Banner Pericolo generale

bambini categorie

36. Pressione barometrica aumentata

36. Pressione barometrica aumentata (2)

Banner 6

 

 

36. Pressione barometrica aumentata

 

Editor del capitolo: TJR Francesco

 


Sommario

tavoli

 

Lavorare con pressione barometrica aumentata

Eric Kindwall

 

Disturbi da decompressione

Dees F. Gorman

 

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Istruzioni per gli addetti all'aria compressa
2. Malattia da decompressione: classificazione rivista

Visualizza articoli ...
37. Pressione barometrica ridotta

37. Pressione barometrica ridotta (4)

Banner 6

 

37. Pressione barometrica ridotta

Editor del capitolo:  Walter Dummer


Sommario

Figure e tabelle

Acclimatazione ventilatoria ad alta quota
John T. Reeves e John V. Weil

Effetti fisiologici della pressione barometrica ridotta
Kenneth I. Berger e William N. Rom

Considerazioni sulla salute per la gestione del lavoro ad alta quota
John B. Ovest

Prevenzione dei rischi professionali in alta quota
Walter Dummer

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

 

BA1020F1BA1020F3BA1020F4BA1020F5BA1030T1BA1030F1BA1030F2

Visualizza articoli ...
38. Rischi biologici

38. Rischi biologici (4)

Banner 6

 

38. Rischi biologici

Editor del capitolo: Zuheir Ibrahim Fakhri


Sommario

tavoli

Rischi biologici sul posto di lavoro
Zuheir I. Fakhri

Animali acquatici
D.Zannini

Animali velenosi terrestri
JA Rioux e B.Juminer

Caratteristiche cliniche del morso di serpente
David A. Warrell

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Ambienti occupazionali con agenti biologici
2. Virus, batteri, funghi e piante sul posto di lavoro
3. Gli animali come fonte di rischi professionali

Visualizza articoli ...
39. Disastri naturali e tecnologici

39. Disastri naturali e tecnologici (12)

Banner 6

 

39. Disastri naturali e tecnologici

Editor del capitolo: PierAlberto Bertazzi


Sommario

Tabelle e figure

Disastri e incidenti rilevanti
PierAlberto Bertazzi

     Convenzione ILO sulla prevenzione dei principali incidenti industriali, 1993 (n. 174)

Preparazione alle catastrofi
Peter J.Baxter

Attività post-disastro
Benedetto Terracini e Ursula Ackermann-Liebrich

Problemi relativi alle condizioni meteorologiche
Jean francese

Valanghe: pericoli e misure di protezione
Gustav Pointstingl

Trasporto di materiale pericoloso: chimico e radioattivo
Donald M. Campbell

Incidenti da radiazioni
Pierre Verger e Denis Winter

     Caso di studio: cosa significa dose?

Misure di salute e sicurezza sul lavoro nelle aree agricole contaminate da radionuclidi: l'esperienza di Chernobyl
Yuri Kundiev, Leonard Dobrovolsky e VI Chernyuk

Caso di studio: l'incendio della fabbrica di giocattoli Kader
Casey Cavanaugh Grant

Impatti dei disastri: lezioni dal punto di vista medico
Josè Luis Zeballos
 

 

 

 

tavoli

 

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

 

1. Definizioni dei tipi di disastro
2. Numero medio di vittime su 25 anni per tipo e trigger naturale per regione
3. Numero medio di vittime su 25 anni per tipo e motivo scatenante non naturale per regione
4. N. vittime medie su 25 anni per tipo di innesco naturale (1969-1993)
5. Numero medio di vittime su 25 anni per tipo di trigger non naturale (1969-1993)
6. Scatto naturale dal 1969 al 1993: eventi in 25 anni
7. Trigger non naturale dal 1969 al 1993: eventi in 25 anni
8. Trigger naturale: numero per regione globale e tipo nel 1994
9. Trigger non naturale: numero per regione globale e tipo nel 1994
10 Esempi di esplosioni industriali
11 Esempi di grandi incendi
12 Esempi di importanti rilasci tossici
13 Ruolo della gestione degli impianti a rischio maggiore nel controllo dei pericoli
14 Metodi di lavoro per la valutazione dei pericoli
15 Criteri della Direttiva CE per gli impianti a rischio elevato
16 Sostanze chimiche prioritarie utilizzate per identificare le installazioni a rischio maggiore
17 Rischi professionali legati alle condizioni meteorologiche
18 Tipici radionuclidi, con le loro emivite radioattive
19 Confronto di diversi incidenti nucleari
20 Contaminazione in Ucraina, Bielorussia e Russia dopo Chernobyl
21 Contaminazione da stronzio-90 dopo l'incidente di Khyshtym (Urali 1957)
22 Sorgenti radioattive che hanno coinvolto il grande pubblico
23 Principali incidenti che coinvolgono gli irradiatori industriali
24 Registro degli incidenti da radiazioni di Oak Ridge (USA) (in tutto il mondo, 1944-88)
25 Modello di esposizione professionale alle radiazioni ionizzanti in tutto il mondo
26 Effetti deterministici: soglie per organi selezionati
27 Pazienti con sindrome acuta da irradiazione (AIS) dopo Chernobyl
28 Studi epidemiologici sul cancro dell'irradiazione esterna ad alte dosi
29 Tumori della tiroide nei bambini in Bielorussia, Ucraina e Russia, 1981-94
30 Scala internazionale degli incidenti nucleari
31 Misure di protezione generiche per la popolazione generale
32 Criteri per le zone di contaminazione
33 Grandi disastri in America Latina e nei Caraibi, 1970-93
34 Perdite dovute a sei calamità naturali
35 Ospedali e letti d'ospedale danneggiati/distrutti da 3 gravi catastrofi
36 Vittime in 2 ospedali crollati a causa del terremoto del 1985 in Messico
37 Posti letto d'ospedale persi a causa del terremoto cileno del marzo 1985
38 Fattori di rischio per danni sismici alle infrastrutture ospedaliere

 

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

 

 

 

 

DIS010F2DIS010F1DIS010T2DIS020F1DIS080F1DIS080F2DIS080F3DIS080F4DIS080F5DIS080F6DIS080F7DIS090T2DIS095F1DIS095F2

 


 

Fare clic per tornare all'inizio della pagina

 

Visualizza articoli ...
40. Elettricità

40. Elettricità (3)

Banner 6

 

40. Elettricità

Editor del capitolo:  Dominique Foliot

 


 

Sommario 

Figure e tabelle

Elettricità: effetti fisiologici
Dominique Foliot

Elettricità statica
Claudio Menguy

Prevenzione e norme
Renzo Comino

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Stime del tasso di folgorazione-1988
2. Relazioni di base in elettrostatica-Raccolta di equazioni
3. Affinità elettroniche di polimeri selezionati
4. Tipici limiti inferiori di infiammabilità
5. Onere specifico associato a operazioni industriali selezionate
6. Esempi di apparecchiature sensibili alle scariche elettrostatiche

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

ELE030F1ELE030F2ELE040F1

Visualizza articoli ...
41. Fuoco

41. Fuoco (6)

Banner 6

 

41. Fuoco

Editor del capitolo:  Casey C. Grant


 

Sommario 

Figure e tabelle

Concetti di base
Dougal Drysdale

Fonti di rischi di incendio
Tamás Banky

Misure di prevenzione incendi
Peter F.Johnson

Misure di protezione antincendio passiva
Yngve Anderberg

Misure attive di protezione antincendio
Gary Taylor

Organizzazione per la protezione antincendio
S. Deri

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Limiti inferiore e superiore di infiammabilità in aria
2. Punti di infiammabilità e punti di fuoco di combustibili liquidi e solidi
3. Fonti di accensione
4. Confronto delle concentrazioni di diversi gas necessari per l'inertizzazione

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

FIR010F1FIR010F2FIR020F1FIR040F1FIR040F2FIR040F3FIR050F4FIR050F1FIR050F2FIR050F3FIR060F3

Visualizza articoli ...
42. Caldo e freddo

42. Caldo e freddo (12)

Banner 6

 

42. Caldo e freddo

Editor del capitolo:  Jean-Jacques Vogt


 

Sommario 

Figure e tabelle

Risposte fisiologiche all'ambiente termico
W.Larry Kenney

Effetti dello stress da calore e del lavoro al caldo
Bodil Nielsen

Disturbi da calore
Tokuo Ogawa

Prevenzione dello stress da calore
Sarah A. Nunneley

Le basi fisiche del lavoro in calore
Jacques Malchaire

Valutazione dello Stress da Calore e degli Indici di Stress da Calore
Kenneth C. Parsons

