Mercredi, Mars 09 2011 16: 00

Contrôle de la pollution de l'eau

Cet article est destiné à fournir au lecteur une compréhension de la technologie actuellement disponible pour aborder le contrôle de la pollution de l'eau, en s'appuyant sur la discussion des tendances et de l'occurrence fournie par Hespanhol et Helmer dans le chapitre Dangers environnementaux pour la santé. Les sections suivantes traitent de la lutte contre les problèmes de pollution de l'eau, d'abord sous le titre « Lutte contre la pollution des eaux de surface », puis sous la rubrique « Lutte contre la pollution des eaux souterraines ».

Contrôle de la pollution des eaux de surface

Définition de la pollution de l'eau

La pollution de l'eau fait référence à l'état qualitatif d'impureté ou de malpropreté dans les eaux hydrologiques d'une certaine région, comme un bassin versant. Il résulte d'un événement ou d'un processus qui entraîne une réduction de l'utilité des eaux de la terre, en particulier en ce qui concerne la santé humaine et les effets environnementaux. Le processus de pollution met l'accent sur la perte de pureté par contamination, ce qui implique en outre l'intrusion ou le contact avec une source extérieure comme cause. Le terme contaminé s'applique à des niveaux extrêmement faibles de pollution de l'eau, comme dans leur corruption et leur décomposition initiales. La souillure est le résultat de la pollution et suggère une violation ou une profanation.

Eaux hydrologiques

Les eaux naturelles de la Terre peuvent être considérées comme un système en circulation continue, comme le montre la figure 1, qui fournit une illustration graphique des eaux dans le cycle hydrologique, y compris les eaux de surface et souterraines.

Figure 1. Le cycle hydrologique

EPC060F1

Comme référence pour la qualité de l'eau, les eaux distillées (H2O) représentent l'état de pureté le plus élevé. Les eaux du cycle hydrologique peuvent être considérées comme naturelles, mais elles ne sont pas pures. Ils sont pollués par les activités naturelles et humaines. Les effets de la dégradation naturelle peuvent résulter d'une myriade de sources - de la faune, de la flore, des éruptions volcaniques, des coups de foudre provoquant des incendies, etc., qui, à long terme, sont considérés comme les niveaux de fond dominants à des fins scientifiques.

La pollution d'origine humaine perturbe l'équilibre naturel en superposant des déchets provenant de diverses sources. Des polluants peuvent être introduits dans les eaux du cycle hydrologique à tout moment. Par exemple : les précipitations atmosphériques (pluies) peuvent être contaminées par des polluants atmosphériques ; les eaux de surface peuvent être polluées par le processus de ruissellement des bassins versants; les eaux usées peuvent être déversées dans les ruisseaux et les rivières ; et les eaux souterraines peuvent être polluées par infiltration et contamination souterraine.

 

 

La figure 2 montre une distribution des eaux hydrologiques. La pollution se superpose alors à ces eaux et peut donc être considérée comme une condition environnementale non naturelle ou déséquilibrée. Le processus de pollution peut se produire dans les eaux de n'importe quelle partie du cycle hydrologique et est plus évident à la surface de la terre sous la forme de ruissellement des bassins versants vers les ruisseaux et les rivières. Cependant, la pollution des eaux souterraines a également un impact environnemental majeur et est discutée après la section sur la pollution des eaux de surface.

Figure 2. Répartition des précipitations

EPC060F2

Sources de pollution de l'eau dans les bassins versants

Les bassins versants sont le domaine d'origine de la pollution des eaux de surface. Un bassin versant est défini comme une zone de la surface de la terre sur laquelle les eaux hydrologiques tombent, s'accumulent, sont utilisées, évacuées et éventuellement déversées dans des ruisseaux, des rivières ou d'autres plans d'eau. Il est composé d'un système de drainage avec ruissellement ultime ou collecte dans un ruisseau ou une rivière. Les grands bassins versants des rivières sont généralement appelés bassins versants. La figure 3 est une représentation du cycle hydrologique sur un bassin versant régional. Pour une région, la disposition des différentes eaux peut être écrite comme une équation simple, qui est l'équation de base de l'hydrologie telle qu'écrite par Viessman, Lewis et Knapp (1989) ; les unités typiques sont mm/an :

P-R-G-E-T = ±S

où:

P = précipitations (c'est-à-dire précipitations, chutes de neige, grêle)

R = ruissellement ou écoulement de surface du bassin versant

G = eau souterraine

E = évaporation

T = transpiration

S = stockage en surface

Figure 3. Cycle hydrologique régional

EPC060F3

Les précipitations sont considérées comme la forme initiale dans le bilan hydrologique ci-dessus. Le terme ruissellement est synonyme de débit fluvial. Le stockage fait référence aux réservoirs ou aux systèmes de rétention qui collectent les eaux ; par exemple, un barrage construit par l'homme (barrage) sur une rivière crée un réservoir à des fins de stockage de l'eau. L'eau souterraine s'accumule en tant que système de stockage et peut s'écouler d'un endroit à un autre; il peut s'agir d'influents ou d'effluents par rapport aux cours d'eau de surface. L'évaporation est un phénomène de surface de l'eau et la transpiration est associée à la transmission par le biote.

 

 

 

 

 

 

 

Bien que les bassins versants puissent varier considérablement en taille, certains systèmes de drainage pour la désignation de la pollution de l'eau sont classés comme urbains ou non urbains (agricoles, ruraux, non développés). La pollution qui se produit dans ces systèmes de drainage provient des sources suivantes :

Sources ponctuelles : les déchets se déversent dans un plan d'eau récepteur à un endroit spécifique, à un point tel qu'un tuyau d'égout ou un type de sortie de système concentré.

Sources non ponctuelles (dispersées) : pollution pénétrant dans un plan d'eau récepteur à partir de sources dispersées dans le bassin versant; le drainage des eaux de ruissellement des précipitations non collectées dans un ruisseau est typique. Les sources non ponctuelles sont aussi parfois appelées eaux « diffuses » ; cependant, le terme dispersé est considéré comme plus descriptif.

Sources intermittentes : d'un point ou d'une source qui se décharge dans certaines circonstances, comme dans des conditions de surcharge ; les débordements d'égouts unitaires pendant les périodes de ruissellement de fortes pluies sont typiques.

Polluants de l'eau dans les ruisseaux et les rivières

Lorsque des déchets nocifs provenant des sources ci-dessus sont déversés dans des cours d'eau ou d'autres plans d'eau, ils deviennent des polluants qui ont été classés et décrits dans une section précédente. Les polluants ou contaminants qui pénètrent dans un plan d'eau peuvent être divisés en :

  • polluants dégradables (non conservateurs): impuretés qui finissent par se décomposer en substances inoffensives ou qui peuvent être éliminées par des méthodes de traitement ; c'est-à-dire certaines matières organiques et produits chimiques, les eaux usées domestiques, la chaleur, les éléments nutritifs des plantes, la plupart des bactéries et des virus, certains sédiments
  • polluants non dégradables (conservateurs): impuretés qui persistent dans l'environnement aquatique et dont la concentration ne diminue pas à moins d'être diluées ou éliminées par traitement ; c'est-à-dire certains produits chimiques organiques et inorganiques, sels, suspensions colloïdales
  • polluants dangereux d'origine hydrique: formes complexes de déchets nocifs, y compris les métaux traces toxiques, certains composés inorganiques et organiques
  • polluants radionucléides: matériaux qui ont été soumis à une source radioactive.

 

Réglementation de la lutte contre la pollution de l'eau

Les réglementations de lutte contre la pollution de l'eau largement applicables sont généralement promulguées par les agences gouvernementales nationales, avec des réglementations plus détaillées par les États, les provinces, les municipalités, les districts des eaux, les districts de conservation, les commissions d'assainissement et autres. Aux niveaux national et étatique (ou provincial), les agences de protection de l'environnement (EPA) et les ministères de la santé sont généralement chargés de cette responsabilité. Dans la discussion des réglementations ci-dessous, le format et certaines parties suivent l'exemple des normes de qualité de l'eau actuellement applicables pour l'État américain de l'Ohio.

Désignations d'utilisation de la qualité de l'eau

L'objectif ultime du contrôle de la pollution de l'eau serait l'absence de rejet de polluants dans les masses d'eau ; cependant, la réalisation complète de cet objectif n'est généralement pas rentable. L'approche privilégiée consiste à fixer des limites aux rejets d'élimination des déchets pour une protection raisonnable de la santé humaine et de l'environnement. Bien que ces normes puissent varier considérablement d'une juridiction à l'autre, les désignations d'utilisation pour des plans d'eau spécifiques constituent généralement la base, comme nous le verrons brièvement ci-dessous.

L'approvisionnement en eau comprend :

  • approvisionnement public en eau: eaux qui, avec un traitement conventionnel, seront propres à la consommation humaine
  • approvisionnement agricole: eaux propres à l'irrigation et à l'abreuvement du bétail sans traitement
  • fourniture industrielle/commerciale: eaux propres aux usages industriels et commerciaux avec ou sans traitement.

 

Les activités récréatives comprennent :

  • eaux de baignade: eaux qui, à certaines saisons, sont propices à la baignade selon la qualité de l'eau approuvée ainsi que les conditions et les installations de protection
  • premier contact: eaux qui, pendant certaines saisons, sont propices aux activités récréatives de contact corporel intégral comme la natation, le canoë-kayak et la plongée sous-marine avec une menace minimale pour la santé publique en raison de la qualité de l'eau
  • contact secondaire: eaux qui, pendant certaines saisons, sont propices aux activités récréatives par contact corporel partiel telles que, mais sans s'y limiter, le pataugeoire, avec une menace minimale pour la santé publique en raison de la qualité de l'eau.

 

Les ressources en eau publiques sont classées comme des masses d'eau qui se trouvent dans les systèmes de parcs, les zones humides, les zones fauniques, les rivières sauvages, pittoresques et récréatives et les lacs publics, et les eaux d'importance récréative ou écologique exceptionnelle.

Habitats de la vie aquatique

Les désignations typiques varient selon les climats, mais se rapportent aux conditions dans les plans d'eau pour soutenir et maintenir certains organismes aquatiques, en particulier diverses espèces de poissons. Par exemple, les désignations d'utilisation dans un climat tempéré telles que subdivisées dans les réglementations de l'Agence de protection de l'environnement de l'État de l'Ohio (EPA) sont répertoriées ci-dessous sans descriptions détaillées :

  • eau chaude
  • eau chaude limitée
  • eau chaude exceptionnelle
  • eau chaude modifiée
  • salmonidé saisonnier
  • eau froide
  • ressource en eau limitée.

 

Critères de contrôle de la pollution de l'eau

Les eaux naturelles et les eaux usées sont caractérisées en fonction de leur composition physique, chimique et biologique. Les principales propriétés physiques et les constituants chimiques et biologiques des eaux usées et leurs sources sont une longue liste, rapportée dans un manuel de Metcalf et Eddy (1991). Les méthodes analytiques pour ces déterminations sont données dans un manuel largement utilisé intitulé Méthodes standard pour l'examen de l'eau et des eaux usées par l'Association américaine de santé publique (1995).

Chaque masse d'eau désignée doit être contrôlée conformément à des réglementations qui peuvent comprendre à la fois des critères numériques de base et des critères numériques plus détaillés, comme nous le verrons brièvement ci-dessous.

Absence fondamentale de pollution. Dans la mesure du possible et du possible, toutes les masses d'eau doivent respecter les critères de base des « cinq libertés contre la pollution » :

  1. exempt de solides en suspension ou d'autres substances qui pénètrent dans les eaux à la suite d'activités humaines et qui se déposeront pour former des dépôts de boues putrides ou autrement inadmissibles, ou qui nuiront à la vie aquatique
  2. exempt de débris flottants, d'huile, d'écume et d'autres matériaux flottants pénétrant dans les eaux à la suite d'activités humaines en quantités suffisantes pour être inesthétiques ou causer une dégradation
  3. exempt de matériaux pénétrant dans les eaux à la suite d'une activité humaine, produisant une couleur, une odeur ou d'autres conditions au point de créer une nuisance
  4. exempt de substances pénétrant dans les eaux à la suite d'activités humaines, à des concentrations toxiques ou nocives pour la vie humaine, animale ou aquatique et/ou rapidement létales dans la zone de mélange
  5. exempt de nutriments pénétrant dans les eaux à la suite de l'activité humaine, à des concentrations qui créent des croissances nuisibles de plantes aquatiques et d'algues.

 

Les critères de qualité de l'eau sont des limites numériques et des lignes directrices pour le contrôle des constituants chimiques, biologiques et toxiques dans les masses d'eau.

Avec plus de 70,000 XNUMX composés chimiques utilisés aujourd'hui, il est impossible de spécifier le contrôle de chacun. Cependant, des critères pour les produits chimiques peuvent être établis sur la base de limitations car ils portent tout d'abord sur trois grandes classes de consommation et d'exposition :

Classe 1: Les critères chimiques pour la protection de la santé humaine sont la première préoccupation majeure et doivent être établis conformément aux recommandations des agences gouvernementales de santé, de l'OMS et des organismes de recherche en santé reconnus.

Classe 2: Les critères chimiques pour le contrôle de l'approvisionnement en eau agricole doivent être basés sur des études scientifiques reconnues et des recommandations qui protégeront contre les effets néfastes sur les cultures et le bétail résultant de l'irrigation des cultures et de l'abreuvement du bétail.

Classe 3: Les critères chimiques pour la protection de la vie aquatique doivent être basés sur des études scientifiques reconnues concernant la sensibilité de ces espèces à des produits chimiques spécifiques et également en relation avec la consommation humaine de poisson et de fruits de mer.

Les critères relatifs aux effluents d'eaux usées se rapportent aux limitations des constituants polluants présents dans les effluents d'eaux usées et constituent une autre méthode de contrôle. Ils peuvent être définis en fonction des désignations d'utilisation de l'eau des masses d'eau et en fonction des classes ci-dessus pour les critères chimiques.

Les critères biologiques sont basés sur les conditions de l'habitat du plan d'eau qui sont nécessaires pour soutenir la vie aquatique.

Contenu organique des eaux usées et des eaux naturelles

La teneur brute en matière organique est la plus importante pour caractériser la force polluante des eaux usées et des eaux naturelles. Trois tests de laboratoire sont couramment utilisés à cette fin :

Demande biochimique en oxygène (DBO): la DBO à cinq jours (DBO5) est le paramètre le plus utilisé ; ce test mesure l'oxygène dissous utilisé par les micro-organismes dans l'oxydation biochimique de la matière organique pendant cette période.

Demande chimique en oxygène (DCO): ce test consiste à mesurer la matière organique dans les déchets municipaux et industriels qui contiennent des composés toxiques pour la vie biologique ; c'est une mesure de l'équivalent en oxygène de la matière organique qui peut être oxydée.

Carbone organique total (COT): cet essai est particulièrement applicable aux faibles concentrations de matière organique dans l'eau ; c'est une mesure de la matière organique qui est oxydée en dioxyde de carbone.

Réglementation de la politique anti-dégradation

Les réglementations de la politique anti-dégradation sont une autre approche pour empêcher la propagation de la pollution de l'eau au-delà de certaines conditions existantes. Par exemple, la politique anti-dégradation des normes de qualité de l'eau de l'Ohio Environmental Protection Agency comprend trois niveaux de protection :

Niveau 1: Les usages existants doivent être maintenus et protégés. Aucune autre dégradation de la qualité de l'eau n'est autorisée qui interférerait avec les utilisations désignées existantes.

Niveau 2: Ensuite, une qualité d'eau supérieure à celle nécessaire à la protection des usages doit être maintenue sauf s'il est démontré qu'une qualité d'eau inférieure est nécessaire à un développement économique ou social important, tel que déterminé par le Directeur de l'EPA.

Niveau 3: Enfin, la qualité des eaux de la ressource en eau doit être maintenue et protégée. La qualité de l'eau ambiante existante ne doit pas être dégradée par des substances jugées toxiques ou interférant avec toute utilisation désignée. Des charges polluantes accrues sont autorisées à être rejetées dans les plans d'eau si elles n'entraînent pas une baisse de la qualité de l'eau existante.

Modélisation des zones de mélange des rejets de pollution de l'eau et de la répartition des charges de déchets

Les zones de mélange sont des zones dans une masse d'eau qui permettent aux rejets d'eaux usées traitées ou non traitées d'atteindre des conditions stabilisées, comme illustré à la figure 4 pour un cours d'eau. Le rejet est initialement dans un état transitoire qui se dilue progressivement depuis la concentration de la source jusqu'aux conditions de l'eau réceptrice. Il ne doit pas être considéré comme une entité de traitement et peut être délimité par des restrictions spécifiques.

Figure 4. Zones de mélange

EPC060F4

En règle générale, les zones de mélange ne doivent pas :

  • entraver la migration, la survie, la reproduction ou la croissance des espèces aquatiques
  • inclure les zones de frai ou d'alevinage
  • inclure les prises d'eau publiques
  • inclure des zones de baignade
  • constituent plus de la moitié de la largeur d'un cours d'eau
  • constituent plus de la moitié de la section transversale d'une embouchure de cours d'eau
  • s'étendent en aval sur une distance supérieure à cinq fois la largeur du cours d'eau.

 

Les études de répartition de la charge de déchets sont devenues importantes en raison du coût élevé du contrôle des éléments nutritifs des rejets d'eaux usées pour éviter l'eutrophisation dans le cours d'eau (définie ci-dessous). Ces études utilisent généralement des modèles informatiques pour simuler les conditions de qualité de l'eau dans un cours d'eau, notamment en ce qui concerne les nutriments tels que les formes d'azote et de phosphore, qui affectent la dynamique de l'oxygène dissous. Les modèles traditionnels de qualité de l'eau de ce type sont représentés par le modèle américain EPA QUAL2E, qui a été décrit par Brown et Barnwell (1987). Un modèle plus récent proposé par Taylor (1995) est le modèle omnidiurne (ODM), qui comprend une simulation de l'impact de la végétation enracinée sur la dynamique des nutriments et de l'oxygène dissous dans le cours d'eau.

Dispositions relatives aux écarts

Tous les règlements de contrôle de la pollution de l'eau sont limités à la perfection et devraient donc inclure des dispositions qui permettent une variation de jugement basée sur certaines conditions qui peuvent empêcher une conformité immédiate ou complète.

Évaluation et gestion des risques liés à la pollution de l'eau

Les réglementations de contrôle de la pollution de l'eau ci-dessus sont typiques des approches gouvernementales mondiales pour assurer la conformité aux normes de qualité de l'eau et aux limites de rejet des effluents d'eaux usées. Généralement, ces réglementations ont été établies sur la base de facteurs sanitaires et de recherches scientifiques ; lorsqu'il existe une certaine incertitude quant aux effets possibles, des facteurs de sécurité sont souvent appliqués. La mise en œuvre de certaines de ces réglementations peut être déraisonnable et excessivement coûteuse pour le grand public ainsi que pour les entreprises privées. Par conséquent, on se préoccupe de plus en plus d'une allocation plus efficace des ressources pour atteindre les objectifs d'amélioration de la qualité de l'eau. Comme indiqué précédemment dans la discussion sur les eaux hydrologiques, la pureté originelle n'existe pas même dans les eaux naturelles.

Une approche technologique croissante encourage l'évaluation et la gestion des risques écologiques dans le cadre de la réglementation des pollutions de l'eau. Le concept est basé sur une analyse des avantages et des coûts écologiques liés au respect des normes ou des limites. Parkhurst (1995) a proposé l'application de l'évaluation des risques écologiques aquatiques comme aide à l'établissement des limites de contrôle de la pollution de l'eau, en particulier en ce qui concerne la protection de la vie aquatique. Ces méthodes d'évaluation des risques peuvent être appliquées pour estimer les effets écologiques des concentrations chimiques pour un large éventail de conditions de pollution des eaux de surface, notamment :

  • pollution ponctuelle
  • pollution diffuse
  • sédiments contaminés existants dans les canaux des cours d'eau
  • sites de déchets dangereux liés aux plans d'eau
  • analyse des critères existants de lutte contre la pollution des eaux.

 

La méthode proposée se compose de trois niveaux ; comme le montre la figure 5 qui illustre l'approche.

Figure 5. Méthodes d'évaluation des risques pour les niveaux successifs d'analyse. Niveau 1 : niveau de dépistage ; Niveau 2 : Quantification des risques potentiellement significatifs ; Niveau 3 : Quantification des risques spécifiques au site

EPC060F6

Pollution de l'eau dans les lacs et réservoirs

Les lacs et les réservoirs assurent le stockage volumétrique de l'afflux du bassin versant et peuvent avoir de longues périodes de rinçage par rapport à l'afflux et à l'écoulement rapides d'un tronçon dans un cours d'eau qui coule. Ils sont donc particulièrement préoccupants en ce qui concerne la rétention de certains constituants, en particulier les nutriments, y compris les formes d'azote et de phosphore qui favorisent l'eutrophisation. L'eutrophisation est un processus de vieillissement naturel dans lequel la teneur en eau s'enrichit organiquement, conduisant à la domination de la croissance aquatique indésirable, comme les algues, la jacinthe d'eau, etc. Le processus eutrophique a tendance à réduire la vie aquatique et a des effets néfastes sur l'oxygène dissous. Les sources naturelles et culturelles de nutriments peuvent favoriser le processus, comme l'illustre Preul (1974) dans la figure 6, montrant une liste schématique des sources et des puits de nutriments pour le lac Sunapee, dans l'État américain du New Hampshire.

Figure 6. Liste schématique des sources et des puits de nutriments (azote et phosphore) pour le lac Sunapee, New Hampshire (États-Unis)

EPC060F7

Les lacs et les réservoirs, bien sûr, peuvent être échantillonnés et analysés pour déterminer leur état trophique. Les études analytiques commencent généralement par un bilan nutritif de base tel que le suivant :

(éléments nutritifs de l'influent du lac) = (éléments nutritifs de l'effluent du lac) + (rétention d'éléments nutritifs dans le lac)

Ce bilan de base peut être encore élargi pour inclure les diverses sources présentées dans la figure 6.

Le temps de rinçage est une indication des aspects de rétention relative d'un système lacustre. Les lacs peu profonds, comme le lac Érié, ont des temps de rinçage relativement courts et sont associés à une eutrophisation avancée parce que les lacs peu profonds sont souvent plus propices à la croissance des plantes aquatiques. Les lacs profonds tels que le lac Tahoe et le lac Supérieur ont de très longues périodes de rinçage, qui sont généralement associées à des lacs avec une eutrophisation minimale car jusqu'à présent, ils n'ont pas été surchargés et aussi parce que leurs profondeurs extrêmes ne sont pas propices à une croissance extensive des plantes aquatiques. sauf dans l'épilimnion (zone supérieure). Les lacs de cette catégorie sont généralement classés comme oligotrophes, sur la base qu'ils sont relativement pauvres en nutriments et supportent une croissance aquatique minimale telle que les algues.

Il est intéressant de comparer les temps de rinçage de certains grands lacs américains tels que rapportés par Pecor (1973) en utilisant la base de calcul suivante :

temps de rinçage du lac (LFT) = (volume de stockage du lac)/(débit sortant du lac)

Quelques exemples : lac Wabesa (Michigan), LFT=0.30 ans ; Houghton Lake (Michigan), 1.4 ans; lac Érié, 2.6 ans; Lac Supérieur, 191 ans; Lac Tahoe, 700 ans.

Bien que la relation entre le processus d'eutrophisation et la teneur en nutriments soit complexe, le phosphore est généralement reconnu comme le nutriment limitant. Sur la base de conditions entièrement mixtes, Sawyer (1947) a signalé que les efflorescences algales ont tendance à se produire si les valeurs d'azote dépassent 0.3 mg/l et le phosphore dépasse 0.01 mg/l. Dans les lacs et réservoirs stratifiés, de faibles niveaux d'oxygène dissous dans l'hypoliminion sont les premiers signes d'eutrophisation. Vollenweider (1968, 1969) a établi des niveaux critiques de charge de phosphore total et d'azote total pour un certain nombre de lacs en fonction des charges de nutriments, des profondeurs moyennes et des états trophiques. Pour une comparaison des travaux sur ce sujet, Dillon (1974) a publié une revue critique du modèle de bilan nutritif de Vollenweider et d'autres modèles apparentés. Des modèles informatiques plus récents sont également disponibles pour simuler les cycles azote/phosphore avec des variations de température.

Pollution de l'eau dans les estuaires

Un estuaire est un passage d'eau intermédiaire entre l'embouchure d'un fleuve et une côte maritime. Ce passage est composé d'un canal d'embouchure de rivière avec un afflux de rivière (eau douce) depuis l'amont et un écoulement sortant du côté aval dans un niveau d'eau de mer en aval en constante évolution (eau salée). Les estuaires sont continuellement affectés par les fluctuations des marées et sont parmi les masses d'eau les plus complexes rencontrées dans le contrôle de la pollution de l'eau. Les caractéristiques dominantes d'un estuaire sont une salinité variable, un coin de sel ou une interface entre l'eau salée et l'eau douce, et souvent de vastes zones d'eau peu profonde et turbide recouvrant des vasières et des marais salés. Les nutriments sont en grande partie fournis à un estuaire à partir de la rivière entrante et se combinent avec l'habitat de l'eau de mer pour fournir une production prolifique de biote et de vie marine. Les fruits de mer récoltés dans les estuaires sont particulièrement recherchés.

Du point de vue de la pollution de l'eau, les estuaires sont individuellement complexes et nécessitent généralement des enquêtes spéciales utilisant des études de terrain approfondies et une modélisation informatique. Pour une meilleure compréhension de base, le lecteur est renvoyé à Reish 1979, sur la pollution marine et estuarienne ; et à Reid et Wood 1976, sur l'écologie des eaux intérieures et des estuaires.

Pollution de l'eau en milieu marin

Les océans peuvent être considérés comme l'eau réceptrice ultime ou le puits, puisque les déchets transportés par les rivières finissent par se déverser dans cet environnement marin. Bien que les océans soient de vastes étendues d'eau salée avec une capacité d'assimilation apparemment illimitée, la pollution a tendance à altérer les côtes et à affecter davantage la vie marine.

Les sources de polluants marins comprennent bon nombre de ceux rencontrés dans les environnements d'eaux usées terrestres, ainsi que d'autres liés aux opérations maritimes. Une liste restreinte est donnée ci-dessous :

  • eaux usées et boues domestiques, déchets industriels, déchets solides, déchets de bord
  • déchets de pêche, sédiments et nutriments provenant des rivières et des eaux de ruissellement
  • marées noires, exploration pétrolière offshore et déchets de production, opérations de dragage
  • chaleur, déchets radioactifs, déchets chimiques, pesticides et herbicides.

 

Chacun de ces éléments nécessite une manipulation et des méthodes de contrôle spéciales. Le rejet d'eaux usées domestiques et de boues d'épuration par les exutoires océaniques est peut-être la principale source de pollution marine.

Pour la technologie actuelle sur ce sujet, le lecteur est renvoyé au livre sur la pollution marine et son contrôle par Bishop (1983).

Techniques de réduction de la pollution dans les rejets d'eaux usées

Le traitement des eaux usées à grande échelle est généralement effectué par les municipalités, les districts sanitaires, les industries, les entreprises commerciales et diverses commissions de contrôle de la pollution. Le but ici est de décrire les méthodes contemporaines de traitement des eaux usées municipales, puis de fournir quelques informations concernant le traitement des déchets industriels et des méthodes plus avancées.

En général, tous les processus de traitement des eaux usées peuvent être regroupés en types physiques, chimiques ou biologiques, et un ou plusieurs de ceux-ci peuvent être utilisés pour obtenir un produit effluent souhaité. Ce groupement de classification est le plus approprié pour comprendre les approches de traitement des eaux usées et est présenté dans le tableau 1.

Tableau 1. Classification générale des opérations et procédés de traitement des eaux usées

Opérations physiques

Procédés chimiques

Processus biologiques

Mesure de flux
Criblage/dessablage
Mixage audio
Floculation
Sédimentation
flottage
Filtration
Séchage
Distillation
Centrifugation
Congélation
Osmose inverse

Précipitation
Neutralisation
Adsorption
Désinfection
Oxydation chimique
Réduction chimique
Incinération
Échange d'ion
Électrodialyse

Action aérobie
Action anaérobie
Combinaisons aérobie-anaérobie

 

Méthodes contemporaines de traitement des eaux usées

La couverture ici est limitée et vise à fournir un aperçu conceptuel des pratiques actuelles de traitement des eaux usées dans le monde plutôt que des données de conception détaillées. Pour ce dernier, le lecteur est renvoyé à Metcalf et Eddy 1991.

Les eaux usées municipales ainsi que certains mélanges de déchets industriels/commerciaux sont traités dans des systèmes employant couramment un traitement primaire, secondaire et tertiaire comme suit :

Système de traitement primaire: Prétraitement ® Décantation primaire ® Désinfection (chloration) ® Effluent

Système de traitement secondaire: Prétraitement ® Décantation primaire ® Unité biologique ® Deuxième décantation ® Désinfection (chloration) ® Effluent vers flux

Système de traitement tertiaire: Prétraitement ® Décantation primaire ® Unité biologique ® Seconde décantation ® Unité tertiaire ® Désinfection (chloration) ® Effluent vers flux

La figure 7 montre en outre un diagramme schématique d'un système de traitement des eaux usées classique. Des descriptions générales des processus ci-dessus suivent.

Figure 7. Schéma de principe du traitement conventionnel des eaux usées

EPC060F8

Traitement primaire

L'objectif fondamental du traitement primaire des eaux usées municipales, y compris les eaux usées domestiques mêlées à certains déchets industriels/commerciaux, est d'éliminer les solides en suspension et de clarifier les eaux usées, afin de les rendre aptes au traitement biologique. Après quelques manipulations de prétraitement telles que le criblage, le dessablage et le broyage, le processus principal de sédimentation primaire est la décantation des eaux usées brutes dans de grands bassins de décantation pendant des périodes allant jusqu'à plusieurs heures. Ce procédé élimine de 50 à 75 % du total des solides en suspension, qui sont soutirés en tant que boues de sousverse collectées pour un traitement séparé. L'effluent de trop-plein du procédé est ensuite dirigé vers un traitement secondaire. Dans certains cas, des produits chimiques peuvent être utilisés pour améliorer le degré de traitement primaire.

Traitement secondaire

La partie du contenu organique des eaux usées qui est finement en suspension ou dissoute et non éliminée dans le processus primaire est traitée par un traitement secondaire. Les formes généralement acceptées de traitement secondaire couramment utilisées comprennent les filtres bactériens, les contacteurs biologiques tels que les disques rotatifs, les boues activées, les bassins de stabilisation des déchets, les systèmes de bassins aérés et les méthodes d'épandage, y compris les systèmes de zones humides. Tous ces systèmes seront reconnus comme employant des processus biologiques d'une forme ou d'une autre. Les plus courants de ces processus sont brièvement décrits ci-dessous.

Systèmes de contacteurs biologiques. Les filtres percolateurs sont l'une des premières formes de cette méthode pour le traitement secondaire et sont encore largement utilisés avec certaines méthodes d'application améliorées. Dans ce traitement, l'effluent des réservoirs primaires est appliqué uniformément sur un lit de média, tel que de la roche ou un média plastique synthétique. Une distribution uniforme est accomplie typiquement en faisant ruisseler le liquide à partir d'une tuyauterie perforée en rotation sur le lit de manière intermittente ou continue selon le processus souhaité. Selon le taux de charges organiques et hydrauliques, les filtres bactériens peuvent éliminer jusqu'à 95 % de la teneur organique, généralement analysée en tant que demande biochimique en oxygène (DBO). Il existe de nombreux autres systèmes de contacteurs biologiques plus récents en cours d'utilisation qui peuvent fournir des suppressions de traitement dans la même gamme; certaines de ces méthodes offrent des avantages particuliers, notamment applicables dans certaines conditions limites telles que l'espace, le climat, etc. Il convient de noter qu'un décanteur secondaire suivant est considéré comme une partie nécessaire de l'achèvement du processus. Dans la décantation secondaire, une partie des boues dites d'humus est soutirée en sousverse et la surverse est évacuée en effluent secondaire.

Boues activées. Dans la forme la plus courante de ce procédé biologique, l'effluent traité primaire s'écoule dans un réservoir unitaire à boues activées contenant une suspension biologique préexistante appelée boues activées. Ce mélange est appelé solides en suspension de liqueur mixte (MLSS) et est fourni une période de contact allant généralement de plusieurs heures jusqu'à 24 heures ou plus, selon les résultats souhaités. Pendant cette période, le mélange est fortement aéré et agité pour favoriser l'activité biologique aérobie. Au fur et à mesure que le processus se termine, une partie du mélange (MLSS) est prélevée et renvoyée dans l'influent pour la poursuite du processus d'activation biologique. Une décantation secondaire est prévue après l'unité de boues activées dans le but de décanter la suspension de boues activées et d'évacuer un trop-plein clarifié sous forme d'effluent. Le procédé est capable d'éliminer jusqu'à environ 95 % de la DBO entrante.

Traitement tertiaire

Un troisième niveau de traitement peut être fourni lorsqu'un degré plus élevé d'élimination des polluants est requis. Cette forme de traitement peut généralement inclure une filtration sur sable, des bassins de stabilisation, des méthodes d'élimination des terres, des zones humides et d'autres systèmes qui stabilisent davantage l'effluent secondaire.

Désinfection des effluents

La désinfection est généralement nécessaire pour réduire les bactéries et les agents pathogènes à des niveaux acceptables. La chloration, le dioxyde de chlore, l'ozone et la lumière ultraviolette sont les procédés les plus couramment utilisés.

Efficacité globale de la station d'épuration

Les eaux usées comprennent une large gamme de constituants qui sont généralement classés comme solides en suspension et dissous, constituants inorganiques et constituants organiques.

L'efficacité d'un système de traitement peut être mesurée en termes de pourcentage d'élimination de ces constituants. Les paramètres communs de mesure sont :

  • DBO: demande biochimique en oxygène, mesurée en mg/l
  • LA MORUE: demande chimique en oxygène, mesurée en mg/l
  • TSS: matières en suspension totales, mesurées en mg/l
  • TDS: solides dissous totaux, mesurés en mg/l
  • formes d'azote: y compris le nitrate et l'ammoniac, mesurés en mg/l (le nitrate est particulièrement préoccupant en tant que nutriment dans l'eutrophisation)
  • phosphate: mesuré en mg/l (également particulièrement préoccupant en tant que nutriment dans l'eutrophisation)
  • pH: degré d'acidité, mesuré par un nombre de 1 (le plus acide) à 14 (le plus alcalin)
  • nombre de bactéries coliformes: mesuré comme le nombre le plus probable pour 100 ml (Escherichia et les bactéries coliformes fécales sont les indicateurs les plus courants).

 

Traitement des eaux usées industrielles

Types de déchets industriels

Les déchets industriels (non domestiques) sont nombreux et varient considérablement en composition ; ils peuvent être très acides ou alcalins et nécessitent souvent une analyse détaillée en laboratoire. Un traitement spécialisé peut être nécessaire pour les rendre inoffensifs avant la sortie. La toxicité est une grande préoccupation dans l'élimination des eaux usées industrielles.

Les déchets industriels représentatifs comprennent : les pâtes et papiers, l'abattoir, la brasserie, la tannerie, la transformation des aliments, la conserverie, les produits chimiques, le pétrole, le textile, le sucre, la blanchisserie, la viande et la volaille, l'alimentation des porcs, l'équarrissage et bien d'autres. L'étape initiale de l'élaboration de la conception du traitement est une enquête sur les déchets industriels, qui fournit des données sur les variations de débit et les caractéristiques des déchets. Les caractéristiques indésirables des déchets telles qu'énumérées par Eckenfelder (1989) peuvent être résumées comme suit :

  • matières organiques solubles provoquant l'épuisement de l'oxygène dissous
  • matières solides en suspension
  • traces organiques
  • métaux lourds, cyanure et matières organiques toxiques
  • couleur et turbidité
  • azote et phosphore
  • substances réfractaires résistantes à la biodégradation
  • pétrole et matériaux flottants
  • matières volatiles.

 

L'US EPA a en outre défini une liste de produits chimiques organiques et inorganiques toxiques avec des limitations spécifiques dans l'octroi de permis de rejet. La liste comprend plus de 100 composés et est trop longue pour être réimprimée ici, mais peut être demandée à l'EPA.

Méthodes de traitement

La manutention des déchets industriels est plus spécialisée que le traitement des déchets domestiques ; cependant, lorsqu'elles se prêtent à une réduction biologique, elles sont généralement traitées à l'aide de méthodes similaires à celles décrites précédemment (approches de traitement biologique secondaire/tertiaire) pour les systèmes municipaux.

Les bassins de stabilisation des déchets sont une méthode courante de traitement des eaux usées organiques lorsqu'une superficie suffisante est disponible. Les bassins à circulation sont généralement classés en fonction de leur activité bactérienne comme aérobie, facultatif ou anaérobie. Les bassins aérés sont alimentés en oxygène par des systèmes d'aération diffuse ou mécanique.

Les figures 8 et 9 montrent des croquis de bassins de stabilisation des déchets.

Figure 8. Bassin de stabilisation à deux cellules : schéma en coupe

EPC060F9

Figure 9. Types de lagunes aérées : schéma de principe

EPC60F10

Prévention de la pollution et minimisation des déchets

Lorsque les opérations et les procédés des déchets industriels en usine sont analysés à leur source, ils peuvent souvent être contrôlés afin d'éviter des rejets polluants importants.

Les techniques de recirculation sont des approches importantes dans les programmes de prévention de la pollution. Un exemple d'étude de cas est un plan de recyclage pour les effluents d'eaux usées d'une tannerie de cuir publié par Preul (1981), qui comprenait la récupération/réutilisation du chrome ainsi que la recirculation complète de toutes les eaux usées de tannerie sans effluent dans aucun cours d'eau, sauf en cas d'urgence. L'organigramme de ce système est illustré à la figure 10.

Figure 10. Organigramme du système de recyclage des effluents des eaux usées de la tannerie

EPC60F11

Pour des innovations plus récentes dans cette technologie, le lecteur est renvoyé à une publication sur la prévention de la pollution et la minimisation des déchets par la Fédération de l'environnement de l'eau (1995).

Méthodes avancées de traitement des eaux usées

Un certain nombre de méthodes avancées sont disponibles pour des degrés plus élevés d'élimination des constituants de la pollution, selon les besoins. Une liste générale comprend :

filtration (sable et multimédia)

précipitation chimique

adsorption de carbone

électrodialyse

distillation

nitrification

récolte d'algues

valorisation des effluents

micro-forçage

décapage à l'ammoniac

osmose inverse

échange d'ion

épandage

dénitrification

marécages.

Le procédé le plus approprié pour chaque situation doit être déterminé en fonction de la qualité et de la quantité des eaux usées brutes, des besoins en eau réceptrice et, bien sûr, des coûts. Pour plus de détails, voir Metcalf et Eddy 1991, qui comprend un chapitre sur le traitement avancé des eaux usées.

Étude de cas sur le traitement avancé des eaux usées

L'étude de cas du projet de récupération des eaux usées de la région de Dan discutée ailleurs dans ce chapitre fournit un excellent exemple de méthodes novatrices de traitement et de récupération des eaux usées.

Pollution thermique

La pollution thermique est une forme de déchets industriels, définie comme des augmentations ou des réductions délétères des températures normales de l'eau des eaux réceptrices causées par l'évacuation de la chaleur des installations artificielles. Les principales industries produisant de la chaleur résiduelle sont les combustibles fossiles (pétrole, gaz et charbon) et les centrales nucléaires, les aciéries, les raffineries de pétrole, les usines chimiques, les usines de pâtes et papiers, les distilleries et les blanchisseries. L'industrie de la production d'électricité, qui fournit de l'énergie à de nombreux pays (par exemple, environ 80 % aux États-Unis), est particulièrement préoccupante.

Impact de la chaleur résiduelle sur les eaux réceptrices

Influence sur la capacité d'assimilation des déchets

  • La chaleur augmente l'oxydation biologique.
  • La chaleur diminue la teneur en oxygène de l'eau et diminue le taux de réoxygénation naturelle.
  • L'effet net de la chaleur est généralement préjudiciable pendant les mois chauds de l'année.
  • L'effet hivernal peut être bénéfique dans les climats plus froids, où les conditions de glace sont rompues et l'aération de surface est assurée pour les poissons et la vie aquatique.

 

Influence sur la vie aquatique

De nombreuses espèces ont des limites de tolérance à la température et ont besoin de protection, en particulier dans les tronçons d'un cours d'eau ou d'un plan d'eau affectés par la chaleur. Par exemple, les cours d'eau froides ont généralement le type le plus élevé de poissons de sport tels que la truite et le saumon, tandis que les eaux chaudes abritent généralement des populations de poissons communs, avec certaines espèces telles que le brochet et l'achigan dans les eaux à température intermédiaire.

Figure 11. Échange de chaleur aux limites d'une section transversale d'eau réceptrice

EPC60F12

Analyse thermique dans les eaux réceptrices

La figure 11 illustre les différentes formes d'échange naturel de chaleur aux limites d'un plan d'eau récepteur. Lorsque la chaleur est rejetée dans une eau réceptrice telle qu'une rivière, il est important d'analyser la capacité de la rivière pour les apports thermiques. Le profil de température d'une rivière peut être calculé en résolvant un bilan thermique similaire à celui utilisé dans le calcul des courbes d'affaissement de l'oxygène dissous. Les principaux facteurs du bilan thermique sont illustrés à la figure 12 pour un tronçon de rivière entre les points A et B. Chaque facteur nécessite un calcul individuel dépendant de certaines variables de chaleur. Comme pour un bilan d'oxygène dissous, le bilan de température est simplement une somme des actifs et des passifs de température pour une section donnée. D'autres approches analytiques plus sophistiquées sont disponibles dans la littérature sur ce sujet. Les résultats des calculs de bilan thermique peuvent être utilisés pour établir des limites de rejet de chaleur et éventuellement certaines contraintes d'utilisation d'une masse d'eau.

Figure 12. Capacité fluviale pour les ajouts thermiques

EPC60F13

Dépollution thermique

Les principales approches pour le contrôle de la pollution thermique sont :

  • amélioration de l'efficacité de l'exploitation des centrales électriques
  • tours de refroidissement
  • bassins de refroidissement isolés
  • l'examen d'autres méthodes de production d'électricité telles que l'hydroélectricité.

