intérieur '93.

Nathanson, T. 1993. Qualité de l'air intérieur dans les immeubles de bureaux : un guide technique. Ottawa : Santé Canada.

Département de la santé de la ville de New York. 1993. Lignes directrices sur l'évaluation et l'assainissement de Stachybotrys Atra dans les environnements intérieurs. New York : Département de la santé de la ville de New York.

Pershagen, G, S Wall, A Taube et I Linnman. 1981. Sur l'interaction entre l'exposition professionnelle à l'arsenic et le tabagisme et sa relation avec le cancer du poumon. Scand J Work Environ Health 7:302-309.

Riedel, F, C Bretthauer et CHL Rieger. 1989. Einfluss von paasivem Rauchen auf die bronchiale Reaktivitact bei Schulkindern. Prax Pneumol 43:164-168.

Saccomanno, G, GC Huth et O Auerbach. 1988. Relation entre les produits de filiation radioactifs du radon et le tabagisme dans la genèse du cancer du poumon chez les mineurs d'uranium. Cancer 62:402-408.

Sorenson, WG. 1989. Impact sur la santé des mycotoxines à la maison et au travail : un aperçu. Dans Biodeterioration Research 2, édité par CE O'Rear et GC Llewellyn. New York : Plénum.

Fonds suédois pour l'environnement de travail. 1988. Mesurer ou prendre des mesures correctives directes ? Stratégies d'investigation et de mesure en milieu de travail. Stockholm : Arbetsmiljöfonden [Fonds suédois pour l'environnement de travail].

Agence américaine de protection de l'environnement (US EPA). 1992. Effets sur la santé respiratoire du tabagisme passif : cancer du poumon et autres troubles. Washington, DC : EPA des États-Unis.

Conseil national de la recherche des États-Unis. 1986. Fumée de tabac ambiante : mesure des expositions et évaluation des effets sur la santé. Washington, DC : Académie nationale des sciences.

Chirurgien général américain. 1985. Les conséquences du tabagisme sur la santé : cancer et maladies pulmonaires chroniques en milieu de travail. Washington, DC : DHHS (PHS).

—. 1986. Les conséquences sur la santé du tabagisme involontaire. Washington, D.C. : DHHS (CDC).

Wald, NJ, J Borcham, C Bailey, C Ritchie, JE Haddow et J Knight. 1984. Cotinine urinaire comme marqueur de la respiration de la fumée de tabac des autres. Lancet 1:230-231.

Wanner, HU, AP Verhoeff, A Colombi, B Flannigan, S Gravesen, A Mouilleseux, A Nevalainen, J Papadakis et K Seidel. 1993. Particules biologiques dans les environnements intérieurs. La qualité de l'air intérieur et son impact sur l'homme. Bruxelles : Commission des Communautés européennes.

Blanc, JR et HF Froeb. 1980. Dysfonctionnement des petites voies respiratoires chez les non-fumeurs exposés de manière chronique à la fumée de tabac. New Engl J Med 302:720-723.

Organisation mondiale de la santé (OMS). 1987. Lignes directrices sur la qualité de l'air pour l'Europe. Série européenne, non. 23. Copenhague : Publications régionales de l'OMS.