     Caso di studio: Indici di calore: formule e definizioni

Scambio di calore attraverso l'abbigliamento
Wouter A. Lotens

     Formule e definizioni

Ambienti freddi e lavoro a freddo
Ingvar Holmér, Per-Ola Granberg e Goran Dahlstrom

Prevenzione dello stress da freddo in condizioni esterne estreme
Jacques Bittel e Gustave Savourey

Indici e standard freddi
Ingvar Holmér

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Concentrazione di elettroliti nel plasma sanguigno e nel sudore
2. Indice di stress termico e tempi di esposizione consentiti: calcoli
3. Interpretazione dei valori dell'Heat Stress Index
4. Valori di riferimento per i criteri di sollecitazione termica e deformazione
5. Modello utilizzando la frequenza cardiaca per valutare lo stress da calore
6. Valori di riferimento WBGT
7. Pratiche di lavoro per ambienti caldi
8. Calcolo dell'indice SWreq e metodo di valutazione: equazioni
9. Descrizione dei termini utilizzati nella ISO 7933 (1989b)
10 Valori WBGT per quattro fasi di lavoro
11 Dati di base per la valutazione analitica secondo ISO 7933
12 Valutazione analitica utilizzando ISO 7933
13 Temperature dell'aria di vari ambienti lavorativi freddi
14 Durata dello stress da freddo non compensato e reazioni associate
15 Indicazione degli effetti previsti dell'esposizione al freddo lieve e grave
16 Temperatura del tessuto corporeo e prestazioni fisiche umane
17 Risposte umane al raffreddamento: reazioni indicative all'ipotermia
18 Raccomandazioni sanitarie per il personale esposto allo stress da freddo
19 Programmi di condizionamento per lavoratori esposti al freddo
20 Prevenzione e riduzione dello stress da freddo: strategie
21 Strategie e misure relative a fattori e attrezzature specifici
22 Meccanismi generali di adattamento al freddo
23 Numero di giorni in cui la temperatura dell'acqua è inferiore a 15 ºC
24 Temperature dell'aria di vari ambienti lavorativi freddi
25 Classificazione schematica del lavoro a freddo
26 Classificazione dei livelli di tasso metabolico
27 Esempi di valori di isolamento di base dell'abbigliamento
28 Classificazione della resistenza termica al raffreddamento degli indumenti
29 Classificazione della resistenza termica da contatto degli indumenti
30 Indice Wind Chill, temperatura e tempo di congelamento della carne esposta
31 Potere rinfrescante del vento sulla carne esposta

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

HEA030F1HEA050F1HEA010F1HEA080F1HEA080F2HEA080F3HEA020F1HEA020F2HEA020F3HEA020F4HEA020F5HEA020F6HEA020F7HEA090F1HEA090F2HEA090F3HEA090T4HEA090F4HEA090T8HEA090F5HEA110F1HEA110F2HEA110F3HEA110F4HEA110F5HEA110F6


Fare clic per tornare all'inizio della pagina

Visualizza articoli ...
43. Orario di lavoro

43. Ore di lavoro (1)

Banner 6

 

43. Orario di lavoro

Editor del capitolo:  Pietro Knauth


 

Sommario 

Ore di lavoro
Pietro Knauth

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Intervalli di tempo dall'inizio del lavoro a turni fino a tre malattie
2. Lavoro a turni e incidenza di disturbi cardiovascolari

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

HOU010F1HOU010T3HOU010F2HOU10F2BHOU010F3HOU010F4HOU010F5HOU010F6HOU010F7

Visualizza articoli ...
44. Qualità dell'aria interna

44. Qualità dell'aria interna (8)

Banner 6

 

44. Qualità dell'aria interna

Editor del capitolo:  Saverio Guardino Sola


 

Sommario 

Figure e tabelle

Qualità dell'aria interna: introduzione
Saverio Guardino Sola

Natura e fonti di contaminanti chimici indoor
Derrick Crump

Radon
Maria José Berenguer

Fumo di tabacco
Dietrich Hoffmann e Ernst L. Wynder

Regolamento sul fumo
Saverio Guardino Sola

Misurazione e valutazione degli inquinanti chimici
M. Gracia Rosell Farrás

Contaminazione biologica
Brian Flanngan

Regolamenti, Raccomandazioni, Linee Guida e Standard
Maria José Berenguer

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Classificazione degli inquinanti organici indoor
2. Emissione di formaldeide da una varietà di materiali
3. Ttl. composti organici volatili concentrati, rivestimenti per pareti/pavimenti
4. Prodotti di consumo e altre fonti di prodotti organici volatili
5. Principali tipi e concentrazioni nel Regno Unito urbano
6. Misure sul campo di ossidi di azoto e monossido di carbonio
7. Agenti tossici e cancerogeni nel fumo di sigaretta
8. Agenti tossici e cancerogeni dal fumo di tabacco
9. Cotinina urinaria nei non fumatori
10 Metodologia per il prelievo dei campioni
11 Metodi di rilevamento dei gas nell'aria interna
12 Metodi utilizzati per l'analisi degli inquinanti chimici
13 Limiti di rilevamento inferiori per alcuni gas
14 Tipi di funghi che possono causare rinite e/o asma
15 Microrganismi e alveoliti allergiche estrinseche
16 Microrganismi nell'aria interna non industriale e nella polvere
17 Standard di qualità dell'aria stabiliti dall'EPA statunitense
18 Linee guida dell'OMS per il fastidio non canceroso e non olfattivo
19 Valori guida dell'OMS basati su effetti sensoriali o fastidio
20 Valori di riferimento per il radon di tre organizzazioni

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

AIR010T1AIR010F1AIR030T7AIR035F1AIR050T1


Fare clic per tornare all'inizio della pagina

Visualizza articoli ...
45. Controllo ambientale interno

45. Controllo ambientale interno (6)

Banner 6

 

45. Controllo ambientale interno

Editor del capitolo:  Juan Guasch Farras

 


 

Sommario 

Figure e tabelle

Controllo degli ambienti interni: principi generali
A. Hernández Calleja

Aria interna: metodi per il controllo e la pulizia
E. Adán Liébana e A. Hernández Calleja

Scopi e principi della ventilazione generale e di diluizione
Emilio Castejon

Criteri di ventilazione per edifici non industriali
A. Hernández Calleja

Impianti di Riscaldamento e Condizionamento
F. Ramos Pérez e J. Guasch Farrás

Aria interna: ionizzazione
E. Adán Liébana e J. Guasch Farrás

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. I più comuni inquinanti indoor e le loro fonti
2. Requisiti di base: sistema di ventilazione per diluizione
3. Misure di controllo e loro effetti
4. Adeguamenti all'ambiente di lavoro e agli effetti
5. Efficacia dei filtri (standard ASHRAE 52-76)
6. Reagenti usati come assorbenti per contaminanti
7. Livelli di qualità dell'aria indoor
8. Contaminazione dovuta agli occupanti di un edificio
9. Grado di occupazione dei diversi edifici
10 Contaminazione dovuta all'edificio
11 Livelli di qualità dell'aria esterna
12 Norme proposte per i fattori ambientali
13 Temperature di comfort termico (basate su Fanger)
14 Caratteristiche degli ioni

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

IEN010F1IEN010F2IEN010F3IEN030F1IEN030F2IEN040F1IEN040F2IEN040F3IEN040F4IEN050F1IEN050F3IEN050F7IEN050F8


Fare clic per tornare all'inizio della pagina

Visualizza articoli ...
47. rumore

47. Rumore (5)

Banner 6

 

47. rumore

Editor del capitolo:  Alice H.Suter


 

Sommario 

Figure e tabelle

La natura e gli effetti del rumore
Alice H.Suter

Misurazione del rumore e valutazione dell'esposizione
Eduard I. Denisov e il tedesco A. Suvorov

Ingegneria del controllo del rumore
Dennis P. Driscoll

Programmi per la conservazione dell'udito
Larry H. Royster e Julia Doswell Royster

Norme e regolamenti
Alice H.Suter

tavoli

Fare clic su un collegamento sottostante per visualizzare la tabella nel contesto dell'articolo.

1. Limiti di esposizione ammissibili (PEL) per l'esposizione al rumore, per nazione

Cifre

Punta su una miniatura per vedere la didascalia della figura, fai clic per vedere la figura nel contesto dell'articolo.

NOI010T1NOI050F6NOI050F7NOI060F1NOI060F2NOI060F3NOI060F4NOI070F1NOI070T1

Visualizza articoli ...
48. Radiazioni: ionizzanti

48. Radiazioni: ionizzanti (6)

Banner 6

 

48. Radiazioni: ionizzanti

Editor del capitolo: Robert N. Cherry, Jr.


 

Sommario

Introduzione
Robert N. Cherry, Jr.