 

Lorsque les conditions physiques sont favorables dans certaines limites environnementales, l'énergie hydroélectrique devrait être considérée comme une alternative à la production d'énergie fossile ou nucléaire. Dans la production d'énergie hydroélectrique, il n'y a pas d'évacuation de la chaleur et il n'y a pas de rejet d'eaux usées causant une pollution de l'eau.

Contrôle de la pollution des eaux souterraines

Importance des eaux souterraines

Étant donné que les approvisionnements en eau du monde sont largement extraits des aquifères, il est très important que ces sources d'approvisionnement soient protégées. On estime que plus de 95 % de l'approvisionnement en eau douce disponible sur la terre est souterrain ; Aux États-Unis, environ 50 % de l'eau potable provient de puits, selon l'US Geological Survey de 1984. Parce que la pollution et le mouvement des eaux souterraines sont de nature subtile et invisible, moins d'attention est parfois accordée à l'analyse et au contrôle de cette forme de dégradation de l'eau qu'à la pollution des eaux de surface, qui est beaucoup plus évidente.

Figure 13. Cycle hydrologique et sources de contamination des eaux souterraines

EPC60F14

Sources de pollution souterraine

La figure 13 montre le cycle hydrologique avec des sources superposées de contamination des eaux souterraines. Une liste complète des sources potentielles de pollution souterraine est longue ; cependant, à titre d'illustration, les sources les plus évidentes incluent :

  • rejets de déchets industriels
  • cours d'eau pollués en contact avec des aquifères
  • l’exploitation minière aux produits chimiques
  • élimination des déchets solides et dangereux
  • réservoirs de stockage souterrains tels que pour le pétrole
  • système d'irrigation
  • recharge artificielle
  • empiètement de l'eau de mer
  • déversements
  • étangs pollués à fonds perméables
  • puits d'élimination
  • champs de tuiles de fosses septiques et fosses de lixiviation
  • forage de puits inapproprié
  • exploitations agricoles
  • sels de déglaçage routier.

 

Les polluants spécifiques dans la contamination souterraine sont en outre classés comme :

  • constituants chimiques indésirables (liste typique, non exhaustive) - organiques et inorganiques (par exemple, chlorure, sulfate, fer, manganèse, sodium, potassium)
  • dureté totale et solides dissous totaux
  • constituants toxiques (liste typique, non exhaustive) - nitrate, arsenic, chrome, plomb, cyanure, cuivre, phénols, mercure dissous
  • caractéristiques physiques indésirables - goût, couleur et odeur
  • pesticides et herbicides - hydrocarbures chlorés et autres
  • matières radioactives - diverses formes de radioactivité
  • biologique - bactéries, virus, parasites, etc.
  • acide (pH bas) ou caustique (pH élevé).

 

Parmi les éléments ci-dessus, les nitrates sont particulièrement préoccupants dans les eaux souterraines et les eaux de surface. Dans les eaux souterraines, les nitrates peuvent provoquer la maladie méthémoglobinémie (cyanose infantile). Ils provoquent en outre des effets d'eutrophisation néfastes dans les eaux de surface et se produisent dans un large éventail de ressources en eau, comme l'a rapporté Preul (1991). Preul (1964, 1967, 1972) et Preul et Schroepfer (1968) ont également signalé le mouvement souterrain de l'azote et d'autres polluants.

Déplacement de la pollution dans le domaine souterrain

Le mouvement des eaux souterraines est extrêmement lent et subtil par rapport au mouvement des eaux de surface dans le cycle hydrologique. Pour une compréhension simple du déplacement des eaux souterraines ordinaires dans des conditions idéales d'écoulement stable, la loi de Darcy est l'approche de base pour l'évaluation du mouvement des eaux souterraines à de faibles nombres de Reynolds. (R):

V = K(dh/dl)

où:

V = vitesse de l'eau souterraine dans l'aquifère, m/jour

K = coefficient de perméabilité de l'aquifère

(dh/dl) = gradient hydraulique qui représente la force motrice du mouvement.

Dans les voyages souterrains des polluants, les eaux souterraines ordinaires (H2O) est généralement le fluide porteur et peut être calculé pour se déplacer à une vitesse en fonction des paramètres de la loi de Darcy. Cependant, le taux de déplacement ou la vitesse d'un polluant, tel qu'un produit chimique organique ou inorganique, peut être différent en raison des processus d'advection et de dispersion hydrodynamique. Certains ions se déplacent plus lentement ou plus rapidement que le taux général d'écoulement des eaux souterraines à la suite de réactions au sein des milieux aquifères, de sorte qu'ils peuvent être classés comme « réactifs » ou « non réactifs ». Les réactions sont généralement des formes suivantes :

  • réactions physiques entre le polluant et l'aquifère et/ou le liquide de transport
  • réactions chimiques entre le polluant et l'aquifère et/ou le liquide de transport
  • actions biologiques sur le polluant.

 

Les éléments suivants sont typiques des polluants souterrains réactifs et non réactifs :

  • polluants réactifs - chrome, ion ammonium, calcium, sodium, fer, etc.; cations en général; constituants biologiques; constituants radioactifs
  • polluants non réactifs - chlorure, nitrate, sulfate, etc.; certains anions; certains produits chimiques pesticides et herbicides.

 

Au début, il peut sembler que les polluants réactifs sont le pire type, mais ce n'est peut-être pas toujours le cas car les réactions retiennent ou retardent les concentrations de déplacement des polluants alors que le déplacement des polluants non réactifs peut être largement non inhibé. Certains produits domestiques et agricoles « mous » sont maintenant disponibles qui se dégradent biologiquement après un certain temps et évitent ainsi la possibilité de contamination des eaux souterraines.

Assainissement des aquifères

La prévention de la pollution souterraine est évidemment la meilleure approche ; cependant, l'existence incontrôlée de conditions d'eaux souterraines polluées est généralement révélée après son apparition, par exemple par des plaintes d'utilisateurs de puits d'eau dans la région. Malheureusement, au moment où le problème est reconnu, de graves dommages peuvent s'être produits et des mesures correctives sont nécessaires. L'assainissement peut nécessiter des enquêtes hydrogéologiques approfondies sur le terrain avec des analyses en laboratoire d'échantillons d'eau afin d'établir l'étendue des concentrations de polluants et des panaches de déplacement. Souvent, les puits existants peuvent être utilisés pour l'échantillonnage initial, mais les cas graves peuvent nécessiter des sondages et des échantillonnages d'eau approfondis. Ces données peuvent ensuite être analysées pour établir les conditions actuelles et faire des prédictions sur les conditions futures. L'analyse des déplacements de la contamination des eaux souterraines est un domaine spécialisé nécessitant souvent l'utilisation de modèles informatiques pour mieux comprendre la dynamique des eaux souterraines et faire des prédictions sous diverses contraintes. Un certain nombre de modèles informatiques bidimensionnels et tridimensionnels sont disponibles dans la littérature à cet effet. Pour des approches analytiques plus détaillées, le lecteur est renvoyé au livre de Freeze et Cherry (1987).

Prévention de la pollution

L'approche privilégiée pour la protection des ressources en eaux souterraines est la prévention de la pollution. Bien que les normes d'eau potable s'appliquent généralement à l'utilisation des approvisionnements en eau souterraine, les approvisionnements en eau brute doivent être protégés contre la contamination. Les entités gouvernementales telles que les ministères de la santé, les agences des ressources naturelles et les agences de protection de l'environnement sont généralement responsables de ces activités. Les efforts de lutte contre la pollution des eaux souterraines sont largement axés sur la protection des aquifères et la prévention de la pollution.

La prévention de la pollution nécessite des contrôles de l'utilisation des terres sous la forme d'un zonage et de certaines réglementations. Les lois peuvent s'appliquer à la prévention de fonctions spécifiques, particulièrement applicables aux sources ponctuelles ou aux actions susceptibles de causer une pollution. Le contrôle par le zonage de l'utilisation des terres est un outil de protection des eaux souterraines qui est le plus efficace au niveau du gouvernement municipal ou du comté. Les programmes de protection des aquifères et des têtes de puits, dont il est question ci-dessous, sont des exemples phares de prévention de la pollution.

Un programme de protection d'un aquifère nécessite d'établir les limites de l'aquifère et de ses zones de recharge. Les aquifères peuvent être de type non confiné ou confiné, et doivent donc être analysés par un hydrologue pour faire cette détermination. La plupart des grands aquifères sont généralement bien connus dans les pays développés, mais d'autres zones peuvent nécessiter des enquêtes sur le terrain et des analyses hydrogéologiques. L'élément clé du programme dans la protection de l'aquifère contre la dégradation de la qualité de l'eau est le contrôle de l'utilisation des terres sur l'aquifère et ses zones de recharge.

La protection des têtes de puits est une approche plus définitive et limitée qui s'applique à la zone de recharge contribuant à un puits particulier. Le gouvernement fédéral américain, par des amendements adoptés en 1986 à la loi sur la sécurité de l'eau potable (SDWA) (1984), exige désormais que des zones de protection spécifiques des têtes de puits soient établies pour les puits d'approvisionnement publics. La zone de protection des têtes de puits (WHPA) est définie dans la SDWA comme « la surface et la sous-surface entourant un puits d'eau ou un champ de captage, alimentant un système public d'approvisionnement en eau, à travers lequel les contaminants sont raisonnablement susceptibles de se déplacer vers et d'atteindre ce puits d'eau ou ce puits. domaine." L'objectif principal du programme WHPA, tel que défini par l'US EPA (1987), est la délimitation des zones de protection des puits en fonction de critères sélectionnés, de l'exploitation des puits et de considérations hydrogéologiques.

 

Noir

Mercredi, Mars 09 2011 15: 48

Contrôle de la pollution atmosphérique

Gestion de la pollution atmosphérique

L'objectif d'un gestionnaire d'un système de contrôle de la pollution atmosphérique est de s'assurer que des concentrations excessives de polluants atmosphériques n'atteignent pas une cible sensible. Les cibles pourraient inclure des personnes, des plantes, des animaux et des matériaux. Dans tous les cas, nous devrions nous préoccuper du plus sensible de chacun de ces groupes. Les polluants atmosphériques peuvent comprendre des gaz, des vapeurs, des aérosols et, dans certains cas, des matières présentant un danger biologique. Un système bien conçu empêchera une cible de recevoir une concentration nocive d'un polluant.

La plupart des systèmes de contrôle de la pollution atmosphérique impliquent une combinaison de plusieurs techniques de contrôle, généralement une combinaison de contrôles technologiques et de contrôles administratifs, et dans les sources plus importantes ou plus complexes, il peut y avoir plus d'un type de contrôle technologique.

Idéalement, la sélection des contrôles appropriés sera faite dans le contexte du problème à résoudre.

  • Qu'est-ce qui est émis, à quelle concentration ?
  • Quelles sont les cibles ? Quelle est la cible la plus sensible ?
  • Quels sont les niveaux d'exposition à court terme acceptables ?
  • Quels sont les niveaux d'exposition à long terme acceptables ?
  • Quelle combinaison de contrôles doit être sélectionnée pour s'assurer que les niveaux d'exposition à court terme et à long terme ne sont pas dépassés ?

 

Le tableau 1 décrit les étapes de ce processus.

 


Tableau 1. Étapes de sélection des contrôles de la pollution

 

 

Étape 1:
Définir
.

La première partie consiste à déterminer ce qui sera libéré de la pile.
Toutes les émissions potentiellement nocives doivent être répertoriées. La deuxième partie consiste à
estimer la quantité de chaque matériau qui sera libérée. Sans cela
informations, le gestionnaire ne peut pas commencer à concevoir un programme de contrôle.

Étape 2:
Définir
groupes cibles.

Toutes les cibles sensibles doivent être identifiées. Cela inclut les personnes, les animaux, les plantes et les matériaux. Dans chaque cas, le membre le plus susceptible de chaque groupe doit être identifié. Par exemple, des asthmatiques à proximité d'une usine émettant des isocyanates.

Étape 3:
Déterminer
acceptable
niveaux d'exposition.*

Un niveau d'exposition acceptable pour le groupe cible le plus sensible doit
Soyez établis. Si le polluant est une matière qui a des effets cumulatifs,
tel qu'un agent cancérigène, des niveaux d'exposition à long terme (annuels) doivent être fixés. Si le polluant a des effets à court terme, comme un irritant ou un sensibilisant, un niveau d'exposition à court terme ou peut-être maximal doit être fixé.**

Étape 4:
Sélectionnez
les contrôles.

L'étape 1 identifie les émissions et l'étape 3 détermine le niveau acceptable
niveaux d'exposition. Dans cette étape, chaque polluant est vérifié pour s'assurer qu'il
ne dépasse pas le niveau acceptable. S'il dépasse le niveau acceptable,
des contrôles supplémentaires doivent être ajoutés et les niveaux d'exposition revérifiés. Ce processus se poursuit jusqu'à ce que toutes les expositions soient égales ou inférieures au niveau acceptable. La modélisation de la dispersion peut être utilisée pour estimer les expositions pour les nouvelles usines ou pour tester des solutions alternatives pour les installations existantes.

* Lors de la définition des niveaux d'exposition à l'étape 3, il faut se rappeler que ces expositions sont des expositions totales, pas seulement celles de la plante. Une fois le niveau acceptable établi, les niveaux de fond et les contributions d'autres plantes sont simplement soustraits pour déterminer la quantité maximale que la plante peut émettre sans dépasser le niveau d'exposition acceptable. Si cela n'est pas fait et que trois usines sont autorisées à émettre au maximum, les groupes cibles seront exposés à trois fois le niveau acceptable.

** Certaines matières telles que les substances cancérigènes n'ont pas de seuil en dessous duquel aucun effet nocif ne se produira. Par conséquent, tant qu'une partie de la matière est autorisée à s'échapper dans l'environnement, il y aura un certain risque pour les populations cibles. Dans ce cas, un niveau sans effet ne peut pas être défini (autre que zéro). Au lieu de cela, un niveau de risque acceptable doit être établi. Habituellement, cela se situe dans la fourchette de 1 résultat indésirable pour 100,000 1,000,000 à XNUMX XNUMX XNUMX de personnes exposées.


 

Certaines juridictions ont fait une partie du travail en établissant des normes basées sur la concentration maximale d'un contaminant qu'une cible sensible peut recevoir. Avec ce type de norme, le gestionnaire n'a pas à effectuer les étapes 2 et 3 puisque l'organisme de réglementation l'a déjà fait. Dans le cadre de ce système, le gestionnaire doit établir uniquement les normes d'émissions non contrôlées pour chaque polluant (étape 1), puis déterminer les contrôles nécessaires pour respecter la norme (étape 4).

En ayant des normes de qualité de l'air, les régulateurs peuvent mesurer les expositions individuelles et ainsi déterminer si quelqu'un est exposé à des niveaux potentiellement nocifs. On suppose que les normes fixées dans ces conditions sont suffisamment basses pour protéger le groupe cible le plus sensible. Ce n'est pas toujours une hypothèse sûre. Comme le montre le tableau 2, il peut y avoir une grande variation dans les normes communes de qualité de l'air. Les normes de qualité de l'air pour le dioxyde de soufre vont de 30 à 140 μg/m3. Pour les matériaux moins couramment réglementés, cette variation peut être encore plus importante (1.2 à 1,718 XNUMX μg/m3), comme indiqué dans le tableau 3 pour le benzène. Cela n'est pas surprenant étant donné que l'économie peut jouer un rôle aussi important dans l'établissement des normes que la toxicologie. Si une norme n'est pas suffisamment basse pour protéger les populations sensibles, personne n'est bien servi. Les populations exposées ont un sentiment de fausse confiance et peuvent être mises en danger sans le savoir. L'émetteur peut d'abord avoir l'impression d'avoir bénéficié d'une norme indulgente, mais si les effets dans la communauté obligent l'entreprise à reconcevoir ses contrôles ou à installer de nouveaux contrôles, les coûts pourraient être plus élevés que de le faire correctement la première fois.

Tableau 2. Gamme de normes de qualité de l'air pour un contaminant atmosphérique couramment contrôlé (dioxyde de soufre)

Pays et territoires

Anhydride sulfureux à long terme
normes de qualité de l'air (µg/m
3)

Australie

50

Canada

30

Finlande

40

Allemagne

140

Hongrie

70

Taïwan

133

 

Tableau 3. Gamme de normes de qualité de l'air pour un contaminant atmosphérique moins couramment contrôlé (benzène)

Ville / État

Norme de qualité de l'air sur 24 heures pour
benzène (μg/m
3)

Connecticut

53.4

Massachusetts

1.2

Michigan

2.4

Caroline du Nord

2.1

Nevada

254

New York

1,718

Philadelphie

1,327

Virginie

300

Les niveaux ont été standardisés sur une durée moyenne de 24 heures pour faciliter les comparaisons.

(Adapté de Calabrese et Kenyon 1991.)

 

Parfois, cette approche par étapes de la sélection des contrôles de la pollution de l'air est court-circuitée, et les régulateurs et les concepteurs optent directement pour une « solution universelle ». L'une de ces méthodes est la meilleure technologie de contrôle disponible (BACT). On suppose qu'en utilisant la meilleure combinaison d'épurateurs, de filtres et de bonnes pratiques de travail sur une source d'émission, un niveau d'émissions suffisamment bas pour protéger le groupe cible le plus sensible serait atteint. Souvent, le niveau d'émission résultant sera inférieur au minimum requis pour protéger les cibles les plus sensibles. De cette façon, toutes les expositions inutiles devraient être éliminées. Des exemples de BACT sont présentés dans le tableau 4.

Tableau 4. Exemples sélectionnés de la meilleure technologie de contrôle disponible (BACT) montrant la méthode de contrôle utilisée et l'efficacité estimée

Processus

De polluants

Methode de CONTROLE

Efficacité estimée

Assainissement des sols

Hydrocarbures

Oxydant thermique

99

Usine de pâte kraft
chaudière de récupération

Particules

Électrostatique
dépoussiéreur

99.68

Production de fumée
silice

Monoxyde de carbone

Bonnes pratiques

50

Peinture automobile

Hydrocarbures

Post-combustion du four

90

Four à arc électrique

Particules

Filtre à manches

100

Raffinerie de pétrole,
craquage catalytique

Particules respirables

Cyclone + Venturi
scrubber

93

Incinérateur médical

Chlorure d'hydrogène

Laveur humide + sec
scrubber

97.5

Chaudière à charbon

le dioxyde de soufre

Séchoir par pulvérisation +
absorber

90

Élimination des déchets par
déshydratation et
incinération

Particules

Cyclone + condenseur
+ Épurateur Venturi +
laveur humide

95

Usine d'asphalte

Hydrocarbures

Oxydant thermique

99

 

Le BACT à lui seul ne garantit pas des niveaux de contrôle adéquats. Bien qu'il s'agisse du meilleur système de contrôle basé sur les contrôles d'épuration des gaz et les bonnes pratiques d'exploitation, le BACT peut ne pas être suffisant si la source est une grande usine ou si elle est située à côté d'une cible sensible. La meilleure technologie de contrôle disponible doit être testée pour s'assurer qu'elle est effectivement suffisamment bonne. Les normes d'émission qui en résultent doivent être vérifiées pour déterminer si oui ou non elles peuvent encore être nocives même avec les meilleurs contrôles d'épuration des gaz. Si les normes d'émission sont toujours nocives, d'autres contrôles de base, tels que la sélection de processus ou de matériaux plus sûrs, ou la relocalisation dans une zone moins sensible, peuvent devoir être envisagés.

Une autre « solution universelle » qui contourne certaines des étapes est les normes de performance des sources. De nombreuses juridictions établissent des normes d'émission qui ne peuvent être dépassées. Les normes d'émission sont basées sur les émissions à la source. Habituellement, cela fonctionne bien, mais comme BACT, ils peuvent ne pas être fiables. Les niveaux doivent être suffisamment bas pour maintenir les émissions maximales suffisamment basses pour protéger les populations cibles sensibles des émissions typiques. Cependant, comme avec la meilleure technologie de contrôle disponible, cela peut ne pas être suffisant pour protéger tout le monde là où il y a de grandes sources d'émissions ou des populations sensibles à proximité. Si tel est le cas, d'autres procédures doivent être utilisées pour assurer la sécurité de tous les groupes cibles.

Le BACT et les normes d'émission ont un défaut fondamental. Ils supposent que si certains critères sont remplis à l'usine, les groupes cibles seront automatiquement protégés. Ce n'est pas nécessairement le cas, mais une fois qu'un tel système est promulgué, les effets sur la cible deviennent secondaires par rapport au respect de la loi.

Les normes BACT et d'émission de source ou les critères de conception doivent être utilisés comme critères minimaux pour les contrôles. Si le BACT ou les critères d'émission protègent les cibles sensibles, ils peuvent être utilisés comme prévu, sinon d'autres contrôles administratifs doivent être utilisés.

Des mesures de contrôle

Les contrôles peuvent être divisés en deux types de contrôles de base - technologiques et administratifs. Les contrôles technologiques sont définis ici comme le matériel mis sur une source d'émission pour réduire les contaminants dans le flux de gaz à un niveau acceptable pour la communauté et qui protégera la cible la plus sensible. Les contrôles administratifs sont définis ici comme d'autres mesures de contrôle.

Contrôles technologiques

Les systèmes d'épuration des gaz sont placés à la source, avant la cheminée, pour éliminer les contaminants du flux de gaz avant de le rejeter dans l'environnement. Le tableau 5 présente un bref résumé des différentes classes de système d'épuration des gaz.

Tableau 5. Méthodes d'épuration des gaz pour éliminer les gaz nocifs, les vapeurs et les particules des émissions des procédés industriels

Methode de CONTROLE

Exemples

Description

Efficacité

Gaz/Vapeurs

     

Condensation

Contacter les condenseurs
Condenseurs superficiels

La vapeur est refroidie et condensée en un liquide. Ceci est inefficace et est utilisé comme condition préalable à d'autres méthodes

80+ % lorsque la concentration > 2,000 XNUMX ppm

Absorption

Épurateurs humides (emballés
ou absorbeurs à plaques)

Le gaz ou la vapeur est collecté dans un liquide.

82 à 95 % lorsque la concentration <100 ppm
95 à 99 % lorsque la concentration > 100 ppm

Adsorption

Carbone
Alumine
Le gel de silice
Tamis moléculaire

Le gaz ou la vapeur est collecté sur un solide.

90+ % lorsque la concentration < 1,000 XNUMX ppm
95+ % lorsque la concentration > 1,000 XNUMX ppm

Incinération

Fusées
Incinérateur
Incinérateur catalytique

Un gaz ou une vapeur organique est oxydé en le chauffant à une température élevée et en le maintenant à cette température pendant une
période de temps suffisante.

Non recommandé lorsque
concentration <2,000 XNUMX ppm
80+ % lorsque la concentration > 2,000 XNUMX ppm

Particules

     

inertiel
séparateurs

Cyclones

Les gaz chargés de particules sont obligés de changer de direction. L'inertie de la particule les amène à se séparer du flux gazeux. Ceci est inefficace et est utilisé comme un
conditionneur à d'autres méthodes.

70-90%

Laveurs humides

Venturi
Filtre mouillé
Épurateur de plateaux ou de tamis

Les gouttelettes de liquide (eau) collectent les particules par impact, interception et diffusion. Les gouttelettes et leurs particules sont ensuite séparées du flux gazeux.

Pour les particules de 5 μm, 98.5 % à 6.8 wg ;
99.99+ % à 50 wg
Pour les particules de 1 μm, 45 % à 6.8 wg ; 99.95
à 50 wg

Électrostatique
dépoussiéreurs

Plaque-fil
Assiette plate
Tubulaire
Humide

Les forces électriques sont utilisées pour déplacer les particules hors du flux de gaz vers des plaques de collecte

95–99.5 % pour les particules de 0.2 μm
99.25–99.9+ % pour les particules de 10 μm

Filtre(s)

Filtre à manches

Un tissu poreux élimine les particules du flux de gaz. Le gâteau de poussière poreux qui se forme alors sur le tissu
fait la filtration.

99.9 % pour les particules de 0.2 μm
99.5 % pour les particules de 10 μm

 

L'épurateur de gaz fait partie d'un système complexe composé de hottes, de conduits, de ventilateurs, d'épurateurs et de cheminées. La conception, les performances et l'entretien de chaque pièce affectent les performances de toutes les autres pièces et du système dans son ensemble.

Il convient de noter que l'efficacité du système varie considérablement pour chaque type de nettoyeur, en fonction de sa conception, de l'apport d'énergie et des caractéristiques du flux de gaz et du contaminant. Par conséquent, les rendements des échantillons du tableau 5 ne sont que des approximations. La variation d'efficacité est démontrée avec les épurateurs par voie humide dans le tableau 5. L'efficacité de collecte des épurateurs par voie humide passe de 98.5 % pour les particules de 5 μm à 45 % pour les particules de 1 μm à la même chute de pression dans l'épurateur (6.8 po de jauge d'eau (wg )). Pour la même taille de particule, 1 μm, l'efficacité passe de 45 % d'efficacité à 6.8 wg à 99.95 à 50 wg. Par conséquent, les épurateurs de gaz doivent être adaptés au flux de gaz spécifique en question. L'utilisation d'appareils génériques n'est pas recommandée.

Élimination des déchets

Lors de la sélection et de la conception des systèmes d'épuration des gaz, une attention particulière doit être accordée à l'élimination en toute sécurité des matériaux collectés. Comme le montre le tableau 6, certains procédés produisent de grandes quantités de contaminants. Si la plupart des contaminants sont collectés par l'équipement d'épuration des gaz, il peut y avoir un problème d'élimination des déchets dangereux.

Tableau 6. Exemples de taux d'émissions non contrôlées pour certains procédés industriels

Origine industrielle

Taux d'émission

Four électrique de 100 tonnes

257 tonnes/an de particules

Turbine à pétrole/gaz de 1,500 XNUMX MM BTU/h

444 lb/h SO2

Incinérateur de 41.7 tonnes/h

208 lb/h NONx

100 camions/jour couche transparente

3,795 XNUMX lb/semaine de matières organiques

 

Dans certains cas, les déchets peuvent contenir des produits de valeur qui peuvent être recyclés, tels que des métaux lourds provenant d'une fonderie ou des solvants provenant d'une ligne de peinture. Les déchets peuvent être utilisés comme matière première pour un autre processus industriel - par exemple, le dioxyde de soufre collecté sous forme d'acide sulfurique peut être utilisé dans la fabrication d'engrais.

Lorsque les déchets ne peuvent pas être recyclés ou réutilisés, l'élimination peut ne pas être simple. Non seulement le volume peut être un problème, mais ils peuvent eux-mêmes être dangereux. Par exemple, si l'acide sulfurique récupéré d'une chaudière ou d'une fonderie ne peut pas être réutilisé, il devra être traité davantage pour le neutraliser avant son élimination.

Dispersion

La dispersion peut réduire la concentration d'un polluant sur une cible. Cependant, il faut se rappeler que la dispersion ne réduit pas la quantité totale de matière quittant une plante. Une grande cheminée permet uniquement au panache de s'étaler et de se diluer avant qu'il n'atteigne le niveau du sol, où des cibles sensibles sont susceptibles d'exister. Si le polluant est principalement une nuisance, telle qu'une odeur, la dispersion peut être acceptable. Cependant, si le matériau est persistant ou cumulatif, comme les métaux lourds, la dilution peut ne pas être une réponse à un problème de pollution de l'air.

La dispersion doit être utilisée avec prudence. Les conditions météorologiques locales et de surface du sol doivent être prises en considération. Par exemple, dans les climats plus froids, en particulier avec une couverture de neige, il peut y avoir de fréquentes inversions de température qui peuvent piéger les polluants près du sol, entraînant des expositions étonnamment élevées. De même, si une usine est située dans une vallée, les panaches peuvent monter et descendre dans la vallée, ou être bloqués par les collines environnantes, de sorte qu'ils ne s'étendent pas et ne se dispersent pas comme prévu.

Contrôles administratifs

En plus des systèmes technologiques, il existe un autre groupe de contrôles qui doivent être pris en compte dans la conception globale d'un système de contrôle de la pollution de l'air. Pour la plupart, ils sont issus des outils de base de l'hygiène industrielle.

Substitution

L'une des méthodes d'hygiène professionnelle préférées pour contrôler les risques environnementaux sur le lieu de travail consiste à substituer un matériau ou un procédé plus sûr. Si un processus ou un matériau plus sûr peut être utilisé et les émissions nocives évitées, le type ou l'efficacité des contrôles devient théorique. Il vaut mieux éviter le problème que d'essayer de corriger une mauvaise première décision. Des exemples de substitution comprennent l'utilisation de combustibles plus propres, des couvertures pour le stockage en vrac et des températures réduites dans les séchoirs.

Cela s'applique aux achats mineurs ainsi qu'aux principaux critères de conception de l'usine. Si seuls des produits ou des processus respectueux de l'environnement sont achetés, il n'y aura aucun risque pour l'environnement, à l'intérieur ou à l'extérieur. Si le mauvais achat est fait, le reste du programme consiste à essayer de compenser cette première décision. Si un produit ou un processus peu coûteux mais dangereux est acheté, il peut nécessiter des procédures et un équipement de manutention spéciaux, ainsi que des méthodes d'élimination spéciales. En conséquence, l'article à faible coût peut n'avoir qu'un faible prix d'achat, mais un prix élevé pour son utilisation et son élimination. Peut-être qu'un matériau ou un procédé plus sûr mais plus coûteux aurait été moins coûteux à long terme.

Ventilation locale

Des contrôles sont nécessaires pour tous les problèmes identifiés qui ne peuvent être évités en remplaçant des matériaux ou des méthodes plus sûrs. Les émissions commencent au chantier individuel, pas à la cheminée. Un système de ventilation qui capture et contrôle les émissions à la source aidera à protéger la communauté s'il est correctement conçu. Les hottes et conduits du système de ventilation font partie du système total de dépollution de l'air.

Un système de ventilation locale est préférable. Il ne dilue pas les contaminants et fournit un flux de gaz concentré plus facile à nettoyer avant rejet dans l'environnement. L'équipement de nettoyage des gaz est plus efficace lors du nettoyage de l'air avec des concentrations plus élevées de contaminants. Par exemple, une hotte de capture au-dessus du bec verseur d'un four à métaux empêchera les contaminants de pénétrer dans l'environnement et acheminera les fumées vers le système d'épuration des gaz. Dans le tableau 5, on peut voir que les efficacités de nettoyage pour les nettoyants à absorption et à adsorption augmentent avec la concentration du contaminant, et les nettoyants à condensation ne sont pas recommandés pour les faibles niveaux (<2,000 XNUMX ppm) de contaminants.

Si les polluants ne sont pas captés à la source et qu'on les laisse s'échapper par les fenêtres et les ouvertures de ventilation, ils deviennent des émissions fugitives incontrôlées. Dans certains cas, ces émissions fugitives non contrôlées peuvent avoir un impact important sur le voisinage immédiat.

Isolement

L'isolement - la localisation de l'usine loin des cibles sensibles - peut être une méthode de contrôle majeure lorsque les contrôles techniques sont inadéquats en eux-mêmes. Cela peut être le seul moyen d'atteindre un niveau de contrôle acceptable lorsqu'il faut s'appuyer sur la meilleure technologie de contrôle disponible (BACT). Si, après avoir appliqué les meilleurs contrôles disponibles, un groupe cible est toujours à risque, il faut envisager de trouver un autre site où les populations sensibles ne sont pas présentes.

L'isolement, tel que présenté ci-dessus, est un moyen de séparer une plante individuelle des cibles sensibles. Un autre système d'isolement est celui où les autorités locales utilisent le zonage pour séparer les classes d'industries des cibles sensibles. Une fois que les industries ont été séparées des populations cibles, la population ne devrait pas être autorisée à se déplacer à côté de l'installation. Bien que cela semble être du bon sens, il n'est pas utilisé aussi souvent qu'il le devrait.

Procédures de travail

Des procédures de travail doivent être élaborées pour s'assurer que l'équipement est utilisé correctement et en toute sécurité, sans risque pour les travailleurs ou l'environnement. Les systèmes complexes de pollution de l'air doivent être correctement entretenus et exploités s'ils doivent faire leur travail comme prévu. Un facteur important à cet égard est la formation du personnel. Le personnel doit être formé à l'utilisation et à l'entretien de l'équipement afin de réduire ou d'éliminer la quantité de matières dangereuses émises sur le lieu de travail ou dans la communauté. Dans certains cas, BACT s'appuie sur les bonnes pratiques pour garantir des résultats acceptables.

Surveillance en temps réel

Un système basé sur la surveillance en temps réel n'est pas populaire et n'est pas couramment utilisé. Dans ce cas, la surveillance continue des émissions et de la météorologie peut être combinée à la modélisation de la dispersion pour prédire les expositions sous le vent. Lorsque les expositions prévues approchent des niveaux acceptables, les informations sont utilisées pour réduire les taux de production et les émissions. Il s'agit d'une méthode inefficace, mais qui peut constituer une méthode de contrôle provisoire acceptable pour une installation existante.

L'inverse de ceci pour annoncer des avertissements au public lorsque les conditions sont telles que des concentrations excessives de contaminants peuvent exister, afin que le public puisse prendre les mesures appropriées. Par exemple, si un avertissement est envoyé indiquant que les conditions atmosphériques sont telles que les niveaux de dioxyde de soufre sous le vent d'une fonderie sont excessifs, les populations sensibles telles que les asthmatiques sauront qu'il ne faut pas sortir. Encore une fois, cela peut être un contrôle provisoire acceptable jusqu'à ce que des contrôles permanents soient installés.

La surveillance atmosphérique et météorologique en temps réel est parfois utilisée pour éviter ou réduire les événements majeurs de pollution atmosphérique lorsque plusieurs sources peuvent exister. Lorsqu'il devient évident que des niveaux excessifs de pollution de l'air sont probables, l'utilisation personnelle des voitures peut être restreinte et les principales industries émettrices fermées.

Entretien/ménage

Dans tous les cas, l'efficacité des contrôles dépend d'un entretien adéquat ; l'équipement doit fonctionner comme prévu. Non seulement les contrôles de la pollution de l'air doivent être maintenus et utilisés comme prévu, mais les processus générant des émissions potentielles doivent être maintenus et exploités correctement. Un exemple de processus industriel est un séchoir à copeaux de bois avec un contrôleur de température défaillant ; si le séchoir fonctionne à une température trop élevée, il émettra plus de matériaux, et peut-être un type de matériau différent, du bois en train de sécher. Un exemple d'entretien d'épurateur de gaz affectant les émissions serait un filtre à manches mal entretenu avec des sacs cassés, ce qui permettrait aux particules de passer à travers le filtre.

L'entretien ménager joue également un rôle important dans le contrôle des émissions totales. Les poussières qui ne sont pas rapidement nettoyées à l'intérieur de l'usine peuvent se réentraîner et présenter un danger pour le personnel. Si les poussières sont transportées à l'extérieur de l'usine, elles constituent un danger pour la communauté. Un mauvais entretien dans la cour de l'usine pourrait présenter un risque important pour la communauté. Les matériaux en vrac non recouverts, les déchets végétaux ou les poussières soulevées par les véhicules peuvent entraîner le transport de polluants par les vents dans la communauté. Garder la cour propre, en utilisant des conteneurs ou des sites de stockage appropriés, est important pour réduire les émissions totales. Un système doit non seulement être conçu correctement, mais aussi être utilisé correctement si la communauté doit être protégée.

Le pire exemple de mauvais entretien et de mauvaise gestion serait l'usine de récupération du plomb avec un convoyeur de poussière de plomb cassé. La poussière a pu s'échapper du convoyeur jusqu'à ce que le tas soit si haut que la poussière puisse glisser le long du tas et sortir par une fenêtre cassée. Les vents locaux ont ensuite transporté la poussière dans le quartier.

Équipement pour l'échantillonnage des émissions

L'échantillonnage à la source peut être effectué pour plusieurs raisons :

  • Caractériser les émissions. Pour concevoir un système de contrôle de la pollution de l'air, il faut savoir ce qui est émis. Non seulement le volume de gaz, mais aussi la quantité, l'identité et, dans le cas des particules, la répartition granulométrique du matériau émis doivent être connus. Les mêmes informations sont nécessaires pour répertorier les émissions totales d'un quartier.
  • Pour tester l'efficacité des équipements. Une fois qu'un système de contrôle de la pollution de l'air a été acheté, il doit être testé pour s'assurer qu'il fait le travail prévu.
  • Dans le cadre d'un système de contrôle. Lorsque les émissions sont surveillées en permanence, les données peuvent être utilisées pour affiner le système de contrôle de la pollution de l'air ou le fonctionnement de l'usine elle-même.
  • Pour déterminer la conformité. Lorsque les normes réglementaires incluent des limites d'émission, l'échantillonnage des émissions peut être utilisé pour déterminer la conformité ou la non-conformité aux normes.

 

Le type de système d'échantillonnage utilisé dépendra de la raison du prélèvement des échantillons, des coûts, de la disponibilité de la technologie et de la formation du personnel.

Émissions visibles

Lorsque l'on souhaite réduire le pouvoir salissant de l'air, améliorer la visibilité ou empêcher l'introduction d'aérosols dans l'atmosphère, les normes peuvent être basées sur les émissions visibles.

Les émissions visibles sont composées de petites particules ou de gaz colorés. Plus un panache est opaque, plus il émet de matière. Cette caractéristique est évidente à vue et des observateurs entraînés peuvent être utilisés pour évaluer les niveaux d'émission. L'utilisation de cette méthode d'évaluation des normes d'émission présente plusieurs avantages :

  • Aucun équipement coûteux n'est nécessaire.
  • Une personne peut faire plusieurs observations en une journée.
  • Les opérateurs d'usine peuvent évaluer rapidement les effets des changements de processus à faible coût.
  • Les contrevenants peuvent être cités sans tests de source fastidieux.
  • Les émissions douteuses peuvent être localisées et les émissions réelles ensuite déterminées par des tests à la source comme décrit dans les sections suivantes.

 

Échantillonnage extractif

Une méthode d'échantillonnage beaucoup plus rigoureuse nécessite qu'un échantillon du flux de gaz soit retiré de la cheminée et analysé. Bien que cela semble simple, cela ne se traduit pas par une simple méthode d'échantillonnage.

L'échantillon doit être prélevé de manière isocinétique, en particulier lorsque des particules sont prélevées. L'échantillonnage isocinétique est défini comme un échantillonnage en aspirant l'échantillon dans la sonde d'échantillonnage à la même vitesse que le matériau se déplace dans la cheminée ou le conduit. Cela se fait en mesurant la vitesse du flux de gaz avec un tube de Pitot, puis en ajustant le taux d'échantillonnage de sorte que l'échantillon pénètre dans la sonde à la même vitesse. Ceci est essentiel lors de l'échantillonnage des particules, car les particules plus grosses et plus lourdes ne suivront pas un changement de direction ou de vitesse. En conséquence, la concentration de particules plus grosses dans l'échantillon ne sera pas représentative du flux de gaz et l'échantillon sera imprécis.

Un train d'échantillons pour le dioxyde de soufre est illustré à la figure 1. Ce n'est pas simple et un opérateur formé est nécessaire pour s'assurer qu'un échantillon est correctement prélevé. Si autre chose que du dioxyde de soufre doit être échantillonné, les impacteurs et le bain de glace peuvent être retirés et le dispositif de collecte approprié inséré.

Figure 1. Schéma d'un train d'échantillonnage isocinétique pour le dioxyde de soufre

EPC050F2

L'échantillonnage extractif, en particulier l'échantillonnage isocinétique, peut être très précis et polyvalent, et a plusieurs utilisations :

  • Il s'agit d'une méthode d'échantillonnage reconnue avec des contrôles de qualité adéquats, et peut donc être utilisée pour déterminer la conformité aux normes.
  • La précision potentielle de la méthode la rend appropriée pour les tests de performance de nouveaux équipements de contrôle.
  • Étant donné que les échantillons peuvent être collectés et analysés dans des conditions de laboratoire contrôlées pour de nombreux composants, il est utile de caractériser le flux de gaz.

 

Un système d'échantillonnage simplifié et automatisé peut être connecté à un analyseur continu de gaz (capteurs électrochimiques, photométriques ultraviolets ou à ionisation de flamme) ou de particules (néphélomètre) pour surveiller en permanence les émissions. Cela peut fournir une documentation sur les émissions et l'état de fonctionnement instantané du système de contrôle de la pollution de l'air.

Échantillonnage in situ

Les émissions peuvent également être échantillonnées dans la cheminée. La figure 2 est une représentation d'un transmissomètre simple utilisé pour mesurer les matériaux dans le flux de gaz. Dans cet exemple, un faisceau de lumière est projeté à travers la pile vers une cellule photoélectrique. Les particules ou le gaz coloré absorberont ou bloqueront une partie de la lumière. Plus il y a de matière, moins la cellule photoélectrique recevra de lumière. (Voir figure 2.)

Figure 2. Un transmissomètre simple pour mesurer les particules dans une cheminée

EPC050F1

En utilisant différentes sources lumineuses et détecteurs tels que la lumière ultraviolette (UV), les gaz transparents à la lumière visible peuvent être détectés. Ces dispositifs peuvent être réglés sur des gaz spécifiques et peuvent ainsi mesurer la concentration de gaz dans le flux de déchets.

An sur place Le système de surveillance présente un avantage par rapport à un système extractif en ce qu'il peut mesurer la concentration dans l'ensemble de la cheminée ou du conduit, tandis que la méthode extractive ne mesure les concentrations qu'au point d'où l'échantillon a été extrait. Cela peut entraîner une erreur importante si le flux de gaz échantillon n'est pas bien mélangé. Cependant, la méthode extractive offre plus de méthodes d'analyse et peut donc peut-être être utilisée dans plus d'applications.

Depuis l' sur place Le système fournit une lecture continue, il peut être utilisé pour documenter les émissions ou pour affiner le système d'exploitation.

 

Noir

Mercredi, Mars 09 2011 15: 40

Surveillance de la qualité de l'air

La surveillance de la qualité de l'air désigne la mesure systématique des polluants de l'air ambiant afin de pouvoir évaluer l'exposition des récepteurs vulnérables (par exemple, les personnes, les animaux, les plantes et les œuvres d'art) sur la base de normes et de lignes directrices dérivées des effets observés, et/ou établir la source de la pollution de l'air (analyse causale).

Les concentrations de polluants dans l'air ambiant sont influencées par la variance spatiale ou temporelle des émissions de substances dangereuses et la dynamique de leur dispersion dans l'air. En conséquence, des variations quotidiennes et annuelles marquées des concentrations se produisent. Il est pratiquement impossible de déterminer de manière unifiée toutes ces différentes variations de la qualité de l'air (en langage statistique, la population des états de qualité de l'air). Ainsi, les mesures de concentrations de polluants dans l'air ambiant ont toujours le caractère d'échantillons spatiaux ou temporels aléatoires.

Planification des mesures

La première étape de la planification de la mesure consiste à formuler le but de la mesure aussi précisément que possible. Les questions importantes et les domaines d'opération pour la surveillance de la qualité de l'air comprennent :

Mesure de surface :

  • détermination représentative de l'exposition dans une zone (surveillance générale de l'air)
  • mesure représentative de la pollution préexistante dans la zone d'une installation projetée (permis, TA Luft (Instruction technique, air))
  • avertissement de smog (smog hivernal, fortes concentrations d'ozone)
  • mesures dans les points chauds de la pollution de l'air pour estimer l'exposition maximale des récepteurs (EU-NO2 directive, mesures dans les canyons de rue, conformément à la loi fédérale allemande sur le contrôle des immissions)
  • vérifier les résultats des mesures de réduction de la pollution et les tendances dans le temps
  • mesures de dépistage
  • investigations scientifiques - par exemple, le transport de la pollution atmosphérique, les conversions chimiques, l'étalonnage des calculs de dispersion.

 

Mesure de l'installation :

  • mesures en réponse à des réclamations
  • détermination des sources d'émissions, analyse causale
  • mesures en cas d'incendies et de rejets accidentels
  • vérifier le succès des mesures de réduction
  • surveiller les émissions fugitives des usines.

 

L'objectif de la planification de la mesure est d'utiliser des procédures de mesure et d'évaluation adéquates pour répondre à des questions spécifiques avec une certitude suffisante et au moindre coût possible.

Un exemple des paramètres à utiliser pour la planification des mesures est présenté dans le tableau 1, en relation avec une évaluation de la pollution de l'air dans la zone d'une installation industrielle projetée. Reconnaissant que les exigences formelles varient selon la juridiction, il convient de noter qu'une référence spécifique est faite ici aux procédures d'autorisation allemandes pour les installations industrielles.

Tableau 1. Paramètres pour la planification des mesures lors de la mesure des concentrations de pollution de l'air ambiant (avec exemple d'application)

Paramètre

Exemple d'application : Procédure d'autorisation pour
installations industrielles en Allemagne

Énoncé de la question

Mesure de la pollution antérieure dans la procédure d'autorisation ; mesure de sonde aléatoire représentative

Zone de mesure

Cercle autour de l'emplacement avec un rayon de 30 fois la hauteur réelle de la cheminée (simplifié)

Normes d'évaluation (en fonction du lieu et du temps) : valeurs caractéristiques à
obtenu à partir des données de mesure

Seuils limites IW1 (moyenne arithmétique) et IW2 (98e centile) de TA Luft (instruction technique, air); calcul de I1 (moyenne arithmétique) et I2 (98e centile) à partir de mesures effectuées sur 1 km2 (surface d'évaluation) à comparer avec IW1 et IW2

Commande, choix et densité
des sites de mesure

Balayage régulier de 1km2, entraînant un choix « aléatoire » des sites de mesure

Période de mesure

1 an, au moins 6 mois

Hauteur de mesure

1.5 à 4 mètres au-dessus du sol

Fréquence de mesure

52 (104) mesures par zone d'évaluation pour les polluants gazeux, selon la hauteur de la pollution

Durée de chaque mesure

1/2 heure pour les polluants gazeux, 24 heures pour les poussières en suspension, 1 mois pour les précipitations de poussières

Temps de mesure

Choix aléatoire

Objet mesuré

Pollution de l'air émise par l'installation prévue

Procédure de mesure

Procédure de mesure standard nationale (directives VDI)

Certitude nécessaire des résultats de mesure

Haute

Exigences qualité, contrôle qualité, étalonnage, maintenance

Directives VDI

Enregistrement des données de mesure, validation, archivage, évaluation

Calcul de la quantité de données I1V et I2V pour chaque domaine d'évaluation

Costs

Dépend de la zone de mesure et des objectifs

 

L'exemple du tableau 1 montre le cas d'un réseau de mesure qui est censé surveiller la qualité de l'air dans une zone spécifique de la manière la plus représentative possible, pour comparer avec des limites de qualité de l'air désignées. L'idée sous-jacente à cette approche est qu'un choix aléatoire de sites de mesure est effectué afin de couvrir également des emplacements dans une zone avec une qualité de l'air variable (par exemple, des zones de vie, des rues, des zones industrielles, des parcs, des centres-villes, des banlieues). Cette approche peut s'avérer très coûteuse sur de grandes surfaces en raison du nombre de sites de mesure nécessaires.

Une autre conception d'un réseau de mesure part donc de sites de mesure sélectionnés de manière représentative. Si des mesures de différentes qualités de l'air sont effectuées dans les endroits les plus importants et que la durée pendant laquelle les objets protégés restent dans ces «microenvironnements» est connue, l'exposition peut alors être déterminée. Cette approche peut être étendue à d'autres microenvironnements (par exemple, pièces intérieures, voitures) afin d'estimer l'exposition totale. La modélisation de la diffusion ou les mesures de criblage peuvent aider à choisir les bons sites de mesure.

Une troisième approche consiste à mesurer aux points d'exposition présumée la plus élevée (par exemple, pour le NO2 et benzène dans les canyons de rue). Si les normes d'évaluation sont respectées sur ce site, il est suffisamment probable que ce sera également le cas pour tous les autres sites. Cette approche, en se concentrant sur les points critiques, nécessite relativement peu de sites de mesure, mais ceux-ci doivent être choisis avec un soin particulier. Cette méthode particulière risque de surestimer l'exposition réelle.

Les paramètres de durée de mesure, d'évaluation des données de mesure et de fréquence de mesure sont essentiellement donnés dans la définition des normes d'évaluation (limites) et du niveau de certitude souhaité des résultats. Les limites de seuil et les conditions périphériques à prendre en compte dans la planification des mesures sont liées. En utilisant des procédures de mesure en continu, une résolution temporellement presque transparente peut être obtenue. Mais cela n'est nécessaire que pour surveiller les valeurs maximales et/ou pour les avertissements de smog ; pour le suivi des valeurs moyennes annuelles, par exemple, des mesures discontinues suffisent.

La section suivante est consacrée à la description des capacités des procédures de mesure et du contrôle qualité en tant que paramètre supplémentaire important pour la planification des mesures.

Assurance qualité

Les mesures des concentrations de polluants dans l'air ambiant peuvent être coûteuses à réaliser et les résultats peuvent affecter des décisions importantes avec de graves implications économiques ou écologiques. Par conséquent, les mesures d'assurance qualité font partie intégrante du processus de mesure. Deux domaines doivent ici être distingués.

Mesures axées sur la procédure

Chaque procédure de mesure complète se compose de plusieurs étapes : échantillonnage, préparation de l'échantillon et nettoyage ; séparation, détection (étape analytique finale); et la collecte et l'évaluation des données. Dans certains cas, en particulier avec la mesure continue de gaz inorganiques, certaines étapes de la procédure peuvent être omises (par exemple, la séparation). Il convient de s'efforcer de respecter intégralement les procédures lors de la réalisation des mesures. Des procédures normalisées et donc documentées de manière exhaustive doivent être suivies, sous la forme de normes DIN/ISO, de normes CEN ou de directives VDI.

Mesures axées sur l'utilisateur

L'utilisation d'équipements et de procédures normalisés et éprouvés pour la mesure de la concentration de polluants dans l'air ambiant ne peut à elle seule garantir une qualité acceptable si l'utilisateur n'emploie pas de méthodes adéquates de contrôle de la qualité. Les séries de normes DIN/EN/ISO 9000 (Normes de gestion de la qualité et d'assurance qualité), EN 45000 (qui définit les exigences pour les laboratoires d'essais) et le Guide ISO 25 (Exigences générales concernant la compétence des laboratoires d'étalonnage et d'essais) sont importantes pour les utilisateurs. mesures ciblées pour assurer la qualité.

Les aspects importants des mesures de contrôle de la qualité des utilisateurs comprennent :

  • acceptation et mise en pratique du contenu des mesures au sens des bonnes pratiques de laboratoire (BPL)
  • entretien correct des équipements de mesure, mesures qualifiées pour éliminer les perturbations et assurer les réparations
  • effectuer des étalonnages et des vérifications régulières pour s'assurer du bon fonctionnement
  • réalisation d'essais interlaboratoires.

 

Procédures de mesure

Procédures de mesure pour les gaz inorganiques

Il existe une multitude de procédures de mesure pour la large gamme de gaz inorganiques. Nous différencierons les méthodes manuelles des méthodes automatiques.

Procédures manuelles

Dans le cas des procédures de mesure manuelles pour les gaz inorganiques, la substance à mesurer est normalement adsorbée lors de l'échantillonnage dans une solution ou un matériau solide. Dans la plupart des cas, une détermination photométrique est effectuée après une réaction colorée appropriée. Plusieurs procédures de mesure manuelles ont une importance particulière en tant que procédures de référence. En raison du coût relativement élevé du personnel, ces procédures manuelles ne sont que rarement utilisées pour les mesures sur le terrain aujourd'hui, lorsque des procédures automatiques alternatives sont disponibles. Les procédures les plus importantes sont brièvement décrites dans le tableau 2.

Tableau 2. Procédures de mesure manuelle des gaz inorganiques

Matières

Procédure

Internationaux

Commentaires

SO2

Procédure TCM

Absorption en solution de tétrachloromercurate (pissette) ; réaction avec le formaldéhyde et la pararosaniline en acide sulfonique rouge-violet; détermination photométrique

Procédure de mesure de référence UE ;
DL = 0.2 µg SO2;
s = 0.03 mg/m3 à 0.5 mg/m3

SO2

Procédure de gel de silice

Élimination des substances interférentes par H concentré3PO4; adsorption sur gel de silice ; désorption thermique en H2-flux et réduction en H2S; réaction au bleu de molybdène ; détermination photométrique

DL = 0.3 µg SO2;
s = 0.03 mg/m3 à 0.5 mg/m3

NON2

Procédure de Saltzman

Absorption dans la solution réactionnelle avec formation d'un colorant azoïque rouge (flacon laveur) ; détermination photométrique

Étalonnage avec du nitrite de sodium ;
DL = 3 µg/m3

O3

L'iodure de potassium
procédure

Formation d'iode à partir d'une solution aqueuse d'iodure de potassium (flacon laveur); détermination photométrique

DL = 20 µg/m3;
rél. s = ± 3.5 % à 390 µg/m3

F-

Procédure de perle d'argent;
variante 1

Échantillonnage avec pré-séparateur de poussière ; enrichissement de F- sur billes d'argent recouvertes de carbonate de sodium ; élution et mesure avec une chaîne d'électrodes au fluorure de lanthane sensible aux ions

Inclusion d'une partie indéterminée des immissions de fluorure particulaire

F-

Procédure de perle d'argent;
variante 2

Échantillonnage avec filtre à membrane chauffée ; enrichissement de F- sur billes d'argent recouvertes de carbonate de sodium ; dosage par procédure électrochimique (variante 1) ou photométrique (alizarine-complexone)

Risque de résultats inférieurs en raison de la sorption partielle des immissions de fluorure gazeux sur le filtre à membrane ;
DL = 0.5 µg/m3

Cl-

Rhodanure de mercure
procédure

Absorption dans une solution d'hydroxyde de sodium 0.1 N (flacon laveur); réaction avec le rhodanure de mercure et les ions Fe(III) pour former un complexe de thiocyanato de fer ; détermination photométrique

DL = 9 µg/m3

Cl2

Procédure méthyl-orange

Réaction de blanchiment avec une solution de méthyl-orange (pissette); détermination photométrique

LD = 0.015 mg/m3

NH3

Procédure à l'indophénol

Absorption en H dilué2SO4 (Empancheur/flacon laveur) ; conversion avec du phénol et de l'hypochlorite en colorant indophénol ; détermination photométrique

DL = 3 µg/m3 (impacteur); partiel
inclusion de composés et d'amines

NH3

Procédure de Nessler

Absorption en H dilué2SO4 (Empancheur/flacon laveur) ; distillation et réaction avec le réactif de Nessler, détermination photométrique

DL = 2.5 µg/m3 (impacteur); partiel
inclusion de composés et d'amines

H2S

Bleu de molybdène
procédure

Absorption sous forme de sulfure d'argent sur des billes de verre traitées avec du sulfate d'argent et de l'hydrogénosulfate de potassium (tube de sorption) ; libéré sous forme de sulfure d'hydrogène et conversion en bleu de molybdène; détermination photométrique

DL = 0.4 µg/m3

H2S

Procédure au bleu de méthylène

Absorption dans une suspension d'hydroxyde de cadmium lors de la formation de CdS ; conversion en bleu de méthylène; détermination photométrique

DL = 0.3 µg/m3

DL = limite de détection ; s = écart type ; rél. s = s relatif.

Une variante d'échantillonnage spéciale, utilisée principalement dans le cadre de procédures de mesure manuelles, est le tube de séparation par diffusion (dénudeur). La technique du dénudeur vise à séparer les phases gazeuse et particulaire en utilisant leurs différentes vitesses de diffusion. Ainsi, il est souvent utilisé sur des problèmes de séparation difficiles (par exemple, ammoniac et composés d'ammonium ; oxydes d'azote, acide nitrique et nitrates ; oxydes de soufre, acide sulfurique et sulfates ou halogénures/halogénures d'hydrogène). Dans la technique classique du dénudeur, l'air de test est aspiré à travers un tube en verre avec un revêtement spécial, en fonction du ou des matériaux à collecter. La technique du dénudeur a été développée dans de nombreuses variantes et également partiellement automatisée. Il a considérablement élargi les possibilités d'échantillonnage différencié, mais, selon les variantes, il peut être très laborieux et sa bonne utilisation nécessite une grande expérience.

Procédures automatisées

Il existe de nombreux moniteurs de mesure en continu différents sur le marché pour le dioxyde de soufre, les oxydes d'azote, le monoxyde de carbone et l'ozone. Ils sont pour la plupart utilisés notamment dans les réseaux de mesure. Les caractéristiques les plus importantes des méthodes individuelles sont rassemblées dans le tableau 3.

Tableau 3. Procédures de mesure automatisées pour les gaz inorganiques

Matières

Principe de mesure

Commentaires

SO2

Réaction de conductométrie du SO2 avec H2O2 en H dilué2SO4; mesure de l'augmentation de la conductivité

Exclusion des interférences avec filtre sélectif (KHSO4/AgNO3)

SO2

fluorescence UV; excitation de SO2 molécules avec rayonnement UV (190–230 nm); mesure du rayonnement de fluorescence

Interférences, par exemple par des hydrocarbures,
doivent être éliminés avec des systèmes de filtrage appropriés

NON NON2

Chimiluminescence ; réaction de NO avec O3 à NON2; détection de rayonnement de chimioluminescence avec photomultiplicateur

NON2 seulement indirectement mesurable ; utilisation de convertisseurs pour la réduction de NO2 à NON ; mesure de NO et NOx
(=NON+NON2) dans des canaux séparés

CO

Absorption infrarouge non dispersive ;
mesure de l'absorption IR avec
détecteur spécifique contre cellule de référence

Référence : (a) cellule avec N2; (b) air ambiant après élimination du CO ; (c) élimination optique de l'absorption de CO (corrélation du filtre à gaz)

O3

Absorption des UV ; lampe Hg basse pression comme source de rayonnement (253.7 nm); enregistrement de l'absorption UV conformément à la loi de Lambert-Beer ; détecteur : photodiode à vide, valve photosensible

Référence : air ambiant après élimination de l'ozone (par exemple, Cu/MnO2)

O3

Chimiluminescence ; réaction de O3 avec de l'éthène en formaldéhyde; détection de rayonnement de chimiluminescence avec
photomultiplicateur

Bonne sélectivité ; éthylène nécessaire comme gaz réactif

 

Il convient de souligner ici que toutes les procédures de mesure automatiques basées sur des principes physico-chimiques doivent être étalonnées à l'aide de procédures de référence (manuelles). Étant donné que les équipements automatiques des réseaux de mesure fonctionnent souvent pendant de longues périodes (par exemple, plusieurs semaines) sans surveillance humaine directe, il est indispensable que leur bon fonctionnement soit régulièrement et automatiquement vérifié. Cela se fait généralement à l'aide de gaz zéro et d'essai qui peuvent être produits par plusieurs méthodes (préparation de l'air ambiant ; bouteilles de gaz sous pression ; perméation ; diffusion ; dilution statique et dynamique).

Procédures de mesure des polluants atmosphériques poussiéreux et de leur composition

Parmi les polluants atmosphériques particulaires, les retombées de poussière et les particules en suspension (MPS) sont différenciées. Les chutes de poussière sont constituées de particules plus grosses, qui tombent au sol en raison de leur taille et de leur épaisseur. Les SPM comprennent la fraction particulaire qui est dispersée dans l'atmosphère de manière quasi-stable et quasi-homogène et reste donc en suspension pendant un certain temps.

Mesure des particules en suspension et des composés métalliques dans les SPM

Comme c'est le cas pour les mesures des polluants atmosphériques gazeux, les procédures de mesure continues et discontinues des MPS peuvent être différenciées. En règle générale, les SPM sont d'abord séparés sur des filtres en fibre de verre ou à membrane. Il s'ensuit une détermination gravimétrique ou radiométrique. En fonction de l'échantillonnage, une distinction peut être faite entre une procédure pour mesurer la SPM totale sans fractionnement selon la taille des particules et une procédure de fractionnement pour mesurer les poussières fines.

Les avantages et les inconvénients des mesures de poussières en suspension fractionnées sont contestés au niveau international. En Allemagne, par exemple, tous les seuils et normes d'évaluation sont basés sur le total des particules en suspension. Cela signifie que, pour la plupart, seules les mesures SPM totales sont effectuées. Aux États-Unis, au contraire, la procédure dite PM-10 (matière particulaire £ 10μm) est très courante. Dans cette procédure, seules les particules d'un diamètre aérodynamique jusqu'à 10 μm sont incluses (portion d'inclusion de 50 %), qui sont inhalables et peuvent pénétrer dans les poumons. Il est prévu d'introduire le procédé PM-10 dans l'Union européenne comme procédé de référence. Le coût des mesures SPM fractionnées est considérablement plus élevé que celui de la mesure de la poussière totale en suspension, car les appareils de mesure doivent être équipés de têtes d'échantillonnage spéciales, de construction coûteuse, qui nécessitent une maintenance coûteuse. Le tableau 4 contient des détails sur les procédures de mesure SPM les plus importantes.

Tableau 4. Procédures de mesure des particules en suspension (MPS)

Procédure

Principe de mesure

Commentaires

Petit appareil de filtrage

Échantillonnage non fractionné ; débit d'air 2.7–2.8 m3/h ; diamètre du filtre 50 mm; analyse gravimétrique

Manipulation facile; horloge de contrôle ;
appareil utilisable avec PM-10
préséparateur

Dispositif LIB

Échantillonnage non fractionné ; débit d'air 15-16 m3/h ; diamètre du filtre 120 mm; analyse gravimétrique

Séparation des grosses poussières
quantités; avantageux pour
analyse des composants de la poussière ;
horloge de contrôle

Échantillonneur à haut volume

Inclusion de particules jusqu'à env. 30 µm de diamètre ; débit d'air env. 100 mètres3/h ; diamètre du filtre 257 mm; analyse gravimétrique

Séparation des grosses poussières
quantités, avantageux pour
analyse des composants de la poussière ;
niveau de bruit relativement élevé

FH 62 I

Appareil de mesure radiométrique continu des poussières ; échantillonnage sans fractionnement ; débit d'air 1 ou 3 m3/h ; enregistrement de la masse de poussière séparée sur une bande de filtre en mesurant l'atténuation du rayonnement β (krypton 85) lors du passage à travers un filtre exposé (chambre d'ionisation)

Étalonnage gravimétrique par dépoussiérage de filtres simples ; appareil également utilisable avec le préséparateur PM-10

Dépoussiéreur BETA F 703

Appareil de mesure radiométrique continu des poussières ; échantillonnage non fractionné ; débit d'air 3 m3/h ; enregistrement de la masse de poussière séparée sur une bande de filtre en mesurant l'atténuation du rayonnement β (carbone 14) lors du passage à travers un filtre exposé (tube compteur Geiger Müller)

Étalonnage gravimétrique par dépoussiérage de filtres simples ; appareil également utilisable avec le préséparateur PM-10

TÉOM 1400

Appareil de mesure continue de la poussière ; échantillonnage non fractionné ; débit d'air 1 m3/h ; poussière recueillie sur un filtre, qui fait partie d'un système vibrant auto-résonant, en flux latéral (3 l/min) ; enregistrement de l'abaissement de fréquence par augmentation de la charge de poussière sur le filtre

Relation entre la fréquence
l'abaissement et la masse de poussière doivent être
établi par étalonnage

 

 

 

Récemment, des changeurs de filtres automatiques ont également été développés qui contiennent un plus grand nombre de filtres et les fournissent à l'échantillonneur, l'un après l'autre, à des intervalles de temps. Les filtres exposés sont stockés dans un magasin. Les limites de détection pour les procédures de filtrage se situent entre 5 et 10 μg/m3 de poussière, en règle générale.

Enfin, la procédure de fumée noire pour les mesures SPM doit être mentionnée. Venant de Grande-Bretagne, il a été intégré dans les directives de l'UE pour le SO2 et la poussière en suspension. Dans cette procédure, le noircissement du filtre revêtu est mesuré avec un photomètre reflex après l'échantillonnage. Les valeurs de fumée noire ainsi obtenues par photométrie sont converties en unités gravimétriques (μg/m3) à l'aide d'une courbe d'étalonnage. Cette fonction d'étalonnage dépendant fortement de la composition de la poussière, notamment de sa teneur en suie, la conversion en unités gravimétriques est problématique.

Aujourd'hui, les composés métalliques sont souvent déterminés en routine dans les échantillons d'immission de poussières en suspension. En général, la collecte des poussières en suspension sur les filtres est suivie d'une dissolution chimique des poussières séparées, car les étapes analytiques finales les plus courantes supposent la conversion des composés métalliques et métalloïdes en solution aqueuse. En pratique, les méthodes les plus importantes sont de loin la spectroscopie d'absorption atomique (AAS) et la spectroscopie avec excitation plasma (ICP-OES). D'autres procédures pour déterminer les composés métalliques dans la poussière en suspension sont l'analyse par fluorescence X, la polarographie et l'analyse par activation neutronique. Bien que les composés métalliques soient mesurés depuis plus d'une décennie maintenant en tant que composant des MPS dans l'air extérieur sur certains sites de mesure, d'importantes questions restent sans réponse. Ainsi le prélèvement classique par séparation des poussières en suspension sur des filtres suppose que la séparation des composés de métaux lourds sur le filtre est complète. Cependant, des indications antérieures ont été trouvées dans la littérature remettant cela en question. Les résultats sont très hétérogènes.

Un autre problème réside dans le fait que différentes formes de composés, ou des composés uniques des éléments respectifs, ne peuvent pas être distingués dans l'analyse des composés métalliques dans la poussière en suspension en utilisant les procédures de mesure conventionnelles. Alors que dans de nombreux cas des déterminations totales adéquates peuvent être faites, une différenciation plus approfondie serait souhaitable avec certains métaux particulièrement cancérigènes (As, Cd, Cr, Ni, Co, Be). Il existe souvent de grandes différences dans les effets cancérigènes des éléments et de leurs composés individuels (par exemple, les composés du chrome aux niveaux d'oxydation III et VI - seuls ceux du niveau VI sont cancérigènes). Dans de tels cas, une mesure spécifique des composés individuels (analyse des espèces) serait souhaitable. Malgré l'importance de ce problème, seules les premières tentatives d'analyse des espèces sont faites dans la technique de mesure.

Mesure des chutes de poussière et des composés métalliques dans les chutes de poussière

Deux méthodes fondamentalement différentes sont utilisées pour collecter les chutes de poussière :

  • échantillonnage dans des récipients collecteurs
  • échantillonnage sur des surfaces adhésives.

 

Une procédure populaire pour mesurer les chutes de poussière (poussière déposée) est la procédure dite de Bergerhoff. Dans cette procédure, la totalité des précipitations atmosphériques (dépôts secs et humides) est collectée pendant 30 ± 2 jours dans des récipients à environ 1.5 à 2.0 mètres au-dessus du sol (dépôts en vrac). Ensuite, les récipients collecteurs sont amenés au laboratoire et préparés (filtrés, eau évaporée, séchés, pesés). Le résultat est calculé sur la base de la surface du récipient collecteur et du temps d'exposition en grammes par mètre carré et par jour (g/m2ré). La limite de détection relative est de 0.035 g/m2d.

Des procédures supplémentaires pour collecter les chutes de poussière comprennent le dispositif Liesegang-Löbner et des méthodes qui collectent la poussière déposée sur des feuilles adhésives.

Tous les résultats de mesure des chutes de poussière sont des valeurs relatives qui dépendent de l'appareil utilisé, car la séparation de la poussière est influencée par les conditions d'écoulement au niveau de l'appareil et d'autres paramètres. Les différences dans les valeurs de mesure obtenues avec les différentes procédures peuvent atteindre 50 %.

La composition de la poussière déposée, telle que la teneur en plomb, cadmium et autres composés métalliques, est également importante. Les procédures analytiques utilisées pour cela sont fondamentalement les mêmes que celles utilisées pour les poussières en suspension.

Mesure de matériaux spéciaux sous forme de poussière

Les matériaux spéciaux sous forme de poussière comprennent l'amiante et la suie. La collecte des fibres en tant que polluants de l'air est importante puisque l'amiante a été classé comme matériau cancérigène confirmé. Les fibres d'un diamètre D ≤ 3 μm et d'une longueur L ≥ 5 μm, où L:D ≥ 3, sont considérées comme cancérigènes. Les procédés de mesure des matériaux fibreux consistent à compter au microscope les fibres qui ont été séparées sur des filtres. Seules les procédures de microscopie électronique peuvent être envisagées pour les mesures de l'air extérieur. Les fibres sont séparées sur des filtres poreux recouverts d'or. Avant l'évaluation au microscope électronique à balayage, l'échantillon est débarrassé des substances organiques par incinération au plasma directement sur le filtre. Les fibres sont comptées sur une partie de la surface du filtre, choisies au hasard et classées par géométrie et type de fibre. À l'aide de l'analyse par rayons X à dispersion d'énergie (EDXA), les fibres d'amiante, les fibres de sulfate de calcium et d'autres fibres inorganiques peuvent être différenciées sur la base de la composition élémentaire. L'ensemble de la procédure est extrêmement coûteux et nécessite le plus grand soin pour obtenir des résultats fiables.

La suie sous forme de particules émises par les moteurs diesel est devenue pertinente puisque la suie diesel a également été classée cancérigène. En raison de sa composition changeante et complexe et du fait que divers constituants sont également émis par d'autres sources, il n'existe pas de procédure de mesure spécifique aux suies diesel. Néanmoins, pour dire quelque chose de concret sur les concentrations dans l'air ambiant, la suie est classiquement définie comme du carbone élémentaire, faisant partie du carbone total. Elle est mesurée après prélèvement et une étape d'extraction et/ou désorption thermique. La détermination de la teneur en carbone s'ensuit par combustion dans un courant d'oxygène et titrage coulométrique ou détection IR non dispersive du dioxyde de carbone formé au cours du processus.

Le soi-disant éthalomètre et le capteur d'aérosol photoélectrique sont également utilisés pour mesurer la suie, en principe.

Mesurer les dépôts humides

Avec les dépôts secs, les dépôts humides sous la pluie, la neige, le brouillard et la rosée constituent le moyen le plus important par lequel des matières nocives pénètrent dans le sol, l'eau ou les surfaces végétales depuis l'air.

Afin de bien distinguer le dépôt humide sous la pluie et la neige (le brouillard et la rosée posent des problèmes particuliers) de la mesure du dépôt total (dépôt massif, voir section « Mesure des retombées de poussières et de composés métalliques » ci-dessus) et du dépôt sec, des capteurs de pluie, dont l'ouverture de collecte est couverte lorsqu'il n'y a pas de pluie (échantillonneur humide uniquement), sont utilisés pour l'échantillonnage. Avec les capteurs de pluie, qui fonctionnent principalement sur le principe des changements de conductivité, le couvercle s'ouvre lorsqu'il commence à pleuvoir et se referme lorsque la pluie s'arrête.

Les échantillons sont transférés à travers un entonnoir (zone ouverte d'environ 500 cm2 et plus) dans un récipient de collecte obscurci et si possible isolé (en verre ou en polyéthylène pour les composants inorganiques uniquement).

En général, l'analyse de l'eau collectée pour les composants inorganiques peut être effectuée sans préparation d'échantillon. L'eau doit être centrifugée ou filtrée si elle est visiblement trouble. La conductivité, le pH et les anions importants (NO3 - , SO4 2- , Cl-) et des cations (Ca2+K+, Mg2+, N / A+, NH4 + et ainsi de suite) sont systématiquement mesurés. Composés traces instables et états intermédiaires comme H2O2 ou ASS3 - sont également mesurés à des fins de recherche.

Pour l'analyse, on utilise des procédures généralement disponibles pour les solutions aqueuses telles que la conductométrie pour la conductivité, les électrodes pour les valeurs de pH, la spectroscopie d'adsorption atomique pour les cations (voir la section "Mesure de matériaux spéciaux sous forme de poussière", ci-dessus) et, de plus en plus, la chromatographie par échange d'ions. avec détection de conductivité pour les anions.

Les composés organiques sont extraits de l'eau de pluie avec, par exemple, du dichlorométhane, ou soufflés avec de l'argon et adsorbés avec des tubes Tenax (uniquement des matériaux très volatils). Les matériaux sont ensuite soumis à une analyse par chromatographie en phase gazeuse (voir « Procédures de mesure des polluants organiques de l'air », ci-dessous).

Les dépôts secs sont directement corrélés aux concentrations dans l'air ambiant. Les différences de concentration des matières nocives en suspension dans l'air dans la pluie sont cependant relativement faibles, de sorte que pour mesurer les dépôts humides, des réseaux de mesure à larges mailles sont adéquats. Citons par exemple le réseau de mesure européen EMEP, dans lequel l'entrée d'ions sulfate et nitrate, certains cations et les valeurs de pH des précipitations sont recueillies dans environ 90 stations. Il existe également de vastes réseaux de mesure en Amérique du Nord.

Procédures de mesure optique longue distance

Alors que les procédures décrites jusqu'à présent capturent la pollution de l'air en un point, les procédures de mesure optique à longue distance mesurent de manière intégrée sur des trajets lumineux de plusieurs kilomètres ou déterminent la distribution spatiale. Ils utilisent les caractéristiques d'absorption des gaz de l'atmosphère dans le domaine spectral UV, visible ou IR et sont basés sur la loi de Lambert-Beer, selon laquelle le produit du trajet lumineux et de la concentration est proportionnel à l'extinction mesurée. Si l'émetteur et le récepteur de l'installation de mesure modifient la longueur d'onde, plusieurs composants peuvent être mesurés en parallèle ou séquentiellement avec un seul appareil.

En pratique, les systèmes de mesure identifiés dans le tableau 5 jouent le rôle le plus important.

Tableau 5. Procédures de mesure longue distance

Procédure

Application

Avantages désavantages

Fourier
transform
infrarouge
spectroscopie (FTIR)

Portée IR (env. 700–3,000 XNUMX cm-1), chemin lumineux de plusieurs centaines de mètres.
Surveille les sources de surface diffuses (clôture optique), mesure les composés organiques individuels

+ Système multi-composants
+ dl quelques ppb
- Coûteux

Différentielle
optique
absorption
spectrométrie (DOAS)

Sentier lumineux à plusieurs km; mesures SO2, Je n'ai pas2, benzène, HNO3; surveille les sources linéaires et surfaciques, utilisées dans les réseaux de mesure

+ Facile à manipuler 
+ Test de performance réussi
+ Système multi-composants
– Dl élevé dans des conditions de mauvaise visibilité (egbrouillard)

Longue distance
absorption laser
spectroscopie (TDLAS)

Zone de recherche, en cuves basse pression pour OH-

+ Haute sensibilité (à ppt)
+ Mesure les composés traces instables
- Coût élevé
- Difficile à gérer

Différentielle
Absorption
LIDAR (cadran)

Surveille les sources de surface, les mesures d'immission de grande surface

+ Mesures de l'espace
distribution
+ Mesures inaccessibles
endroits (p. ex., traînées de gaz de fumée)
- Coûteux
– Spectre de composants limité (SO2, L'3, Je n'ai pas2)

LIDAR = détection et télémétrie de la lumière ; DIAL = LIDAR à absorption différentielle.

 

Procédures de mesure des polluants atmosphériques organiques

La mesure de la pollution de l'air contenant des composants organiques est compliquée principalement par la gamme de matériaux dans cette classe de composés. Plusieurs centaines de composants individuels aux caractéristiques toxicologiques, chimiques et physiques très différentes sont couverts sous le titre général «polluants organiques de l'air» dans les registres d'émissions et les plans de qualité de l'air des zones congestionnées.

En raison notamment des grandes différences d'impact potentiel, la collecte de composants individuels pertinents a de plus en plus remplacé les procédures de sommation précédemment utilisées (par exemple, détecteur à ionisation de flamme, procédure de carbone total), dont les résultats ne peuvent pas être évalués toxicologiquement. La méthode FID a cependant gardé une certaine importance dans le cadre d'une courte colonne de séparation pour séparer le méthane, peu réactif photochimiquement, et pour collecter les composés organiques volatils précurseurs (COV) pour la formation de photo-oxydants.

La nécessité fréquente de séparer les mélanges complexes des composés organiques en composants individuels pertinents fait de leur mesure pratiquement un exercice de chromatographie appliquée. Les procédures chromatographiques sont les méthodes de choix lorsque les composés organiques sont suffisamment stables, thermiquement et chimiquement. Pour les matériaux organiques avec des groupes fonctionnels réactifs, des procédures distinctes qui utilisent les caractéristiques physiques ou les réactions chimiques des groupes fonctionnels pour la détection continuent de tenir leur terrain.

Les exemples incluent l'utilisation d'amines pour convertir les aldéhydes en hydrazones, avec une mesure photométrique ultérieure; dérivation avec la 2,4-dinitrophénylhydrazine et séparation de la 2,4-hydrazone qui est formée ; ou former des colorants azoïques avec p-nitroaniline pour la détection des phénols et des crésols.

Parmi les procédures chromatographiques, la chromatographie en phase gazeuse (GC) et la chromatographie liquide à haute pression (HPLC) sont les plus fréquemment utilisées pour séparer les mélanges souvent complexes. Pour la chromatographie en phase gazeuse, des colonnes de séparation de diamètres très étroits (environ 0.2 à 0.3 mm et environ 30 à 100 m de long), appelées colonnes capillaires à haute résolution (HRGC), sont presque exclusivement utilisées aujourd'hui. Une série de détecteurs sont disponibles pour trouver les composants individuels après la colonne de séparation, tels que le FID mentionné ci-dessus, l'ECD (détecteur de capture d'électrons, spécifiquement pour les substituts électrophiles tels que l'halogène), le PID (détecteur de photo-ionisation, qui est particulièrement sensible aux hydrocarbures aromatiques et autres systèmes d'électrons p), et le NPD (détecteur thermoionique spécifique aux composés azotés et phosphorés). La HPLC utilise des détecteurs à flux spéciaux qui, par exemple, sont conçus comme la cuvette à flux d'un spectromètre UV.

L'utilisation d'un spectromètre de masse comme détecteur est particulièrement efficace, mais aussi particulièrement coûteuse. Une identification vraiment certaine, en particulier avec des mélanges inconnus de composés, n'est souvent possible que par le spectre de masse du composé organique. L'information qualitative du soi-disant temps de rétention (temps pendant lequel le matériau reste dans la colonne) contenue dans le chromatogramme avec des détecteurs conventionnels est complétée par la détection spécifique des composants individuels par des fragmentogrammes de masse à haute sensibilité de détection.

L'échantillonnage doit être considéré avant l'analyse proprement dite. Le choix de la méthode d'échantillonnage est déterminé principalement par la volatilité, mais aussi par la plage de concentration attendue, la polarité et la stabilité chimique. De plus, avec les composés non volatils, il faut choisir entre les mesures de concentration et de dépôt.

Le tableau 6 donne un aperçu des procédures courantes de surveillance de l'air pour l'enrichissement actif et l'analyse chromatographique des composés organiques, avec des exemples d'applications.

Tableau 6. Aperçu des procédures courantes de mesure chromatographique de la qualité de l'air des composés organiques (avec exemples d'applications)

Groupe de matériaux

Concentration
gamme

Échantillonnage, préparation

Dernière étape analytique

Hydrocarbures C1-C9

µg/m3

Souris à gaz (prélèvement rapide), seringue étanche aux gaz, piégeage à froid devant colonne capillaire (focalisation), désorption thermique

CPG/DIF

Hydrocarbures à bas point d'ébullition, fortement
hydrocarbures halogénés volatils

ng/m3–μg/m3

Cylindre en acier inoxydable sous vide et passivé (également pour les mesures d'air pur)
Envoi d'échantillons par boucles de gaz, piégeage à froid, désorption thermique

CPG/FID/ECD/PID

Composés organiques au point d'ébullition
gamme C6-C30 (60-350 ºC)

µg/m3

Adsorption sur charbon actif, (a) désorption avec CS2 (b) désorption avec des solvants (c) analyse de l'espace de tête

Capillaire
CPG/DIF

Composés organiques au point d'ébullition
plage 20–300 ºC

ng/m3–μg/m3

Adsorption sur polymères organiques (ex. Tenax) ou tamis moléculaire de carbone (carbopack), désorption thermique avec piégeage à froid devant colonne capillaire (focalisation) ou extraction par solvant

Capillaire
GC/FID/ECD/SM

Modification pour faible ébullition
composés (à partir de –120 ºC)

ng/m3–μg/m3

Adsorption sur polymères refroidis (ex tube thermogradient), refroidi à –120 ºC, utilisation de carbopack

Capillaire
GC/FID/ECD/SM

Composés organiques à haut point d'ébullition
partiellement attaché aux particules
(en particulier HAP, PCB, PCDD/PCDF),
volume d'échantillonnage élevé

fg/m3–ng/m3

Échantillonnage sur filtres (par exemple, petit dispositif de filtrage ou échantillonneur à grand volume) avec des cartouches de polyuréthane ultérieures pour la partie gazeuse, désorption de solvant du filtre et du polyuréthane, diverses étapes de purification et de préparation, également sublimation pour les HAP

Capillaire
GC-GCMS
(PCDD/PCDF),
capillaire GC-FID ou
SM (HAP), CLHP
fluorescence
détecteur (PAH)

Composés organiques à haut point d'ébullition,
en particulier. PCDD, PCDF, PBDD, PBDF,
faible volume d'échantillonnage

fg/m3–ng/m3

Adsorption sur des polymères organiques (par exemple, cylindre de mousse de polyuréthane) avec des filtres préalables (par exemple, fibre de verre) ou inorg. adsorber. (par exemple, gel de silice), extraction avec des solvants, diverses étapes de purification et de préparation (y compris la chromatographie multicolonne), dérivation pour les chlorophénols

HRGC/DPE

Composés organiques à haut point d'ébullition
lié à des particules, par exemple des composants
d'aérosols organiques, dépôt
échantillons

ng/m3
ng–μg/g
aérosol
pg–ng/m2 journée

Séparation des aérosols sur des filtres en fibre de verre (par exemple, échantillonneur à volume élevé ou faible) ou dépoussiérage sur des surfaces standardisées, extraction avec des solvants (pour le dépôt également de l'eau filtrée restante), diverses étapes de purification et de préparation

HRGC/MS
HPLC (pour les HAP)

GC = chromatographie en phase gazeuse ; GCMS = GC/spectroscopie de masse ; FID = détecteur à ionisation de flamme ; HRGC/ECD = GC/ECD haute résolution ; ECD = détecteur à capture d'électrons ; HPLC = chromatographie liquide à haute performance. PID = détecteur à photo-ionisation.

 

Les mesures de dépôt de composés organiques à faible volatilité (par exemple, dibenzodioxines et dibenzofuranes (PCDD/PCDF), hydrocarbures aromatiques polycycliques (HAP)) gagnent en importance du point de vue de l'impact environnemental. Étant donné que la nourriture est la principale source d'absorption humaine, les matières en suspension dans l'air transférées sur les plantes alimentaires sont d'une grande importance. Il existe cependant des preuves que le transfert de matière par dépôt de particules est moins important que le dépôt sec de composés quasi gazeux.

Pour mesurer le dépôt total, des dispositifs normalisés de précipitation de poussière sont utilisés (par exemple, la procédure de Bergerhoff), qui ont été légèrement modifiés par assombrissement comme protection contre l'entrée d'une forte lumière. Des problèmes techniques importants de mesure, tels que la remise en suspension de particules déjà séparées, l'évaporation ou une éventuelle décomposition photolytique, sont désormais systématiquement étudiés afin d'améliorer les procédures d'échantillonnage moins qu'optimales pour les composés organiques.

Enquêtes olfactométriques

Les enquêtes d'immission olfactométriques sont utilisées dans la surveillance pour quantifier les plaintes d'odeurs et pour déterminer la pollution de base dans les procédures d'autorisation. Ils servent principalement à évaluer si les odeurs existantes ou anticipées doivent être classées comme significatives.