Biologia delle radiazioni ed effetti biologici
Arthur C. Upton

Fonti di radiazioni ionizzanti
Robert N. Cherry, Jr.

Progettazione del posto di lavoro per la sicurezza dalle radiazioni
Gordon M.Lodde

Sicurezza contro le radiazioni
Robert N. Cherry, Jr.

Pianificazione e gestione degli incidenti da radiazioni
Sydney W.Porter, Jr.

Visualizza articoli ...
Venerdì, Febbraio 25 2011 16: 57

Valanghe: pericoli e misure di protezione

Da quando le persone hanno iniziato a stabilirsi nelle regioni montuose, sono state esposte ai pericoli specifici associati alla vita in montagna. Tra i pericoli più insidiosi vi sono le valanghe e le frane, che hanno mietuto vittime anche ai giorni nostri.

Quando le montagne sono ricoperte da diversi metri di neve in inverno, in determinate condizioni, una massa di neve che giace come una spessa coltre sui ripidi pendii o sulle cime delle montagne può staccarsi dal terreno sottostante e scivolare a valle sotto il proprio peso. Ciò può comportare enormi quantità di neve che precipitano lungo il percorso più diretto e si depositano nelle valli sottostanti. L'energia cinetica così liberata produce pericolose valanghe, che travolgono, schiacciano o seppelliscono tutto ciò che trovano sul loro cammino.

Le valanghe possono essere suddivise in due categorie a seconda del tipo e delle condizioni della neve interessata: valanghe di neve asciutta o di “polvere” e valanghe di neve bagnata o di “terreno”. I primi sono pericolosi a causa delle onde d'urto che provocano, e i secondi a causa del loro volume, dovuto all'umidità aggiunta nella neve bagnata, che appiatte tutto mentre la valanga rotola in discesa, spesso ad alta velocità, e talvolta porta via sezioni del sottosuolo.

Situazioni particolarmente pericolose possono verificarsi quando la neve su pendii ampi ed esposti sul lato sopravvento della montagna viene compattata dal vento. Poi spesso forma una copertura, tenuta insieme solo in superficie, come una tenda sospesa dall'alto, e appoggiata su una base che può produrre l'effetto di cuscinetti a sfera. Se viene praticato un "taglio" in una copertura di questo tipo (ad esempio, se uno sciatore lascia una traccia lungo il pendio), o se per qualsiasi motivo questa copertura molto sottile viene lacerata (ad esempio, a causa del suo stesso peso), allora l'intera la distesa di neve può scivolare a valle come una tavola, trasformandosi di solito in una valanga man mano che avanza.

All'interno della valanga può formarsi un'enorme pressione che può portare via, frantumare o schiacciare locomotive o interi edifici come se fossero giocattoli. Che gli esseri umani abbiano pochissime possibilità di sopravvivere in un tale inferno è ovvio, tenendo presente che chiunque non sia schiacciato a morte rischia di morire per soffocamento o per esposizione. Non sorprende, quindi, nei casi in cui le persone sono state sepolte da valanghe, che, anche se vengono ritrovate immediatamente, circa il 20% di loro sia già morto.

La topografia e la vegetazione dell'area faranno sì che le masse di neve seguano percorsi prestabiliti mentre scendono a valle. Le persone che vivono nella regione lo sanno per osservazione e tradizione, e quindi si tengono lontane da queste zone pericolose in inverno.

In passato, l'unico modo per sfuggire a tali pericoli era evitare di esporsi ad essi. Case coloniche e insediamenti sono stati costruiti in luoghi in cui le condizioni topografiche erano tali da impedire il verificarsi di valanghe o che anni di esperienza avevano dimostrato essere molto lontani da qualsiasi percorso valanghivo conosciuto. La gente ha persino evitato del tutto le zone di montagna durante il periodo di pericolo.

Anche i boschi dei pendii superiori offrono una notevole protezione contro tali calamità naturali, poiché sostengono le masse di neve nelle zone minacciate e possono frenare, arrestare o deviare le valanghe già iniziate, a condizione che non abbiano accumulato troppo slancio.

Tuttavia, la storia dei paesi montuosi è costellata da ripetuti disastri causati da valanghe, che hanno causato, e continuano a causare, un pesante tributo di vite umane e proprietà. Da un lato, la velocità e la quantità di moto della valanga sono spesso sottovalutate. D'altra parte, le valanghe a volte seguono percorsi che, sulla base di secoli di esperienza, non sono stati precedentemente considerati come percorsi di valanghe. Determinate condizioni meteorologiche sfavorevoli, in concomitanza con una particolare qualità della neve e dello stato del terreno sottostante (es. vegetazione danneggiata o erosione o allentamento del suolo a seguito di forti piogge) producono circostanze che possono portare ad uno di quei “disastri del secolo”.

Il fatto che un'area sia particolarmente esposta al pericolo di valanghe dipende non solo dalle condizioni meteorologiche prevalenti, ma in misura ancora maggiore dalla stabilità del manto nevoso e dal fatto che l'area in questione sia situata in uno dei percorsi valanghivi abituali o punti vendita. Esistono mappe speciali che mostrano le aree in cui è noto che si sono verificate valanghe o è probabile che si verifichino a causa delle caratteristiche topografiche, in particolare i percorsi e gli sbocchi delle valanghe frequenti. Divieto di costruire nelle zone ad alto rischio.

Tuttavia, oggi queste misure precauzionali non sono più sufficienti, in quanto, nonostante il divieto di edificazione in particolari aree, e tutte le informazioni disponibili sui pericoli, un numero sempre maggiore di persone è ancora attratto dalle pittoresche regioni di montagna, provocando sempre più costruzioni anche in zone notoriamente pericolose. Oltre a questo disprezzo o elusione dei divieti di costruzione, una delle manifestazioni della moderna società del tempo libero è che migliaia di turisti si recano in montagna per sport e svago in inverno, e proprio nelle zone dove le valanghe sono praticamente pre-programmate. La pista da sci ideale è ripida, priva di ostacoli e dovrebbe avere un manto nevoso sufficientemente fitto: condizioni ideali per lo sciatore, ma anche per la neve che scende a valle.

Se, tuttavia, i rischi non possono essere evitati o sono in una certa misura accettati consapevolmente come un "effetto collaterale" indesiderato del piacere ottenuto dallo sport, allora diventa necessario sviluppare modi e mezzi per affrontare questi pericoli in un altro modo.

Per migliorare le possibilità di sopravvivenza delle persone travolte da valanghe è fondamentale disporre di servizi di soccorso ben organizzati, telefoni di emergenza in prossimità delle località a rischio e informazioni aggiornate per le autorità e per i turisti sulla situazione prevalente nelle zone pericolose . Sistemi di allerta precoce e un'ottima organizzazione dei servizi di soccorso con le migliori attrezzature possibili possono aumentare notevolmente le possibilità di sopravvivenza delle persone travolte da valanghe, oltre a ridurre l'entità dei danni.

Misure protettive

Diversi metodi di protezione contro le valanghe sono stati sviluppati e testati in tutto il mondo, come i servizi di allerta transfrontaliera, le barriere e persino il distacco artificiale delle valanghe mediante esplosioni o spari sui campi di neve.

La stabilità del manto nevoso è sostanzialmente determinata dal rapporto tra stress meccanico e densità. Questa stabilità può variare notevolmente a seconda del tipo di sollecitazione (ad es. pressione, tensione, deformazione di taglio) all'interno di una regione geografica (ad es. quella parte del nevaio in cui potrebbe iniziare una valanga). Anche i contorni, la luce del sole, i venti, la temperatura e i disturbi locali nella struttura del manto nevoso, derivanti da rocce, sciatori, spazzaneve o altri veicoli, possono influire sulla stabilità. La stabilità può quindi essere ridotta mediante un intervento locale deliberato come l'esplosione o aumentata mediante l'installazione di supporti o barriere aggiuntivi. Queste misure, che possono essere di natura permanente o temporanea, sono i due principali metodi utilizzati per la protezione contro le valanghe.

Le misure permanenti comprendono strutture efficaci e durevoli, barriere di sostegno nelle zone di possibile distacco della valanga, barriere di deviazione o di frenatura sul percorso della valanga e barriere di blocco nell'area di sfogo della valanga. Lo scopo delle misure di protezione temporanea è quello di mettere in sicurezza e stabilizzare le zone di possibile distacco di una valanga, provocando intenzionalmente il distacco di valanghe più piccole e circoscritte per rimuovere a tratti i pericolosi quantitativi di neve.