En principe, trois approches méthodologiques peuvent être différenciées :

  • mesure de la concentration d'émission (nombre d'unités d'odeur) avec un olfactomètre et modélisation ultérieure de la dispersion
  • mesure de composants individuels (par exemple, NH3) ou des mélanges de composés (par exemple, chromatographie en phase gazeuse des gaz des décharges), s'ils caractérisent adéquatement l'odeur
  • déterminations des odeurs au moyen d'inspections.

 

La première possibilité combine la mesure des émissions avec la modélisation et, à proprement parler, ne peut être classée sous le terme de surveillance de la qualité de l'air. Dans la troisième méthode, le nez humain est utilisé comme détecteur avec une précision considérablement réduite par rapport aux méthodes physico-chimiques.

Les détails des inspections, des plans de mesure et de l'évaluation des résultats figurent, par exemple, dans les réglementations de protection de l'environnement de certains États allemands.

Procédures de mesure de dépistage

Des procédures de mesures simplifiées sont parfois utilisées pour les études préparatoires (screening). Les exemples incluent les échantillonneurs passifs, les tubes à essai et les procédures biologiques. Avec les échantillonneurs passifs (diffusifs), le matériau à tester est collecté par des processus fluides tels que la diffusion, la perméation ou l'adsorption dans des formes simples de collecteurs (tubes, plaques) et enrichi de filtres imprégnés, de mailles ou d'autres supports d'adsorption. L'échantillonnage dit actif (aspiration de l'air de l'échantillon à travers une pompe) ne se produit donc pas. La quantité de matière enrichie, déterminée analytiquement selon un temps d'exposition défini, est convertie en unités de concentration sur la base de lois physiques (par exemple de diffusion) à l'aide du temps de collecte et des paramètres géométriques du collecteur. La méthodologie est issue du domaine de la santé au travail (prélèvement individuel) et de la mesure de l'air intérieur, mais elle est de plus en plus utilisée pour les mesures de concentration de polluants dans l'air ambiant. Un aperçu peut être trouvé dans Brown 1993.

Les tubes détecteurs sont souvent utilisés pour l'échantillonnage et l'analyse préparatoire rapide des gaz. Un certain volume d'air de test est aspiré à travers un tube en verre rempli d'un réactif adsorbant correspondant à l'objectif du test. Le contenu du tube change de couleur en fonction de la concentration du matériau à déterminer présent dans l'air d'essai. Les petits tubes à essai sont souvent utilisés dans le domaine de la surveillance du lieu de travail ou comme procédure rapide en cas d'accidents, tels que les incendies. Ils ne sont pas utilisés pour les mesures courantes de concentration de polluants dans l'air ambiant en raison de limites de détection généralement trop élevées et d'une sélectivité trop limitée. Des tubes de test de détecteur sont disponibles pour de nombreux matériaux dans différentes plages de concentration.

Parmi les procédures biologiques, deux méthodes sont devenues acceptées dans la surveillance de routine. Avec la procédure standardisée d'exposition au lichen, le taux de mortalité du lichen est déterminé sur une durée d'exposition de 300 jours. Dans une autre procédure, l'herbe des pâturages français est exposée pendant 14 ± 1 jours. Ensuite, la quantité de croissance est déterminée. Les deux procédures servent de déterminations sommaires des effets de la concentration des polluants atmosphériques.

Réseaux de surveillance de la qualité de l'air

Partout dans le monde, les types les plus variés de réseaux de qualité de l'air sont utilisés. Il convient de distinguer les réseaux de mesure, constitués de stations de mesure automatiques pilotées par ordinateur (conteneurs de mesure), et les réseaux de mesure virtuels, qui définissent uniquement les emplacements de mesure pour différents types de mesures de concentration de polluants atmosphériques sous la forme d'une grille prédéfinie. Les tâches et les conceptions des réseaux de mesure ont été discutées ci-dessus.

Réseaux de surveillance continue

Les réseaux de mesure fonctionnant en continu sont basés sur des stations de mesure automatiques et servent principalement à la surveillance de la qualité de l'air dans les zones urbaines. Les polluants atmosphériques tels que le dioxyde de soufre (SO2), poussière, monoxyde d'azote (NO), dioxyde d'azote (NO2), monoxyde de carbone (CO), ozone (O3), et dans une certaine mesure également la somme des hydrocarbures (méthane libre, CnHm) ou des composants organiques individuels (par exemple, benzène, toluène, xylènes). De plus, selon les besoins, des paramètres météorologiques tels que la direction du vent, la vitesse du vent, la température de l'air, l'humidité relative, les précipitations, le rayonnement global ou le bilan radiatif sont inclus.

L'équipement de mesure utilisé dans les stations de mesure se compose généralement d'un analyseur, d'une unité d'étalonnage et d'une électronique de commande et de pilotage, qui surveille l'ensemble de l'équipement de mesure et contient une interface normalisée pour la collecte des données. En plus des valeurs de mesure, l'équipement de mesure fournit des signaux dits d'état sur les erreurs et l'état de fonctionnement. Le calibrage des appareils est vérifié automatiquement par ordinateur à intervalles réguliers.

En règle générale, les stations de mesure sont reliées par des lignes de données fixes, des connexions commutées ou d'autres systèmes de transfert de données à un ordinateur (ordinateur de processus, poste de travail ou PC, selon l'étendue du système) dans lequel les résultats de mesure sont saisis, traités et affiché. Les ordinateurs du réseau de mesure et, si nécessaire, du personnel spécialement formé surveillent en permanence si les différents seuils sont dépassés. De cette manière, les situations critiques de qualité de l'air peuvent être reconnues à tout moment. Ceci est très important, en particulier pour surveiller les situations critiques de smog en hiver et en été (photo-oxydants) et pour l'information publique actuelle.

Réseaux de mesure pour mesures d'échantillons aléatoires

Au-delà du réseau de mesure télémétrique, d'autres systèmes de mesure pour la surveillance de la qualité de l'air sont utilisés à des degrés divers. Les exemples incluent des réseaux de mesure (parfois partiellement automatisés) pour déterminer :

  • dépôt de poussière et ses composants
  • poussières en suspension (SPM) et ses composants
  • hydrocarbures et hydrocarbures chlorés
  • matières organiques peu volatiles (dioxines, furanes, biphényles polychlorés).

 

Une série de substances ainsi mesurées ont été classées cancérigènes, comme les composés du cadmium, les HAP ou le benzène. Leur suivi est donc particulièrement important.

Pour donner un exemple de programme complet, le tableau 7 résume la surveillance de la qualité de l'air qui est systématiquement menée en Rhénanie-du-Nord-Westphalie, qui, avec 18 millions d'habitants, est le Land le plus peuplé d'Allemagne.

Tableau 7. Surveillance systématique de la qualité de l'air en Rhénanie-du-Nord-Westphalie (Allemagne)

Mesure continue
combustion propre

Partiellement automatisé
Système de mesure

Mesure discontinue
système/Multi-composant
des mesures

le dioxyde de soufre
Monoxyde d'azote
Dioxyde d'azote
Monoxyde de carbone
Particules en suspension
matière (SPM)
Ozone
Hydrocarbures
Direction du vent
Vitesse du vent
Température de l'air
Pression de l'air
Humidité relative
Bilan radiatif
Précipitation

Composition du MPS :
Plomb
Cadmium
Nickel
Cuivre
Fer
Arsenic
Béryllium
Benzo [a]pyrène
Benzo [e]pyrène
Benzo [a]anthracène
Dibenzo[un, h]anthracène
Benzo [ghi)pérylène
Coronène

Benzène et autres
les hydrocarbures
Hydrocarbures halogénés
Dépôt de poussière et
composition du matériau
Suie
Biphényles polychlorés
Polyhalogéné
dibenzodioxines et
dibenzofuranes
(PCDD/PCDF)

 

Noir

L'objectif de la modélisation de la pollution de l'air est l'estimation des concentrations de polluants extérieurs causées, par exemple, par les processus de production industrielle, les rejets accidentels ou le trafic. La modélisation de la pollution atmosphérique est utilisée pour déterminer la concentration totale d'un polluant, ainsi que pour trouver la cause de niveaux extraordinairement élevés. Pour les projets en phase de planification, la contribution supplémentaire à la charge existante peut être estimée à l'avance et les conditions d'émission peuvent être optimisées.

Figure 1. Système mondial de surveillance de l'environnement/Gestion de la pollution atmosphérique

EPC020F1

Selon les normes de qualité de l'air définies pour le polluant considéré, des valeurs moyennes annuelles ou des pics de concentration de courte durée sont intéressants. Habituellement, les concentrations doivent être déterminées là où les gens sont actifs, c'est-à-dire près de la surface à une hauteur d'environ deux mètres au-dessus du sol.

Paramètres influençant la dispersion des polluants

Deux types de paramètres influencent la dispersion des polluants : les paramètres sources et les paramètres météorologiques. Pour les paramètres sources, les concentrations sont proportionnelles à la quantité de polluant qui est émise. S'il s'agit de poussière, le diamètre des particules doit être connu pour déterminer la sédimentation et le dépôt du matériau (VDI 1992). Comme les concentrations en surface sont plus faibles avec une plus grande hauteur de cheminée, ce paramètre doit également être connu. De plus, les concentrations dépendent de la quantité totale de gaz d'échappement, ainsi que de sa température et de sa vitesse. Si la température des gaz d'échappement dépasse la température de l'air ambiant, le gaz sera soumis à une flottabilité thermique. Sa vitesse d'échappement, qui peut être calculée à partir du diamètre intérieur de la cheminée et du volume des gaz d'échappement, provoquera une flottabilité dynamique. Des formules empiriques peuvent être utilisées pour décrire ces caractéristiques (VDI 1985; Venkatram et Wyngaard 1988). Il faut souligner que ce n'est pas la masse du polluant en question mais celle du gaz total qui est responsable de la flottabilité thermique et dynamique.

Les paramètres météorologiques qui influencent la dispersion des polluants sont la vitesse et la direction du vent, ainsi que la stratification thermique verticale. La concentration de polluant est proportionnelle à l'inverse de la vitesse du vent. Ceci est principalement dû au transport accéléré. De plus, le mélange turbulent augmente avec la vitesse du vent. Comme les soi-disant inversions (c'est-à-dire les situations où la température augmente avec la hauteur) entravent le mélange turbulent, des concentrations de surface maximales sont observées lors d'une stratification très stable. Au contraire, les situations convectives intensifient le mélange vertical et présentent donc les valeurs de concentration les plus faibles.

Les normes de qualité de l'air - par exemple, les valeurs moyennes annuelles ou les 98 centiles - sont généralement basées sur des statistiques. Par conséquent, des données de séries chronologiques pour les paramètres météorologiques pertinents sont nécessaires. Idéalement, les statistiques devraient être fondées sur dix années d'observation. Si seules des séries chronologiques plus courtes sont disponibles, il convient de s'assurer qu'elles sont représentatives pour une période plus longue. Cela peut être fait, par exemple, par l'analyse de séries chronologiques plus longues provenant d'autres sites d'observation.

La série chronologique météorologique utilisée doit également être représentative du site considéré, c'est-à-dire qu'elle doit refléter les caractéristiques locales. Ceci est particulièrement important en ce qui concerne les normes de qualité de l'air basées sur les fractions maximales de la distribution, comme les 98 centiles. Si aucune série chronologique de ce type n'est disponible, un modèle de flux météorologique peut être utilisé pour en calculer une à partir d'autres données, comme cela sera décrit ci-dessous.

 


 

Programmes internationaux de surveillance

Des agences internationales telles que l'Organisation mondiale de la santé (OMS), l'Organisation météorologique mondiale (OMM) et le Programme des Nations Unies pour l'environnement (PNUE) ont mis en place des projets de surveillance et de recherche afin de clarifier les problèmes liés à la pollution de l'air et de promouvoir des mesures de prévention détérioration de la santé publique et des conditions environnementales et climatiques.

Le Système mondial de surveillance de l'environnement GEMS/Air (OMS/PNUE 1993) est organisé et parrainé par l'OMS et le PNUE et a développé un programme complet pour fournir les instruments de gestion rationnelle de la pollution atmosphérique (voir figure 55.1.[EPC01FE] Le noyau de ce programme est une base de données mondiale sur les concentrations de polluants atmosphériques urbains de dioxyde de soufre, de particules en suspension, de plomb, d'oxydes d'azote, de monoxyde de carbone et d'ozone. Cependant, cette base de données est aussi importante que la fourniture d'outils de gestion tels que des guides pour les inventaires rapides des émissions, des programmes pour la modélisation de la dispersion, les estimations de l'exposition de la population, les mesures de contrôle et l'analyse coûts-avantages À cet égard, GEMS/Air fournit des manuels d'examen méthodologique (OMS/PNUE 1994, 1995), effectue des évaluations mondiales de la qualité de l'air, facilite l'examen et la validation des évaluations , agit en tant que courtier en données/informations, produit des documents techniques à l'appui de tous les aspects de la gestion de la qualité de l'air, facilite l'établissement chargé du suivi, réalise et distribue largement les revues annuelles, et établit ou identifie des centres régionaux de collaboration et/ou des experts pour coordonner et soutenir les activités en fonction des besoins des régions. (OMS/PNUE 1992, 1993, 1995)

Le programme Global Atmospheric Watch (GAW) (Miller et Soudine 1994) fournit des données et d'autres informations sur la composition chimique et les caractéristiques physiques connexes de l'atmosphère, ainsi que leurs tendances, dans le but de comprendre la relation entre l'évolution de la composition atmosphérique et les changements de la et le climat régional, le transport atmosphérique à longue distance et le dépôt de substances potentiellement nocives sur les écosystèmes terrestres, d'eau douce et marins, et le cycle naturel des éléments chimiques dans le système global atmosphère/océan/biosphère, et les impacts anthropiques sur ceux-ci. Le programme GAW comprend quatre domaines d'activité : le système mondial d'observation de l'ozone (GO3OS), la surveillance mondiale de la composition atmosphérique de fond, y compris le réseau de surveillance de la pollution atmosphérique de fond (BAPMoN) ; la dispersion, le transport, la transformation chimique et le dépôt de polluants atmosphériques sur terre et sur mer à différentes échelles de temps et d'espace ; échange de polluants entre l'atmosphère et les autres compartiments de l'environnement ; et surveillance intégrée. L'un des aspects les plus importants du GAW est la création de centres d'activités scientifiques d'assurance qualité pour superviser la qualité des données produites dans le cadre du GAW.


 

 

Concepts de modélisation de la pollution atmosphérique

Comme mentionné ci-dessus, la dispersion des polluants dépend des conditions d'émission, du transport et du mélange turbulent. L'utilisation de l'équation complète qui décrit ces caractéristiques est appelée modélisation de la dispersion eulérienne (Pielke 1984). Par cette approche, les gains et les pertes du polluant en question doivent être déterminés en tout point d'une grille spatiale imaginaire et à des pas de temps distincts. Comme cette méthode est très complexe et demande beaucoup de temps informatique, elle ne peut généralement pas être utilisée de manière routinière. Cependant, pour de nombreuses applications, il peut être simplifié en utilisant les hypothèses suivantes :

  • aucun changement des conditions d'émission avec le temps
  • aucun changement des conditions météorologiques pendant le transport
  • vitesse du vent supérieure à 1 m/s.

 

Dans ce cas, l'équation mentionnée ci-dessus peut être résolue analytiquement. La formule résultante décrit un panache avec une distribution de concentration gaussienne, le soi-disant modèle de panache gaussien (VDI 1992). Les paramètres de distribution dépendent des conditions météorologiques et de la distance sous le vent ainsi que de la hauteur de la cheminée. Ils doivent être déterminés empiriquement (Venkatram et Wyngaard 1988). Les situations où les émissions et/ou les paramètres météorologiques varient considérablement dans le temps et/ou dans l'espace peuvent être décrites par le modèle bouffé gaussien (VDI 1994). Selon cette approche, des bouffées distinctes sont émises à des pas de temps fixes, chacune suivant sa propre trajectoire en fonction des conditions météorologiques actuelles. Sur son chemin, chaque bouffée grossit selon un brassage turbulent. Là encore, les paramètres décrivant cette croissance doivent être déterminés à partir de données empiriques (Venkatram et Wyngaard 1988). Il faut toutefois souligner que pour atteindre cet objectif, les paramètres d'entrée doivent être disponibles avec la résolution nécessaire dans le temps et/ou dans l'espace.

Concernant les rejets accidentels ou les études de cas uniques, un modèle lagrangien ou particulaire (Directive VDI 3945, partie 3) est recommandée. Le concept consiste donc à calculer les trajectoires de nombreuses particules, chacune représentant une quantité fixe du polluant en question. Les trajets individuels sont composés de transport par le vent moyen et de perturbations stochastiques. En raison de la partie stochastique, les chemins ne concordent pas entièrement, mais décrivent le mélange par turbulence. En principe, les modèles lagrangiens sont capables de considérer des conditions météorologiques complexes - en particulier, le vent et la turbulence ; les champs calculés par les modèles de flux décrits ci-dessous peuvent être utilisés pour la modélisation de la dispersion lagrangienne.

Modélisation de la dispersion en terrain complexe

Si les concentrations de polluants doivent être déterminées dans un terrain structuré, il peut être nécessaire d'inclure les effets topographiques sur la dispersion des polluants dans la modélisation. Ces effets sont, par exemple, le transport suivant la structure topographique, ou les systèmes de vent thermique comme les brises de mer ou les vents de montagne, qui changent la direction du vent au cours de la journée.

Si de tels effets se produisent à une échelle beaucoup plus grande que la zone du modèle, l'influence peut être considérée en utilisant des données météorologiques qui reflètent les caractéristiques locales. Si de telles données ne sont pas disponibles, la structure tridimensionnelle imprimée sur l'écoulement par la topographie peut être obtenue en utilisant un modèle d'écoulement correspondant. Sur la base de ces données, la modélisation de la dispersion elle-même peut être effectuée en supposant une homogénéité horizontale comme décrit ci-dessus dans le cas du modèle de panache gaussien. Cependant, dans les situations où les conditions de vent changent de manière significative à l'intérieur de la zone du modèle, la modélisation de la dispersion elle-même doit tenir compte de l'écoulement tridimensionnel affecté par la structure topographique. Comme mentionné ci-dessus, cela peut être fait en utilisant une bouffée gaussienne ou un modèle lagrangien. Une autre façon consiste à effectuer la modélisation eulérienne plus complexe.

Pour déterminer la direction du vent en accord avec le terrain topographiquement structuré, une modélisation de masse cohérente ou diagnostique peut être utilisée (Pielke 1984). Avec cette approche, l'écoulement est adapté à la topographie en variant le moins possible les valeurs initiales et en gardant sa masse constante. Comme il s'agit d'une approche qui conduit à des résultats rapides, elle peut également être utilisée pour calculer des statistiques de vent pour un certain site si aucune observation n'est disponible. Pour ce faire, les statistiques de vent géostrophique (c'est-à-dire les données d'altitude des radiosondes) sont utilisées.

Si, toutefois, les systèmes éoliens thermiques doivent être examinés plus en détail, des modèles dits pronostiques doivent être utilisés. En fonction de l'échelle et de la pente de la zone du modèle, une approche hydrostatique, ou encore plus complexe non hydrostatique, est appropriée (VDI 1981). Les modèles de ce type nécessitent beaucoup de puissance informatique, ainsi que beaucoup d'expérience dans l'application. La détermination des concentrations sur la base des moyennes annuelles n'est généralement pas possible avec ces modèles. Au lieu de cela, les études des pires cas peuvent être réalisées en considérant une seule direction du vent et les paramètres de vitesse du vent et de stratification qui entraînent les valeurs de concentration en surface les plus élevées. Si ces valeurs les plus défavorables ne dépassent pas les normes de qualité de l'air, des études plus détaillées ne sont pas nécessaires.

Figure 2. Structure topographique d'une région modèle

EPC30F1A

Les figures 2, 3 et 4 montrent comment le transport et la distribution des polluants peuvent être présentés en relation avec l'influence des climatologies du terrain et du vent dérivées de la prise en compte des fréquences des vents de surface et géostrophiques.

Figure 3. Distributions de fréquence de surface déterminées à partir de la distribution de fréquence géostrophique

EPC30F1B

Figure 4. Concentrations moyennes annuelles de polluants pour une région hypothétique calculées à partir de la distribution des fréquences géostrophiques pour des champs de vent hétérogènes

EPC30F1C

Modélisation de la dispersion en cas de sources faibles

Compte tenu de la pollution de l'air causée par des sources basses (c'est-à-dire des hauteurs de cheminée de l'ordre de la hauteur des bâtiments ou des émissions du trafic routier), l'influence des bâtiments environnants doit être prise en compte. Les émissions du trafic routier seront piégées dans une certaine mesure dans les canyons de la rue. Des formulations empiriques ont été trouvées pour décrire cela (Yamartino et Wiegand 1986).

Les polluants émis par une cheminée basse située sur un bâtiment seront captés dans la circulation sous le vent du bâtiment. L'étendue de cette circulation sous le vent dépend de la hauteur et de la largeur du bâtiment, ainsi que de la vitesse du vent. Par conséquent, les approches simplifiées pour décrire la dispersion des polluants dans un tel cas, basées uniquement sur la hauteur d'un bâtiment, ne sont généralement pas valables. L'étendue verticale et horizontale de la circulation sous le vent a été obtenue à partir d'études en soufflerie (Hosker 1985) et peut être mise en œuvre dans des modèles de diagnostic cohérents en masse. Dès que le champ d'écoulement est déterminé, il permet de calculer le transport et le mélange turbulent du polluant émis. Cela peut être fait par modélisation de dispersion lagrangienne ou eulérienne.

Des études plus détaillées - concernant les rejets accidentels, par exemple - ne peuvent être réalisées qu'en utilisant des modèles d'écoulement et de dispersion non hydrostatiques au lieu d'une approche diagnostique. Comme ceci, en général, exige une puissance informatique élevée, une approche du pire des cas telle que décrite ci-dessus est recommandée avant une modélisation statistique complète.

 

Noir

Mercredi, Mars 09 2011 15: 30

Gestion de la pollution atmosphérique

La gestion de la pollution atmosphérique vise à éliminer ou à réduire à des niveaux acceptables les polluants gazeux en suspension dans l'air, les particules en suspension et les agents physiques et, dans une certaine mesure, biologiques dont la présence dans l'atmosphère peut avoir des effets nocifs sur la santé humaine (p. augmentation de l'incidence ou de la prévalence des maladies respiratoires, de la morbidité, du cancer, de la surmortalité) ou du bien-être (par exemple, effets sensoriels, réduction de la visibilité), effets délétères sur la vie animale ou végétale, dommages aux matériaux ayant une valeur économique pour la société et dommages à l'environnement (par exemple, modifications climatiques). Les risques graves associés aux polluants radioactifs, ainsi que les procédures spéciales requises pour leur contrôle et leur élimination, méritent également une attention particulière.

On ne saurait trop insister sur l'importance d'une gestion efficace de la pollution de l'air extérieur et intérieur. Sans un contrôle adéquat, la multiplication des sources de pollution dans le monde moderne peut entraîner des dommages irréparables à l'environnement et à l'humanité.

L'objectif de cet article est de donner un aperçu général des approches possibles de la gestion de la pollution de l'air ambiant d'origine automobile et industrielle. Cependant, il convient de souligner dès le départ que la pollution de l'air intérieur (en particulier dans les pays en développement) pourrait jouer un rôle encore plus important que la pollution de l'air extérieur en raison de l'observation que les concentrations de polluants dans l'air intérieur sont souvent nettement plus élevées que les concentrations extérieures.

Au-delà des considérations d'émissions provenant de sources fixes ou mobiles, la gestion de la pollution atmosphérique implique la prise en compte de facteurs supplémentaires (tels que la topographie et la météorologie, et la participation de la communauté et du gouvernement, entre autres) qui doivent tous être intégrés dans un programme global. Par exemple, les conditions météorologiques peuvent grandement affecter les concentrations au sol résultant d'une même émission de polluants. Les sources de pollution atmosphérique peuvent être dispersées dans une communauté ou une région et leurs effets peuvent être ressentis par, ou leur contrôle peut impliquer, plus d'une administration. De plus, la pollution de l'air ne respecte aucune frontière et les émissions d'une région peuvent induire des effets dans une autre région par le transport à longue distance.

La gestion de la pollution atmosphérique nécessite donc une approche multidisciplinaire ainsi qu'un effort conjoint des entités privées et gouvernementales.

Sources de pollution atmosphérique

Les sources de pollution atmosphérique d'origine humaine (ou sources d'émission) sont essentiellement de deux types :

  • Stationnaire, qui peuvent être subdivisées en sources de surface telles que la production agricole, les mines et les carrières, les sources industrielles, ponctuelles et de surface telles que la fabrication de produits chimiques, de produits minéraux non métalliques, les industries métallurgiques de base, la production d'électricité et les sources communautaires (par exemple, le chauffage des maisons et des bâtiments, incinérateurs de déchets municipaux et de boues d'épuration, cheminées, installations de cuisine, services de blanchisserie et installations de nettoyage)
  • mobile, comprenant toute forme de véhicules à moteur à combustion (par exemple, les voitures légères à essence, les véhicules légers et lourds à moteur diesel, les motocyclettes, les aéronefs, y compris les sources linéaires émettant des gaz et des particules provenant de la circulation des véhicules).

 

A cela s'ajoutent les sources naturelles de pollution (par exemple, les zones érodées, les volcans, certaines plantes qui libèrent de grandes quantités de pollen, sources de bactéries, de spores et de virus). Les sources naturelles ne sont pas abordées dans cet article.

Types de polluants atmosphériques

Les polluants atmosphériques sont généralement classés en particules en suspension (poussières, émanations, brouillards, fumées), polluants gazeux (gaz et vapeurs) et odeurs. Quelques exemples de polluants usuels sont présentés ci-dessous :

Matières particulaires en suspension (SPM, PM-10) comprend les gaz d'échappement diesel, les cendres volantes de charbon, les poussières minérales (par exemple, charbon, amiante, calcaire, ciment), les poussières et fumées métalliques (par exemple, zinc, cuivre, fer, plomb) et les brouillards acides (par exemple , acide sulfurique), fluorures, pigments de peinture, brouillards de pesticides, noir de carbone et fumée d'huile. Les polluants particulaires en suspension, outre leurs effets de provoquer des maladies respiratoires, des cancers, de la corrosion, la destruction de la vie végétale, etc., peuvent également constituer une nuisance (par exemple, accumulation de saleté), interférer avec la lumière du soleil (par exemple, formation de smog et de brume due à diffusion de la lumière) et agissent comme des surfaces catalytiques pour la réaction des produits chimiques adsorbés.

Polluants gazeux comprennent des composés soufrés (par exemple, le dioxyde de soufre (SO2) et le trioxyde de soufre (SO3)), monoxyde de carbone, composés azotés (p. ex. monoxyde d'azote (NO), dioxyde d'azote (NO2), ammoniac), composés organiques (par exemple, hydrocarbures (HC), composés organiques volatils (COV), hydrocarbures aromatiques polycycliques (HAP), aldéhydes), composés halogénés et dérivés halogénés (par exemple, HF et HCl), sulfure d'hydrogène, disulfure de carbone et mercaptans (odeurs).

Les polluants secondaires peuvent être formés par des réactions thermiques, chimiques ou photochimiques. Par exemple, par action thermique, le dioxyde de soufre peut s'oxyder en trioxyde de soufre qui, dissous dans l'eau, donne lieu à la formation d'un brouillard d'acide sulfurique (catalysé par les oxydes de manganèse et de fer). Les réactions photochimiques entre les oxydes d'azote et les hydrocarbures réactifs peuvent produire de l'ozone (O3), formaldéhyde et nitrate de peroxyacétyle (PAN); les réactions entre le HCl et le formaldéhyde peuvent former de l'éther bis-chlorométhylique.

alors que certains les odeurs sont connus pour être causés par des agents chimiques spécifiques tels que le sulfure d'hydrogène (H2S), sulfure de carbone (CS2) et les mercaptans (R-SH ou R1-S-R2) d'autres sont difficiles à définir chimiquement.

Des exemples des principaux polluants associés à certaines sources industrielles de pollution atmosphérique sont présentés dans le tableau 1 (Economopoulos 1993).

Tableau 1. Polluants atmosphériques courants et leurs sources

Catégories

Identifier

Polluants émis

L’agriculture

Gravure à ciel ouvert

MPS, CO, COV

Exploitation minière et
carrière

Mine de charbon

Pétrole brut
et la production de gaz naturel

Extraction de minerais non ferreux

Extraction de pierre

SPM, AINSI2, Je n'ai pasx, COV

SO2

MPS, Pb

SPM

Fabrication

Nourriture, boissons et tabac

Industries du textile et du cuir

Produits en bois

Produits en papier, impression

SPM, CO, COV, H2S

SPM, COV

SPM, COV

SPM, AINSI2, CO, COV, H2S, R-SH

Fabrication
de produits chimiques

Anhydride phtalique

Chlore-alcali

Acide chlorhydrique

Acide hydrofluorique

acide sulfurique

Acide nitrique

Acide phosphorique

Oxyde de plomb et pigments

Ammoniac

Le carbonate de sodium

Carbure de calcium

Acide adipique

Plomb alkylique

L'anhydride maléique et
acide téréphtalique

Engrais et
fabrication de pesticides

Nitrate d'ammonium

Sulfate d'ammonium

Résines synthétiques, plastique
matériaux, fibres

Peintures, vernis, laques

Savon

Noir de carbone et encre d'imprimerie

Trinitrotoluène

SPM, AINSI2, CO, COV

Cl2

HCl

HF, SiF4

SO2, SO3

NONx

SPM, F2

MPS, Pb

SPM, AINSI2, Je n'ai pasx, CO, COV, NH3

SPM, NH3

SPM

SPM, NONx, CO, COV

Pb

CO, COV

SPM, NH3

SPM, NH3, H.N.O.3

COV

SPM, COV, H2S, CS2

SPM, COV

SPM

SPM, AINSI2, Je n'ai pasx, CO, COV, H2S

SPM, AINSI2, Je n'ai pasx, SO3, H.N.O.3

Raffineries de pétrole

produits divers
de pétrole et de charbon

SPM, AINSI2, Je n'ai pasx, CO, COV

Minéral non métallique
fabrication de produits

Produits en verre

Produits structuraux en argile

Ciment, chaux et plâtre

SPM, AINSI2, Je n'ai pasx, CO, COV, F

SPM, AINSI2, Je n'ai pasx, CO, COV, F2

SPM, AINSI2, Je n'ai pasx, CO

Industries métallurgiques de base

Fer et acier

Industries non ferreuses

SPM, AINSI2, Je n'ai pasx, CO, COV, Pb

SPM, AINSI2, F, Pb

Production d'électricité

Électricité, gaz et vapeur

SPM, AINSI2, Je n'ai pasx, CO, COV, SO3, Pb

Vente en gros et
commerce de détail

Stockage de carburant, opérations de remplissage

COV

Transport

 

SPM, AINSI2, Je n'ai pasx, CO, COV, Pb

Services communautaires

Incinérateurs municipaux

SPM, AINSI2, Je n'ai pasx, CO, COV, Pb

Source : Economopoulos 1993

Plans de mise en œuvre de la qualité de l'air

La gestion de la qualité de l'air vise à préserver la qualité de l'environnement en prescrivant le degré de pollution toléré, laissant aux collectivités locales et aux pollueurs le soin d'imaginer et de mettre en œuvre des actions pour s'assurer que ce degré de pollution ne sera pas dépassé. Un exemple de législation s'inscrivant dans cette approche est l'adoption de normes de qualité de l'air ambiant basées, très souvent, sur des recommandations de qualité de l'air (OMS 1987) pour différents polluants ; il s'agit des niveaux maximum acceptés de polluants (ou d'indicateurs) dans la zone cible (par exemple, au niveau du sol à un point spécifié dans une communauté) et il peut s'agir de normes primaires ou secondaires. Les normes primaires (OMS 1980) sont les niveaux maximum compatibles avec une marge de sécurité adéquate et avec la préservation de la santé publique, et doivent être respectées dans un délai déterminé ; les normes secondaires sont celles jugées nécessaires pour la protection contre les effets nocifs connus ou anticipés autres que les risques pour la santé (principalement sur la végétation) et doivent être respectées « dans un délai raisonnable ». Les normes de qualité de l'air sont des valeurs à court, moyen ou long terme valables 24 heures sur 7, 8 jours sur 5, et pour une exposition mensuelle, saisonnière ou annuelle de tous les sujets vivants (y compris les sous-groupes sensibles tels que les enfants, les personnes âgées et les malades) ainsi que des objets non vivants ; cela contraste avec les niveaux maximaux admissibles pour l'exposition professionnelle, qui sont pour une exposition hebdomadaire partielle (par exemple, XNUMX heures par jour, XNUMX jours par semaine) de travailleurs adultes et supposés en bonne santé.

Les mesures typiques de gestion de la qualité de l'air sont des mesures de contrôle à la source, par exemple, l'application de l'utilisation de convertisseurs catalytiques dans les véhicules ou de normes d'émission dans les incinérateurs, l'aménagement du territoire et la fermeture d'usines ou la réduction du trafic en cas de conditions météorologiques défavorables. . La meilleure gestion de la qualité de l'air insiste sur le fait que les émissions de polluants atmosphériques doivent être réduites au minimum ; ceci est essentiellement défini par des normes d'émission pour les sources uniques de pollution de l'air et pourrait être réalisé pour les sources industrielles, par exemple, par des systèmes fermés et des collecteurs à haut rendement. Une norme d'émission est une limite sur la quantité ou la concentration d'un polluant émis par une source. Ce type de législation nécessite une décision, pour chaque industrie, sur le meilleur moyen de contrôler ses émissions (c'est-à-dire la fixation de normes d'émission).

L'objectif fondamental de la gestion de la pollution atmosphérique est d'élaborer un plan de mise en œuvre de la qualité de l'air (ou plan de réduction de la pollution atmosphérique) (Schwela et Köth-Jahr 1994) qui se compose des éléments suivants :

  • description de la zone en ce qui concerne la topographie, la météorologie et la socioéconomie
  • inventaire des émissions
  • comparaison avec les normes d'émission
  • inventaire des concentrations de polluants atmosphériques
  • concentrations simulées de polluants atmosphériques
  • comparaison avec les normes de qualité de l'air
  • inventaire des effets sur la santé publique et l'environnement
  • analyse causale
  • des mesures de contrôle
  • coût des mesures de contrôle
  • coût de la santé publique et des effets sur l'environnement
  • analyse coûts-avantages (coûts du contrôle vs. coûts des efforts)
  • transports et aménagement du territoire
  • plan d'exécution; engagement de ressources
  • projections pour l'avenir sur la population, le trafic, les industries et la consommation de carburant
  • stratégies de suivi.

 

Certains de ces problèmes seront décrits ci-dessous.

Inventaire des émissions ; Comparaison avec les normes d'émission

L'inventaire des émissions est une liste la plus complète des sources dans une zone donnée et de leurs émissions individuelles, estimées aussi précisément que possible à partir de toutes les sources ponctuelles, linéaires et étendues (diffuses). Lorsque ces émissions sont comparées aux normes d'émission fixées pour une source particulière, des premières indications sur les mesures de contrôle possibles sont données si les normes d'émission ne sont pas respectées. L'inventaire des émissions sert également à évaluer une liste prioritaire de sources importantes en fonction de la quantité de polluants émis et indique l'influence relative des différentes sources, par exemple, le trafic par rapport aux sources industrielles ou résidentielles. L'inventaire des émissions permet également une estimation des concentrations de polluants atmosphériques pour les polluants pour lesquels les mesures de concentration ambiante sont difficiles ou trop coûteuses à effectuer.

Inventaire des concentrations de polluants atmosphériques ; Comparaison avec les normes de qualité de l'air

L'inventaire des concentrations de polluants atmosphériques résume les résultats de la surveillance des polluants de l'air ambiant en termes de moyennes annuelles, de centiles et de tendances de ces quantités. Les composés mesurés pour un tel inventaire comprennent les éléments suivants :

  • le dioxyde de soufre
  • Oxydes d'azote
  • particules en suspension
  • le monoxyde de carbone
  • ozone
  • métaux lourds (Pb, Cd, Ni, Cu, Fe, As, Be)
  • hydrocarbures aromatiques polycycliques : benzo(a)pyrène, benzo(e)pyrène, benzo(a)anthracène, dibenzo(un, h)anthracène, benzoprendre note)pérylène, coronan
  • les composés organiques volatils: n-hexane, benzène, 3-méthyl-hexane, n-heptane, toluène, octane, éthyl-benzène xylène (o-,m-,p-), n-nonane, isopropylbenzène, propylbenzène, n-2-/3-/4-éthyltoluène, 1,2,4-/1,3,5-triméthylbenzène, trichlorométhane, 1,1,1 trichloroéthane, tétrachlorométhane, tri-/tétrachloroéthène.

 

La comparaison des concentrations de polluants atmosphériques avec les normes ou lignes directrices sur la qualité de l'air, si elles existent, indique les domaines problématiques pour lesquels une analyse causale doit être effectuée afin de déterminer les sources responsables de la non-conformité. La modélisation de la dispersion doit être utilisée pour effectuer cette analyse causale (voir « Pollution de l'air : Modélisation de la dispersion des polluants atmosphériques »). Les dispositifs et procédures utilisés aujourd'hui dans la surveillance de la pollution de l'air ambiant sont décrits dans la section « Surveillance de la qualité de l'air ».

Concentrations simulées de polluants atmosphériques ; Comparaison avec les normes de qualité de l'air

A partir de l'inventaire des émissions, avec ses milliers de composés qui ne peuvent pas tous être suivis dans l'air ambiant pour des raisons d'économie, l'utilisation de la modélisation de la dispersion peut aider à estimer les concentrations de composés plus « exotiques ». En utilisant des paramètres météorologiques appropriés dans un modèle de dispersion approprié, les moyennes annuelles et les centiles peuvent être estimés et comparés aux normes ou lignes directrices sur la qualité de l'air, si elles existent.

Inventaire des effets sur la santé publique et l'environnement ; Analyse causale

Une autre source importante d'informations est l'inventaire des effets (Ministerium für Umwelt 1993), qui se compose des résultats d'études épidémiologiques dans la zone donnée et des effets de la pollution de l'air observés sur les récepteurs biologiques et matériels tels que, par exemple, les plantes, les animaux et la construction. métaux et pierres de construction. Les effets observés attribués à la pollution de l'air doivent faire l'objet d'une analyse causale par rapport à la composante responsable d'un effet particulier, par exemple, une prévalence accrue de bronchite chronique dans une zone polluée. Si le ou les composés ont été fixés dans une analyse causale (analyse composé-causal), une deuxième analyse doit être effectuée pour découvrir les sources responsables (analyse source-causale).

Des mesures de contrôle; Coût des mesures de contrôle

Les mesures de contrôle pour les installations industrielles comprennent des dispositifs d'épuration de l'air adéquats, bien conçus, bien installés, exploités et entretenus efficacement, également appelés séparateurs ou collecteurs. Un séparateur ou un collecteur peut être défini comme un « appareil pour séparer un ou plusieurs des éléments suivants d'un milieu gazeux dans lequel ils sont en suspension ou mélangés : particules solides (filtre et séparateurs de poussière), particules liquides (filtre et séparateur de gouttelettes) et gaz (épurateur de gaz) ». Les types de base d'équipements de contrôle de la pollution de l'air (discutés plus en détail dans la section "Contrôle de la pollution de l'air") sont les suivants :

  • pour les particules : séparateurs inertiels (ex. cyclones) ; filtres en tissu (filtres à manches); précipitateurs électrostatiques; collecteurs humides (épurateurs)
  • pour les polluants gazeux : collecteurs humides (épurateurs) ; unités d'adsorption (par exemple, lits d'adsorption); postcombustion, qui peut être à combustion directe (incinération thermique) ou catalytique (combustion catalytique).

 

Les collecteurs humides (épurateurs) peuvent être utilisés pour collecter, en même temps, les polluants gazeux et les particules. De plus, certains types d'appareils à combustion peuvent brûler des gaz et des vapeurs combustibles ainsi que certains aérosols combustibles. Selon le type d'effluent, un collecteur ou une combinaison de plusieurs collecteurs peut être utilisé.

Le contrôle des odeurs chimiquement identifiables repose sur le contrôle du ou des agents chimiques dont elles émanent (par exemple, par absorption, par incinération). Cependant, lorsqu'une odeur n'est pas définie chimiquement ou que l'agent producteur se trouve à des niveaux extrêmement bas, d'autres techniques peuvent être utilisées, telles que le masquage (par un agent plus fort, plus agréable et inoffensif) ou la neutralisation (par un additif qui neutralise ou partiellement neutralise l'odeur désagréable).

Il faut garder à l'esprit qu'une exploitation et une maintenance adéquates sont indispensables pour assurer l'efficacité attendue d'un collecteur. Cela devrait être assuré au stade de la planification, tant du point de vue du savoir-faire que du point de vue financier. Les besoins énergétiques ne doivent pas être négligés. Lors de la sélection d'un appareil de purification de l'air, non seulement le coût initial, mais également les coûts de fonctionnement et d'entretien doivent être pris en compte. Chaque fois qu'il s'agit de polluants à haute toxicité, une efficacité élevée doit être assurée, ainsi que des procédures spéciales pour l'entretien et l'élimination des déchets.

Les mesures de contrôle fondamentales dans les installations industrielles sont les suivantes :

Substitution de matériaux. Exemples : substitution de solvants moins toxiques à des solvants hautement toxiques utilisés dans certains procédés industriels ; l'utilisation de combustibles à faible teneur en soufre (par exemple, le charbon lavé), produisant ainsi moins de composés soufrés, etc.

Modification ou changement du procédé ou de l'équipement industriel. Exemples : dans la sidérurgie, passage du minerai brut au minerai fritté bouleté (pour réduire les poussières dégagées lors de la manutention du minerai) ; utilisation de systèmes fermés au lieu de systèmes ouverts ; remplacement des systèmes de chauffage au combustible par des systèmes à vapeur, à eau chaude ou électriques ; utilisation de catalyseurs aux sorties d'air d'échappement (procédés de combustion) etc.

Des modifications des procédés, ainsi que de l'agencement de l'usine, peuvent également faciliter et/ou améliorer les conditions de dispersion et de collecte des polluants. Par exemple, une disposition différente de l'usine peut faciliter l'installation d'un système d'évacuation local ; la performance d'un processus à un débit inférieur peut permettre l'utilisation d'un certain collecteur (avec des limitations de volume mais autrement adéquat). Les modifications de procédés qui concentrent différentes sources d'effluents sont étroitement liées au volume d'effluents traité, et l'efficacité de certains équipements d'épuration de l'air augmente avec la concentration de polluants dans les effluents. La substitution de matériaux et la modification de processus peuvent avoir des limitations techniques et/ou économiques, et celles-ci doivent être prises en compte.

Entretien ménager et stockage adéquats. Exemples : assainissement strict dans la transformation des aliments et des produits animaux ; éviter le stockage à l'air libre de produits chimiques (par exemple, des tas de soufre) ou de matériaux poussiéreux (par exemple, du sable), ou, à défaut, la pulvérisation d'eau sur les tas de particules en vrac (si possible) ou l'application de revêtements de surface (par exemple, des agents mouillants, plastique) aux amas de matériaux susceptibles de dégager des polluants.

Élimination adéquate des déchets. Exemples : éviter de simplement entasser les déchets chimiques (tels que les déchets des réacteurs de polymérisation), ainsi que de déverser des matières polluantes (solides ou liquides) dans les cours d'eau. Cette dernière pratique entraîne non seulement une pollution de l'eau, mais peut également créer une source secondaire de pollution de l'air, comme dans le cas des déchets liquides des usines de pâte à papier au bisulfite, qui libèrent des polluants gazeux odorants nauséabonds.

Entretien. Exemple : des moteurs à combustion interne bien entretenus et bien réglés produisent moins de monoxyde de carbone et d'hydrocarbures.

Pratiques de travail. Exemple : prise en compte des conditions météorologiques, notamment des vents, lors de la pulvérisation de pesticides.

Par analogie avec les pratiques adéquates sur le lieu de travail, les bonnes pratiques au niveau communautaire peuvent contribuer à la lutte contre la pollution de l'air - par exemple, les changements dans l'utilisation des véhicules à moteur (plus de transports collectifs, de petites voitures, etc.) et le contrôle des installations de chauffage (meilleur isolation des bâtiments pour nécessiter moins de chauffage, de meilleurs combustibles, etc.).

Les mesures de contrôle des émissions des véhicules sont des programmes d'inspection et d'entretien obligatoires adéquats et efficaces qui sont appliqués pour le parc automobile existant, des programmes d'application de l'utilisation de convertisseurs catalytiques dans les voitures neuves, le remplacement agressif des voitures solaires/à piles par des voitures à carburant , régulation de la circulation routière et concepts de transport et d'aménagement du territoire.

Les émissions des véhicules à moteur sont contrôlées en contrôlant les émissions par véhicule mille parcouru (VMT) et en contrôlant le VMT lui-même (Walsh 1992). Les émissions par VMT peuvent être réduites en contrôlant les performances des véhicules - matériel, maintenance - pour les voitures neuves et en cours d'utilisation. La composition du carburant de l'essence au plomb peut être contrôlée en réduisant la teneur en plomb ou en soufre, ce qui a également un effet bénéfique sur la diminution des émissions de HC des véhicules. L'abaissement des niveaux de soufre dans le carburant diesel comme moyen de réduire les émissions de particules diesel a l'effet bénéfique supplémentaire d'augmenter le potentiel de contrôle catalytique des émissions de particules diesel et de HC organiques.

Un autre outil de gestion important pour réduire les émissions d'évaporation et de ravitaillement des véhicules est le contrôle de la volatilité de l'essence. Le contrôle de la volatilité du carburant peut réduire considérablement les émissions de HC par évaporation des véhicules. L'utilisation d'additifs oxygénés dans l'essence réduit les émissions de HC et de CO tant que la volatilité du carburant n'augmente pas.

La réduction du VMT est un moyen supplémentaire de contrôler les émissions des véhicules par des stratégies de contrôle telles que

  • utilisation de modes de transport plus efficaces
  • augmenter le nombre moyen de passagers par voiture
  • répartir les pics de trafic congestionnés
  • réduire la demande de déplacements.

 

Bien que de telles approches favorisent la conservation du carburant, elles ne sont pas encore acceptées par la population générale et les gouvernements n'ont pas sérieusement essayé de les mettre en œuvre.

Toutes ces solutions technologiques et politiques au problème des véhicules à moteur, à l'exception de la substitution des voitures électriques, sont de plus en plus compensées par la croissance du parc automobile. Le problème du véhicule ne peut être résolu que si le problème de la croissance est traité de manière appropriée.

coût de la santé publique et effets environnementaux ; L'analyse coûts-avantages

L'estimation des coûts des effets sur la santé publique et l'environnement est la partie la plus difficile d'un plan de mise en œuvre d'un air pur, car il est très difficile d'estimer la valeur de la réduction à vie des maladies invalidantes, des taux d'hospitalisation et des heures de travail perdues. Cependant, cette estimation et une comparaison avec le coût des mesures de contrôle sont absolument nécessaires pour équilibrer les coûts des mesures de contrôle par rapport aux coûts de l'absence de mesures de ce type, en termes de santé publique et d'effets environnementaux.

Transport et aménagement du territoire

Le problème de la pollution est intimement lié à l'utilisation des terres et au transport, y compris des questions telles que la planification communautaire, la conception des routes, le contrôle de la circulation et les transports en commun ; aux préoccupations de démographie, de topographie et d'économie ; et aux préoccupations sociales (Venzia 1977). En général, les agglomérations urbaines à croissance rapide ont de graves problèmes de pollution dus à de mauvaises pratiques d'utilisation des terres et de transport. La planification des transports pour le contrôle de la pollution atmosphérique comprend les contrôles des transports, les politiques de transport, les transports en commun et les coûts de congestion routière. Les contrôles des transports ont un impact important sur le grand public en termes d'équité, de répression et de perturbation sociale et économique - en particulier, les contrôles directs des transports tels que les contraintes des véhicules à moteur, les limitations d'essence et les réductions des émissions des véhicules à moteur. Les réductions d'émissions dues aux contrôles directs peuvent être estimées et vérifiées de manière fiable. Les contrôles indirects des transports, tels que la réduction des véhicules-kilomètres parcourus par l'amélioration des systèmes de transport en commun, les réglementations sur l'amélioration de la circulation, les réglementations sur les parkings, les taxes routières et sur l'essence, les autorisations d'utilisation de la voiture et les incitations aux approches volontaires sont principalement basés sur des expériences antérieures. l'expérience d'erreurs et comprennent de nombreuses incertitudes lors de la tentative d'élaboration d'un plan de transport viable.

Les plans d'action nationaux impliquant des contrôles indirects des transports peuvent affecter les transports et l'aménagement du territoire en ce qui concerne les autoroutes, les parkings et les centres commerciaux. La planification à long terme du système de transport et de la zone influencée par celui-ci empêchera une détérioration importante de la qualité de l'air et assurera le respect des normes de qualité de l'air. Le transport en commun est constamment considéré comme une solution potentielle aux problèmes de pollution de l'air en milieu urbain. Le choix d'un système de transport en commun pour desservir une zone et les différentes répartitions modales entre l'utilisation de l'autoroute et le service d'autobus ou de train modifieront en fin de compte les schémas d'utilisation du sol. Il existe une répartition optimale qui minimisera la pollution de l'air; cependant, cela peut ne pas être acceptable lorsque des facteurs non environnementaux sont pris en compte.

L'automobile a été qualifiée de plus grand générateur d'externalités économiques jamais connu. Certains d'entre eux, tels que les emplois et la mobilité, sont positifs, mais les négatifs, tels que la pollution de l'air, les accidents entraînant des décès et des blessures, les dommages matériels, le bruit, la perte de temps et l'aggravation, conduisent à la conclusion que le transport n'est pas une industrie à coûts décroissants dans les zones urbanisées. Les coûts de congestion des autoroutes sont une autre externalité ; Le temps perdu et les coûts de congestion sont cependant difficiles à déterminer. Une véritable évaluation des modes de transport concurrents, tels que les transports en commun, ne peut être obtenue si les coûts de déplacement pour les déplacements professionnels n'incluent pas les coûts de congestion.

La planification de l'utilisation des terres pour le contrôle de la pollution atmosphérique comprend les codes de zonage et les normes de performance, les contrôles de l'utilisation des terres, le logement et l'aménagement du territoire, et les politiques d'aménagement du territoire. Le zonage de l'utilisation des terres a été la première tentative de protection des personnes, de leurs biens et de leurs opportunités économiques. Cependant, la nature omniprésente des polluants atmosphériques nécessitait plus qu'une séparation physique des industries et des zones résidentielles pour protéger l'individu. Pour cette raison, des normes de performance basées initialement sur des décisions esthétiques ou qualitatives ont été introduites dans certains codes de zonage dans le but de quantifier les critères d'identification des problèmes potentiels.

Les limites de la capacité d'assimilation de l'environnement doivent être identifiées pour l'aménagement du territoire à long terme. Ensuite, des contrôles de l'utilisation des terres peuvent être développés pour répartir équitablement la capacité entre les activités locales souhaitées. Les contrôles de l'utilisation des terres comprennent des systèmes de permis pour l'examen de nouvelles sources fixes, la réglementation de zonage entre les zones industrielles et résidentielles, la restriction par servitude ou achat de terrain, le contrôle de l'emplacement des récepteurs, le zonage de la densité d'émission et les réglementations sur l'allocation des émissions.

Les politiques de logement visant à rendre l'accession à la propriété accessible à de nombreuses personnes qui ne pourraient pas se le permettre autrement (telles que les incitations fiscales et les politiques hypothécaires) stimulent l'étalement urbain et découragent indirectement le développement résidentiel à plus forte densité. Ces politiques se sont maintenant avérées désastreuses pour l'environnement, car aucune considération n'a été accordée au développement simultané de systèmes de transport efficaces pour répondre aux besoins de la multitude de nouvelles communautés en cours de développement. La leçon tirée de cette évolution est que les programmes ayant un impact sur l'environnement doivent être coordonnés et une planification globale entreprise au niveau où le problème survient et à une échelle suffisamment grande pour inclure l'ensemble du système.

La planification de l'utilisation des terres doit être examinée aux niveaux national, provincial ou étatique, régional et local pour assurer de manière adéquate la protection à long terme de l'environnement. Les programmes gouvernementaux commencent généralement par l'implantation de centrales électriques, les sites d'extraction minière, le zonage côtier et le désert, la montagne ou d'autres aménagements récréatifs. Étant donné que la multiplicité des gouvernements locaux dans une région donnée ne peut pas traiter de manière adéquate les problèmes environnementaux régionaux, les gouvernements ou agences régionaux devraient coordonner l'aménagement du territoire et les schémas de densité en supervisant l'aménagement spatial et l'emplacement des nouvelles constructions et utilisations, ainsi que les installations de transport. L'aménagement du territoire et la planification des transports doivent être liés à l'application des règlements pour maintenir la qualité de l'air souhaitée. Idéalement, la lutte contre la pollution de l'air devrait être planifiée par la même agence régionale qui s'occupe de l'aménagement du territoire en raison des externalités qui se chevauchent associées aux deux problèmes.

Plan d'application, engagement de ressources

Le plan de mise en œuvre de la qualité de l'air doit toujours contenir un plan d'application qui indique comment les mesures de contrôle peuvent être appliquées. Cela implique également un engagement de ressources qui, selon un principe de pollueur-payeur, indiquera ce que le pollueur doit mettre en œuvre et comment le gouvernement aidera le pollueur à remplir l'engagement.

Projections pour l'avenir

Dans le sens d'un plan de précaution, le plan de mise en œuvre de l'air pur devrait également inclure des estimations des tendances de la population, du trafic, des industries et de la consommation de carburant afin d'évaluer les réponses aux problèmes futurs. Cela évitera les tensions futures en appliquant des mesures bien avant les problèmes imaginaires.

Stratégies de suivi

Une stratégie de suivi de la gestion de la qualité de l'air consiste en des plans et des politiques sur la façon de mettre en œuvre les futurs plans de mise en œuvre de la qualité de l'air.

Rôle de l'évaluation de l'impact environnemental

L'évaluation de l'impact environnemental (EIE) est le processus consistant à fournir une déclaration détaillée par l'agence responsable sur l'impact environnemental d'une action proposée affectant de manière significative la qualité de l'environnement humain (Lee 1993). L'EIE est un instrument de prévention visant à prendre en compte l'environnement humain à un stade précoce du développement d'un programme ou d'un projet.

L'EIE est particulièrement importante pour les pays qui développent des projets dans le cadre de la réorientation et de la restructuration économiques. L'EIE est devenue une législation dans de nombreux pays développés et est maintenant de plus en plus appliquée dans les pays en développement et les économies en transition.

L'EIE est intégrative dans le sens d'une planification et d'une gestion globales de l'environnement prenant en compte les interactions entre les différents milieux environnementaux. D'autre part, l'EIE intègre l'estimation des conséquences environnementales dans le processus de planification et devient ainsi un instrument de développement durable. L'EIA combine également des propriétés techniques et participatives car elle collecte, analyse et applique des données scientifiques et techniques en tenant compte du contrôle de la qualité et de l'assurance qualité, et souligne l'importance des consultations préalables aux procédures d'autorisation entre les agences environnementales et le public qui pourrait être affecté par des projets particuliers. . Un plan de mise en œuvre de l'air pur peut être considéré comme faisant partie de la procédure d'EIE en référence à l'air.

 

Noir

Au cours du XXe siècle, la reconnaissance croissante des impacts sur l'environnement et la santé publique associés aux activités anthropiques (discutées dans le chapitre Dangers environnementaux pour la santé) a incité au développement et à l'application de méthodes et de technologies pour réduire les effets de la pollution. Dans ce contexte, les gouvernements ont adopté des mesures réglementaires et autres politiques (abordées dans le chapitre Politique environnementale) afin de minimiser les effets négatifs et de garantir le respect des normes de qualité environnementale.

L'objectif de ce chapitre est de fournir une orientation aux méthodes qui sont appliquées pour contrôler et prévenir la pollution de l'environnement. Les principes de base suivis pour éliminer les impacts négatifs sur la qualité de l'eau, de l'air ou du sol seront introduits ; le déplacement de l'accent du contrôle vers la prévention sera pris en considération; et les limites des solutions de construction pour les milieux environnementaux individuels seront examinées. Il ne suffit pas, par exemple, de protéger l'air en éliminant les traces de métaux d'un gaz de combustion uniquement pour transférer ces contaminants vers le sol par le biais de pratiques inappropriées de gestion des déchets solides. Des solutions multimédias intégrées sont nécessaires.

L'approche de contrôle de la pollution

Les conséquences environnementales de l'industrialisation rapide ont entraîné d'innombrables incidents de contamination des sites de ressources terrestres, atmosphériques et aquatiques par des matériaux toxiques et d'autres polluants, menaçant les humains et les écosystèmes de graves risques pour la santé. Une utilisation plus étendue et plus intensive des matériaux et de l'énergie a créé des pressions cumulatives sur la qualité des écosystèmes locaux, régionaux et mondiaux.

Avant qu'il y ait un effort concerté pour limiter l'impact de la pollution, la gestion de l'environnement s'étendait peu au-delà de la tolérance du laissez-faire, tempérée par l'élimination des déchets pour éviter les nuisances locales perturbatrices conçues dans une perspective à court terme. Le besoin de réparation a été reconnu, par exception, dans les cas où les dommages ont été jugés inacceptables. À mesure que le rythme de l'activité industrielle s'intensifiait et que la compréhension des effets cumulatifs s'améliorait, une contrôle de la pollution paradigme est devenu l'approche dominante de la gestion de l'environnement.

Deux concepts spécifiques ont servi de base à l'approche de contrôle :

  • le capacité d'assimilation concept qui affirme l'existence d'un niveau spécifié d'émissions dans l'environnement qui n'entraîne pas d'effets inacceptables sur l'environnement ou la santé humaine
  • le principe de contrôle concept, qui suppose que les dommages environnementaux peuvent être évités en contrôlant la manière, le moment et la vitesse à laquelle les polluants pénètrent dans l'environnement

 

Dans le cadre de l'approche de lutte contre la pollution, les tentatives de protection de l'environnement se sont surtout appuyées sur l'isolement des contaminants de l'environnement et sur l'utilisation de filtres et d'épurateurs en bout de canalisation. Ces solutions ont eu tendance à se concentrer sur des objectifs de qualité environnementale ou des limites d'émission spécifiques aux milieux, et ont été principalement dirigées vers des sources ponctuelles de rejets dans des milieux environnementaux spécifiques (air, eau, sol).

Application des technologies de contrôle de la pollution

L'application de méthodes de lutte contre la pollution s'est révélée d'une efficacité considérable dans la lutte contre les problèmes de pollution - en particulier ceux de caractère local. L'application de technologies appropriées est basée sur une analyse systématique de la source et de la nature de l'émission ou du rejet en question, de son interaction avec l'écosystème et le problème de pollution ambiante à résoudre, et sur le développement de technologies appropriées pour atténuer et surveiller les impacts de la pollution .

Dans leur article sur le contrôle de la pollution de l'air, Dietrich Schwela et Berenice Goelzer expliquent l'importance et les implications d'une approche globale de l'évaluation et du contrôle des sources ponctuelles et diffuses de la pollution atmosphérique. Ils mettent également en évidence les défis - et les opportunités - auxquels sont confrontés les pays qui connaissent une industrialisation rapide sans avoir eu une forte composante de contrôle de la pollution accompagnant le développement antérieur.

Marion Wichman-Fiebig explique les méthodes appliquées pour modéliser la dispersion des polluants atmosphériques afin de déterminer et de caractériser la nature des problèmes de pollution. Cela constitue la base pour comprendre les contrôles à mettre en œuvre et pour évaluer leur efficacité. Au fur et à mesure que la compréhension des impacts potentiels s'est approfondie, l'appréciation des effets s'est étendue de l'échelle locale à l'échelle régionale à l'échelle mondiale.

Hans-Ulrich Pfeffer et Peter Bruckmann présentent l'équipement et les méthodes utilisés pour surveiller la qualité de l'air afin d'évaluer les problèmes de pollution potentiels et d'évaluer l'efficacité des interventions de contrôle et de prévention.

John Elias donne un aperçu des types de contrôles de la pollution de l'air qui peuvent être appliqués et des problèmes qui doivent être résolus lors de la sélection d'options appropriées de gestion du contrôle de la pollution.

Le défi du contrôle de la pollution de l'eau est abordé par Herbert Preul dans un article qui explique la base selon laquelle les eaux naturelles de la terre peuvent devenir polluées à partir de sources ponctuelles, non ponctuelles et intermittentes ; la base de la réglementation de la pollution de l'eau; et les différents critères qui peuvent être appliqués pour déterminer les programmes de contrôle. Preul explique la manière dont les rejets sont reçus dans les plans d'eau et peuvent être analysés et évalués pour évaluer et gérer les risques. Enfin, un aperçu est fourni des techniques qui sont appliquées pour le traitement des eaux usées à grande échelle et le contrôle de la pollution de l'eau.

Une étude de cas fournit un exemple frappant de la manière dont les eaux usées peuvent être réutilisées - un sujet d'une importance considérable dans la recherche de moyens d'utiliser efficacement les ressources environnementales, en particulier dans des circonstances de pénurie. Alexander Donagi fournit un résumé de l'approche qui a été suivie pour le traitement et la recharge des eaux souterraines des eaux usées municipales pour une population de 1.5 million d'habitants en Israël.

Gestion complète des déchets

Du point de vue de la lutte contre la pollution, les déchets sont considérés comme un sous-produit indésirable du processus de production qui doit être contenu de manière à garantir que les ressources du sol, de l'eau et de l'air ne sont pas contaminées au-delà des niveaux jugés acceptables. Lucien Maystre donne un aperçu des enjeux qui doivent être abordés dans la gestion des déchets, offrant un lien conceptuel avec les rôles de plus en plus importants du recyclage et de la prévention de la pollution.

En réponse à de nombreuses preuves de la grave contamination associée à la gestion sans restriction des déchets, les gouvernements ont établi des normes de pratiques acceptables pour la collecte, la manipulation et l'élimination afin d'assurer la protection de l'environnement. Une attention particulière a été accordée aux critères d'élimination sans danger pour l'environnement par le biais de décharges sanitaires, d'incinération et de traitement des déchets dangereux.

Pour éviter le fardeau environnemental potentiel et les coûts associés à l'élimination des déchets et promouvoir une gestion plus approfondie des ressources rares, la minimisation et le recyclage des déchets ont reçu une attention croissante. Niels Hahn et Poul Lauridsen fournissent un résumé des problèmes qui sont abordés dans la poursuite du recyclage en tant que stratégie privilégiée de gestion des déchets, et examinent les implications potentielles de l'exposition des travailleurs.

Mettre l'accent sur la prévention de la pollution

La réduction en bout de chaîne risque de transférer la pollution d'un milieu à un autre, où elle peut soit causer des problèmes environnementaux tout aussi graves, soit même devenir une source indirecte de pollution pour le même milieu. Bien qu'elle ne soit pas aussi coûteuse que la remédiation, la réduction en bout de chaîne peut contribuer de manière significative aux coûts des processus de production sans apporter de valeur. Elle est également généralement associée à des régimes réglementaires qui ajoutent d'autres ensembles de coûts associés à l'application de la conformité.

Bien que l'approche de contrôle de la pollution ait obtenu un succès considérable dans la production d'améliorations à court terme pour les problèmes de pollution locaux, elle a été moins efficace pour résoudre les problèmes cumulatifs qui sont de plus en plus reconnus aux niveaux régional (par exemple, les pluies acides) ou mondial (par exemple, l'appauvrissement de la couche d'ozone). .

L'objectif d'un programme de lutte contre la pollution de l'environnement axé sur la santé est de promouvoir une meilleure qualité de vie en réduisant la pollution au niveau le plus bas possible. Les programmes et politiques de lutte contre la pollution de l'environnement, dont les implications et les priorités varient d'un pays à l'autre, couvrent tous les aspects de la pollution (air, eau, sol, etc.) et impliquent une coordination entre des domaines tels que le développement industriel, l'urbanisme, le développement des ressources en eau et les transports Stratégies.

Thomas Tseng, Victor Shantora et Ian Smith fournissent un exemple d'étude de cas de l'impact multimédia que la pollution a eu sur un écosystème vulnérable soumis à de nombreux stress - les Grands Lacs nord-américains. L'efficacité limitée du modèle de contrôle de la pollution face aux toxines persistantes qui se dissipent dans l'environnement est particulièrement examinée. En se concentrant sur l'approche suivie dans un pays et les implications que cela a pour l'action internationale, les implications pour les actions qui traitent de la prévention ainsi que du contrôle sont illustrées.

Alors que les technologies de contrôle de la pollution environnementale sont devenues plus sophistiquées et plus coûteuses, il y a eu un intérêt croissant pour les moyens d'intégrer la prévention dans la conception des procédés industriels - dans le but d'éliminer les effets nocifs sur l'environnement tout en favorisant la compétitivité des industries. Parmi les avantages des approches de prévention de la pollution, des technologies propres et de la réduction de l'utilisation de substances toxiques figure la possibilité d'éliminer l'exposition des travailleurs aux risques pour la santé.

David Bennett donne un aperçu des raisons pour lesquelles la prévention de la pollution est en train de devenir une stratégie privilégiée et comment elle se rapporte à d'autres méthodes de gestion de l'environnement. Cette approche est essentielle à la mise en œuvre de la transition vers le développement durable qui a été largement approuvée depuis la publication de la Commission des Nations Unies sur le commerce et le développement en 1987 et réitérée lors de la Conférence des Nations Unies sur l'environnement et le développement (CNUED) de Rio en 1992.

L'approche de prévention de la pollution se concentre directement sur l'utilisation de processus, de pratiques, de matériaux et d'énergie qui évitent ou minimisent la création de polluants et de déchets à la source, et non sur des mesures de réduction « complémentaires ». Bien que l'engagement des entreprises joue un rôle essentiel dans la décision de poursuivre la prévention de la pollution (voir Bringer et Zoesel dans politique environnementale), Bennett attire l'attention sur les avantages sociétaux de la réduction des risques pour l'écosystème et la santé humaine, et la santé des travailleurs en particulier. Il identifie les principes qui peuvent être appliqués utilement pour évaluer les opportunités de poursuivre cette approche.

 

Noir

Cet article est adapté avec la permission de Chivian, E. 1993. Species Extinction and Biodiversity Loss: The Implications for Human Health. Dans "Critical Condition: Human Health and the Environment", édité par E Chivian, M McCally, H Hu et A Haines. Cambridge, Mass. et Londres, Angleterre : MIT Press. Avec nos remerciements à EO Wilson, Richard Schultes, Stephen Morse, Andrew Spielman, Paul Epstein, David Potter, Nan Vance, Rodney Fujita, Michael Balick, Suzan Strobel et Edson Albuquerque.

L'activité humaine provoque l'extinction d'espèces animales, végétales et microbiennes à des taux mille fois supérieurs à ceux qui se seraient produits naturellement (Wilson l992), se rapprochant des plus grandes extinctions de l'histoire géologique. Lorsque Homo sapiens évolué, il y a environ 00 989 ans, le nombre d'espèces qui existaient était le plus grand qui ait jamais habité la Terre (Wilson, 65). Les taux actuels de perte d'espèces réduisent ces niveaux au plus bas depuis la fin de l'âge des dinosaures, il y a 50 millions d'années, avec des estimations selon lesquelles un quart de toutes les espèces disparaîtront dans les 99 prochaines années (Ehrlich et Wilson lXNUMXl).

En plus des questions éthiques impliquées - que nous n'avons pas le droit de tuer d'innombrables autres organismes, dont beaucoup sont apparus des dizaines de millions d'années avant notre arrivée - ce comportement est finalement autodestructeur, bouleversant le délicat équilibre écologique sur dont dépend toute vie, y compris la nôtre, et détruisant la diversité biologique qui rend les sols fertiles, crée l'air que nous respirons et fournit de la nourriture et d'autres produits naturels essentiels à la vie, dont la plupart restent à découvrir.

La croissance exponentielle de la population humaine couplée à une augmentation encore plus importante de la consommation de ressources et de la production de déchets, sont les principaux facteurs mettant en danger la survie des autres espèces. Le réchauffement climatique, les pluies acides, l'appauvrissement de l'ozone stratosphérique et le rejet de produits chimiques toxiques dans l'air, le sol et les écosystèmes d'eau douce et d'eau salée - tout cela conduit finalement à une perte de biodiversité. Mais c'est la destruction de l'habitat par les activités humaines, en particulier la déforestation, qui est le plus grand destructeur.

C'est particulièrement le cas pour les forêts tropicales humides. Il reste moins de 50% de la superficie couverte à l'origine par les forêts tropicales humides préhistoriques, mais elles sont toujours coupées et brûlées à un rythme d'environ 42,000 992 kilomètres carrés chaque année, soit la même superficie que les pays de la Suisse et des Pays-Bas réunis ; c'est une perte de couvert forestier chaque seconde de la taille d'un terrain de football (Wilson lXNUMX). C'est cette destruction qui est principalement responsable de l'extinction massive des espèces du monde.

On estime qu'il existe entre 0 et 00 millions d'espèces différentes sur Terre. Même si une estimation prudente de 20 millions d'espèces mondiales totales est utilisée, alors 0 millions d'espèces se trouveraient dans les forêts tropicales humides, et aux taux actuels de déforestation tropicale, cela signifierait que 27,000 992 espèces seraient perdues dans les seules forêts tropicales humides chaque année, ou plus plus de soixante-quatorze par jour, trois par heure (Wilson lXNUMX).

Cet article examine les implications pour la santé humaine résultant de cette perte généralisée de diversité biologique. L'auteur est convaincu que si les gens comprenaient pleinement l'effet qu'auront ces extinctions massives d'espèces - en excluant la possibilité de comprendre et de traiter de nombreuses maladies incurables, et finalement, peut-être, en menaçant la survie humaine - alors ils reconnaîtraient que les taux actuels de la perte de biodiversité ne représente rien de moins qu'une urgence médicale évoluant lentement et exigerait que les efforts de préservation des espèces et des écosystèmes reçoivent la plus haute priorité.

La perte des modèles médicaux

Trois groupes d'animaux en voie de disparition, très éloignés dans le règne animal - les grenouilles venimeuses, les ours et les requins - offrent des exemples frappants de la façon dont des modèles importants pour la science biomédicale risquent d'être gaspillés par les humains.

Grenouilles venimeuses

Toute la famille des grenouilles venimeuses, les Dendrobatidae, que l'on trouve dans les tropiques américains, est menacée par la destruction de ses habitats - les forêts tropicales humides des basses terres d'Amérique centrale et du Sud (Brody, 990). Ces grenouilles aux couleurs vives, qui comptent plus de 00 espèces, sont particulièrement sensibles à la déforestation, car elles ne vivent souvent que dans des zones très précises de la forêt et ne peuvent vivre naturellement nulle part ailleurs. Les scientifiques ont compris que les toxines qu'ils produisent, utilisées pendant des siècles pour empoisonner les flèches et les fléchettes des sarbacanes par les Indiens d'Amérique centrale et du Sud, sont parmi les substances naturelles les plus meurtrières connues. Ils sont également extrêmement utiles à la médecine. Les ingrédients actifs des toxines sont des alcaloïdes, des composés cycliques contenant de l'azote que l'on trouve presque exclusivement dans les plantes (la morphine, la caféine, la nicotine et la cocaïne en sont des exemples). Les alcaloïdes se lient sélectivement à des canaux ioniques spécifiques et à des pompes dans les membranes nerveuses et musculaires. Sans eux, la connaissance de ces unités de base de la fonction membranaire, présentes dans tout le règne animal, serait très incomplète.

En plus de leur valeur dans la recherche neurophysiologique fondamentale, les grenouilles venimeuses offrent également des indices biochimiques précieux pour la production d'analgésiques nouveaux et puissants qui ont un mécanisme d'action différent de celui de la morphine, de nouveaux médicaments pour les arythmies cardiaques et de nouveaux traitements pour le soulagement de certaines maladies neurologiques telles que la maladie d'Alzheimer, la myasthénie grave et la sclérose latérale amyotrophique (Brody l990). Si la destruction de la forêt tropicale continue à son rythme actuel en Amérique centrale et du Sud, ces grenouilles extrêmement précieuses seront perdues.

Ours

Le marché noir croissant en Asie pour les parties d'ours, les vésicules biliaires d'ours étant vendues pour leur valeur médicinale réputée (d'une valeur de 8 fois leur poids en or) et les pattes pour la nourriture gastronomique (Montgomery l992), associée à la poursuite de la chasse et à la destruction des habitats , a mis en péril les populations d'ours dans de nombreuses régions du monde. Si certaines espèces d'ours disparaissent, nous serons tous plus pauvres, non seulement parce que ce sont de belles créatures fascinantes qui occupent d'importantes niches écologiques, mais aussi parce que certaines espèces possèdent plusieurs processus physiologiques uniques qui peuvent fournir des indices importants pour traiter divers troubles humains. . Les ours noirs « en hibernation » (ou, plus précisément, en « tanière »), par exemple, sont immobiles jusqu'à cinq mois en hiver, mais ne perdent pas de masse osseuse (Rosenthal, 1993). (Les véritables hibernants, comme la marmotte, la marmotte et le spermophile, présentent une baisse marquée de la température corporelle pendant l'hibernation et ne sont pas facilement réveillés. Les ours noirs, en revanche, « hibernent » à des températures corporelles proches de la normale et peuvent être pleinement réactifs pour se défendre. Contrairement aux humains, qui perdraient près d'un quart de leur masse osseuse au cours d'une période similaire d'immobilité (ou d'absence de mise en charge), les ours continuent à déposer de nouveaux os, en utilisant le calcium circulant dans leur sang ( Floyd, Nelson et Wynne 1990). Comprendre les mécanismes de la façon dont ils accomplissent cet exploit peut conduire à des moyens efficaces de prévenir et de traiter l'ostéoporose chez les personnes âgées (un énorme problème entraînant des fractures, des douleurs et une invalidité), chez les personnes confinées à l'alitement pendant de longues périodes et chez les astronautes soumis à des états prolongés. d'apesanteur.

De plus, les ours « en hibernation » n'urinent pas pendant des mois. Les humains qui ne peuvent pas excréter leurs déchets dans l'urine pendant plusieurs jours accumulent des niveaux élevés d'urée dans leur sang et meurent de sa toxicité. D'une manière ou d'une autre, les ours recyclent leur urée pour fabriquer de nouvelles protéines, y compris celles des muscles (Nelson 1973). Si nous pouvions déterminer le mécanisme de ce processus, cela pourrait conduire à des traitements efficaces et à long terme pour les personnes souffrant d'insuffisance rénale, qui doivent désormais compter sur une désintoxication régulière par des appareils de dialyse rénale ou sur une transplantation.

Sharks

Comme les ours, de nombreuses espèces de requins sont décimées en raison de la demande de viande de requin, en particulier en Asie, où les prix des ailerons de requin pour la soupe peuvent atteindre 00 dollars la livre (Stevens, 992). Parce que les requins produisent peu de progéniture, grandissent lentement et mettent des années à mûrir, ils sont très vulnérables à la surpêche.

Les requins existent depuis près de 400 millions d'années et ont développé des organes et des fonctions physiologiques hautement spécialisés qui les ont protégés contre pratiquement toutes les menaces, à l'exception de l'abattage par les humains. L'anéantissement des populations et l'extinction de certaines des 350 espèces pourraient devenir une catastrophe majeure pour les êtres humains.

Le système immunitaire des requins (et de leurs proches, raies et raies) semble avoir évolué de sorte que les animaux sont presque invulnérables au développement de cancers et d'infections. Alors que les tumeurs sont souvent observées chez d'autres poissons et mollusques (Tucker l985), elles sont rares chez les requins. Des enquêtes préliminaires ont confirmé cette conclusion. Il s'est avéré impossible, par exemple, de provoquer une croissance tumorale chez les requins nourrices avec des injections répétées de substances cancérigènes puissantes connues (Stevens l992). Et des chercheurs du Massachusetts Institute of Technology ont isolé une substance, présente en grande quantité, à partir du cartilage de requin pèlerin (Lee et Langer l983) qui inhibe fortement la croissance de nouveaux vaisseaux sanguins vers les tumeurs solides, et empêche ainsi la croissance tumorale.

Les requins peuvent également fournir des modèles précieux pour développer de nouveaux types de médicaments pour traiter les infections, particulièrement importants à l'heure actuelle où les agents infectieux développent une résistance croissante aux antibiotiques actuellement disponibles.

Autres modèles

D'innombrables autres exemples pourraient être mentionnés de plantes, d'animaux et de micro-organismes uniques détenant les secrets de milliards d'expériences évolutives qui sont de plus en plus menacées par l'activité humaine et en danger d'être perdues à jamais pour la science médicale.

La perte de nouveaux médicaments

Les espèces végétales, animales et microbiennes sont elles-mêmes à l'origine de certains des médicaments les plus importants d'aujourd'hui et représentent une part importante de la pharmacopée totale. Farnsworth (1990), par exemple, a constaté que 25 % de toutes les ordonnances délivrées par les pharmacies communautaires aux États-Unis de 959 à 980 contenaient des ingrédients actifs extraits de plantes supérieures. Un pourcentage beaucoup plus élevé se trouve dans le monde en développement. Jusqu'à 80% de toutes les personnes vivant dans les pays en développement, soit environ les deux tiers de la population mondiale, dépendent presque exclusivement des médecines traditionnelles utilisant des substances naturelles, principalement dérivées de plantes.

Les connaissances détenues par les guérisseurs traditionnels, souvent transmises oralement au cours des siècles, ont conduit à la découverte de nombreux médicaments largement utilisés aujourd'hui - quinine, physostigmine,
la d-tubocurarine, la pilocarpine et l'éphédrine, pour n'en nommer que quelques-unes (Farnsworth et al. l985). Mais ces connaissances disparaissent rapidement, en particulier en Amazonie, à mesure que les guérisseurs indigènes disparaissent et sont remplacés par des médecins plus modernes. Botanistes et pharmacologues s'empressent d'apprendre ces pratiques ancestrales qui, comme les plantes forestières qu'ils emploient, sont également menacées (Farnsworth l990 ; Schultes l99l ; Balick l990).

Les scientifiques ont analysé la chimie de moins de 1% des plantes connues de la forêt tropicale pour les substances biologiquement actives (Gottlieb et Mors l980) - ainsi qu'une proportion similaire de plantes tempérées (Schultes l992) et des pourcentages encore plus faibles d'animaux, de champignons et de microbes connus. Mais il peut y avoir des dizaines de millions d'espèces encore inconnues dans les forêts, les sols, les lacs et les océans. Avec les extinctions massives en cours actuellement, nous sommes peut-être en train de détruire de nouveaux remèdes contre des cancers incurables, contre le SIDA, contre les cardiopathies artérioscléreuses et contre d'autres maladies qui causent d'énormes souffrances humaines.

Des équilibres écosystémiques perturbés

Enfin, la perte d'espèces et la destruction d'habitats risquent de bouleverser les délicats équilibres entre les écosystèmes dont dépend toute vie, y compris la nôtre.

Ravitaillement

Les approvisionnements alimentaires, par exemple, peuvent être sérieusement menacés. La déforestation, par exemple, peut entraîner une réduction significative des précipitations dans les zones agricoles adjacentes et même dans des régions éloignées (Wilson l988 ; Shulka, Nobre et Sellers l990), compromettant la productivité des cultures. La perte de la couche arable due à l'érosion, une autre conséquence de la déforestation, peut avoir un impact négatif irréversible sur les cultures dans les régions forestières, en particulier dans les zones de terrain vallonné, comme dans les régions du Népal, de Madagascar et des Philippines.

Les chauves-souris et les oiseaux, parmi les principaux prédateurs d'insectes qui infestent ou mangent les cultures, disparaissent en nombre record (Brody 99; Terborgh 1980), avec des conséquences indicibles pour l'agriculture.

Maladies infectieuses

Récemment au Brésil, le paludisme a atteint des proportions épidémiques en raison de la colonisation massive et de la perturbation environnementale du bassin amazonien. Largement maîtrisé au Brésil dans les années 960, le paludisme a explosé 20 ans plus tard, avec 560,000 988 cas signalés en 500,000, dont 989 989 rien qu'en Amazonie (Kingman XNUMX). En grande partie, cette épidémie était la conséquence de l'afflux d'un grand nombre de personnes peu ou pas immunisées contre le paludisme, qui vivaient dans des abris de fortune et portaient peu de vêtements de protection. Mais c'était aussi une conséquence de leur perturbation de l'environnement de la forêt tropicale, créant dans leur sillage des mares d'eau stagnantes partout - de la construction de routes, du ruissellement de limon secondaire au défrichement et de l'exploitation minière à ciel ouvert - des mares où Anopheles darlingi, le plus important vecteur du paludisme dans la région, pourrait se multiplier sans contrôle (Kingman lXNUMX).

L'histoire des maladies virales « émergentes » peut contenir des indices précieux pour comprendre les effets de la destruction de l'habitat sur les êtres humains. La fièvre hémorragique argentine, par exemple, une maladie virale douloureuse ayant une mortalité comprise entre 3 et 5% (Sanford 1991) s'est développée dans des proportions épidémiques depuis l958 à la suite du défrichage généralisé de la pampa du centre de l'Argentine et de la plantation de maïs ( Kingman l989).

La maladie virale émergente qui a eu le plus grand impact sur la santé humaine, et qui pourrait être un signe avant-coureur de futures épidémies virales, est le SIDA, causé par le virus de l'immunodéficience humaine - types I (VIH-2) et 2 (VIH-992). Il est généralement admis que l'épidémie actuelle de SIDA a pour origine des primates non humains d'Afrique, qui ont agi comme hôtes et réservoirs naturels asymptomatiques pour une famille de virus de l'immunodéficience (Allan, 990). De bonnes preuves génétiques existent pour les liens du VIH-2 avec un virus de l'immunodéficience simienne chez les chimpanzés africains (Huet et Cheynier l989) et du VIH-992 avec un autre virus simien chez les mangabeys fuligineux africains (Hirsch et Olmsted lXNUMX; Gao et Yue lXNUMX). Ces transmissions virales interspécifiques des primates à l'homme sont-elles le résultat d'un empiétement humain sur des environnements forestiers dégradés ?

Si tel est le cas, nous assistons peut-être avec le SIDA au début d'une série d'épidémies virales provenant des forêts tropicales humides où il peut y avoir des milliers de virus qui pourraient infecter les humains, dont certains peuvent être aussi mortels que le SIDA (approchant les 00%) mais se propagent plus facilement, par exemple par des gouttelettes en suspension dans l'air. Ces maladies virales potentielles pourraient devenir la conséquence la plus grave pour la santé publique de la perturbation environnementale des forêts tropicales.

Autres effets

Mais c'est peut-être la perturbation d'autres interrelations entre les organismes, les écosystèmes et l'environnement mondial, dont on ne sait presque rien, qui peut s'avérer la plus catastrophique de toutes pour les êtres humains. Qu'adviendra-t-il du climat mondial et de la concentration des gaz atmosphériques, par exemple, lorsqu'un certain seuil critique de déforestation aura été atteint ? Les forêts jouent un rôle crucial dans le maintien des régimes mondiaux de précipitations et dans la stabilité des gaz atmosphériques.

Quels seront les effets sur la vie marine si l'augmentation du rayonnement ultraviolet provoque une destruction massive du phytoplancton océanique, en particulier dans les mers riches sous le «trou» d'ozone antarctique? Ces organismes, qui sont à la base de toute la chaîne alimentaire marine et qui produisent une partie importante de l'oxygène mondial et consomment une partie importante de son dioxyde de carbone, sont très vulnérables aux dommages causés par les ultraviolets (Schneider l99l ; Roberts l989 ; Bridigare l989) .

Quelles seront les conséquences pour la croissance des plantes si les pluies acides et les produits chimiques toxiques empoisonnent les champignons et les bactéries du sol essentiels à la fertilité du sol ? Il y a déjà eu une perte de 40 à 50% d'espèces de champignons en Europe occidentale au cours des 60 dernières années, y compris de nombreux champignons mycorhiziens symbiotiques (Wilson l992), cruciaux pour l'absorption des nutriments par les plantes. Personne ne comprend quels seront les effets de cette perte.