Le barriere di sostegno aumentano artificialmente la stabilità del manto nevoso nelle aree a rischio di valanghe. Le barriere di deriva, che impediscono che ulteriore neve venga trasportata dal vento nell'area della valanga, possono rafforzare l'effetto delle barriere di supporto. Le barriere deviatrici e frenanti sul percorso della valanga e le barriere di sbarramento nella zona di sfogo delle valanghe possono deviare o rallentare la massa di neve in discesa e accorciare la distanza di deflusso davanti all'area da proteggere. Le barriere di sostegno sono strutture infisse nel terreno, più o meno perpendicolari al pendio, che oppongono una sufficiente resistenza alla massa di neve in discesa. Devono formare dei supporti che raggiungano la superficie della neve. Le barriere di sostegno sono solitamente disposte su più file e devono coprire tutte le parti del terreno dalle quali le valanghe potrebbero, nelle diverse possibili condizioni atmosferiche, minacciare la località da proteggere. Sono necessari anni di osservazione e misurazione della neve nell'area per stabilire il corretto posizionamento, struttura e dimensioni.

Le barriere devono avere una certa permeabilità per consentire a valanghe minori e smottamenti superficiali di scorrere attraverso un numero di file di barriere senza ingrandirsi o causare danni. Se la permeabilità non è sufficiente, c'è il pericolo che la neve si accumuli dietro le barriere e le successive valanghe scivolino su di esse senza impedimenti, trascinando con sé ulteriori masse di neve.

Le misure temporanee, a differenza delle barriere, possono anche permettere di ridurre il pericolo per un certo periodo di tempo. Queste misure si basano sull'idea di provocare valanghe con mezzi artificiali. Le masse di neve minacciose vengono allontanate dalla zona di potenziale valanghe da una serie di piccole valanghe deliberatamente innescate sotto sorveglianza in orari prestabiliti e prestabiliti. Ciò aumenta notevolmente la stabilità del manto nevoso residuo sul sito della valanga, riducendo almeno il rischio di ulteriori e più pericolose valanghe per un periodo di tempo limitato quando il pericolo di valanghe è acuto.

Tuttavia, le dimensioni di queste valanghe prodotte artificialmente non possono essere determinate in anticipo con un alto grado di precisione. Pertanto, al fine di mantenere il rischio di incidenti il ​​più basso possibile, durante l'esecuzione di tali misure temporanee, l'intera area interessata dalla valanga artificiale, dal suo punto di partenza a quello in cui si arresta definitivamente, deve essere evacuato, chiuso e controllato preventivamente.

Le possibili applicazioni dei due metodi di riduzione dei pericoli sono fondamentalmente diverse. In generale, è meglio utilizzare metodi permanenti per proteggere aree impossibili o difficili da evacuare o chiudere, o dove insediamenti o foreste potrebbero essere messi in pericolo anche da valanghe controllate. Strade, piste da sci e piste da sci, che possono essere facilmente chiuse per brevi periodi, sono invece tipici esempi di aree in cui possono essere applicate misure di protezione temporanea.

Le diverse modalità di distacco artificiale delle valanghe comportano una serie di operazioni che comportano anche alcuni rischi e, soprattutto, richiedono ulteriori misure di protezione per le persone addette a tale lavoro. L'essenziale è provocare le prime rotture innescando tremori artificiali (esplosioni). Questi ridurranno sufficientemente la stabilità del manto nevoso per produrre uno slittamento della neve.

L'esplosivo è particolarmente adatto per il distacco di valanghe su pendii ripidi. Di solito è possibile staccare ad intervalli piccoli tratti di neve ed evitare così grandi valanghe, che impiegano una lunga distanza per percorrere il loro percorso e possono essere estremamente distruttive. Tuttavia, è essenziale che le operazioni di sabbiatura vengano effettuate in qualsiasi momento della giornata e con qualsiasi condizione atmosferica, e ciò non è sempre possibile. Le modalità di produzione artificiale di valanghe mediante esplosivo differiscono notevolmente a seconda dei mezzi utilizzati per raggiungere l'area in cui deve avvenire l'esploso.

Le aree in cui è probabile che inizino le valanghe possono essere bombardate con granate o razzi da posizioni sicure, ma questo ha successo (cioè produce la valanga) solo nel 20-30% dei casi, poiché è praticamente impossibile determinare e colpire il maggior numero di punto bersaglio efficace con qualsiasi precisione a distanza, e anche perché il manto nevoso assorbe lo shock dell'esplosione. Inoltre, i proiettili potrebbero non esplodere.

L'esplosione con esplosivi commerciali direttamente nell'area in cui è probabile che inizino le valanghe è generalmente più efficace. I metodi di maggior successo sono quelli in cui l'esplosivo viene trasportato su pali o cavi sulla parte del campo nevoso dove deve iniziare la valanga e fatto esplodere ad un'altezza compresa tra 1.5 e 3 m sopra il manto nevoso.

Oltre al bombardamento dei pendii, sono stati sviluppati tre diversi metodi per portare l'esplosivo per la produzione artificiale di valanghe nel luogo effettivo in cui deve iniziare la valanga:

  • teleferiche dinamite
  • sabbiatura a mano
  • lanciare o abbassare la carica esplosiva da elicotteri.

 

La funivia è il metodo più sicuro e allo stesso tempo più sicuro. Con l'ausilio di una funivia speciale, la funivia della dinamite, la carica esplosiva viene trasportata su una fune avvolgente sopra il luogo dell'esplosione nella zona del manto nevoso in cui deve iniziare la valanga. Con un corretto controllo della fune e con l'ausilio di segnali e segni, è possibile dirigersi con precisione verso quelli che sono noti per esperienza essere i luoghi più efficaci e far esplodere la carica direttamente sopra di essi. I migliori risultati per quanto riguarda l'innesco di valanghe si ottengono quando la carica viene fatta detonare alla corretta altezza sopra il manto nevoso. Dato che la funivia corre ad un'altezza maggiore rispetto al suolo, ciò richiede l'utilizzo di dispositivi di abbassamento. La carica esplosiva pende da una corda avvolta attorno al dispositivo di abbassamento. La carica viene abbassata all'altezza corretta sopra il sito selezionato per l'esplosione con l'ausilio di un motore che svolge la corda. L'utilizzo di teleferiche a dinamite consente di effettuare il brillamento da postazione sicura, anche con scarsa visibilità, di giorno o di notte.

A causa dei buoni risultati ottenuti e dei costi di produzione relativamente bassi, questo metodo di distacco delle valanghe è ampiamente utilizzato in tutta la regione alpina, essendo necessaria una licenza per l'esercizio di funivie dinamitiche nella maggior parte dei paesi alpini. Nel 1988 ha avuto luogo un intenso scambio di esperienze in questo campo tra produttori, utenti e rappresentanti del governo delle aree alpine austriache, bavaresi e svizzere. Le informazioni ottenute da questo scambio di esperienze sono state riassunte in opuscoli e regolamenti giuridicamente vincolanti. Questi documenti contengono sostanzialmente le norme tecniche di sicurezza per le apparecchiature e gli impianti e le istruzioni per eseguire queste operazioni in sicurezza. Durante la preparazione della carica esplosiva e il funzionamento dell'attrezzatura, la squadra di brillamento deve potersi muovere il più liberamente possibile attorno ai vari comandi e dispositivi della funivia. Devono esserci marciapiedi sicuri e facilmente accessibili per consentire all'equipaggio di lasciare rapidamente il sito in caso di emergenza. Devono essere previsti percorsi di accesso sicuri fino agli appoggi e alle stazioni della funivia. Per evitare la mancata esplosione è necessario utilizzare due micce e due detonatori per ogni carica.

Nel caso del brillamento manuale, un secondo metodo per produrre artificialmente valanghe, che in passato veniva spesso eseguito, il dinamitardo deve salire fino alla parte del manto nevoso dove deve essere innescata la valanga. La carica esplosiva può essere posta su paletti piantati nella neve, ma più in generale lanciata lungo il pendio verso un punto bersaglio noto per esperienza per essere particolarmente efficace. Di solito è imperativo che gli aiutanti assicurino il dinamite con una corda durante l'intera operazione. Tuttavia, per quanto prudentemente proceda la squadra di brillamento, non è possibile eliminare il pericolo di cadere o di incontrare valanghe lungo il percorso verso il sito di brillamento, poiché queste attività comportano spesso lunghe salite, talvolta in condizioni meteorologiche sfavorevoli. A causa di questi pericoli, questo metodo, anch'esso soggetto a norme di sicurezza, oggi viene utilizzato raramente.

L'utilizzo di elicotteri, un terzo metodo, è praticato da molti anni nelle regioni alpine e non solo per le operazioni di distacco delle valanghe. In considerazione dei rischi pericolosi per le persone a bordo, questa procedura viene utilizzata nella maggior parte dei paesi alpini e in altri paesi montuosi solo quando è urgentemente necessario per scongiurare un pericolo acuto, quando altre procedure non possono essere utilizzate o comporterebbe un rischio ancora maggiore. In considerazione della particolare situazione giuridica derivante dall'utilizzo di aeromobili per tali scopi e dei rischi connessi, nei Paesi alpini sono state elaborate apposite linee guida per il distacco di valanghe da elicotteri, con la collaborazione delle autorità aeronautiche, delle istituzioni e delle autorità responsabile della salute e sicurezza sul lavoro, ed esperti del settore. Queste linee guida trattano non solo le questioni riguardanti le leggi ei regolamenti sugli esplosivi e le disposizioni di sicurezza, ma riguardano anche le qualifiche fisiche e tecniche richieste alle persone incaricate di tali operazioni.

Le valanghe vengono lanciate dagli elicotteri abbassando la carica su una fune e facendola esplodere sopra il manto nevoso o facendo cadere una carica con la miccia già accesa. Gli elicotteri utilizzati devono essere appositamente adattati e autorizzati per tali operazioni. Per quanto riguarda lo svolgimento in sicurezza delle operazioni a bordo, deve esserci una rigida divisione delle responsabilità tra il pilota e il tecnico di sabbiatura. La carica deve essere preparata correttamente e la lunghezza del fusibile deve essere scelta in base al fatto che debba essere abbassato o lasciato cadere. Per motivi di sicurezza, devono essere utilizzati due detonatori e due micce, come nel caso degli altri metodi. Di norma, le singole cariche contengono tra i 5 ei 10 kg di esplosivo. Diverse cariche possono essere abbassate o lasciate cadere una dopo l'altra durante un volo operativo. Le detonazioni devono essere osservate visivamente per verificare che nessuna abbia mancato di esplodere.

Tutti questi processi di sabbiatura richiedono l'uso di esplosivi speciali, efficaci a basse temperature e non sensibili alle influenze meccaniche. Le persone incaricate di svolgere queste operazioni devono essere particolarmente qualificate e avere la relativa esperienza.

Le misure di protezione temporanea e permanente contro le valanghe erano originariamente concepite per aree di applicazione nettamente diverse. Le costose barriere permanenti sono state costruite principalmente per proteggere i villaggi e gli edifici soprattutto dalle grandi valanghe. Le misure di protezione temporanea erano originariamente limitate quasi esclusivamente alla protezione di strade, stazioni sciistiche e servizi facilmente intercludibili. Al giorno d'oggi, la tendenza è quella di applicare una combinazione dei due metodi. Per elaborare il programma di sicurezza più efficace per una determinata area, è necessario analizzare in dettaglio la situazione prevalente al fine di determinare il metodo che fornirà la migliore protezione possibile.

 

Di ritorno

Le industrie e le economie delle nazioni dipendono, in parte, dal gran numero di materiali pericolosi trasportati dal fornitore all'utente e, in ultima analisi, allo smaltimento dei rifiuti. I materiali pericolosi vengono trasportati su strada, ferrovia, acqua, aria e condutture. La stragrande maggioranza raggiunge la destinazione in sicurezza e senza incidenti. Le dimensioni e la portata del problema sono illustrate dall'industria petrolifera. Nel Regno Unito distribuisce ogni anno circa 100 milioni di tonnellate di prodotto tramite oleodotti, ferrovie, strade e acque. Circa il 10% degli impiegati dell'industria chimica del Regno Unito è coinvolto nella distribuzione (vale a dire, trasporto e magazzinaggio).

Un materiale pericoloso può essere definito come "una sostanza o un materiale ritenuto in grado di presentare un rischio irragionevole per la salute, la sicurezza o la proprietà durante il trasporto". Il "rischio irragionevole" copre un ampio spettro di considerazioni relative alla salute, al fuoco e all'ambiente. Queste sostanze includono esplosivi, gas infiammabili, gas tossici, liquidi altamente infiammabili, liquidi infiammabili, solidi infiammabili, sostanze che diventano pericolose se bagnate, sostanze ossidanti e liquidi tossici.

I rischi derivano direttamente dal rilascio, dall'accensione e così via della/e sostanza/e pericolosa/e trasportata/e. Le minacce stradali e ferroviarie sono quelle che potrebbero dar luogo a incidenti rilevanti “che potrebbero colpire sia i dipendenti che i cittadini”. Questi pericoli possono verificarsi quando i materiali vengono caricati o scaricati o sono in viaggio. La popolazione a rischio è costituita dalle persone che vivono in prossimità della strada o della ferrovia e dalle persone in altri veicoli stradali o treni che potrebbero essere coinvolte in un incidente rilevante. Tra le aree a rischio figurano i punti di sosta temporanea come gli scali di smistamento ferroviario e le aree di sosta per autocarri presso i punti di servizio autostradali. I rischi marittimi sono quelli legati alle navi che entrano o escono dai porti e ivi caricano o scaricano merci; i rischi derivano anche dal traffico costiero e stretto e dalle vie navigabili interne.

La gamma di incidenti che possono verificarsi in associazione con il trasporto sia durante il trasporto che presso installazioni fisse comprende surriscaldamento chimico, fuoriuscita, perdita, fuoriuscita di vapore o gas, incendio ed esplosione. Due dei principali eventi che causano incidenti sono la collisione e l'incendio. Per le autocisterne altre cause di rilascio possono essere le perdite dalle valvole e il troppo pieno. In generale, sia per i veicoli stradali che per quelli ferroviari, gli incendi non accidentali sono molto più frequenti degli incendi accidentali. Questi incidenti associati ai trasporti possono verificarsi in aree rurali, urbane industriali e residenziali urbane e possono coinvolgere veicoli o treni sia presidiati che non presidiati. Solo in una minoranza di casi l'incidente è la causa primaria dell'incidente.

Il personale di emergenza deve essere consapevole della possibilità di esposizione umana e contaminazione da una sostanza pericolosa in incidenti che coinvolgono ferrovie e scali ferroviari, strade e terminal merci, navi (sia oceaniche che interne) e magazzini associati sul lungomare. Le condutture (sia sistemi di distribuzione di servizi a lunga distanza che locali) possono rappresentare un pericolo se si verificano danni o perdite, sia isolatamente che in associazione con altri incidenti. Gli incidenti di trasporto sono spesso più pericolosi di quelli in strutture fisse. I materiali coinvolti potrebbero essere sconosciuti, i segnali di avvertimento potrebbero essere oscurati da ribaltamento, fumo o detriti e operatori esperti potrebbero essere assenti o vittime dell'evento. Il numero di persone esposte dipende dalla densità della popolazione, sia diurna che notturna, dalla proporzione tra interni ed esterni e dalla proporzione di coloro che possono essere considerati particolarmente vulnerabili. A rischio, oltre alla popolazione che normalmente si trova nella zona, anche il personale dei servizi di emergenza che assiste all'incidente. Non è raro in un incidente che coinvolge il trasporto di materiali pericolosi che una parte significativa delle vittime includa tale personale.

Nel periodo di 20 anni dal 1971 al 1990, circa 15 persone sono morte sulle strade del Regno Unito a causa di sostanze chimiche pericolose, rispetto alla media annuale di 5,000 persone ogni anno in incidenti automobilistici. Tuttavia, piccole quantità di merci pericolose possono causare danni significativi. Esempi internazionali includono:

  • Un aereo è precipitato vicino a Boston, negli Stati Uniti, a causa della fuoriuscita di acido nitrico.
  • Oltre 200 persone sono morte quando un'autocisterna di propilene è esplosa sopra un campeggio in Spagna.
  • In un incidente ferroviario che ha coinvolto 22 vagoni ferroviari di sostanze chimiche a Mississauga, in Canada, un'autocisterna contenente 90 tonnellate di cloro si è rotta e si è verificata un'esplosione e un grande incendio. Non ci sono state vittime, ma sono state evacuate 250,000 persone.
  • Una collisione ferroviaria lungo l'autostrada a Eccles, nel Regno Unito, ha provocato tre morti e 68 feriti a causa della collisione, ma nessuno a causa del conseguente grave incendio dei prodotti petroliferi trasportati.
  • Un'autocisterna di benzina è andata fuori controllo a Herrborn, in Germania, bruciando gran parte della città.
  • A Peterborough, nel Regno Unito, un veicolo che trasportava esplosivi ha ucciso una persona e ha quasi distrutto un centro industriale.
  • Un'autocisterna di benzina è esplosa a Bangkok, in Thailandia, uccidendo un gran numero di persone.

 

Il maggior numero di incidenti gravi si è verificato con gas o liquidi infiammabili (in parte legati ai volumi movimentati), con alcuni incidenti da gas tossici e fumi tossici (compresi i prodotti della combustione).