Les scientifiques ne connaissent pas les réponses à ces questions et à d'autres questions cruciales. Mais il existe des signaux biologiques inquiétants qui suggèrent que des dommages majeurs aux écosystèmes mondiaux se sont déjà produits. La baisse rapide et simultanée des populations de nombreuses espèces de grenouilles dans le monde, même dans des environnements vierges loin des humains, indique qu'elles pourraient mourir à la suite de certains changements environnementaux mondiaux (Blakeslee, 990). Des études récentes (Blaustein 1994) suggèrent que l'augmentation du rayonnement ultraviolet-B provenant de l'amincissement de la couche d'ozone pourrait être la cause dans certains de ces cas.

Plus près de l'homme, des mammifères marins tels que les dauphins rayés en Méditerranée, les phoques communs européens au large de la Scandinavie et du nord de l'Irlande, et les bélugas du fleuve Saint-Laurent meurent également en nombre record. Dans le cas des dauphins et des phoques, certains des décès semblent être dus à des infections par des virus morbilli (la famille des virus comprenant la rougeole et le virus de la maladie de Carré) provoquant des pneumonies et des encéphalites (Domingo et Ferrer l990 ; Kennedy et Smyth l988) , peut-être aussi la conséquence d'un système immunitaire affaibli. Dans le cas des baleines, des polluants chimiques tels que le DDT, l'insecticide Mirex, les BPC, le plomb et le mercure semblent être impliqués, supprimant la fertilité des bélugas et provoquant leur mort par diverses tumeurs et pneumonies (Dold l992). Les carcasses de béluga étaient souvent si remplies de ces polluants qu'elles pouvaient être classées comme déchets dangereux.

Ces « espèces indicatrices », comme les canaris qui meurent dans les mines de charbon contenant des gaz toxiques, nous avertissent-elles que nous bouleversons les équilibres écosystémiques fragiles qui soutiennent toute vie, y compris la nôtre ? La baisse de 50 % du nombre de spermatozoïdes chez les hommes en bonne santé dans le monde au cours de la période l938-l990 (Carlsen et al. l992), les augmentations marquées du taux de malformations congénitales des organes génitaux externes chez les hommes en Angleterre et au Pays de Galles de l964 à l983 (Matlai et Beral l985), l'augmentation spectaculaire de certains taux d'incidence du cancer chez les enfants blancs de l973 à l988 (Angier l99l) et chez les adultes blancs de l973 à l987 (Davis, Dinse et Hoel l994) aux États-Unis, et la croissance constante de les taux de mortalité de plusieurs cancers dans le monde au cours des trois à quatre dernières décennies (Kurihara, Aoki et Tominaga l984 ; Davis et Hoel l990a, 1990b ; Hoel l992) suggèrent tous que la dégradation de l'environnement pourrait commencer à compromettre non seulement la survie des grenouilles, mammifères et autres espèces animales, végétales et microbiennes, mais aussi celle de l'espèce humaine.

Résumé

L'activité humaine provoque l'extinction d'organismes animaux, végétaux et microbiens à un rythme qui pourrait bien éliminer un quart de toutes les espèces sur Terre au cours des 50 prochaines années. Les conséquences de cette destruction sur la santé humaine sont incalculables :

  • la perte de modèles médicaux pour comprendre la physiologie humaine et la maladie
  • la perte de nouveaux médicaments susceptibles de traiter avec succès des cancers incurables, le sida, l'artériosclérose et d'autres maladies qui causent de grandes souffrances humaines.

 

Noir

Changement climatique

Les principaux gaz à effet de serre (GES) sont le dioxyde de carbone, le méthane, l'oxyde nitreux, la vapeur d'eau et les chlorofluorocarbures (CFC). Ces gaz permettent à la lumière du soleil de pénétrer à la surface de la terre, tout en empêchant la chaleur rayonnante infrarouge de s'échapper. Le Groupe d'experts intergouvernemental sur l'évolution du climat (GIEC) des Nations Unies a conclu que les émissions, principalement de l'industrie, et la destruction des puits de gaz à effet de serre, via une mauvaise gestion de l'utilisation des terres, en particulier la déforestation, ont considérablement augmenté les concentrations de GES au-delà des processus naturels. Sans changements politiques majeurs, les niveaux de dioxyde de carbone préindustriels devraient augmenter, entraînant une augmentation de 1.0 à 3.5 °C de la température mondiale moyenne d'ici 2100 (GIEC sous presse).

Les deux principales composantes du changement climatique comprennent (1) l'élévation de la température avec une instabilité et des extrêmes météorologiques concomitants et (2) l'élévation du niveau de la mer due à la thermoexpansion. Ces changements peuvent entraîner une augmentation de la fréquence des vagues de chaleur et des épisodes dangereux de pollution atmosphérique, une réduction de l'humidité du sol, une incidence plus élevée d'événements météorologiques perturbateurs et des inondations côtières (GIEC 1992). Les effets ultérieurs sur la santé peuvent inclure une augmentation (1) de la mortalité et de la morbidité liées à la chaleur ; (2) les maladies infectieuses, en particulier celles transmises par les insectes ; (3) la malnutrition due aux pénuries alimentaires ; et (4) les crises des infrastructures de santé publique dues aux catastrophes météorologiques et à l'élévation du niveau de la mer, associées à la migration humaine liée au climat (voir figure 1).

Figure 1. Effets sur la santé publique des principales composantes du changement climatique mondial

 EHH090F2Les humains ont une énorme capacité d'adaptation aux conditions climatiques et environnementales. Cependant, le rythme des changements climatiques et écologiques potentiels prévus est une grande préoccupation pour les scientifiques médicaux et terrestres. Bon nombre des effets sur la santé seront médiés par les réponses écologiques aux conditions climatiques modifiées. Par exemple, la propagation des maladies à transmission vectorielle dépendra des modifications de la végétation et de la disponibilité d'hôtes réservoirs ou intermédiaires, ainsi que des effets directs de la température et de l'humidité sur les parasites et leurs vecteurs (Patz et al. 1996). La compréhension des dangers du changement climatique nécessitera donc une évaluation intégrée des risques écologiques qui exige des approches nouvelles et complexes par rapport à l'analyse conventionnelle des risques de cause à effet à agent unique à partir de données empiriques (McMichael 1993).

Appauvrissement de l'ozone stratosphérique

L'appauvrissement de l'ozone stratosphérique résulte principalement de réactions avec les radicaux libres halogénés des chlorofluorocarbures (CFC), ainsi que d'autres halocarbures et le bromure de méthyle (Molina et Rowland, 1974). L'ozone bloque spécifiquement la pénétration du rayonnement ultraviolet B (UVB), qui contient les longueurs d'onde les plus destructrices biologiquement (290-320 nanomètres). On s'attend à ce que les niveaux d'UVB augmentent de manière disproportionnée dans les zones tempérées et arctiques, car une relation claire a été établie entre les latitudes plus élevées et l'étendue de l'amincissement de la couche d'ozone (Stolarski et al. 1992).

Pour la période 1979-91, la perte moyenne d'ozone a été estimée à 2.7 % par décennie, en corrigeant le cycle solaire et d'autres facteurs (Gleason et al. 1993). En 1993, des chercheurs utilisant un nouveau spectroradiomètre sensible à Toronto, au Canada, ont découvert que l'appauvrissement actuel de la couche d'ozone a provoqué des augmentations locales du rayonnement UVB ambiant de 35 % en hiver et de 7 % en été, par rapport aux niveaux de 1989 (Kerr et McElroy 1993). Des estimations antérieures du Programme des Nations Unies pour l'environnement (PNUE) prédisaient une augmentation de 1.4 % des UVB pour une baisse de 1 % de l'ozone stratosphérique (PNUE 1991a).

Les impacts directs sur la santé de l'appauvrissement de l'ozone stratosphérique, qui entraîne une augmentation du rayonnement UVB ambiant, comprennent (1) le cancer de la peau (2) les maladies oculaires et (3) l'immunosuppression. Des effets indirects sur la santé peuvent résulter des dommages causés aux cultures par le rayonnement ultraviolet.

Effets sur la santé des changements de température et de précipitations

Morbidité et mortalité liées à la chaleur

Physiologiquement, l'homme possède une grande capacité de thermorégulation jusqu'à un seuil de température. Les conditions météorologiques dépassant les seuils de température et persistant pendant plusieurs jours consécutifs entraînent une augmentation de la mortalité dans la population. Dans les grandes villes, la médiocrité des logements combinée à l'effet « d'îlot de chaleur » urbain exacerbe encore les conditions. À Shanghai, par exemple, cet effet peut atteindre 6.5 °C lors d'une soirée sans vent en hiver (GIEC 1990). La plupart des décès liés à la chaleur surviennent chez les personnes âgées et sont attribués à des troubles cardiovasculaires et respiratoires (Kilbourne 1989). Les principales variables météorologiques contribuent à la mortalité liée à la chaleur, la plus importante étant les relevés nocturnes élevés ; l'effet de serre devrait élever particulièrement ces températures minimales (Kalkstein et Smoyer 1993).

Les régions tempérées et polaires devraient se réchauffer de manière disproportionnée plus que les zones tropicales et subtropicales (IPCC 1990). Selon les prévisions de la National Aeronautics and Space Administration (NASA) des États-Unis, les températures estivales moyennes à New York et à Saint-Louis, par exemple, augmenteraient de 3.1 et 3.9 °C, respectivement, si le CO ambiant2 double. Même avec un ajustement pour l'acclimatation physiologique, la mortalité estivale annuelle dans les villes tempérées comme celles-ci pourrait plus que quadrupler (Kalkstein et Smoyer 1993).

La chimie atmosphérique est un important facteur contribuant à la formation du smog photochimique urbain, par lequel la photodécomposition du NO2 en présence de composés organiques volatils entraîne la production d'ozone troposphérique (au niveau du sol). L'augmentation du rayonnement UV ambiant et des températures plus chaudes entraîneraient davantage ces réactions. Les effets néfastes sur la santé de la pollution atmosphérique sont bien connus et l'utilisation continue des combustibles fossiles étendra les effets aigus et chroniques sur la santé. (voir « Pollution de l'air » dans ce chapitre).

Maladies infectieuses et changements climatiques/écosystémiques

Les modèles de circulation générale couplés atmosphère-océan prédisent que les hautes latitudes de l'hémisphère nord connaîtront la plus grande élévation de la température de surface selon les scénarios actuels du GIEC (GIEC 1992). Les températures hivernales minimales devraient être disproportionnellement plus affectées, permettant à certains virus et parasites de s'étendre dans des régions où ils ne pouvaient pas vivre auparavant. En plus des effets climatiques directs sur les vecteurs, la transformation des écosystèmes pourrait avoir des implications marquées pour les maladies, l'aire de répartition géographique des espèces hôtes vectrices et/ou réservoirs étant définie par ces écosystèmes.

Les maladies à transmission vectorielle peuvent se propager dans les régions tempérées des deux hémisphères et s'intensifier dans les zones endémiques. La température détermine l'infectivité des vecteurs en affectant la réplication, la maturation et la période d'infectiosité des agents pathogènes (Longstreth et Wiseman 1989). La température et l'humidité élevées intensifient également le comportement de piqûre de plusieurs espèces de moustiques. La chaleur extrême, en revanche, peut raccourcir le temps de survie des insectes.

Les maladies infectieuses qui intègrent une espèce à sang froid (invertébré) dans leur cycle de vie sont les plus sensibles aux variations climatiques subtiles (Sharp 1994). Les maladies dont les agents infectieux, les vecteurs ou les hôtes sont affectés par le changement climatique comprennent le paludisme, la schistosomiase, la filariose, la leishmaniose, l'onchocercose (cécité des rivières), la trypanosomiase (maladie de Chagas et maladie du sommeil africaine), la dengue, la fièvre jaune et l'encéphalite à arbovirus. Les chiffres actuels du nombre de personnes exposées au risque de ces maladies sont répertoriés dans le tableau 1 (OMS 1990d).

Tableau 1. Situation mondiale des principales maladies à transmission vectorielle

No.a

Maladie

Population à risque
(des millions)
b

Prévalence de l'infection
(des millions)

Répartition actuelle

Modification possible de la répartition en raison du changement climatique

1.

Paludisme

2,100

270

Tropiques/subtropicaux

++

2.

Filarioses lymphatiques

900

90.2

Tropiques/subtropicaux

+

3.

Onchocercose

90

17.8

Afrique/L. Amérique

+

4.

Schistosomiase

600

200

Tropiques/subtropicaux

++

5.

Trypanosomiase africaine

50

(25,000 XNUMX nouveaux cas/an)

Afrique tropicale

+

6.

Leishmanioses

350

12 millions de personnes infectées
+ 400,000 XNUMX nouveaux cas/an

Asie/Europe du Sud/Afrique/S. Amérique

?

7.

Dracunculose

63

1

Tropiques (Afrique/Asie)

0

Maladies arbovirales

8.

Dengue

1,500

 

Tropiques/subtropicaux

++

9.

La fièvre jaune

+ + +

 

Afrique/L. Amérique

+

10.

l'encéphalite japonaise

+ + +

 

Asie E/SE

+

11.

Autres maladies arbovirales

+ + +

   

+

a Les numéros renvoient à des explications dans le texte. b Basé sur une population mondiale estimée à 4.8 milliards (1989).
0 = peu probable ; + = probable ; ++ = très probable ; +++ = pas d'estimation disponible ; ? = non connu.

 

Dans le monde, le paludisme est la maladie à transmission vectorielle la plus répandue et cause un à deux millions de décès par an. Selon Martens et al., environ un million de décès annuels supplémentaires pourraient résulter du changement climatique d'ici le milieu du siècle prochain. (1995). Le moustique anophèle porteur du paludisme peut s'étendre jusqu'à l'isotherme hivernal de 16 °C, car le développement du parasite ne se produit pas en dessous de cette température (Gilles et Warrell 1993). Les épidémies qui surviennent à des altitudes plus élevées coïncident généralement avec des températures supérieures à la moyenne (Loevinsohn 1994). La déforestation affecte également le paludisme, car les zones défrichées fournissent une abondance de bassins d'eau douce dans lesquels les larves d'anophèles peuvent se développer (voir « Extinction d'espèces, perte de biodiversité et santé humaine » dans ce chapitre).

Au cours des deux dernières décennies, les efforts de lutte contre le paludisme n'ont apporté que des gains marginaux. Le traitement ne s'est pas amélioré car la résistance aux médicaments est devenue un problème majeur pour la souche la plus virulente, Plasmodium falciparum, et les vaccins antipaludiques n'ont montré qu'une efficacité limitée (Institute of Medicine 1991). La grande capacité de variation antigénique des protozoaires a jusqu'à présent empêché l'acquisition de vaccins efficaces contre le paludisme et la maladie du sommeil, laissant peu d'optimisme pour de nouveaux agents pharmaceutiques facilement disponibles contre ces maladies. Les maladies qui impliquent des hôtes réservoirs intermédiaires (par exemple, les cerfs et les rongeurs dans le cas de la maladie de Lyme) rendent l'immunité collective humaine contre les programmes de vaccination essentiellement inaccessible, ce qui représente un autre obstacle à l'intervention médicale préventive.

Comme le changement climatique modifie l'habitat, entraînant une réduction potentielle de la biodiversité, les insectes vecteurs seront contraints de trouver de nouveaux hôtes (voir « Extinction d'espèces, perte de biodiversité et santé humaine »). Au Honduras, par exemple, des insectes hématophages tels que le scarabée assassin, porteur de la maladie incurable de Chagas (ou trypanosomiase américaine), ont été forcés de rechercher des hôtes humains à mesure que la biodiversité diminue à cause de la déforestation. Sur 10,601 23.5 Honduriens étudiés dans les régions endémiques, 1994 % sont désormais séropositifs pour la maladie de Chagas (Sharp 992). Les maladies zoonotiques sont fréquemment à l'origine d'infections humaines et affectent généralement l'homme après un changement environnemental ou une altération de l'activité humaine (Institute of Medicine lXNUMX). De nombreuses maladies « nouvellement émergentes » chez l'homme sont en fait des zoonoses de longue date d'espèces hôtes animales. Par exemple, hantavirus, récemment découverte comme étant la cause de décès humains dans le sud-ouest des États-Unis, est établie depuis longtemps chez les rongeurs et la récente épidémie a été considérée comme liée aux conditions climatiques/écologiques (Wenzel 1994).

Effets marins

Le changement climatique peut avoir un impact supplémentaire sur la santé publique en raison de ses effets sur les efflorescences nocives de phytoplancton marin (ou d'algues). L'augmentation du phytoplancton à l'échelle mondiale a été la conséquence d'une mauvaise gestion du contrôle de l'érosion, de l'application abondante d'engrais dans l'agriculture et du rejet d'eaux usées côtières, le tout entraînant des effluents riches en nutriments qui favorisent la croissance des algues. Les conditions qui favorisent cette croissance pourraient être renforcées par des températures de surface de la mer plus chaudes attendues avec le réchauffement climatique. La surexploitation des poissons et des crustacés (consommateurs d'algues) associée à l'utilisation généralisée de pesticides toxiques pour les poissons, contribue davantage à la prolifération du plancton (Epstein 1995).

Les marées rouges provoquant des maladies diarrhéiques et paralytiques et l'intoxication amnésique par les mollusques sont d'excellents exemples de maladies résultant de la prolifération d'algues. Vibrio cholera s'est avéré être hébergé par le phytoplancton marin; ainsi, les efflorescences pourraient représenter un réservoir élargi à partir duquel des épidémies de choléra pourraient se déclencher (Huq et al. 1990).

Approvisionnement alimentaire et nutrition humaine

La malnutrition est une cause majeure de mortalité infantile et de morbidité infantile due à l'immunosuppression (voir « Alimentation et agriculture »). Le changement climatique pourrait affecter négativement l'agriculture à la fois par des changements à long terme, tels que la réduction de l'humidité du sol par évapotranspiration, et, plus immédiatement, par des phénomènes météorologiques extrêmes tels que les sécheresses, les inondations (et l'érosion) et les tempêtes tropicales. Les plantes peuvent initialement bénéficier du "CO2 fertilisation », ce qui peut améliorer la photosynthèse (GIEC 1990). Même en tenant compte de cela, l'agriculture des pays en développement souffrira le plus, et on estime que dans ces pays, 40 à 300 millions de personnes supplémentaires seront menacées par la faim en raison du changement climatique (Sharp 1994).

Les changements écologiques indirects affectant les cultures devront également être pris en compte, car les ravageurs agricoles peuvent changer de distribution (GIEC 1992) (voir « Alimentation et agriculture »). Compte tenu de la dynamique complexe des écosystèmes, une évaluation complète devra s'étendre au-delà des impacts directs de l'évolution des conditions atmosphériques et/ou du sol.

Effets sur la santé des catastrophes météorologiques et de l'élévation du niveau de la mer

L'expansion thermique des océans peut entraîner une élévation du niveau de la mer à un rythme relativement rapide de deux à quatre centimètres par décennie, et les extrêmes projetés du cycle hydrologique devraient produire des conditions météorologiques et des tempêtes plus violentes. De tels événements perturberaient directement les habitations et les infrastructures de santé publique, telles que les systèmes d'assainissement et le drainage des eaux pluviales (GIEC 1992). Les populations vulnérables des zones côtières basses et des petites îles seraient obligées de migrer vers des endroits plus sûrs. Le surpeuplement et les mauvaises conditions d'hygiène qui en résultent parmi ces réfugiés environnementaux pourraient amplifier la propagation de maladies infectieuses telles que le choléra, et les taux de transmission de maladies à transmission vectorielle augmenteraient en raison du surpeuplement et de l'afflux potentiel d'individus infectés (OMS 1990d). Les systèmes de drainage inondés peuvent encore aggraver la situation, et les impacts psychologiques doivent également être pris en compte en raison du syndrome de stress post-traumatique consécutif aux tempêtes majeures.

L'approvisionnement en eau douce diminuerait en raison de l'intrusion saline des aquifères côtiers et des terres agricoles côtières perdues à cause de la salinisation ou de l'inondation pure et simple. Par exemple, une élévation du niveau de la mer d'un mètre détruirait respectivement 15 % et 20 % de l'agriculture en Égypte et au Bangladesh (IPCC 1990). Comme pour les sécheresses, les méthodes d'irrigation adaptative pourraient affecter les sites de reproduction des arthropodes et des invertébrés des vecteurs (par exemple, similaire à la schistosomiase en Égypte), mais l'évaluation coût/bénéfice de ces impacts sera difficile.

Effets sur la santé de l'appauvrissement de l'ozone stratosphérique

Effets directs sur la santé des rayonnements ultraviolets B

L'ozone bloque spécifiquement la pénétration du rayonnement ultravioletB, qui contient les longueurs d'onde les plus biologiquement destructrices de 290 à 320 nanomètres. Les UVB induisent la formation de dimères de pyrimidine dans les molécules d'ADN, qui, s'ils ne sont pas réparés, peuvent évoluer en cancer (IARC 1992). Le cancer de la peau non mélanome (carcinome épidermoïde et basocellulaire) et le mélanome à propagation superficielle sont corrélés à l'exposition au soleil. Dans les populations occidentales, l'incidence du mélanome a augmenté de 20 à 50 % tous les cinq ans au cours des deux dernières décennies (Coleman et al. 1993). Bien qu'il n'y ait pas de relation directe entre l'exposition cumulative aux ultraviolets et le mélanome, une exposition excessive aux UV pendant l'enfance est associée à l'incidence. Pour un déclin soutenu de 10 % de la couche d'ozone stratosphérique, les cas de cancer de la peau autre que le mélanome pourraient augmenter de 26 %, soit 300,000 20 dans le monde par an ; le mélanome pourrait augmenter de 4,500 %, soit 1991 XNUMX cas de plus par an (UNEP XNUMXa).

La formation de cataractes oculaires est à l'origine de la moitié des cas de cécité dans le monde (17 millions de cas par an) et est associée au rayonnement UVB dans une relation dose-réponse (Taylor 1990). Les acides aminés et les systèmes de transport membranaire dans le cristallin de l'œil sont particulièrement sujets à la photo-oxydation par les radicaux d'oxygène générés par l'irradiation UVB (IARC 1992). Un doublement de l'exposition aux UVB pourrait entraîner une augmentation de 60 % des cataractes corticales par rapport aux niveaux actuels (Taylor et al. 1988). Le PNUE estime qu'une perte soutenue de 10 % de l'ozone stratosphérique entraînerait près de 1.75 million de cataractes supplémentaires par an (PNUE 1991a). D'autres effets oculaires de l'exposition aux UVB comprennent la photokératite, la photokérato-conjonctivite, la pinguécule et le ptérygion (ou la prolifération de l'épithélium conjonctival) et la kératopathie des gouttelettes climatiques (IARC 1992).

La capacité du système immunitaire à fonctionner efficacement dépend du traitement et de la présentation de l'antigène "local" aux lymphocytes T, ainsi que de l'augmentation de la réponse "systémique" via la production de lymphokine (messager biochimique) et la cellule T-helper/T-suppressor qui en résulte. ratios. Les UVB provoquent une immunosuppression aux deux niveaux. Les UVB dans les études animales peuvent affecter l'évolution des maladies cutanées infectieuses, telles que l'onchocercose, la leishmaniose et la dermatophytose, et altérer l'immunosurveillance des cellules épidermiques précancéreuses transformées. Des études préliminaires montrent en outre une influence sur l'efficacité du vaccin (Kripke et Morison 1986 ; IARC 1992).

Effets indirects des UVB sur la santé publique

Historiquement, les plantes terrestres ne se sont établies qu'après la formation de la couche d'ozone protectrice, puisque les UVB inhibent la photosynthèse (UNEP 1991a). L'affaiblissement des cultures vivrières sensibles aux dommages causés par les UVB pourrait encore étendre les impacts sur l'agriculture en raison des changements climatiques et de l'élévation du niveau de la mer.

Le phytoplancton est à la base de la chaîne alimentaire marine et sert également de « puits » important de dioxyde de carbone. Les dommages causés par les UV à ces algues dans les régions polaires affecteraient donc négativement la chaîne alimentaire marine et exacerberaient l'effet de serre. Le PNUE estime qu'une perte de 10% de phytoplancton marin limiterait le CO annuel des océans2 absorption de cinq gigatonnes, ce qui équivaut aux émissions anthropiques annuelles provenant de la combustion de combustibles fossiles (UNEP 1991a).

Risques professionnels et stratégies de contrôle

Risques professionnels

En ce qui concerne la réduction des émissions de GES provenant des combustibles fossiles, les sources d'énergie renouvelables alternatives devront être développées. Les risques publics et professionnels de l'énergie nucléaire sont bien connus et la protection des centrales, des travailleurs et du combustible usé sera nécessaire. Le méthanol peut servir à remplacer une grande partie de l'utilisation de l'essence; cependant, l'émission de formaldéhyde à partir de ces sources présentera un nouveau danger pour l'environnement. Les matériaux supraconducteurs pour un transfert d'électricité efficace sur le plan énergétique sont principalement des céramiques composées de calcium, de strontium, de baryum, de bismuth, de thallium et d'yttrium (OMS sous presse).

On en sait moins sur la sécurité au travail dans les unités de fabrication de captage d'énergie solaire. Le silicium, le gallium, l'indium, le thallium, l'arsenic et l'antimoine sont les principaux éléments utilisés pour construire les cellules photovoltaïques (OMS sous presse). Le silicium et l'arsenic affectent négativement les poumons; le gallium est concentré dans les reins, le foie et les os ; et les formes ioniques de l'indium sont néphrotoxiques.

Les effets destructeurs des CFC sur la couche d'ozone stratosphérique ont été reconnus dans les années 1970, et l'US EPA a interdit ces propulseurs inertes dans les aérosols en 1978. En 1985, une inquiétude généralisée a éclaté lorsqu'une équipe britannique basée en Antarctique a découvert le "trou" dans l'ozone. couche (Farman, Gardiner et Shanklin 1985). L'adoption subséquente du Protocole de Montréal en 1987, avec des modifications en 1990 et 1992, a déjà imposé des réductions drastiques de la production de CFC.

Les produits chimiques de remplacement des CFC sont les hydrochlorofluorocarbures (HCFC) et les hydrofluorocarbures (HFC). La présence de l'atome d'hydrogène peut soumettre plus facilement ces composés à la dégradation par les radicaux hydroxyles (OH-) dans la troposphère, réduisant ainsi l'appauvrissement potentiel de l'ozone stratosphérique. Ces produits chimiques de remplacement des CFC sont cependant plus réactifs sur le plan biologique que les CFC. La nature d'une liaison CH rend ces produits chimiques sujets à l'oxydation via le système du cytochrome P-450 (OMS sous presse).

Atténuation et adaptation

Relever les défis de santé publique posés par le changement climatique mondial nécessitera (1) une approche écologique intégrée ; (2) réduction des gaz à effet de serre grâce au contrôle des émissions industrielles, politiques d'utilisation des terres pour maximiser l'étendue du CO2 les « puits » et les politiques démographiques pour atteindre les deux ; (3) surveillance des indicateurs biologiques à l'échelle régionale et mondiale ; (4) des stratégies de santé publique adaptatives pour minimiser les impacts du changement climatique inévitable ; et (5) la coopération entre pays développés et pays en développement. En bref, une intégration accrue des politiques environnementales et de santé publique doit être encouragée.

Le changement climatique et l'appauvrissement de la couche d'ozone présentent un grand nombre de risques pour la santé à plusieurs niveaux et soulignent la relation importante entre la dynamique des écosystèmes et la santé humaine durable. Les mesures préventives doivent donc être systémiques et anticiper les réponses écologiques significatives au changement climatique ainsi que les risques physiques directs prévus. Certains éléments clés à prendre en compte dans une évaluation des risques écologiques comprendront les variations spatiales et temporelles, les mécanismes de rétroaction et l'utilisation d'organismes de niveau inférieur comme indicateurs biologiques précoces.

La réduction des gaz à effet de serre en détournant les combustibles fossiles vers les ressources énergétiques renouvelables représente la principale prévention du changement climatique. De même, la planification stratégique de l'utilisation des terres et la stabilisation des pressions démographiques sur l'environnement préserveront d'importants puits naturels de gaz à effet de serre.

Parce que certains changements climatiques peuvent être inévitables, la prévention secondaire par la détection précoce par la surveillance des paramètres de santé nécessitera une coordination sans précédent. Pour la première fois dans l'histoire, des tentatives sont faites pour surveiller le système terrestre dans son intégralité. Le Système mondial d'observation du climat intègre la Veille météorologique mondiale et la Veille de l'atmosphère mondiale de l'Organisation météorologique mondiale (OMM) avec des éléments du Système mondial de surveillance de l'environnement du PNUE. Le Système mondial d'observation de l'océan est une nouvelle initiative conjointe de la Commission océanographique intergouvernementale de l'Organisation des Nations Unies pour l'éducation, la science et la culture (UNESCO), l'OMM et le Conseil international des unions scientifiques (ICSU). Des mesures satellitaires et sous-marines seront utilisées pour surveiller les changements dans les systèmes marins. Le Système mondial d'observation terrestre est un nouveau système parrainé par le PNUE, l'UNESCO, l'OMM, l'ICSU et l'Organisation des Nations Unies pour l'alimentation et l'agriculture (FAO), et fournira la composante terrestre du Système mondial d'observation du climat (OMM 1992).

Les options adaptatives pour réduire les conséquences sanitaires inévitables comprennent les programmes de préparation aux catastrophes ; l'urbanisme pour réduire l'effet « îlot de chaleur » et améliorer l'habitat ; planification de l'utilisation des terres pour minimiser l'érosion, les crues soudaines et la déforestation inutile (par exemple, stopper la création de parcours pour l'exportation de viande) ; comportements adaptatifs personnels, comme éviter l'exposition au soleil; et la lutte antivectorielle et les efforts de vaccination élargis. Les coûts imprévus des mesures de contrôle adaptatif, par exemple l'utilisation accrue de pesticides, devront être pris en compte. Une dépendance excessive aux pesticides conduit non seulement à la résistance des insectes, mais élimine également les organismes naturels, bénéfiques et prédateurs. Les effets néfastes sur la santé publique et l'environnement dus à l'utilisation actuelle des pesticides sont estimés entre 100 et 200 milliards de dollars américains par an (Institute of Medicine, 1991).

Les pays en développement souffriront de manière disproportionnée des conséquences du changement climatique, bien que les pays industrialisés soient actuellement plus responsables des GES dans l'atmosphère. À l'avenir, les pays les plus pauvres influenceront beaucoup plus le cours du réchauffement climatique, à la fois par les technologies qu'ils choisissent d'adopter à mesure que leur développement s'accélère, et par les pratiques d'utilisation des terres. Les pays développés devront adopter des politiques énergétiques plus respectueuses de l'environnement et transférer rapidement de nouvelles technologies (et abordables) aux pays en développement.


Étude de cas : virus transmis par les moustiques

L'encéphalite transmise par les moustiques et la dengue sont d'excellents exemples de maladies à transmission vectorielle dont la distribution est limitée par le climat. Les épidémies d'encéphalite de Saint-Louis (LES), l'encéphalite arbovirale la plus courante aux États-Unis, surviennent généralement au sud de l'isotherme de juin de 22 ° C, mais des épidémies au nord se sont produites pendant des années anormalement chaudes. Les épidémies humaines sont fortement corrélées avec des périodes de plusieurs jours où la température dépasse 27°C (Shope 1990).

Des études de terrain sur le SLE indiquent qu'une augmentation de température de 1°C raccourcit considérablement le temps écoulé entre un repas de sang de moustique et la réplication virale jusqu'au point d'infectiosité dans le vecteur, ou la période d'incubation extrinsèque. En tenant compte de la survie réduite des moustiques adultes à des températures élevées, une augmentation de température de 3 à 5 °C devrait entraîner un déplacement important vers le nord des éclosions de LED (Reeves et al. 1994).

L'aire de répartition du principal moustique vecteur de la dengue (et de la fièvre jaune), Aedes aegypti, s'étend jusqu'à 35° de latitude car les températures glaciales tuent à la fois les larves et les adultes. La dengue est répandue dans les Caraïbes, l'Amérique tropicale, l'Océanie, l'Asie, l'Afrique et l'Australie. Au cours des 15 dernières années, les épidémies de dengue ont augmenté en nombre et en gravité, en particulier dans les centres urbains tropicaux. La dengue hémorragique est aujourd'hui l'une des principales causes d'hospitalisation et de mortalité infantile en Asie du Sud-Est (Institute of Medicine 1992). La même tendance à la hausse observée en Asie il y a 20 ans se produit maintenant dans les Amériques.

Le changement climatique peut potentiellement modifier la transmission de la dengue. Au Mexique en 1986, le prédicteur le plus important de la transmission de la dengue s'est avéré être la température médiane pendant la saison des pluies, avec un risque quadruple ajusté observé entre 17 °C et 30 °C (Koopman et al. 1991). Des études en laboratoire appuient ces données de terrain. In vitro, la période d'incubation extrinsèque du virus de la dengue de type 2 était de 12 jours à 30 °C et de seulement sept jours entre 32 et 35 °C (Watts et al. 1987). Cet effet de la température de raccourcir la période d'incubation de cinq jours se traduit par un taux de transmission de la maladie potentiellement trois fois plus élevé (Koopman et al. 1991). Enfin, des températures plus chaudes entraînent l'éclosion d'adultes plus petits, qui doivent mordre plus fréquemment pour développer un lot d'œufs. En résumé, l'augmentation des températures peut conduire à des moustiques plus infectieux qui piquent plus fréquemment (Focks et al. 1995).


 

Noir

Mercredi, Mars 09 2011 14: 42

Urbanisation

L'urbanisation est une caractéristique majeure du monde contemporain. Au début du XIXe siècle, quelque 50 millions de personnes vivaient dans les zones urbaines. En 1975, il y en avait 1.6 milliard et en l'an 2000, il y en aura 3.1 milliards (Harpham, Lusty et Vaugham 1988). Ces chiffres dépassent de loin la croissance de la population rurale.

Cependant, le processus d'urbanisation a souvent eu des effets dangereux sur la santé de ceux qui travaillent et vivent dans les villes et les villages. Dans une plus ou moins grande mesure, la production de logements convenables, la fourniture d'infrastructures urbaines et le contrôle du trafic n'ont pas suivi le rythme de la croissance de la population urbaine. Cela a généré une myriade de problèmes de santé.

Logement

Les conditions de logement dans le monde sont loin d'être satisfaisantes. Par exemple, au milieu des années 1980, 40 à 50 % de la population de nombreuses villes des pays en développement vivaient dans des logements insalubres (Commission de l'OMS sur la santé et l'environnement, 1992b). Ces chiffres ont augmenté depuis. Bien que la situation dans les pays industrialisés soit moins critique, les problèmes de logement tels que la vétusté, le surpeuplement et même l'itinérance sont fréquents.

Les principaux aspects de l'environnement résidentiel qui influent sur la santé, ainsi que les risques associés, sont présentés dans le tableau 1. La santé d'un travailleur est susceptible d'être affectée si sa résidence est déficiente sur un ou plusieurs de ces aspects. Dans les pays en développement, par exemple, quelque 600 millions de citadins vivent dans des maisons et des quartiers dangereux pour leur santé et leur vie (Hardoy, Cairncross et Satterthwaite 1990 ; OMS 1992b).

Tableau 1. Logement et santé

Problèmes de logement

Dangers pour la santé

Mauvaise maîtrise de la température

Stress thermique, hypothermie

Mauvaise maîtrise de la ventilation
(lorsqu'il y a de la fumée provenant de feux intérieurs)

Maladies respiratoires aiguës et chroniques

Mauvais contrôle de la poussière

Asthme

Surpeuplement

Accidents domestiques, propagation plus facile de
maladies transmissibles
(p. ex. tuberculose, grippe, méningite)

Mauvais contrôle des feux à ciel ouvert, mauvaise protection
contre le kérosène ou le gaz en bouteille

Brûlures

Mauvaise finition des murs, des sols ou des toits
(permettant l'accès aux vecteurs)

maladie de Chagas, peste, typhus, shigellose,
hépatite, poliomyélite, légionellose,
fièvre récurrente, allergie à la poussière domestique

Implantation de maison
(près des zones de reproduction des vecteurs)

Paludisme, schistosomiase, filariose,
trypanosomiase

Implantation de maison

(dans une zone sujette à des catastrophes telles que des glissements de terrain
ou inondations)

Les accidents

Défauts de construction

Les accidents

Source : Hardoy et al. 1990 ; Harpham et al. 1988; Commission de l'OMS sur la santé et l'environnement 1992b.

Les problèmes de logement peuvent aussi avoir un effet direct sur la santé au travail, dans le cas de ceux qui travaillent en milieu résidentiel. Il s'agit notamment de domestiques et d'un nombre croissant de petits producteurs dans diverses industries artisanales. Ces producteurs peuvent être davantage touchés lorsque leurs processus de production génèrent une certaine forme de pollution. Des études sélectionnées dans ces types d'industries ont détecté des déchets dangereux ayant des conséquences telles que les maladies cardiovasculaires, le cancer de la peau, les troubles neurologiques, le cancer bronchique, la photophobie et la méthémoglobinémie infantile (Hamza 1991).

La prévention des problèmes liés au domicile comprend une action à différentes étapes de l'offre de logement :

  1. emplacement (par exemple, sites sûrs et sans vecteur)
  2. conception de la maison (par exemple, espaces de taille et de protection climatique adéquates, utilisation de matériaux de construction non périssables, protection adéquate de l'équipement)
  3. construction (prévention des défauts de construction)
  4. entretien (p. ex., contrôle approprié de l'équipement, dépistage approprié).

 

L'insertion d'activités industrielles dans l'environnement résidentiel peut nécessiter des mesures de protection particulières, selon le processus particulier de production.

Les solutions de logement spécifiques peuvent varier considérablement d'un endroit à l'autre, en fonction des circonstances sociales, économiques, techniques et culturelles. Un grand nombre de villes et de villages disposent d'une législation locale en matière d'aménagement et de construction qui comprend des mesures de prévention des risques pour la santé. Cependant, cette législation n'est souvent pas appliquée en raison de l'ignorance, du manque de contrôle juridique ou, dans la plupart des cas, du manque de ressources financières pour construire des logements convenables. Par conséquent, il est important non seulement de concevoir (et de mettre à jour) des codes adéquats, mais également de créer les conditions de leur mise en œuvre.

Infrastructure urbaine : la fourniture de services de santé environnementale

Le logement peut également affecter la santé lorsqu'il n'est pas correctement fourni avec des services de santé environnementale tels que la collecte des ordures, l'eau, l'assainissement et le drainage. La fourniture inadéquate de ces services, cependant, s'étend au-delà du domaine du logement et peut entraîner des risques pour la ville ou la ville dans son ensemble. Les normes de prestation de ces services sont encore critiques dans un grand nombre d'endroits. Par exemple, 30 à 50 % des déchets solides générés dans les centres urbains ne sont pas collectés. En 1985, il y avait 100 millions de personnes de plus sans service d'eau qu'en 1975. Plus de deux milliards de personnes n'ont toujours pas de moyens sanitaires pour éliminer les déchets humains (Hardoy, Cairncross et Satterthwaite 1990 ; Commission OMS sur la santé et l'environnement 1992b). Et les médias ont fréquemment montré des cas d'inondations et autres accidents liés à un drainage urbain insuffisant.

Les risques dérivés d'une fourniture déficiente de services de santé environnementale sont présentés dans le tableau 2. Les risques interservices sont également courants, par exemple, la contamination de l'approvisionnement en eau en raison d'un manque d'assainissement, la dissémination des déchets par l'eau non drainée. Pour donner une illustration de l'étendue des problèmes d'infrastructure parmi tant d'autres, un enfant est tué dans le monde toutes les 20 secondes à cause de la diarrhée, ce qui est un résultat majeur des services de santé environnementale déficients.

Tableau 2. Infrastructure urbaine et santé

Problèmes dans la fourniture de
services de santé environnementale

Dangers pour la santé

Déchets non collectés

Agents pathogènes dans les ordures, vecteurs de maladies (principalement mouches et rats) qui se reproduisent ou se nourrissent dans les ordures, risques d'incendie, pollution des cours d'eau

Déficit quantitatif et/ou
qualité de l'eau

Diarrhée, trachome, maladies infectieuses de la peau, infections dues aux poux de corps, autres maladies provoquées par la consommation d'aliments non lavés

Manque d'assainissement

Infections féco-orales (p. ex., diarrhée, choléra, fièvre typhoïde), parasites intestinaux, filariose

Manque d'évacuation

Accidents (inondations, glissements de terrain, effondrements de maisons), infections féco-orales, schistosomiase, maladies transmises par les moustiques (par exemple, paludisme, dengue, fièvre jaune), filariose de Bancroft

Source : Hardoy et al. 1990 ; Commission de l'OMS sur la santé et l'environnement 1992b.

Les travailleurs dont l'environnement de travail immédiat ou plus large n'est pas suffisamment approvisionné en ces services sont exposés à une profusion de risques pour la santé au travail. Ceux qui travaillent dans la fourniture ou la maintenance de services, tels que les éboueurs, les balayeurs et les éboueurs, sont davantage exposés.

Il existe en effet des solutions techniques capables d'améliorer la fourniture des services de santé environnementale. Ils englobent, parmi beaucoup d'autres, des programmes de recyclage des ordures (y compris le soutien aux éboueurs), l'utilisation de différents types de véhicules de collecte des ordures pour atteindre différents types de routes (y compris celles des établissements informels), des installations économes en eau, un contrôle plus strict des fuites d'eau et systèmes d'assainissement à faible coût tels que les latrines à fosse ventilée, les fosses septiques ou les égouts de petit diamètre.

Cependant, le succès de chaque solution dépendra de son adéquation aux circonstances locales et des ressources et capacités locales pour la mettre en œuvre. La volonté politique est fondamentale, mais pas suffisante. Les gouvernements ont souvent eu du mal à assurer eux-mêmes adéquatement les services urbains. Les exemples de réussite d'un bon approvisionnement ont souvent inclus la coopération entre les secteurs public, privé et/ou bénévole. Une implication et un soutien approfondis des communautés locales sont importants. Cela nécessite souvent la reconnaissance officielle du grand nombre d'établissements illégaux et semi-légaux (surtout mais pas seulement dans les pays en développement), qui portent une lourde part des problèmes de santé environnementale. Les travailleurs directement impliqués dans des services tels que la collecte des ordures ou le recyclage et l'entretien des égouts ont besoin d'équipements spéciaux de protection, tels que des gants, des combinaisons et des masques.