Studi nel Regno Unito hanno dimostrato quanto segue per il trasporto su strada:

  • frequenza di incidenti durante il trasporto di materiali pericolosi: 0.12 x 10-6/ km
  • frequenza di rilascio durante il trasporto di materiali pericolosi: 0.027 x 10-6/ km
  • probabilità di rilascio in caso di incidente stradale: 3.3%.

 

Questi eventi non sono sinonimo di incidenti materiali pericolosi che coinvolgono veicoli e possono costituire solo una piccola parte di questi ultimi. C'è anche l'individualità degli incidenti che coinvolgono il trasporto su strada di materiali pericolosi.

Gli accordi internazionali riguardanti il ​​trasporto di materiali potenzialmente pericolosi includono:

Regolamento per il trasporto sicuro di materiale radioattivo del 1985 (modificato nel 1990): Agenzia internazionale per l'energia atomica, Vienna, 1990 (STI/PUB/866). Il loro scopo è stabilire standard di sicurezza che forniscano un livello accettabile di controllo dei rischi di radiazioni per le persone, le proprietà e l'ambiente associati al trasporto di materiale radioattivo.

Convenzione internazionale per la salvaguardia della vita umana in mare del 1974 (SOLAS74). Questo stabilisce gli standard di sicurezza di base per tutte le navi passeggeri e da carico, comprese le navi che trasportano rinfuse pericolose.

La Convenzione internazionale per la prevenzione dell'inquinamento provocato dalle navi del 1973, come modificata dal Protocollo del 1978 (MARPOL 73/78). Prevede norme per la prevenzione dell'inquinamento da idrocarburi, sostanze liquide nocive alla rinfusa, inquinanti imballati o in container merci, cisterne mobili o vagoni stradali e ferroviari, acque reflue e immondizia. I requisiti normativi sono ampliati nel Codice marittimo internazionale per le merci pericolose.

Esiste un corpus sostanziale di regolamentazione internazionale del trasporto di sostanze nocive per via aerea, ferroviaria, stradale e marittima (convertito nella legislazione nazionale in molti paesi). La maggior parte si basa su standard sponsorizzati dalle Nazioni Unite e copre i principi di identificazione, etichettatura, prevenzione e mitigazione. Il Comitato di esperti delle Nazioni Unite sul trasporto di merci pericolose ha prodotto Raccomandazioni sul trasporto di merci pericolose. Sono rivolti ai governi e alle organizzazioni internazionali interessate alla regolamentazione del trasporto di merci pericolose. Tra gli altri aspetti, le raccomandazioni riguardano principi di classificazione e definizioni di classi, elenco del contenuto di merci pericolose, requisiti generali di imballaggio, procedure di prova, fabbricazione, etichettatura o cartellonistica e documenti di trasporto. Queste raccomandazioni – il “Libro arancione” – non hanno forza di legge, ma costituiscono la base di tutte le normative internazionali. Questi regolamenti sono generati da varie organizzazioni:

  • l'Organizzazione per l'aviazione civile internazionale: Istruzioni tecniche per il trasporto aereo sicuro di merci pericolose (È)
  • l'Organizzazione marittima internazionale: Codice marittimo internazionale per le merci pericolose (Codice IMDG)
  • la Comunità Economica Europea: L'accordo europeo relativo al trasporto internazionale di merci pericolose su strada (ADR)
  • l'Ufficio del trasporto ferroviario internazionale: Regolamento relativo al trasporto internazionale di merci pericolose per ferrovia (SBARAZZARSI).

 

La preparazione di grandi piani di emergenza per affrontare e mitigare gli effetti di un grave incidente che coinvolge sostanze pericolose è tanto necessaria nel settore dei trasporti quanto per gli impianti fissi. L'attività di pianificazione è resa più difficile dal fatto che la posizione di un incidente non sarà nota in anticipo, richiedendo quindi una pianificazione flessibile. Le sostanze coinvolte in un incidente di trasporto non possono essere previste. A causa della natura dell'incidente, un certo numero di prodotti può essere mescolato insieme sulla scena, causando notevoli problemi ai servizi di emergenza. L'incidente può verificarsi in un'area altamente urbanizzata, remota e rurale, fortemente industrializzata o commercializzata. Un fattore aggiuntivo è la popolazione transitoria che può essere inconsapevolmente coinvolta in un evento perché l'incidente ha causato un arretrato di veicoli sulla pubblica via o dove i treni passeggeri vengono fermati in risposta a un incidente ferroviario.

Vi è quindi la necessità di sviluppare piani locali e nazionali per rispondere a tali eventi. Questi devono essere semplici, flessibili e facilmente comprensibili. Poiché gravi incidenti di trasporto possono verificarsi in una molteplicità di luoghi, il piano deve essere appropriato per tutte le potenziali scene. Affinché il piano funzioni in modo efficace in ogni momento, sia nelle zone rurali remote che in quelle urbane densamente popolate, tutte le organizzazioni che contribuiscono alla risposta devono avere la capacità di mantenere la flessibilità pur rispettando i principi di base della strategia generale.

I soccorritori iniziali dovrebbero ottenere quante più informazioni possibili per cercare di identificare il pericolo coinvolto. Se l'incidente è una fuoriuscita, un incendio, un rilascio tossico o una combinazione di questi determinerà le risposte. I sistemi di marcatura nazionali e internazionali utilizzati per identificare i veicoli che trasportano sostanze pericolose e che trasportano merci pericolose imballate dovrebbero essere noti ai servizi di emergenza, che dovrebbero avere accesso a una delle numerose banche dati nazionali e internazionali che possono aiutare a identificare il pericolo e i problemi associati con esso.

Il controllo rapido dell'incidente è vitale. La catena di comando deve essere chiaramente identificata. Questo può cambiare nel corso dell'evento dai servizi di emergenza attraverso la polizia al governo civile dell'area interessata. Il piano deve essere in grado di riconoscere l'effetto sulla popolazione, sia quella operante o residente nell'area potenzialmente interessata, sia quella eventualmente transitoria. Le fonti di competenza in materia di salute pubblica dovrebbero essere mobilitate per consigliare sia sulla gestione immediata dell'incidente che sul potenziale di effetti sulla salute diretti e indiretti a lungo termine attraverso la catena alimentare. Devono essere individuati i punti di contatto per ottenere consulenza sull'inquinamento ambientale dei corsi d'acqua e così via, e sull'effetto delle condizioni meteorologiche sul movimento delle nubi di gas. I piani devono identificare la possibilità di evacuazione come una delle misure di risposta.

Tuttavia, le proposte devono essere flessibili, in quanto potrebbe esserci una serie di costi e benefici, sia in termini di gestione degli incidenti che in termini di salute pubblica, che dovranno essere presi in considerazione. Gli accordi devono delineare chiaramente la politica per mantenere i media pienamente informati e le azioni intraprese per mitigare gli effetti. Le informazioni devono essere accurate e tempestive, con il portavoce che sia a conoscenza della risposta complessiva e abbia accesso ad esperti per rispondere a domande specifiche. Le cattive relazioni con i media possono interrompere la gestione dell'evento e portare a commenti sfavorevoli e talvolta ingiustificati sulla gestione complessiva dell'episodio. Qualsiasi piano deve includere adeguate simulazioni di disastro. Questi consentono ai soccorritori e ai gestori di un incidente di apprendere i reciproci punti di forza e di debolezza personali e organizzativi. Sono richiesti sia esercizi da tavolo che fisici.

Sebbene la letteratura che si occupa di sversamenti di sostanze chimiche sia ampia, solo una parte minore descrive le conseguenze ecologiche. La maggior parte riguarda casi di studio. Le descrizioni degli sversamenti effettivi si sono concentrate sui problemi di salute e sicurezza umana, con conseguenze ecologiche descritte solo in termini generali. Le sostanze chimiche entrano nell'ambiente prevalentemente attraverso la fase liquida. Solo in pochi casi gli incidenti con conseguenze ecologiche hanno colpito immediatamente anche l'uomo e gli effetti sull'ambiente non sono stati causati da sostanze chimiche identiche o da vie di rilascio identiche.

I controlli per prevenire i rischi per la salute e la vita umana derivanti dal trasporto di materiali pericolosi includono le quantità trasportate, la direzione e il controllo dei mezzi di trasporto, l'itinerario, nonché l'autorità sui punti di interscambio e di concentrazione e gli sviluppi in prossimità di tali aree. Sono necessarie ulteriori ricerche sui criteri di rischio, sulla quantificazione del rischio e sull'equivalenza del rischio. L'Health and Safety Executive del Regno Unito ha sviluppato un Major Incident Data Service (MHIDAS) come database dei principali incidenti chimici in tutto il mondo. Attualmente contiene informazioni su oltre 6,000 incidenti.


Caso di studio: trasporto di materiali pericolosi

Un'autocisterna articolata che trasportava circa 22,000 litri di toluene stava viaggiando su un'arteria principale che attraversa Cleveland, nel Regno Unito. Un'auto si è fermata sulla traiettoria del veicolo e, mentre il camionista ha compiuto un'azione evasiva, l'autocisterna si è ribaltata. I coperchi di tutti e cinque i compartimenti si sono aperti di scatto e il toluene si è versato sulla carreggiata e si è incendiato, provocando un incendio in piscina. Cinque auto che viaggiavano sulla carreggiata opposta sono rimaste coinvolte nell'incendio ma tutti gli occupanti si sono dati alla fuga.

I vigili del fuoco sono arrivati ​​entro cinque minuti dalla chiamata. Il liquido in fiamme era entrato negli scarichi e gli incendi erano evidenti a circa 400 m dall'incidente principale. Il piano di emergenza della contea è stato messo in atto, con i servizi sociali e i trasporti pubblici messi in allerta in caso fosse necessaria l'evacuazione. I primi interventi dei vigili del fuoco si sono concentrati sullo spegnimento degli incendi delle auto e sulla ricerca degli occupanti. Il compito successivo è stato identificare un adeguato approvvigionamento idrico. Un membro della squadra di sicurezza dell'azienda chimica è arrivato per coordinarsi con la polizia e i vigili del fuoco. Presenti anche il personale del servizio di ambulanza e dell'assessorato all'igiene ambientale e all'acqua. Dopo la consultazione si è deciso di lasciare bruciare il toluene fuoriuscito piuttosto che estinguere l'incendio e far emettere vapori chimici. La polizia ha lanciato avvertimenti per un periodo di quattro ore utilizzando la radio nazionale e locale, consigliando alle persone di rimanere in casa e chiudere le finestre. La strada è rimasta chiusa per otto ore. Quando il toluene è sceso al di sotto del livello dei manlidi, l'incendio è stato spento e il toluene rimanente è stato rimosso dall'autocisterna. L'incidente si è concluso circa 13 ore dopo l'incidente.

Il potenziale danno per l'uomo esisteva a causa delle radiazioni termiche; all'ambiente, dall'inquinamento dell'aria, del suolo e delle acque; e all'economia, dall'interruzione del traffico. Il piano aziendale esistente per un simile incidente di trasporto è stato attivato entro 15 minuti, con la presenza di cinque persone. Esisteva un piano fuori sede della contea ed è stato istigato con la creazione di un centro di controllo che coinvolgeva la polizia e i vigili del fuoco. È stata eseguita la misurazione della concentrazione ma non la previsione della dispersione. La risposta dei vigili del fuoco ha coinvolto oltre 50 persone e dieci apparecchiature, le cui azioni principali sono state l'estinzione degli incendi, il lavaggio e la ritenzione delle fuoriuscite. Oltre 40 agenti di polizia sono stati impegnati nella direzione del traffico, allertando il pubblico, la sicurezza e il controllo della stampa. La risposta del servizio sanitario comprendeva due ambulanze e due personale medico in loco. La reazione del governo locale ha coinvolto la salute ambientale, i trasporti ei servizi sociali. Il pubblico è stato informato dell'incidente tramite altoparlanti, radio e passaparola. Le informazioni si concentravano su cosa fare, in particolare sul riparo al chiuso.

Il risultato per gli esseri umani è stato di due ricoveri in un unico ospedale, un membro del pubblico e un dipendente dell'azienda, entrambi feriti nell'incidente. C'era un notevole inquinamento atmosferico ma solo una leggera contaminazione del suolo e dell'acqua. Da un punto di vista economico ci sono stati gravi danni alla strada e notevoli rallentamenti del traffico, ma nessuna perdita di raccolti, bestiame o produzione. Le lezioni apprese hanno incluso il valore del recupero rapido delle informazioni dal sistema Chemdata e la presenza di un esperto tecnico aziendale che consente di intraprendere azioni corrette e immediate. È stata sottolineata l'importanza di dichiarazioni congiunte alla stampa da parte dei soccorritori. È necessario prendere in considerazione l'impatto ambientale della lotta antincendio. Se l'incendio fosse stato domato nelle fasi iniziali, una notevole quantità di liquido contaminato (acqua antincendio e toluene) sarebbe potenzialmente potuta entrare negli scarichi, nelle riserve idriche e nel suolo.


 

 

 

Di ritorno

Venerdì, Febbraio 25 2011 17: 12

Incidenti da radiazioni

Descrizione, Fonti, Meccanismi

Oltre al trasporto di materiali radioattivi, ci sono tre contesti in cui possono verificarsi incidenti dovuti a radiazioni:

  • uso di reazioni nucleari per produrre energia o armi o per scopi di ricerca
  • applicazioni industriali delle radiazioni (radiografia gamma, irradiazione)
  • ricerca e medicina nucleare (diagnosi o terapia).

 

Gli incidenti da radiazioni possono essere classificati in due gruppi in base alla presenza o meno di emissione ambientale o dispersione di radionuclidi; ognuno di questi tipi di incidenti colpisce popolazioni diverse.

L'entità e la durata del rischio di esposizione per la popolazione in generale dipende dalla quantità e dalle caratteristiche (tempo di dimezzamento, proprietà fisiche e chimiche) dei radionuclidi immessi nell'ambiente (tabella 1). Questo tipo di contaminazione si verifica quando si verifica la rottura delle barriere di contenimento nelle centrali nucleari o nei siti industriali o medici che separano i materiali radioattivi dall'ambiente. In assenza di emissioni ambientali, sono esposti solo i lavoratori presenti in loco o che maneggiano apparecchiature o materiali radioattivi.

Tabella 1. Tipici radionuclidi, con le loro emivite radioattive

radionuclidi

Simbolo

Radiazioni emesse

Emivita fisica*

Emivita biologica
dopo l'incorporazione
*

Bario-133

Ba-133

γ

10.7 y

65 d

Cerio-144

Ce 144

β,γ

284 d

263 d

Cesio-137

CS-137

β,γ

30 y

109 d

Cobalto-60

Co-60

β,γ

5.3 y

1.6 y

Iodio-131

I-131

β,γ

8 d

7.5 d

Plutonio-239

Pu-239

α,γ

24,065 y

50 y

Polonio-210

Po-210

α

138 d

27 d

Stronzio-90

SR-90

β

29.1 y

18 y

trizio

H-3

β

12.3 anni

10 d

* y = anni; d = giorni.

L'esposizione alle radiazioni ionizzanti può avvenire attraverso tre vie, indipendentemente dal fatto che la popolazione target sia composta da lavoratori o dal pubblico in generale: irradiazione esterna, irradiazione interna e contaminazione della pelle e delle ferite.

L'irradiazione esterna si verifica quando gli individui sono esposti a una sorgente di radiazioni extracorporee, puntiforme (radioterapia, irradiatori) o diffusa (nuvole radioattive e ricadute da incidenti, figura 1). L'irradiazione può essere locale, coinvolgendo solo una parte del corpo o tutto il corpo.

Figura 1. Vie di esposizione alle radiazioni ionizzanti dopo un rilascio accidentale di radioattività nell'ambiente

DIS080F1

La radiazione interna si verifica in seguito all'incorporazione di sostanze radioattive nel corpo (figura 1) attraverso l'inalazione di particelle radioattive trasportate dall'aria (ad esempio, cesio-137 e iodio-131, presenti nella nube di Chernobyl) o l'ingestione di materiali radioattivi nella catena alimentare (ad esempio , iodio-131 nel latte). L'irradiazione interna può interessare tutto il corpo o solo alcuni organi, a seconda delle caratteristiche dei radionuclidi: il cesio-137 si distribuisce in modo omogeneo in tutto il corpo, mentre lo iodio-131 e lo stronzio-90 si concentrano rispettivamente nella tiroide e nelle ossa.

Infine, l'esposizione può avvenire anche attraverso il contatto diretto di materiali radioattivi con la pelle e le ferite.

Incidenti che coinvolgono centrali nucleari

I siti inclusi in questa categoria includono centrali elettriche, reattori sperimentali, impianti per la produzione e trattamento o ritrattamento di combustibile nucleare e laboratori di ricerca. I siti militari includono reattori autofertilizzanti di plutonio e reattori situati a bordo di navi e sottomarini.

Centrali elettriche nucleari

La cattura dell'energia termica emessa dalla fissione atomica è la base per la produzione di elettricità dall'energia nucleare. Schematicamente, le centrali nucleari possono essere pensate come comprendenti: (1) un nucleo, contenente il materiale fissile (per i reattori ad acqua pressurizzata, da 80 a 120 tonnellate di ossido di uranio); (2) apparecchiature per il trasferimento del calore che incorporano fluidi per il trasferimento del calore; (3) apparecchiature in grado di trasformare l'energia termica in energia elettrica, simili a quelle presenti nelle centrali elettriche non nucleari.