Traffic

Les villes et villages dépendent fortement des transports terrestres pour le déplacement des personnes et des marchandises. Ainsi, l'augmentation de l'urbanisation dans le monde s'est accompagnée d'une forte croissance du trafic urbain. Cependant, une telle situation a généré un grand nombre d'accidents. Quelque 500,000 1990 personnes sont tuées chaque année dans des accidents de la route, dont les deux tiers surviennent en zone urbaine ou périurbaine. De plus, selon de nombreuses études dans différents pays, pour chaque décès, il y a dix à vingt personnes blessées. De nombreux cas souffrent d'une perte de productivité permanente ou prolongée (Urban Edge 1992a; WHO Commission on Health and Environment XNUMXa). Une grande partie de ces données concerne les personnes se rendant au travail ou en revenant – et ce type d'accident de la circulation a récemment été considéré comme un risque professionnel.

Selon des études de la Banque mondiale, les principales causes d'accidents de la circulation urbaine comprennent : le mauvais état des véhicules ; rues détériorées; différents types de circulation—des piétons et des animaux aux camions—partageant les mêmes rues ou voies ; sentiers pédestres inexistants; et un comportement routier imprudent (tant de la part des conducteurs que des piétons) (Urban Edge 1990a, 1990b).

Un autre danger généré par l'expansion du trafic urbain est la pollution atmosphérique et sonore. Les problèmes de santé comprennent les maladies respiratoires aiguës et chroniques, les tumeurs malignes et les déficiences auditives (la pollution est également traitée dans d'autres articles de ce Encyclopédie).

Les solutions techniques pour améliorer la sécurité routière et automobile (ainsi que la pollution) abondent. Le défi majeur semble être de changer les attitudes des conducteurs, des piétons et des fonctionnaires. L'éducation à la sécurité routière - de l'enseignement à l'école primaire aux campagnes dans les médias - a souvent été recommandée comme politique pour cibler les conducteurs et/ou les piétons (et ces programmes ont souvent eu un certain succès lorsqu'ils ont été mis en œuvre). Les fonctionnaires ont la responsabilité de concevoir et d'appliquer la législation sur la circulation, d'inspecter les véhicules et de concevoir et de mettre en œuvre des mesures de sécurité techniques. Cependant, selon les études susmentionnées, ces responsables perçoivent rarement les accidents de la circulation (ou la pollution) comme une priorité absolue, ou ont rarement les moyens d'agir consciencieusement (Urban Edge 1990a, 1990b). Par conséquent, ils doivent être ciblés par des campagnes d'éducation et soutenus dans leur travail.

Le tissu urbain

Outre les problèmes spécifiques déjà relevés (logement, services, circulation), la croissance globale du tissu urbain a également eu un impact sur la santé. Premièrement, les zones urbaines sont généralement denses, ce qui facilite la propagation des maladies transmissibles. Deuxièmement, ces zones concentrent un grand nombre d'industries et la pollution qui y est associée. Troisièmement, à travers le processus de croissance urbaine, des foyers naturels de vecteurs de maladies peuvent être piégés dans de nouvelles zones urbaines et de nouvelles niches pour les vecteurs de maladies peuvent être établies. Les vecteurs peuvent s'adapter à de nouveaux habitats (urbains), par exemple ceux responsables du paludisme urbain, de la dengue et de la fièvre jaune. Quatrièmement, l'urbanisation a souvent eu des conséquences psychosociales telles que le stress, l'aliénation, l'instabilité et l'insécurité ; qui, à leur tour, ont entraîné des problèmes tels que la dépression et l'abus d'alcool et de drogues (Harpham, Lusty et Vaugham 1988; Commission de l'OMS sur la santé et l'environnement 1992a).

Les expériences passées ont démontré la possibilité (et la nécessité) de s'attaquer aux problèmes de santé en améliorant l'urbanisation. Par exemple, «¼ la baisse remarquable des taux de mortalité et l'amélioration de la santé en Europe et en Amérique du Nord au tournant du siècle dernier doivent davantage à l'amélioration de la nutrition et à l'amélioration de l'approvisionnement en eau, de l'assainissement et d'autres aspects du logement et des conditions de vie qu'à l'amélioration des conditions médicales. établissements » (Hardoy, Cairncross et Satterthwaite 1990).

Les solutions aux problèmes croissants de l'urbanisation nécessitent une bonne intégration entre la planification et la gestion urbaines (souvent séparées) et la participation des différents acteurs publics, privés et bénévoles qui opèrent dans l'arène urbaine. L'urbanisation affecte un large éventail de travailleurs. Contrairement à d'autres sources ou types de problèmes de santé (qui pourraient affecter des catégories spécifiques de travailleurs), les risques professionnels dérivés de l'urbanisation ne peuvent être traités par une action ou une pression syndicale unique. Ils nécessitent une action interprofessionnelle, voire plus largement, une action de la communauté urbaine en général.

 

Noir

Mercredi, Mars 09 2011 14: 36

Énergie et Santé

Le groupe d'experts sur l'énergie de la Commission Santé et Environnement de l'OMS (1992a) a considéré que quatre problèmes liés à l'énergie étaient les plus préoccupants, dans l'immédiat et/ou dans l'avenir, pour la santé environnementale :

  1. exposition à des agents nocifs au cours de l'utilisation domestique de la biomasse et du charbon
  2. exposition résultant de la pollution atmosphérique urbaine dans de nombreuses grandes villes du monde
  3. les possibles impacts du changement climatique sur la santé
  4. les accidents graves ayant des impacts environnementaux sur la santé de la population en général.

 

L'évaluation quantitative des risques pour la santé de différents systèmes énergétiques nécessite une évaluation à l'échelle du système TOUTE étapes du cycle du combustible, commençant par l'extraction des ressources brutes et se terminant par la consommation finale d'énergie. Pour que des comparaisons intertechnologiques valides soient effectuées, les méthodes, les données et les demandes d'utilisation finale doivent être similaires et spécifiées. Pour quantifier les effets des demandes d'utilisation finale, il faut évaluer les différences d'efficacité de conversion des dispositifs spécifiques à l'énergie et au combustible en énergie utile.

L'évaluation comparative est construite autour de l'idée du système énergétique de référence (SER), qui décrit les cycles du combustible étape par étape, de l'extraction au traitement en passant par la combustion et l'élimination finale des déchets. Le RES fournit un cadre commun et simple pour définir les flux d'énergie et les données associées utilisées pour l'évaluation des risques. Un RES (figure 1) est une représentation en réseau des principaux composants d'un système énergétique pour une année donnée, spécifiant la consommation des ressources, le transport du carburant, les processus de conversion et les utilisations finales, incorporant ainsi de manière compacte les caractéristiques saillantes du système énergétique tout en fournissant un cadre pour l'évaluation des principaux effets sur les ressources, l'environnement, la santé et l'économie qui peuvent résulter de nouvelles technologies ou politiques.

Figure 1. Système énergétique de référence, année 1979

EHH070F1

En fonction de leurs risques pour la santé, les technologies énergétiques peuvent être classées en trois groupes :

  1. La groupe de carburants se caractérise par l'utilisation de grandes quantités de combustibles fossiles ou de biomasse - charbon, pétrole, gaz naturel, bois, etc. - dont la collecte, le traitement et le transport ont des taux d'accidents élevés qui dominent les risques professionnels et dont la combustion produit de grandes quantités de la pollution de l'air et les déchets solides qui dominent les risques publics.
  2. La groupe renouvelable se caractérise par l'utilisation de ressources renouvelables diffuses à faible densité d'énergie - soleil, vent, eau - qui sont disponibles gratuitement en quantité énorme, mais dont la captation nécessite de vastes surfaces et la construction d'installations coûteuses capables de les « concentrer » en ressources utiles. formes. Les risques professionnels sont élevés et dominés par la construction des installations. Les risques publics sont faibles, principalement confinés aux accidents à faible probabilité, tels que les ruptures de barrage, les défaillances d'équipement et les incendies.
  3. La groupe nucléaire comprend les technologies de fission nucléaire, qui se distinguent par des densités d'énergie extrêmement élevées dans le combustible traité, avec de faibles quantités correspondantes de combustible et de déchets à traiter, mais avec de faibles concentrations dans la croûte terrestre, nécessitant un important effort d'extraction ou de collecte. Les risques professionnels sont donc relativement élevés et dominés par les accidents miniers et de transformation. Les risques publics sont faibles et dominés par les opérations de routine des réacteurs. Une attention particulière doit être accordée aux craintes du public concernant les risques liés à l'exposition aux rayonnements des technologies nucléaires, craintes qui sont relativement importantes par unité de risque pour la santé.

 

Les effets significatifs sur la santé des technologies de production d'électricité sont présentés dans les tableaux 1, 2 et 3.

Tableau 1. Effets significatifs sur la santé des technologies de production d'électricité - groupe de combustibles

Technologie

Professionnel

Effets sur la santé publique

Charbon

Maladie pulmonaire noire
Traumatismes liés aux accidents miniers
Traumatismes liés aux accidents de transport

Effets de la pollution de l'air sur la santé
Traumatismes liés aux accidents de transport

Huile

Traumatismes liés aux accidents de forage
Cancer dû à l'exposition à la raffinerie
organiques

Effets de la pollution de l'air sur la santé
Traumatismes causés par des explosions et des incendies

Schiste bitumineux

Maladie pulmonaire brune
Cancer dû à l'exposition à
les émissions de l'autoclave
Traumatismes liés aux accidents miniers

Cancer dû à l'exposition à
les émissions de l'autoclave
Effets de la pollution de l'air sur la santé

Gaz naturel

Traumatismes liés aux accidents de forage
Cancer dû à l'exposition à
émissions de raffinerie

Effets de la pollution de l'air sur la santé
Traumatismes causés par des explosions et des incendies

Sables bitumineux

Traumatismes liés aux accidents miniers

Effets de la pollution de l'air sur la santé
Traumatismes causés par des explosions et des incendies

Biomasse*

Traumatismes d'accidents pendant
collecte et traitement
Exposition à des produits chimiques dangereux et à des agents biologiques issus de la transformation et de la conversion

Effets de la pollution de l'air sur la santé
Maladies dues à l'exposition à des agents pathogènes
Traumatisme des incendies de maison

* En tant que source d'énergie, généralement considérée comme renouvelable.

 

Tableau 2. Effets significatifs sur la santé des technologies de production d'électricité - groupe renouvelable

Technologie

Professionnel

Effets sur la santé publique

géothermie

Exposition aux gaz toxiques -
routinier et accidentel
Stress dû au bruit
Traumatismes liés aux accidents de forage

Maladie due à l'exposition à des substances toxiques
saumures et sulfure d'hydrogène
Cancer dû à l'exposition au radon

Hydroélectricité,
conventionnel et basse chute

Traumatisme de la construction
accidents

Traumatisme dû aux ruptures de barrage
Maladie due à l'exposition à
Pathogènes

Photovoltaïque

Exposition à des matières toxiques
pendant la fabrication - routine
et accidentel

Exposition à des matières toxiques
lors de la fabrication et de l'élimination
- routinier et accidentel

Wind

Traumatismes d'accidents pendant
construction et exploitation

 

Solaire thermique

Traumatismes d'accidents pendant
fabrication
Exposition à des produits chimiques toxiques
pendant le fonctionnement

 

 

Tableau 3. Effets sanitaires significatifs des technologies de production d'électricité - groupe nucléaire

Technologie

Professionnel

Effets sur la santé publique

Fission

Cancer dû à l'exposition aux radiations
pendant l'extraction de l'uranium, du minerai/du combustible
traitement, exploitation de centrales électriques
et gestion des déchets


Traumatismes d'accidents pendant
exploitation minière, transformation, centrale électrique
la construction et l'exploitation, et
la gestion des déchets

Cancer dû à l'exposition aux radiations
à toutes les étapes du cycle du combustible -
routinier et accidentel


Traumatisme du transport industriel
accidents

 

Les études des effets sur la santé de la combustion du bois aux États-Unis, comme les analyses d'autres sources d'énergie, étaient basées sur les effets sur la santé de la fourniture d'une quantité unitaire d'énergie, c'est-à-dire celle nécessaire pour chauffer un million d'années d'habitation. C'est 6 × 107 Chaleur GJ, ou 8.8 × 107 Entrée de bois GJ à 69% d'efficacité. Les effets sur la santé ont été estimés aux stades de la collecte, du transport et de la combustion. Les alternatives au pétrole et au charbon ont été mises à l'échelle à partir de travaux antérieurs (voir figure 2). Les incertitudes sur la collecte sont ± un facteur ~2, celles sur les incendies domestiques ± un facteur ~3, et celles sur la pollution de l'air ± un facteur supérieur à 10. Si les dangers du nucléaire électrique étaient tracés sur la même échelle, le total le risque serait d'environ la moitié de celui de l'exploitation minière pour l'extraction du charbon.

Figure 2. Effets sur la santé par unité de quantité d'énergie

EHH070F2

Une façon pratique d'aider à comprendre le risque est de l'étaler sur une seule personne alimentant une habitation en bois sur 40 ans (figure 3). Il en résulte un risque total de décès d'environ 1.6 x 10-3 (c'est-à-dire ~0.2 %). Cela peut être comparé au risque de décès dans un accident de voiture aux États-Unis au cours de la même période, ~9.3 x 10-3 (c'est-à-dire ~ 1 %), ce qui est cinq fois plus élevé. La combustion du bois présente des risques du même ordre que les technologies de chauffage plus conventionnelles. Les deux sont bien en deçà du risque global d'autres activités courantes, et de nombreux aspects du risque se prêtent clairement à des mesures préventives.

Figure 3. Risque, pour une personne seule, de décès dû à l'alimentation d'une habitation en bois de chauffage pendant 40 ans

EHH070F3

Les comparaisons suivantes pour les risques pour la santé peuvent être faites :

  • Risque professionnel aigu. Pour le cycle du charbon, le risque professionnel est nettement supérieur à celui associé au pétrole et au gaz ; il est à peu près le même que celui associé aux systèmes d'énergie renouvelable, lorsque leur construction est incluse dans l'évaluation, et il est environ 8 à 10 fois plus élevé que les risques correspondants pour le nucléaire. Les progrès technologiques futurs dans les sources d'énergie solaire et éolienne renouvelables pourraient entraîner une réduction significative du risque professionnel aigu associé à ces systèmes. La production d'hydroélectricité comporte un risque professionnel aigu relativement élevé.
  • Risque professionnel tardif. Les décès tardifs surviennent principalement dans les mines de charbon et d'uranium et sont à peu près de la même taille. L'extraction souterraine du charbon apparaît cependant plus dangereuse que l'extraction souterraine de l'uranium (calcul sur la base d'une unité normalisée d'électricité produite). L'utilisation du charbon extrait à ciel ouvert, en revanche, entraîne au total moins de décès tardifs que l'utilisation de l'énergie nucléaire.
  • Risque public aigu. Ces risques, principalement dus aux accidents de transport, dépendent fortement de la distance parcourue et du mode de transport. Le risque du nucléaire est 10 à 100 fois inférieur à ceux de toutes les autres options, principalement en raison de la quantité relativement faible de matières à transporter. Le cycle du charbon présente le risque public aigu le plus élevé en raison du transport important de matériaux selon le même raisonnement.
  • Risque public tardif. Il existe de grandes incertitudes liées aux risques publics tardifs associés à toutes les sources d'énergie. Les risques publics tardifs pour le nucléaire et le gaz naturel sont à peu près égaux et sont au moins dix fois inférieurs à ceux associés au charbon et au pétrole. Les développements futurs devraient entraîner une diminution significative des risques publics tardifs pour les énergies renouvelables.

 

De toute évidence, les effets sur la santé des différentes sources d'énergie dépendent de la quantité et du type d'énergie utilisée. Celles-ci varient considérablement géographiquement. Le bois de feu est la quatrième contribution la plus importante à l'approvisionnement énergétique mondial, après le pétrole, le charbon et le gaz naturel. Près de la moitié de la population mondiale, en particulier celle vivant dans les zones rurales et urbaines des pays en développement, en dépend pour la cuisson et le chauffage (soit du bois ou son dérivé, le charbon de bois, soit, en l'absence de l'un ou de l'autre, des résidus agricoles ou bouse). Le bois de feu constitue plus de la moitié de la consommation mondiale de bois, atteignant 86 % dans les pays en développement et 91 % en Afrique.

En considérant les sources d'énergie nouvelles et renouvelables telles que l'énergie solaire, l'énergie éolienne et les carburants à base d'alcool, l'idée d'un « cycle du combustible » doit englober des industries telles que l'énergie solaire photovoltaïque, où pratiquement aucun risque n'est lié au fonctionnement de l'appareil, mais un risque substantiel quantité - souvent ignorée - peut être impliquée dans sa fabrication.

Des tentatives ont été faites pour résoudre cette difficulté en élargissant le concept du cycle du combustible pour inclure toutes les étapes du développement d'un système énergétique, y compris, par exemple, le béton qui entre dans l'usine qui fabrique le verre pour le capteur solaire. La question de la complétude a été abordée en notant que l'analyse rétrospective des étapes de fabrication équivaut à un ensemble d'équations simultanées dont la solution - si elle est linéaire - est exprimable sous la forme d'une matrice de valeurs. Une telle approche est familière aux économistes sous le nom d'analyse entrées-sorties ; et les chiffres appropriés, montrant combien chaque activité économique tire sur les autres, ont déjà été dérivés - bien que pour des catégories agrégées qui peuvent ne pas correspondre exactement aux étapes de fabrication que l'on souhaite examiner pour mesurer les dommages à la santé.

Aucune méthode d'analyse comparative des risques dans le secteur de l'énergie n'est pleinement satisfaisante en elle-même. Chacun a des avantages et des limites ; chacun fournit un type d'information différent. Compte tenu du niveau d'incertitude des analyses des risques pour la santé, les résultats de toutes les méthodes doivent être examinés pour fournir une image aussi détaillée que possible et une meilleure compréhension de l'ampleur des incertitudes associées.

 

Noir

Page 74 de 122

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières

Établissements et services de soins de santé Références

Abdo, R et H Chriske. 1990. HAV-Infektionsrisiken im Krankenhaus, Altenheim und Kindertagesstätten. Dans Arbeitsmedizin im Gesundheitsdienst, Bande 5, édité par F Hofmann et U Stössel. Stuttgart : Gentner Verlag.

Acton, W. 1848. Sur les avantages du caouchoue et de la gutta-percha pour protéger la peau contre la contagion des poisons animaux. Lancette 12: 588.

Ahlin, J. 1992. Études de cas interdisciplinaires dans des bureaux en Suède. Dans Espace corporatif et architecture. Vol. 2. Paris : Ministère de l'équipement et du logement.

Akinori, H et O Hiroshi. 1985. Analyse de la fatigue et des conditions de santé chez les infirmières hospitalières. J Science du travail 61: 517-578.

Allmeers, H, B Kirchner, H Huber, Z Chen, JW Walter et X Baur. 1996. La période de latence entre l'exposition et les symptômes de l'allergie au latex naturel : suggestions de prévention. Dtsh Med Wochenschr 121 (25/26):823-828.

Alter, MJ. 1986. Sensibilité au virus varicelle-zona chez les adultes à haut risque d'exposition. Infec Contr Hosp Epid 7: 448-451.

—. 1993. La détection, la transmission et les résultats de l'infection par l'hépatite C. Désinfecter les agents 2: 155-166.

Alter, MJ, HS Margolis, K Krawczynski, FN Judson, A Mares, WJ Alexander, PY Hu, JK Miller, MA Gerber et RE Sampliner. 1992. L'histoire naturelle de l'hépatite C communautaire aux États-Unis. New Engl J Med 327: 1899-1905.

Conférence américaine des hygiénistes industriels gouvernementaux (ACGIH). 1991. Documentation des valeurs limites d'exposition et des indices d'exposition biologique, 6e édition. Cincinnati, Ohio : ACGIH.

—. 1994. VLE : valeurs limites d'exposition et indices d'exposition biologique pour 1994-1995. Cincinnati, Ohio : ACGIH.

Association hospitalière américaine (AHA). 1992. Mise en œuvre de pratiques d'aiguille plus sûres. Chicago, Illinois : AHA.

Institut américain des architectes. 1984. Détermination des besoins en espace hospitalier. Washington, DC : Presse de l'Institut américain des architectes.

Comité de l'American Institute of Architects sur l'architecture pour la santé. 1987. Lignes directrices pour la construction et l'équipement des installations hospitalières et médicales. Washington, DC : American Institute of Acrchitects Press.

Société américaine des ingénieurs en chauffage, réfrigération et climatisation (ASHRAE). 1987. Établissements de santé. Dans Manuel ASHRAE : Systèmes et applications de chauffage, de ventilation et de climatisation. Atlanta, Géorgie : ASHRAE.

Anon. 1996. Nouveaux médicaments pour l'infection à VIH. Lettre Médicale Médicamenteuse et Thérapeutique 38: 37.

Axelsson, G, R Rylander et I Molin. 1989. Issue de la grossesse en relation avec des horaires de travail irréguliers et incommodes. Brit J Ind Med 46: 393-398.

Beatty, JSK Ahern et R Katz. 1977. Privation de sommeil et vigilance des anesthésistes lors d'une chirurgie simulée. Dans Vigilance, édité par RR Mackie. New York : presse plénière.

Beck-Friis, B, P Strang et PO Sjöden. 1991. Stress au travail et satisfaction au travail dans les soins à domicile en milieu hospitalier. Journal des soins palliatifs 7 (3): 15-21.

Benenson, AS (éd.). 1990. Contrôle des maladies transmissibles chez l'homme, 15e édition. Washington, DC : Association américaine de santé publique.

Bertold, H, F Hofmann, M Michaelis, D Neumann-Haefelin, G Steinert et J Wölfle. 1994. Hépatite C—Risiko für Beschäftigte im Gesundheitsdienst? Dans Arbeitsmedizin im Gesundheitsdienst, Bande 7, édité par F Hofmann, G Reschauer et U Stössel. Stuttgart : Gentner Verlag.

Bertram, DA. 1988. Caractéristiques des quarts de travail et performance des résidents de deuxième année dans un service d'urgence. État de New York J Med 88: 10-14.

Berufsgenossenschaft für Gesundheitsdienst und Wohlfahrtspflege (BGW). 1994. Geschäftsbericht.

Bissel, L et R Jones. 1975. Les médecins handicapés ignorés par leurs pairs. Présenté à l'American Medical Association Conference on the Imparied Physician, 11 avril, San Francisco, CA.

Bitker, TE. 1976. Tendre la main au médecin déprimé. JAMA 236 (15): 1713-1716.

Blanchard, M, MM Cantel, M Faivre, J Girot, JP Ramette, D Thely et M Estryn-Béhar. 1992. Incidence des rythmes biologiques sur le travail de nuit. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Toulouse : Édition Octares.

Blanpain, C et M Estryn-Béhar. 1990. Mesures d'ambiance physique dans dix services hospitaliers. Performances 45: 18-33.

Blaycock, B. 1995. Allergies au latex : vue d'ensemble, prévention et implications pour les soins infirmiers. Gestion des plaies de stomie 41(5):10-12,14-15.

Blazer, MJ, FJ Hickman, JJ Farmer et DJ Brenner. 1980. Salmonella typhi: Le laboratoire comme réservoir d'infection. Journal of Infectious Diseases 142: 934-938.

Coup, RJ et MIV Jayson. 1988. Maux de dos. Dans Aptitude au travail : l'approche médicale, édité par FC Edwards, RL McCallum et PJ Taylor. Oxford : presse universitaire d'Oxford.

Boehm, G et E Bollinger. 1990. Importance des facteurs environnementaux sur les volumes d'alimentation entérale tolérés pour les patients dans les unités de soins intensifs néonatals. Praxis maternelle 58 (6): 275-279.

Bongers, P, RD Winter, MAJ Kompier et VV Hildebrandt. 1992. Facteurs psychosociaux au travail et maladies musculosquelettiques. Revue de la littérature. Leiden, Pays-Bas : TNO.

Bouhnik, C, M Estryn-Béhar, B Kapitaniak, M Rocher et P Pereau. 1989. Le roulage dans les établissements de soins. Document pour le médecin du travail. INRS 39: 243-252.

Boulard, R. 1993. Les indices de santé mentale du personnel infirmier : l'impact de la charge de travail, de l'autonomie et du soutien social. Dans La psychologie du travail à l'aube du XXI° siècle. Actes du 7° Congrès de psychologie du travail de langue française. Issy-les-Moulineaux : Editions EAP.

Breakwell, directeur général. 1989. Faire face à la violence physique. Londres : Société britannique de psychologie.

Bruce, DL et MJ Bach. 1976. Effets des traces de concentrations de gaz anesthésiques sur les performances comportementales du personnel de la salle d'opération. DHEW (NIOSH) Publication n° 76-169. Cincinnati, Ohio : NIOSH.

Bruce, DL, KA Eide, HW Linde et JE Eckenhoff. 1968. Causes de décès chez les anesthésiologistes : Une enquête de 20 ans. Anesthésiologie 29: 565-569.

Bruce, DL, KA Eide, NJ Smith, F Seltzer et MH Dykes. 1974. Une enquête prospective sur la mortalité des anesthésiologistes, 1967-1974. Anesthésiologie 41: 71-74.

Burhill, D, DA Enarson, EA Allen et S Grzybowski. 1985. La tuberculose chez les infirmières en Colombie-Britannique. Can Med Assoc J 132: 137.

Burke, FJ, MA Wilson et JF McCord. 1995. Allergie aux gants en latex dans la pratique clinique : Rapports de cas. Quintessence International 26 (12): 859-863.

Buring, JE, CH Hennekens, SL Mayrent, B Rosner, ER Greenberg et T Colton. 1985. Expériences de santé du personnel de salle d'opération. Anesthésiologie 62: 325-330.

Burton, R. 1990. Hôpital St. Mary's, île de Wight : Un contexte approprié pour les soins. Brit Med J 301: 1423-1425.

Büssing, A. 1993. Stress et épuisement professionnel en soins infirmiers : études sur différentes structures de travail et horaires de travail. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Cabal, C, D Faucon, H Delbart, F Cabal et G Malot. 1986. Construction d'une blanchisserie industrielle aux CHU de Saint-Etienne. Arch Mal Prof 48 (5): 393-394.

Callan, JR, RT Kelly, ML Quinn, JW Gwynne, RA Moore, FA Muckler, J Kasumovic, WM Saunders, RP Lepage, E Chin, I Schoenfeld et DI Serig. 1995. Évaluation des facteurs humains de la curiethérapie à postcharge à distance. NUREG/CR-6125. Vol. 1. Washington, DC : Commission de réglementation nucléaire

Cammock, R. 1981. Bâtiments de soins de santé primaires : Guide d'information et de conception pour les architectes et leurs clients. Londres : presse architecturale.

Cardo, D, P Srivastava, C Ciesielski, R Marcus, P McKibben, D Culver et D Bell. 1995. Étude cas-témoins de la séroconversion au VIH chez les travailleurs de la santé après une exposition percutanée à du sang infecté par le VIH (résumé). Contrôle des infections Hosp Epidemiol 16 suppl.:20.

Carillo, T, C Blanco, J Quiralte, R Castillo, M Cuevas et F Rodriguez de Castro. 1995. Prévalence de l'allergie au latex chez les travailleurs de serre. J Allergie Clin Immunol 96(5/1):699-701.

Catananti, C et A Cambieri. 1990. Igiene e Tecnica Ospedaliera (Hygiène et organisation hospitalières). Rome : II Pensiero Scientifico Editore.

Catananti, C, G Damiani, G Capelli et G Manara. 1993. Conception des bâtiments et sélection des matériaux et de l'ameublement à l'hôpital : examen des directives internationales. In Indoor Air '93, Actes de la 6e Conférence internationale sur la qualité de l'air intérieur et le climat 2: 641-646.

Catananti, C, G Capelli, G Damiani, M Volpe et GC Vanini. 1994. Évaluation à critères multiples dans la planification de la sélection des matériaux pour les établissements de soins de santé. Identification préliminaire des critères et des variables. Dans Bâtiments Sains '94, Actes de la 3ème Conférence Internationale 1: 103-108.

Cats-Baril, WL et JW Frymoyer. 1991. L'économie des troubles de la colonne vertébrale. Dans La colonne vertébrale adulte, édité par JW Frymoyer. New York : Raven Press.

Centres de contrôle des maladies (CDC). 1982. Syndrome d'immunodéficience acquise (SIDA): Précautions pour le personnel des laboratoires cliniques. Représentant hebdomadaire Morb Mortel 31: 577-580.

—. 1983. Syndrome d'immunodéficience acquise (SIDA): Précautions pour les travailleurs de la santé et les professionnels apparentés. Représentant hebdomadaire Morb Mortel 32: 450-451.

—. 1987a. Infection par le virus de l'immunodéficience humaine chez les travailleurs de la santé exposés au sang de patients infectés. Représentant hebdomadaire Morb Mortel 36: 285-289.

—. 1987b. Recommandations pour la prévention de la transmission du VIH dans les établissements de santé. Morb mortel hebdomadaire Reps 36 supplément 2:3S-18S.

—. 1988a. Précautions universelles pour la prévention de la transmission du virus de l'immunodéficience humaine, du virus de l'hépatite B et d'autres agents pathogènes à diffusion hématogène dans les établissements de soins de santé. Représentant hebdomadaire Morb Mortel 37 : 377-382,387, 388-XNUMX.

—. 1988b. Lignes directrices pour la prévention de la transmission du virus de l'immunodéficience humaine et du virus de l'hépatite B aux travailleurs de la santé et de la sécurité publique. Représentant hebdomadaire Morb Mortel 37 supplément 6:1-37.

—. 1989. Lignes directrices pour la prévention de la transmission du virus de l'immunodéficience humaine et du virus de l'hépatite B aux travailleurs de la santé et de la sécurité publique. Représentant hebdomadaire Morb Mortel 38 supplément 6.

—. 1990. Déclaration du service de santé publique sur la gestion de l'exposition professionnelle au virus de l'immunodéficience humaine, y compris les considérations concernant l'utilisation post-exposition. Représentant hebdomadaire Morb Mortel 39 (no RR-1).

—. 1991a. Virus de l'hépatite B : une stratégie globale pour éliminer la transmission aux États-Unis grâce à la vaccination universelle des enfants : recommandations du Comité consultatif sur les pratiques d'immunisation (ACIP). Représentant hebdomadaire Morb Mortel 40 (no RR-13).

—. 1991b. Recommandations pour prévenir la transmission du virus de l'immunodéficience humaine et du virus de l'hépatite B aux patients lors d'interventions invasives sujettes à l'exposition. Représentant hebdomadaire Morb Mortel 40 (no RR-8).

—. 1993a. Pratiques recommandées de contrôle des infections en dentisterie. Représentant hebdomadaire Morb Mortel 42 (n° RR-8):1-12.

—. 1993b. Biosécurité dans les laboratoires microbiens et biomédicaux, 3e édition. Publication du DHHS (CDC) n° 93-8395. Atlanta, Géorgie : CDC.

—. 1994a. Rapport de surveillance du VIH/SIDA. Vol. 5(4). Atlanta, Géorgie : CDC.

—. 1994b. Bulletin d'information sur la prévention du VIH/SIDA. Vol. 5(4). Atlanta, Géorgie : CDC.

—. 1994c. Virus de l'immunodéficience humaine dans les foyers - États-Unis. Représentant hebdomadaire Morb Mortel 43: 347-356.

—. 1994d. Rapport de surveillance du VIH/SIDA. Vol. 6(1). Atlanta, Géorgie : CDC.

—. 1994e. Lignes directrices pour prévenir la transmission de Mycobacterium tuberculosis dans les établissements de santé. Représentant hebdomadaire Morb Mortel 43 (n° RR-13):5-50.

—. 1995. Étude cas-témoins de la séroconversion au VIH chez les travailleurs de la santé après une exposition percutanée à du sang infecté par le VIH—France, Royaume-Uni et États-Unis. Représentant hebdomadaire Morb Mortel 44: 929-933.

—. 1996a. Rapport de surveillance du VIH/SIDA. Vol 8(2). Atlanta, Géorgie : CDC.

—. 1996b. Mise à jour : Recommandations provisoires du Service de santé publique pour la chimioprophylaxie après une exposition professionnelle au VIH. Représentant hebdomadaire Morb Mortel 45: 468-472.

Charney, W (éd.). 1994. Éléments essentiels de la sécurité des hôpitaux modernes. Boca Raton, Floride : Éditeurs Lewis.

Chou, T, D Weil et P Arnmow. 1986. Prévalence des anticorps de la rougeole chez le personnel hospitalier. Infec Contr Hosp Epid 7: 309-311.

Chriske, H et A Rossa. 1991. Hepatitis-C-Infektionsgefährdung des medizinischen Personals. Dans Arbeitsmedizin im Gesundheitsdienst, Bande 5, édité par F Hofmann et U Stössel. Stuttgart : Gentner Verlag.

Clark, DC, E Salazar-Gruesco, P Grabler, J Fawcett. 1984. Prédicteurs de la dépression au cours des 6 premiers mois de stage. Am J Psychiatry 141: 1095-1098.

Clemens, R, F Hofmann, H Berthold et G Steinert. 1992. Prävalenz von Hepatitis, A, B et C bei Bewohern einer Einrichtung für geistig Behinderte. Sozialpadiatrie 14: 357-364.

Cohen, FR. 1980. Exposition anesthésique en milieu de travail. Littleton, MA : PSG Publishing Co.

Cohen, EN, JW Bellville et BW Brown, Jr. 1971. Anesthésie, grossesse et fausse couche : Une étude des infirmières et des anesthésistes de salle d'opération. Anesthésiologie 35: 343-347.

—. 1974. Maladie professionnelle chez le personnel de salle d'opération : une étude nationale. Anesthésiologie 41: 321-340.

—. 1975. Une enquête sur les risques pour la santé liés à l'anesthésie chez les dentistes. J Am Dent Assoc 90: 1291-1296.

Commission des Communautés européennes. 1990. Recommandation de la Commission du 21 février 1990 sur la protection des personnes contre l'exposition au radon dans les environnements intérieurs. 90/143/Euratom (traduction italienne).

Cooper, JB. 1984. Vers la prévention des mésaventures anesthésiques. Cliniques internationales d'anesthésiologie 22: 167-183.

Cooper, JB, RS Newbower et RJ Kitz. 1984. Une analyse des erreurs majeures et des défaillances de l'équipement dans la gestion de l'anesthésie : Considérations pour la prévention et la détection. Anesthésiologie 60 (1): 34-42.

Costa, G, R Trinco et G Schallenberg. 1992. Problèmes de confort thermique dans un bloc opératoire équipé d'un système à flux d'air laminaire Ergonomie à l'hôpital, édité par M Estryn-Béhar M, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Cristofari, MF, M Estryn-Béhar, M Kaminski et E Peigné. 1989. Le travail des femmes à l'hôpital. Informations Hospitalières 22 / 23: 48-62.

Conseil des Communautés européennes. 1988. Directive du 21 décembre 1988 pour se rapprocher des lois des pays membres sur les produits de construction. 89/106/CEE (traduction italienne).

de Chambost, M. 1994. Alarmes sonnantes, soignantes trébuchantes. Objectif soins 26: 63-68.

de Keyser, V et AS Nyssen. 1993. Les erreurs humaines en anesthésies. Le travail humain 56(2/3):243-266.

Arrêté du Président du Conseil des Ministres. 1986. Directive aux régions sur les exigences des établissements de soins de santé privés. 27 juin.

Dehlin, O, S Berg, GBS Andersson et G Grimby. 1981. Effet de l'entraînement physique et des conseils ergonomiques sur la perception psychosociale du travail et sur l'évaluation subjective de l'insuffisance lombaire. Scand J Réadaptation 13: 1-9.

Delaporte, MF, M Estryn-Béhar, G Brucker, E Peigne et A Pelletier. 1990. Pathologie dermatologique et exercice professionnel en milieu hospitalier. Arch Mal Prof 51 (2): 83-88.

Denisco, RA, JN Drummond et JS Gravenstein. 1987. L'effet de la fatigue sur la performance d'une tâche de surveillance anesthésique simulée. J Clin Monit 3: 22-24.

Devienne, A, D Léger, M Paillard, A Dômont. 1995. Troubles du sommeil et de la vigilance chez des généralistes de garde en région parisienne. Arch Mal Prof 56(5):407-409.

Donovan, R, PA Kurzman et C Rotman. 1993. Améliorer la vie des préposés aux soins à domicile : un partenariat entre le travail social et le travail. travail social 38(5):579-585..

Edling, C. 1980. Les gaz anesthésiques comme risque professionnel. Une critique. Scand J Work Environ Santé 6: 85-93.

Ehrengut, W et T Klett. 1981. Rötelnimmunstatus von Schwesternschülerinnen in Hamberger Krankenhäusern im Jahre 1979. Monatsschrift Kinderheilkdunde 129: 464-466.

Elias, J, D Wylie, A Yassi et N Tran. 1993. Élimination de l'exposition des travailleurs à l'oxyde d'éthylène des stérilisateurs hospitaliers : une évaluation du coût et de l'efficacité d'un système d'isolement. Appl Occuper Environ Hyg 8 (8): 687-692.

Engels, J, TH Senden et K Hertog. 1993. Postures de travail des infirmières en EHPAD. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Englade J, E Badet et G Becque. 1994. Vigilance et qualité de sommeil des soignants de nuit. Revue de l'infirmière 17: 37-48.

Ernst, E et V Fialka. 1994. Lombalgie idiopathique : impact actuel, orientations futures. Journal européen de médecine physique et de réadaptation 4: 69-72.

Escribà Agüir, V. 1992. Attitudes des infirmières envers le travail posté et la qualité de vie, Scand J Soc Méd 20 (2): 115-118.

Escribà Agüir V, S Pérez, F Bolumar et F Lert. 1992. Retenue des horaires de travail sur le sommeil des infirmiers. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Estryn-Béhar, M. 1990. Les groupes de parole : Une stratégie d'amélioration des relations avec les malades. Le concours médical 112 (8): 713-717.

—. 1991. Guide des risques professionnels du personnel des services de soins. Paris : Éditions Lamarre.

Estryn-Béhar, M et N Bonnet. 1992. Le travail de nuit à l'hôpital. Quelques constats à mieux prendre en compte. Arch Mal Prof 54 (8): 709-719.

Estryn-Béhar, M et F Fonchain. 1986. Les troubles du sommeil du personnel hospitalier réalisant un travail de nuit en continu. Arch Mal Prof 47(3):167-172;47(4):241.

Estryn-Béhar, M et JP Fouillot. 1990a. Étude de la charge physique du personnel soignant, Documents pour le médecin du travail. INRS: 27-33.

—. 1990b. Etude de la charge mentale et approche de la charge psychique du personnel soignant. Analyse du travail des infirmières et aides-soignantes dans 10 services de soins. Documents pour le médecin du travail INRS 42: 131-144.

Estryn-Béhar, M et C Hakim-Serfaty. 1990. Organisation de l'espace hospitalier. Hôpital technique 542: 55-63.

Estryn-Béhar, M et G Milanini. 1992. Concevoir les espaces de travail en services de soins. Technique Hospitalière 557: 23-27.

Estryn-Béhar, M et H Poinsignon. 1989. Travailler à l'hôpital. Paris : Berger Levrault.

Estryn-Béhar, M, C Gadbois et E Vaichere. 1978. Effets du travail de nuit en équipes fixes sur une population féminine. Résultats d'une enquête dans le secteur hospitalier. Arch Mal Prof 39 (9): 531-535.

Estryn-Béhar, M, C Gadbois, E Peigné, A Masson et V Le Gall. 1989b. Impact des équipes de nuit sur le personnel hospitalier masculin et féminin, en Travail posté : santé et performance, édité par G Costa, G Cesana, K Kogi et A Wedderburn. Actes du Symposium international sur le travail de nuit et posté. Francfort : Peter Lang.

Estryn-Béhar, M, M Kaminski et E Peigné. 1990. Conditions de travail pénibles et troubles musculo-squelettiques chez les travailleuses hospitalières. Int Arch Occup Environ Santé 62: 47-57.

Estryn-Béhar, M, M Kaminski, M Franc, S Fermand et F Gerstle F. 1978. Grossesse er conditions de travail en milieu hospitalier. Revue francaise gynec 73 (10) 625-631.

Estryn-Béhar, M, M Kaminski, E Peigné, N Bonnet, E Vaichère, C Gozlan, S Azoulay et M Giorgi. 1990. Stress au travail et état de santé mentale. Br J Ind Méd 47: 20-28.

Estryn-Béhar, M, B Kapitaniak, MC Paoli, E Peigné et A Masson. 1992. Aptitude à l'exercice physique dans une population de travailleuses hospitalières. Int Arch Occup Environ Santé 64: 131-139.

Estryn Béhar, M, G Milanini, T Bitot, M Baudet et MC Rostaing. 1994. La sectorisation des soins : Une organisation, un espace. Gestion hospitalière 338: 552-569.

Estryn-Béhar, M, G Milanini, MM Cantel, P Poirier, P Abriou et le groupe d'étude de l'USI. 1995a. Intérêt de la méthodologie ergonomique participative pour améliorer un service de réanimation. Dans Santé au travail pour les travailleurs de la santé, 2e édition, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

—. 1995b. Méthodologie ergonomique participative pour le nouvel aménagement d'un service de réanimation cardiologique. Dans Santé au travail pour les travailleurs de la santé, 2e édition, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Estryn-Béhar, M, E Peigné, A Masson, C Girier-Deportes, JJ Guay, D Saurel, JC Pichenot et J Cavaré. 1989a. Les femmes travaillant à l'hôpital aux différents horaires, qui sont-elles ? Que délicates-elles comme conditions de travail ? Que souhaitent-elles? Arch Mal Prof 50 (6): 622-628.

Falk, SA et NF Woods. 1973. Niveaux de bruit des hôpitaux et risques potentiels pour la santé, Nouvelle-Angleterre J Med 289: 774-781.

Fanger, PO. 1973. Evaluation du confort thermique de l'homme en pratique. Br J Ind Méd 30: 313-324.

—. 1992. Caractérisation sensorielle de la qualité de l'air et des sources de pollution. Dans Aspects chimiques, microbiologiques, sanitaires et de confort de la qualité de l'air intérieur - État de l'art en SBS, édité par H Knoppel et P Wolkoff. Dordrecht, Pays-Bas : Kluwer Academic Publishers.

Favrot-Laurens. 1992. Technologies avancées et organisation du travail des équipes hospitalières. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

—. 1992. Caractérisation sensorielle de la qualité de l'air et des sources de pollution. Dans Aspects chimiques, microbiologiques, de santé et de confort de la qualité de l'air intérieur - état de l'art dans le syndrome des bâtiments malsains, édité par H Koppel et P Wolkoff. Bruxelles et Luxembourg : CEE.

Ferstandig, LL. 1978. Traces de concentrations de gaz anesthésiques : Un examen critique de leur potentiel pathologique. Anesthétique Analg 57: 328-345.

Finley, GA et AJ Cohen. 1991. Urgence perçue et anesthésiste : réponses aux alarmes courantes du moniteur de salle d'opération. Can J Anesth 38 (8): 958-964

Ford, CV et DK Wentz. 1984. L'année de stage : Une étude du sommeil, des états d'humeur et des paramètres psychophysiologiques. South Med J 77: 1435-1442.

Friedman, RC, DS Kornfeld et TJ Bigger. 1971. Problèmes psychologiques associés à la privation de sommeil chez les internes. Journal de l'éducation médicale 48: 436-441.

Friele, RD et JJ Knibbe. 1993. Surveillance des obstacles à l'utilisation des lève-personnes dans les soins à domicile tels que perçus par le personnel infirmier. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. LandsbergLech : Ecomed Verlag.

Gadbois, CH. 1981. Aides soignantes et infirmières de nuit. Dans Conditions de travail et de vie quotidienne. Montrougs : Agence Nationale pour l'Amélioration des Conditions de Travail.

Gadbois, C, P Bourgeois, MM Goeh-Akue-Gad, J Guillaume et MA Urbain. 1992. Contraintes temporelles et structure de l'espace dans le processus de travail des équipes de soins. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Jeux, WP et W Tatton-Braen. 1987. Conception et développement d'hôpitaux. Londres : presse architecturale.

Gardner, Urgences et RC Hall. 1981. Le syndrome du stress professionnel. Psychosomatique 22: 672-680.

Gaube, J, H Feucht, R Laufs, D Polywka, E Fingscheidt et HE Müller. 1993. Hepatitis A, B und C als desmoterische Infecktionen. Gessundheitwesen et Desinfextion 55: 246-249.

Gerberding, JL. Sd Essai ouvert de la chimioprophylaxie post-exposition à la zidovudine chez les travailleurs de la santé exposés professionnellement au virus de l'immunodéficience humaine. Script SFGH.

—. 1995. Gestion des expositions professionnelles aux virus à diffusion hématogène. New Engl J Med 332: 444-451.

Ginesta, J. 1989. Gaz anestésicos. Dans Riesgos del Trabajo del Personal Sanitario, édité par JJ Gestal. Madrid: Éditorial Interamericana McGraw-Hill.

Gold, DR, S Rogacz, N Bock, TD Tosteson, TM Baum, FE Speizer et CA Czeiler. 1992. Travail posté en rotation, sommeil et accidents liés à la somnolence chez les infirmières hospitalières. Am J Santé publique 82 (7): 1011-1014.

Goldman, LI, MT McDonough et GP Rosemond. 1972. Stress affectant les performances chirurgicales et l'apprentissage : corrélation entre la fréquence cardiaque, l'électrocardiogramme et l'opération enregistrée simultanément sur des bandes vidéo. J Rés Surg 12: 83-86.

Graham, C, C Hawkins et W Blau. 1983. Pratique novatrice du travail social en soins de santé : gestion du stress. Dans Le travail social dans un monde agité, édité par M Dinerman. Washington, DC : Association nationale des travailleurs sociaux.

Green, A. 1992. Comment les infirmières peuvent s'assurer que les sons qu'entendent les patients ont un effet positif plutôt que négatif sur le rétablissement et la qualité de vie. Journal des soins infirmiers intensifs et intensifs 8 (4): 245-248.

Griffin, WV. 1995. Sécurité des travailleurs sociaux et des agences. Dans Encyclopédie du travail social, 19e édition. Washington, DC : Association nationale des travailleurs sociaux.

Grob, PJ. 1987. Groupe de transmission de l'hépatite B par un médecin. Lancette 339: 1218-1220.

Guardino, X et MG Rosell. 1985. Exposicion laboral à gaz anestésicos. Dans Notes techniques de prévention. N° 141. Barcelone : INSHT.

—. 1992. Exposition au travail aux gaz anesthésiques. Un risque maîtrisé ? Janus 12: 8-10.

—. 1995. Surveillance de l'exposition aux gaz anesthésiques. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagburg, F Hoffmann, U Stössel et G Westlander. Solna : Institut national de santé au travail.

Hagberg, M, F Hofmann, U Stössel et G Westlander (eds.). 1993. Santé au travail pour les travailleurs de la santé. Landsberg/Lech : Ecomed Verlag.

Hagberg, M, F Hofmann, U Stössel et G Westlander (eds.). 1995. Santé au travail pour les travailleurs de la santé. Singapour : Commission internationale de la santé au travail.

Haigh, R. 1992. L'application de l'ergonomie à la conception du lieu de travail dans les établissements de santé au Royaume-Uni Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Halm, MA et MA Alpen, 1993. L'impact de la technologie sur le patient et les familles. Cliniques de soins infirmiers d'Amérique du Nord 28 (2): 443-457.

Harber, P, L Pena et P Hsu. 1994. Antécédents personnels, formation et lieu de travail comme facteurs prédictifs de maux de dos chez les infirmières. Suis J Ind Med 25: 519-526.

Hasselhorn, HM. 1994. Prophylaxie antirétrovirale nach kontakt mit HIV-jontaminierten. Dans Flüssigkeiten en infectiologie, édité par F Hofmann. Landsberg/Lech : Ecomed Verlag.

Hasselhorn, HM et E Seidler.1993. Soins terminaux en Suède—Nouveaux aspects de la prise en charge professionnelle des mourants. Dans Santé au travail pour les soins de santé Workers, édité par M Hagberg, F Hofmann, U Stössel U et G Westlander. Landsberg/Lech : Ecomed Verlag.

Heptonstall, J, K Porter et N Gill. 1993. Transmission professionnelle du VIH : Résumé des rapports publiés. Londres : Centre de surveillance des maladies transmissibles AIDS Centre.

Hesse, A, Lacher A, HU Koch, J Kublosch, V Ghane et KF Peters. 1996. Mise à jour sur le sujet des allergies au latex. Hauzarzt 47 (11): 817-824.

Ho, DD, T Moudgil et M Alam. 1989. Quantification du virus de l'immunodéficience humaine de type 1 dans le sang des personnes infectées. New Engl J Med 321: 1621-1625.

Hodge, B et JF Thompson. 1990. Les nuisances sonores au bloc opératoire. Lancette 335: 891-894.

Hofmann, F et H Berthold. 1989. Zur Hepatitis-B-Gefährdung des Krankenhauspersonals-Möglichkeiten der prae-und postexpositionellen Prophylaxe. Monde médical 40: 1294-1301.

Hofmann, F et U Stössel. 1995. Santé environnementale dans les professions de la santé : risques biologiques, physiques, psychiques et sociaux pour la santé. Avis sur la santé environnementale 11: 41-55.

Hofmann, F, H Berthold et G Wehrle. 1992. Immunité contre l'hépatite A chez le personnel hospitalier. Eur J Clin Microbiol Infect Dis 11 (12): 1195.

Hofmann, F, U Stössel et J Klima. 1994. Lombalgie chez les infirmières (I). Journal européen de réadaptation physique et médicale 4: 94-99.

Hofmann, F, B Sydow et M Michaelis. 1994a. Oreillons—berufliche Gefährdung und Aspekte der epidemiologischen Entwicklung. Gessundheitwesen et Desinfextion 56: 453-455.

—. 1994b. Zur epidemiologischen Bedeutung der Varizellen. Gessundheitwesen et Desinfextion 56: 599-601.

Hofmann, F, G Wehrle, K Berthold et D Köster. 1992. L'hépatite A en tant que risque professionnel. Vaccinez 10 supplément 1:82-84.

Hofmann, F, U Stössel, M Michaelis et A Siegel. 1993. Tuberculose—Risque professionnel pour les travailleurs de la santé? Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg. Landsberg/Lech : Ecomed Verlag.

Hofmann, F, M Michaelis, A Siegel et U Stössel. 1994. Wirbelsäulenerkrankungen im Pflegeberuf. Medizinische Grundlagen und Prävention. Landsberg/Lech : Ecomed Verlag.

Hofmann, F, M Michaelis, M Nübling et FW Tiller. 1995. Hépatite européenne - Une étude. Publication dans Vorereitung.

Hofmann, H et C Kunz. 1990. Faible risque d'infection par le virus de l'hépatite C chez les travailleurs de la santé. Infection 18: 286-288.

Holbrook, TL, K Grazier, JL Kelsey et RN Stauffer. 1984. La fréquence d'occurrence, l'impact et le coût de certaines affections musculosquelettiques aux États-Unis. Park Ridge, Il : Académie américaine des chirurgiens orthopédiques.

Hollinger, FB. 1990. Virus de l'hépatite B. Dans Virologie, édité par BN Fiedles et DM Knipe. New York : Raven Press.

Hopps, J et P Collins. 1995. Aperçu de la profession du travail social. Dans Encyclopédie du travail social, 19e édition. Washington, DC : Association nationale des travailleurs sociaux.

Hubacova, L, I Borsky et F Strelka. 1992. Problèmes de physiologie du travail des infirmières travaillant dans les services d'hospitalisation. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Hunt, LW, AF Fransway, CE Reed, LK Miller, RT Jones, MC Swanson et JW Yunginger. 1995. Une épidémie d'allergie professionnelle au latex impliquant des travailleurs de la santé. J Occuper Environ Med 37 (10): 1204-1209.

Jacobson, SF et HK MacGrath. 1983. Infirmières sous stress. New York: John Wiley & Sons.

Jacques, CHM, MS Lynch et JS Samkoff. 1990. Les effets de la perte de sommeil sur la performance cognitive des médecins résidents. J Fam Pract 30: 223-229.

Jagger, J, EH Hunt, J Brand-Elnagger et RD Pearson. 1988. Taux de blessures par piqûre d'aiguille causées par divers appareils dans un hôpital universitaire. New Engl J Med 319: 284-288.

Johnson, JA, RM Buchan et JS Reif. 1987. Effet de l'exposition aux gaz et vapeurs anesthésiques résiduaires sur les résultats de la reproduction chez le personnel vétérinaire. Am Ind Hyg Assoc J 48 (1): 62-66.

Jonasson, G, JO Holm et J Leegard. Allergie au caoutchouc : un problème de santé croissant ? Tuidsskr Ni Laegeforen 113 (11): 1366-1367.

Kandolin, I. 1993. Épuisement professionnel des infirmiers et infirmières en travail posté. Ergonomie 36(1/3):141-147.

Kaplan, RM et RA Deyo. 1988. Maux de dos chez les travailleurs de la santé. Dans Mal de dos chez les travailleurs, édité par RA Deyo. Philadelphie, Pennsylvanie : Hanley & Belfus.

Katz, R. 1983. Causes de décès chez les infirmières. Méd Occupation 45: 760-762.

Kempe, P, M Sauter et moi Lindner. 1992. Particularités des infirmières pour personnes âgées ayant suivi un programme de formation visant à réduire les symptômes du burn-out et premiers résultats sur l'issue du traitement. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Kerr, JH. 1985. Dispositifs d'avertissement. Br J Anaesth 57: 696-708.

Kestin, IG, RB Miller et CJ Lockhart. 1988. Alarmes auditives pendant la surveillance de l'anesthésie. Anesthésiologie 69 (1): 106-109.

Kinloch-de-los, S, BJ Hirschel, B Hoen, DA Cooper, B Tindall, A Carr, H Sauret, N Clumeck, A Lazzarin et E Mathiesen. 1995. Un essai contrôlé de Zidovudine dans l'infection primaire par le virus de l'immunodéficience humaine. New Engl J Med 333:408-413.

Kivimäki, M et K Lindström. 1995. Le rôle crucial de l'infirmière-chef dans un service hospitalier. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Klaber Moffet, JA, SM Chase, I Portek et JR Ennis. 1986. Une étude contrôlée pour évaluer l'efficacité de l'école de la douleur dorsale dans le soulagement de la lombalgie chronique. Colonne vertébrale 11: 120-122.

Kleczkowski, BM, C Montoya-Aguilar et NO Nilsson. 1985. Approches de la planification et de la conception des établissements de soins de santé dans les régions en développement. Vol. 5. Genève : OMS.

Klein, BR et AJ Platt. 1989. Planification et construction d'établissements de soins de santé. New York : Van Nostrand Reinhold.

Kelin, R, K Freemann, P Taylor, C Stevens. 1991. Risque professionnel d'infection par le virus de l'hépatite C chez les dentistes de la ville de New York. Lancette 338: 1539-1542.

Kraus, H. 1970. Traitement clinique des douleurs dorsales et cervicales. New York : McGraw-Hill.

Kujala, VM et KE Reilula. 1995. Symptômes dermiques et respiratoires induits par les gants chez les travailleurs de la santé dans un hôpital finlandais. Suis J Ind Med 28 (1): 89-98.

Kurumatani, N, S Koda, S Nakagiri, K Sakai, Y Saito, H Aoyama, M Dejima et T Moriyama. 1994. Les effets des rotations fréquentes du travail posté sur le sommeil et la vie familiale des infirmières hospitalières. Ergonomie 37: 995-1007.

Lagerlöf, E et E Broberg. 1989. Accidents du travail et maladies professionnelles. Dans Risques professionnels dans les professions de la santé, édité par DK Brune et C Edling. Boca Raton, Floride : CRC Press.

Lahaye, D, P Jacques, G Moens et B Viaene. 1993. L'enregistrement des données médicales obtenues par des examens médicaux préventifs sur les travailleurs de la santé. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, F, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Lampher, BP, CC Linneman, CG Cannon, MM DeRonde, L Pendy et LM Kerley. 1994. Infection par le virus de l'hépatite C chez les travailleurs de la santé : risque d'exposition et d'infection. Contrôle des infections Hosp Epidemiol 15: 745-750.

Landau, C, S Hall, SA Wartman et MB Macko. 1986. Stress dans les relations sociales et familiales pendant la résidence médicale. Journal de l'éducation médicale 61: 654-660.

Landau, K. 1992. Tension psycho-physique et phénomène d'épuisement professionnel chez les professionnels de la santé. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Landewe, MBM et HT Schroer. 1993. Élaboration d'un nouveau programme intégré de formation au transfert des patients — Prévention primaire de la lombalgie. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Lange, M. 1931. Les Muskelhärten (Myogelosen). Munich : JF Lehman Verlag.

Lange, W et KN Masihi. 1986. Durchseuchung mit Hepatitis-A- und B-Virus bei medizinischem Personal. Bundesgesundheitsol 29;183-87.

Lee, KA. 1992. Troubles du sommeil autodéclarés chez les femmes employées. Apnee15 (6): 493-498.

Lempereur, JJ. 1992. Prévention des dorso-lombalgies. Influence du vêtement de travail sur le comportement gestuel. Spécifications ergonomiques. Cah Kinésither 156, : 4.

Leppanen, RA et MA Olkinuora. 1987. Stress psychologique ressenti par le personnel soignant. Scand J Work Environ Santé 13: 1-8.

Lert, F, MJ Marne et A Gueguen. 1993. Évolution des conditions de travail des infirmières des hôpitaux publics de 1980 à 1990. Revue de l'épidémiologie et de santé publique 41: 16-29.

Leslie, PJ, JA Williams, C McKenna, G Smith et RC Heading. 1990. Heures, volume et type de travail des agents de préinscription. Brit Med J 300: 1038-1041.

Lettau, LA, HJ Alfred, RH Glew, HA Fields, MJ Alter, R Meyer, SC Hadler et JE Maynard. 1986. Transmission nosocomiale de l'hépatite delta. Ann Intern Med 104: 631-635.

Levin, H. 1992. Bâtiments sains—Où en sommes-nous, où allons-nous? Dans Aspects chimiques, microbiologiques, sanitaires et de confort de la qualité de l'air intérieur : état de l'art dans le syndrome des bâtiments malsains, édité par H Knoppel et P Wolkoff. Bruxelles et Luxembourg : CEE.

Lewittes, LR et VW Marshall. 1989. La fatigue et les inquiétudes concernant la qualité des soins chez les internes et les résidents de l'Ontario. Can Med Assoc J 140: 21-24.

Lewy, R. 1990. Employés à risque : protection et santé des travailleurs de la santé. New York : Van Nostrand Reinhold.

Lindström, A et M Zachrisson. 1973. Ryggbesvär och arbetssoförmaga Ryyggskolan. Ett Försok till mer rationeli fysikalist terapi. Socialmet T 7: 419-422.

Lippert. 1971. Déplacements dans les unités de soins. Les facteurs humains 13 (3): 269-282.

Ljungberg, AS, A Kilbom et MH Goran. 1989. Levage professionnel par les aides-soignants et les magasiniers. Ergonomie 32: 59-78.

Llewelyn-Davies, R et J Wecks. 1979. Zones d'hospitalisation. Dans Approches de la planification et de la conception des établissements de soins de santé dans les zones en développement, édité par BM Kleczkowski et R Piboleau. Genève : OMS.

Loeb, RG, BR Jones, KH Behrman et RJ Leonard. 1990. Les anesthésistes ne peuvent pas identifier les alarmes sonores. Anesthésiologie 73(3A):538.

Lotas, MJ. 1992. Effets de la lumière et du son dans l'environnement de l'unité de soins intensifs néonatals sur le nourrisson de faible poids à la naissance. Problèmes cliniques de la NAACOGS dans les soins infirmiers en périnatalité et en santé des femmes 3 (1): 34-44.

Lurie, HE, B Rank, C Parenti, T Wooley et W Snoke. 1989. Comment les internes passent-ils leurs nuits ? Une étude du temps de garde du personnel de la maison de médecine interne. New Engl J Med 320: 1673-1677.

Luttman, A, M Jäger, J Sökeland et W Laurig. 1996. Étude électromyographique sur les chirurgiens en urologie II. Détermination de la fatigue musculaire. Ergonomie 39 (2): 298-313.

Makino, S. 1995. Problèmes de santé chez les travailleurs de la santé au Japon. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsbeg/Lech : Ecomed Verlag.

Malchaire, JB. 1992. Analyse de la charge de travail des infirmières. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Manuaba, A. 1992. L'approche socioculturelle est indispensable dans la conception d'hôpitaux dans les pays en développement, l'Indonésie comme étude de cas. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Maruna, H. 1990. Zur Hepatitis-B-Durchseuchung in den Berufen des Gesundheits und Fürsorgewesens der Republik Österreichs, Arbeitsmed. Préventif. Sozialmed 25: 71-75.

Matsuda, A. 1992. Approche ergonomique des soins infirmiers au Japon. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

McCall, T. 1988. L'impact des longues heures de travail sur les médecins résidents. New Engl J Med 318 (12): 775-778.

McCloy, E. 1994. L'hépatite et la directive CEE. Présenté à la 2e Conférence internationale sur la santé au travail pour les travailleurs de la santé, Stockholm.

McCormick, RD, MG Meuch, IG Irunk et DG Maki. 1991. Épidémiologie des blessures par objets tranchants à l'hôpital : une étude prospective de 14 ans à l'ère pré-sida et sida. Am J Med 3B : 3015-3075.

McCue, JD. 1982. Les effets du stress sur les médecins et leur pratique médicale. New Engl J Med 306: 458-463.

McIntyre, JWR. 1985. Ergonomie : Utilisation des alarmes auditives par les anesthésistes au bloc opératoire. Int J Clin Monit Comput 2: 47-55

McKinney, PW, MM Horowitz et RJ Baxtiola. 1989. Sensibilité du personnel de santé en milieu hospitalier à l'infection par le virus varicelle-zona. Contrôle des infections Am J 18: 26-30.

Melleby, A. 1988. Programme d'exercices pour un dos en bonne santé. Dans Diagnostic et traitement des douleurs musculaires. Chicago, IL : Livres Quintessence.

Meyer, TJ, SE Eveloff, MS Bauer, WA Schwartz, NS Hill et PR Millman. 1994. Conditions environnementales défavorables dans les unités de soins intensifs respiratoires et médicaux. Poitrine 105: 1211-1216.

Miller, E, J Vurdien et P Farrington. 1993. Changement d'âge dans la varicelle. Lancette 1: 341.

Miller, JM. 1982. William Stewart Halsted et l'utilisation du gant chirurgical en caoutchouc. # 92: 541-543.

Mitsui, T, K Iwano, K Maskuko, C Yanazaki, H Okamoto, F Tsuda, T Tanaka et S Mishiros. 1992. Infection par le virus de l'hépatite C chez le personnel médical après des accidents de piqûre d'aiguille. Hépatologie 16: 1109-1114.

Modig, B. 1992. Ergonomie hospitalière dans une perspective biopsychosociale. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Momtahan, K, R Hétu et B Tansley. 1993. Audibilité et identification des alarmes auditives au bloc opératoire et en réanimation. Ergonomie 36 (10): 1159-1176.

Momtahan, KL et BW Tansley. 1989. Analyse ergonomique des signaux sonores d'alarme au bloc opératoire et en salle de réveil. Présenté à l'Assemblée annuelle de l'Association canadienne d'acoustique, 18 octobre, Halifax, N.-É.

Montoliu, MA, V Gonzalez, B Rodriguez, JF Quintana et L Palenciano.1992. Conditions de travail dans la blanchisserie centrale des grands hôpitaux de Madrid. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Moore, RM, YM Davis et RG Kaczmarek. 1993. Un aperçu des risques professionnels chez les vétérinaires, avec une référence particulière aux femmes enceintes. Am J Ind Hyg Assoc 54 (3): 113-120.

Morel, O. 1994. Les agents des services hospitaliers. Vécu et santé au travail. Arch mal prof 54 (7): 499-508.

Nachemson, AL et GBJ Anderson. 1982. Classification des lombalgies. Scand J Work Environ Santé 8: 134-136.

Service national de santé (NHS). 1991a. Guide de conception. La conception des hôpitaux communautaires. Londres : Bureau de papeterie de Sa Majesté.

—. 1991b. Health Building Note 46 : Locaux de pratique médicale générale pour la prestation de services de soins de santé primaires. Londres : Bureau de papeterie de Sa Majesté.

Institut national pour la sécurité et la santé au travail (NIOSH). 1975. Développement et évaluation de méthodes d'élimination des gaz et vapeurs anesthésiques résiduels dans les hôpitaux. DHEW (NIOSH) Publication n° 75-137. Cincinnati, Ohio : NIOSH.

—. 1997a. Contrôle de l'exposition professionnelle à N2O dans le bloc opératoire dentaire. DHEW (NIOSH) Publication n° 77-171. Cincinnati, Ohio : NIOSH.

—. 1977b. Critères pour une norme recommandée : Exposition professionnelle aux gaz et vapeurs anesthésiques résiduaires. DHEW (NIOSH) Publication n° 77-1409. Cincinnati, Ohio : NIOSH.

—. 1988. Lignes directrices pour la protection de la sécurité et de la santé des travailleurs de la santé. Publication n° 88-119 du DHHS (NIOSH). Cincinnati, Ohio : NIOSH.

—. 1994. Alerte NIOSH : Demande d'assistance pour contrôler les expositions au protoxyde d'azote pendant l'administration d'anesthésiques. Publication n° 94-100 du DHHS (NIOSH). Cincinnati, Ohio : NIOSH.

Niu, MT, DS Stein et SM Schnittmann. 1993. Infection par le virus de l'immunodéficience humaine primaire de type 1 : Examen de la pathogenèse et des interventions de traitement précoce dans les infections à rétrovirus humains et animaux. J Infect Dis 168: 1490-1501.

Noweir, MH et MS al-Jiffry. 1991. Etude de la pollution sonore dans les hôpitaux de Djeddah. Journal de l'Association égyptienne de santé publique 66 (3/4):291-303.

Nyman, moi et A Knutsson. 1995. Bien-être psychosocial et qualité du sommeil chez les travailleurs hospitaliers de nuit et de jour. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Objectif Prévention No spécial. 1994. Le lève personne sur rail au plafond : Outil de travail indispensable. Objectif Prévention 17 (2): 13-39.

O'Carroll, TM. 1986. Enquête sur les alarmes dans une unité de thérapie intensive. Anesthésie 41: 742-744.

Administration de la sécurité et de la santé au travail (OSHA). 1991. Exposition professionnelle aux agents pathogènes à diffusion hématogène : règle finale. 29 CFR Partie 1910.1030. Washington, DC : OSHA.

Oëler, JM. 1993. Soins de développement des nourrissons de faible poids à la naissance. Cliniques de soins infirmiers d'Amérique du Nord 28 (2): 289-301.

Öhling, P et B Estlund. 1995. Technique de travail pour les travailleurs de la santé. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander G. Landsberg/Lech : Ecomed Verlag.

Ollagnier, E et Lamarche MJ. 1993. Une intervention ergonomique dans un hôpital suisse : Impact sur la santé de l'organisation du personnel et des patients. Dans Ergonomie et santé, édité par D Ramaciotti et A Bousquet. Actes du XXVIIIe congrès de la SELF. Genève : SELF.

Ott, C, M Estryn-Béhar, C Blanpain, A Astier et G Hazebroucq. 1991. Conditionnement du médicament et erreurs de médicament. J Pharm Clin 10: 61-66.

Patkin, M. 1992. Architecture hospitalière : Une débâcle ergonomique. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Payeur, L. 1988. Médecine et culture: la variété des traitements aux États-Unis, en Angleterre, en Allemagne de l'Ouest et en France. New York : H. Holt.

Payne, R et J Firth-Cozens (éd.). 1987. Le stress dans les professions de la santé. New York: John Wiley & Sons.

—. 1995. Détermination de l'oxyde de diazote (N2O) dans l'urine comme contrôle de l'exposition à l'anesthésique. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hoffmann, U Stössel et G Westlander. Solna : Institut national de santé au travail.

Pelikan, JM. 1993. Améliorer la santé au travail des travailleurs de la santé au sein de l'hôpital promoteur de santé : Expériences du projet modèle de l'OMS de Vienne « santé et hôpital ». Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Pérez, L, R De Andrés, K. Fitch et R Najera. 1994. Seroconversiones a VIH tras Sanitarios en Europa. Présenté à la 2e Reunión Nacional sobre el SIDA Cáceres.

Philip, RN, KRT Reinhard et DB Lackman. 1959. Observations sur une épidémie d'oreillons dans une population « vierge ». Suis J Hyg 69: 91-111.

Pottier, M. 1992. Ergonomie à l'hôpital-ergonomie hospitalière. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Poulton, EC, GM Hunt, A Carpenter et RS Edwards. 1978. La performance des jeunes médecins hospitaliers suite à un sommeil réduit et à de longues heures de travail. Ergonomie 21: 279-295.

Pöyhönen, T et M Jokinen. 1980.Sstress et autres problèmes de santé au travail affectant les infirmières hospitalières. Vantaa, Finlande : Tutkimuksia.

Raffray, M. 1994. Etude de la charge physique des AS par mesure de la fréquence cardiaque. Objectif soins 26: 55-58.

Ramaciotti, D, S Blaire, A Bousquet, E Conne, V Gonik, E Ollagnier, C Zummermann et L Zoganas. 1990. Processus de régulation des contraintes économiques physiologiques et sociales pour différents groupes de travail en horaires irréguliers et de nuit. Le travail humain 53 (3): 193-212.

Ruben, DB. 1985. Symptômes dépressifs chez les médecins internes : effets du niveau de formation et de la rotation du travail. Arch Intern Med 145: 286-288.

Reznick, RK et JR Folse. 1987. Effet de la privation de sommeil sur la performance des résidents en chirurgie. Suis J Surg 154: 520-52.

Rhoads, JM.1977. Surmenage. JAMA 237: 2615-2618.

Rodary, C et A Gauvain-Piquard 1993. Stress et épuisement professionnel. Objectif soins 16: 26-34.

Roquelaure, Y, A Pottier et M Pottier. 1992. Approche ergonomique comparative de deux enregistreurs électroencéphalographiques. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Rosell, MG, P Luna et X Guardino. 1989. Évaluation et contrôle des contaminants QuPmicos en Hospitales. Document technique n° 57. Barcelone : INSHT.

Rubin, R, P Orris, SL Lau, DO Hryhorczuk, S Furner et R Letz. 1991. Effets neurocomportementaux de l'expérience de garde chez les médecins de maison. J Occupe Med 33: 13-18.

Saint-Arnaud, L, S Gingras, R Boulard., M Vézina et H Lee-Gosselin. 1992. Les symptômes psychologiques en milieu hospitalier. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Samkoff, JS, CHM Jacques. 1991. Une revue des études concernant les effets de la privation de sommeil et de la fatigue sur la performance des résidents. Acad Med 66: 687-693.

Sartori, M, G La Terra, M Aglietta, A Manzin, C Navino et G Verzetti. 1993. Transmission de l'hépatite C par éclaboussures de sang dans la conjonctive. Scand J Infecter Dis 25: 270-271.

Saurel, D. 1993. CHSCT Central, Enquête « Rachialgies » Résultats. Paris : Assistance Publique-Höpitaux de Paris, Direction du personnel et des relations sociales.

Saurel-Cubizolles, MJ, M Hay et M Estryn-Béhar. 1994. Travail en salle d'opération et issue de grossesse chez les infirmières. Int Arch Occup Environ Santé 66: 235-241.

Saurel-Cubizolles, MJ, MKaminski, J Llhado-Arkhipoff, C Du Mazaubrum, M Estryn-Behar, C Berthier, M Mouchet et C Kelfa. 1985. La grossesse et son issue chez le personnel hospitalier selon la profession et les conditions de travail. Journal d'épidémiologie et de santé communautaire 39: 129-134.

Schröer, CAP, L De Witte et H Philipsen. 1993. Effets du travail posté sur la qualité du sommeil, les problèmes de santé et la consommation médicale des infirmières. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Senevirane, SR, De A et DN Fernando. 1994. Influence du travail sur l'issue de la grossesse. Int J Gynecol Obstet VOL : 35-40.

Shapiro, ET, H Pinsker et JH Shale. 1975. Le médecin malade mental en tant que praticien. JAMA 232 (7): 725-727.

Shapiro, RA et T Berland. 1972. Bruit dans la salle d'opération. New Engl J Med 287 (24): 1236-1238.

Shindo, E. 1992. L'état actuel de l'ergonomie des soins infirmiers au Japon. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Siegel, A, M Michaelis, F Hofmann, U Stössel et W Peinecke. 1993. Utilisation et acceptation des aides au levage dans les hôpitaux et les gériatries. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Smith, MJ, MJ Colligan, IJ Frocki et DL Tasto. 1979. Taux d'accidents du travail chez les infirmières en fonction de l'horaire de travail. Journal de recherche sur la sécurité 11 (4): 181-187.

Smith-Coggins, R, MR Rosekind, S Hurd et KR Buccino. 1994. Relation entre le sommeil diurne et nocturne et la performance et l'humeur du médecin. Ann Emerg Med 24: 928-934.

Snook, SH. 1988a. Approches du contrôle des maux de dos dans l'industrie. Dans Mal de dos chez les travailleurs, édité par RA Deyo. Philadelphie : Hanley & Belfus.

—. 1988b. Les coûts du mal de dos dans l'industrie. Dans Mal de dos chez les travailleurs, édité par RA Deyo. Philadelphie : Hanley & Belfus.

Sud, MA, JL Sever et L Teratogen. 1985. Mise à jour : Le syndrome de rubéole congénitale. Tératologie 31: 297-392.

Spence, AA. 1987. Pollution de l'environnement par les anesthésiques par inhalation. Br J Anaesth 59: 96-103.

Stellman, JM. 1976. Travail des femmes, santé des femmes : mythes et réalités. New York: Panthéon.

Steppacher, RC et JS Mausner. 1974. Suicide chez les médecins masculins et féminins. JAMA 228 (3): 323-328.

Sterling, DA. 1994. Aperçu de la santé et de la sécurité dans le milieu des soins de santé. Dans Éléments essentiels de la sécurité des hôpitaux modernes, édité par W Charney. Boca Raton, Floride : Éditeurs Lewis.

Stoklov, M, P Trouiller, P Stieglitz, Y Lamalle, F Vincent, A Perdrix, C Marka, R de Gaudemaris, JM Mallion et J Faure. 1983. L'exposition aux gaz anesthésiques : Risques et prévention. Sem Hos 58(29/39):2081-2087.

Storer, JS, HH Floyd, WL Gill, CW Giusti et H Ginsberg. 1989. Effets de la privation de sommeil sur la capacité cognitive et les compétences des résidents en pédiatrie. Acad Med 64: 29-32.

Stubbs, DA, PW Buckle et PM Hudson. 1983. Mal de dos dans la profession infirmière; I Épidémiologie et méthodologie pilote. Ergonomie 26: 755-765.

Sundström-Frisk C et M Hellström.1995. Le risque de commettre des erreurs de traitement, facteur de stress professionnel. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Swann-D'Emilia, B, JCH Chu et J Daywalt. 1990. Mauvaise administration de la dose de rayonnement prescrite. Dosimétrie médicale 15: 185-191.

Sydow, B et F Hofmann. 1994. Résultats non publiés.

Tannenbaum, TN et RJ Goldberg. 1985. Exposition aux gaz anesthésiques et résultat de la reproduction : Une revue de la littérature épidémiologique. J Occupe Med 27: 659-671.

Teyssier-Cotte, C, M Rocher et P Mereau. 1987. Les lits dans les établissements de soins. Documents pour le médecin du travail. INRS 29: 27-34.

Theorell, T. 1989. L'environnement de travail psychosocial. Dans Risques professionnels dans les professions de la santé, édité par DK Brune et C Edling. Boca Raton, Floride : CRC Press.

Theorell T. 1993. Sur l'environnement psychosocial dans les soins. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Tintori, R et M Estryn-Béhar. 1994. Communication : Où, quand, commenter ? Critères ergonomiques pour améliorer la communication dans les services de soins. Gestions Hospitalières 338: 553-561.

Tintori, R, M Estryn-Behar, J De Fremont, T Besse, P Jacquenot, A Le Vot et B Kapitaniak. 1994. Évaluation des lits à hauteur variable. Une démarche de recherche en soins infirmiers. Gestions Hospitalières 332: 31-37.

Tokars, JI, R Marcus, DH Culver, CA Schable, PS McKibben, CL Bandea et DM Bell. 1993. Surveillance de l'infection à VIH et de l'utilisation de la zidovudine chez les travailleurs de la santé après une exposition professionnelle à du sang infecté par le VIH. Ann Intern Med 118: 913-919.

Toomingas, A. 1993. La situation sanitaire des agents de santé suédois. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Topf, M. 1992. Effets du contrôle personnel sur le bruit des hôpitaux sur le sommeil. Recherche en soins infirmiers et en santé 15 (1): 19-28.

Tornquist, A et P Ullmark. 1992. Espace et Architecture de l'Entreprise, Acteurs et Procédures. Paris : Ministère de l'équipement du logement et des transports.

Townsend, M. 1994. Juste un gant ? Infirmières du théâtre Br J 4 (5): 7,9-10.

Tran, N, J Elias, T Rosenber, D Wylie, D Gaborieau et A Yassi. 1994. Évaluation des déchets de gaz anesthésiques, stratégies de surveillance et corrélations entre les niveaux d'oxyde nitreux et les symptômes de santé. Am Ind Hyg Assoc J 55 (1): 36-42.

Turner, AG, CH King et G Craddock. 1975. Mesure et réduction du bruit. Le profil de bruit de l'hôpital montre que même les zones "calmes" sont trop bruyantes. Hôpital JAHA 49: 85-89.

Groupe de travail américain sur les services préventifs. 1989. Guide des services de prévention clinique : une évaluation de l'efficacité de 169 interventions. Baltimore : Williams & Wilkins.

Vaillant, GE, NC Sorbowale et C McArthur. 1972. Certaines vulnérabilités psychologiques des médecins. New Engl J Med 287: 372-375.

Vaisman, AI. 1967. Les conditions de travail en chirurgie et leurs effets sur la santé des anesthésiologistes. Eskp Khir Anestéziol 12: 44-49.

Valentino, M, MA Pizzichini, F Monaco et M Governa. 1994. Asthme induit par le latex chez quatre travailleurs de la santé dans un hôpital régional. Méd occupation (Oxf) 44 (3): 161-164.

Valko, RJ et PJ Clayton. 1975. Dépression dans les stages. Système Dis Nerv 36: 26-29.

Van Damme, P et GA Tormanns. 1993. Modèle de risque européen. Dans Actes de la conférence européenne sur l'hépatite B en tant que risque professionnel. 10-12.

Van Damme, P, R Vranckx, A Safary, FE André et A Mehevs. 1989. Efficacité protectrice d'un vaccin recombinant contre l'hépatite B à base d'acide désoxyribonucléique chez des clients handicapés mentaux institutionnalisés. Am J Med 87(3A):265-295.

Van der Star, A et M Voogd. 1992. Participation des utilisateurs à la conception et à l'évaluation d'un nouveau modèle de lit d'hôpital. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Van Deursen, CGL, CAM Mul, PGW Smulders et CR De Winter. 1993. Situation de santé et de travail des infirmières de jour comparées à un groupe apparié d'infirmières en travail posté alternant. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Van Hogdalem, H. 1990. Directives de conception pour les architectes et les utilisateurs. Dans Bâtiment pour les personnes dans les hôpitaux, les travailleurs et les consommateurs. Luxembourg : Fondation européenne pour l'amélioration des conditions de vie et de travail.

Van Waggoner, R et N Maguire. 1977. Une étude sur la perte auditive chez les employés d'un grand hôpital urbain. Revue canadienne de santé publique 68: 511-512.

Verhaegen, P, R Cober, DE Smedt, J Dirkx, J Kerstens, D Ryvers et P Van Daele. 1987. L'adaptation des infirmières de nuit aux différents horaires de travail. Ergonomie 30 (9): 1301-1309.

Villeneuve, J. 1992. Une démarche d'ergonomie participative dans le secteur hospitalier. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

—. 1994. PARC : Des fondations solides pour un projet de rénovation ou de construction Objectif prévention (Montréal) 17(5):14-16.

Wade, JG et WC Stevens. 1981. Isoflurane : Un anesthésique pour les années XNUMX ? Anesthétique Analg 60 (9): 666-682.

Wahlen, L. 1992. Le bruit en milieu de soins intensifs. Journal canadien des soins infirmiers intensifs, 8/9(4/1):9-10.

Walz, T, G Askerooth et M Lynch. 1983. Le nouvel État-providence à l'envers. Dans Le travail social dans un monde agité, édité par M Dinerman. Washington, DC : Association nationale des travailleurs sociaux.

Baguettes, SE et A Yassi. 1993. Modernisation d'une usine de traitement de blanchisserie : est-ce vraiment une amélioration ? Application Ergon 24 (6): 387-396.

Weido, AJ et TC Sim. 1995. Le problème naissant de la sensibilité au latex. Les gants chirurgicaux ne sont qu'un début. Postgrad Med 98(3):173-174,179-182,184.

Wiesel, SW, HL Feffer et RH Rothmann. 1985. Lombalgie industrielle. Charlottesville, Virginie : Michie.

Wigaeus Hjelm, E, M Hagberg et S Hellstrom. 1993. Prévention des troubles musculo-squelettiques chez les aides-soignants par l'entraînement physique. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Landsberg/Lech : Ecomed Verlag.

Wigand, R et Y Grenner. 1988. Personaluntersuchungen auf Immunität gegen Masern, Varizellen und Röteln, Sarre. Arztebl 41: 479-480.

Wilkinson, RT, PD Tyler et CA Varey. 1975. Horaires de travail des jeunes médecins hospitaliers : effets sur la qualité du travail. J Occuper Psychol 48: 219-229.

Willet, KM. 1991. Perte auditive induite par le bruit chez le personnel orthopédique. J Bone Joint Surg 73: 113-115.

Williams, M et JD Murphy. 1991. Bruit dans les unités de soins critiques : Une approche d'assurance qualité. Journal de la qualité des soins infirmiers 6 (1): 53-59.

Organisation mondiale de la santé (OMS). 1990. Lignes directrices sur le SIDA et les premiers soins en milieu de travail. WHO AIDS Series No. 7. Genève : OMS.

—. 1991. Directives de biosécurité pour les laboratoires de diagnostic et de recherche travaillant avec le VIH. WHO AIDS Series No. 9. Genève : OMS.

—. 1995. Rapport épidémiologique hebdomadaire (13 janvier).

Wugofski, L. 1995. Accident du travail chez les travailleurs de la santé—Épidémiologie et prévention. Dans Santé au travail pour les travailleurs de la santé, édité par M Hagberg, F Hofmann, U Stössel et G Westlander. Singapour : Commission internationale de la santé au travail.

Yassi, A. 1994. Voies de fait et mauvais traitements infligés aux travailleurs de la santé dans un grand hôpital universitaire. Can Med Assoc J 151 (9): 1273-1279.

Yassi, A et M McGill. 1991. Déterminants de l'exposition au sang et aux fluides corporels dans un grand hôpital universitaire : dangers de la procédure intraveineuse intermittente. American Journal of Infection Control 19 (3): 129-135.

—. 1995. Efficacité et rentabilité d'un système d'accès intraveineux sans aiguille. American Journal of Infection Control 22 (2): 57-64.

Yassi, A, J Gaborieau, J Elias et D Willie. 1992. Identification et contrôle des niveaux sonores dangereux dans un complexe hospitalier. Dans Ergonomie à l'hôpital, édité par M Estryn-Béhar, C Gadbois et M Pottier. Colloque international Paris 1991. Toulouse : Editions Octares.

Yassi, A, D Gaborieau, I Gi