I picchi di tensione forti e improvvisi in grado di provocare la fusione del nucleo con l'emissione di prodotti radioattivi sono i principali pericoli in queste installazioni. Si sono verificati tre incidenti che hanno coinvolto la fusione del nocciolo del reattore: a Three Mile Island (1979, Pennsylvania, Stati Uniti), Chernobyl (1986, Ucraina) e Fukushima (2011, Giappone) [Modificato, 2011].

L'incidente di Chernobyl è stato quello che è noto come a incidente di criticità- cioè, un improvviso (nell'arco di pochi secondi) aumento della fissione che porta a una perdita di controllo del processo. In questo caso, il nocciolo del reattore è stato completamente distrutto e sono state emesse enormi quantità di materiali radioattivi (tabella 2). Le emissioni hanno raggiunto un'altezza di 2 km, favorendone la dispersione su lunghe distanze (a tutti gli effetti l'intero emisfero settentrionale). Il comportamento della nube radioattiva si è rivelato di difficile analisi, a causa dei cambiamenti meteorologici durante il periodo di emissione (figura 2) (IAEA 1991).

Tabella 2. Confronto di diversi incidenti nucleari

Incidente

Tipo di impianto

Incidente
meccanismo

Totale emesso
radioattività (GBq)

Durata
di emissione

Principale emesso
radionuclidi

Collective
dose (hSv)

Khishtym 1957

Stoccaggio di alta-
fissione di attività
prodotti

Esplosione chimica

740x106

Quasi
istantaneo

Stronzio-90

2,500

Scala del vento 1957

Plutonio-
produzione
reattore

Antincendio

7.4x106

Circa
23 ore

Iodio-131, polonio-210,
cesio-137

2,000

Three Mile Island
1979

PWR industriale
reattore

Guasto del refrigerante

555

?

Iodio-131

16-50

Cernobyl 1986

RBMK industriale 
reattore

criticamente

3,700x106

Più di 10 giorni

Iodio-131, iodio-132, 
cesio-137, cesio-134, 
stronzio-89, stronzio-90

600,000

Fukushima 2011

 

Il rapporto finale della Fukushima Assessment Task Force sarà presentato nel 2013.

 

 

 

 

 

Fonte: UNSCEAR 1993.

Figura 2. Traiettoria delle emissioni dell'incidente di Chernobyl, 26 aprile-6 maggio 1986

DIS080F2

Le mappe di contaminazione sono state redatte sulla base delle misurazioni ambientali del cesio-137, uno dei principali prodotti di emissione radioattiva (tabella 1 e tabella 2). Le aree dell'Ucraina, della Bielorussia (Bielorussia) e della Russia sono state fortemente contaminate, mentre le ricadute nel resto d'Europa sono state meno significative (figura 3 e figura 4 (UNSCEAR 1988). La tabella 3 presenta i dati sull'area delle zone contaminate, le caratteristiche popolazioni esposte e vie di esposizione.

FIGURA 3. Deposizione di Cesio-137 in Bielorussia, Russia e Ucraina a seguito dell'incidente di Chernobyl.

DIS080F3

Figura 4. Fallout di cesio-137 (kBq/km2) in Europa a seguito dell'incidente di Chernobyl

 DIS080F4

Tabella 3. Area delle zone contaminate, tipologie di popolazioni esposte e modalità di esposizione in Ucraina, Bielorussia e Russia a seguito dell'incidente di Chernobyl

Tipo di popolazione

Superficie ( km2 )

Dimensione della popolazione (000)

Principali modalità di esposizione

Popolazioni professionalmente esposte:

Dipendenti in loco a
il tempo del
incidente
Vigili del fuoco
(primo soccorso)





Pulizia e sollievo
lavoratori*


 

≈0.44


≈0.12






600-800



irradiazione esterna,
inalazione, pelle
contaminazione
dai danneggiati
reattore, frammenti
del reattore
disperso ovunque
il sito, radioattivo
vapori e polveri

irradiazione esterna,
inalazione, pelle
contaminazione

Pubblico generico:

Evacuato dal
zona proibita in
i primi giorni



I residenti di 
contaminati**
zone
(Mbq/mq2 ) - ( Ci/km2 )
>1.5 (>40)
0.6–1.5 (15–40)
0.2–0.6 (5–15)
0.04–0.2 (1–5)
Residenti di altre zone <0.04mbq/m2











3,100
7,200
17,600
103,000

115









33
216
584
3,100
280,000

Irradiazione esterna da
la nuvola, inalazione
di radioattivo
elementi presenti
nel cloud

Radiazione esterna da
ricaduta, ingestione di
contaminati
prodotti




Irraggiamento esterno
per ricaduta, ingestione
di contaminato
prodotti

* Individui che partecipano alla bonifica entro 30 km dal sito. Tra questi vigili del fuoco, personale militare, tecnici e ingegneri intervenuti nelle prime settimane, oltre a medici e ricercatori attivi in ​​un secondo momento.

** Contaminazione da cesio-137.

Fonte: UNSCEAR 1988; AIEA 1991.

 

L'incidente di Three Mile Island è classificato come un incidente termico senza fuoriuscita del reattore ed è stato il risultato di un guasto del refrigerante del nocciolo del reattore durato diverse ore. Il guscio di contenimento garantiva che solo una quantità limitata di materiale radioattivo fosse emessa nell'ambiente, nonostante la parziale distruzione del nocciolo del reattore (tabella 2). Sebbene non sia stato emesso alcun ordine di evacuazione, 200,000 residenti hanno evacuato volontariamente l'area.

Infine, un incidente che coinvolse un reattore per la produzione di plutonio si verificò sulla costa occidentale dell'Inghilterra nel 1957 (Windscale, tabella 2). Questo incidente è stato causato da un incendio nel nocciolo del reattore e ha provocato emissioni ambientali da un camino alto 120 metri.

Impianti per il trattamento del carburante

Gli impianti di produzione del combustibile sono situati “a monte” dei reattori nucleari e sono il luogo dell'estrazione del minerale e della trasformazione fisica e chimica dell'uranio in materiale fissile idoneo all'uso nei reattori (figura 5). I principali pericoli di incidente presenti in questi impianti sono di natura chimica e legati alla presenza di esafluoruro di uranio (UF6), un composto gassoso di uranio che può decomporsi a contatto con l'aria per produrre acido fluoridrico (HF), un gas molto corrosivo.

Figura 5. Ciclo di trattamento del combustibile nucleare.

DIS080F5

Le strutture “a valle” comprendono gli impianti di stoccaggio e ritrattamento del combustibile. Quattro incidenti critici si sono verificati durante il ritrattamento chimico dell'uranio arricchito o del plutonio (Rodrigues 1987). A differenza degli incidenti verificatisi nelle centrali nucleari, questi incidenti hanno coinvolto piccole quantità di materiali radioattivi - decine di chilogrammi al massimo - e hanno provocato effetti meccanici trascurabili e nessuna emissione ambientale di radioattività. L'esposizione era limitata a dosi molto elevate, a brevissimo termine (dell'ordine di minuti) di raggi gamma esterni e irradiazione di neutroni dei lavoratori.

Nel 1957, un serbatoio contenente scorie altamente radioattive esplose nel primo impianto di produzione di plutonio militare della Russia, situato a Khyshtym, negli Urali meridionali. Oltre 16,000 km2 sono stati contaminati e sono stati emessi in atmosfera 740 PBq (20 MCi) (tabella 2 e tabella 4).

Tabella 4. Superficie delle zone contaminate e dimensione della popolazione esposta dopo l'incidente di Khyshtym (Urali 1957), per contaminazione da stronzio-90

Contaminazione (kBq/m2 )

(ci/km2 )

Zona (km2 )

Profilo demografico

≥ 37,000

≥ 1,000

20

1,240

≥ 3,700

≥ 100

120

1,500

≥ 74

≥ 2

1,000

10,000

≥ 3.7

≥ 0.1

15,000

270,000

 

Reattori di ricerca

I pericoli in queste strutture sono simili a quelli presenti nelle centrali nucleari, ma sono meno gravi, data la minore produzione di energia. Si sono verificati diversi incidenti critici che hanno comportato una significativa irradiazione del personale (Rodrigues 1987).

Incidenti connessi all'uso di sorgenti radioattive nell'industria e nella medicina (escluse le centrali nucleari) (Zerbib 1993)

L'incidente più comune di questo tipo è la perdita di sorgenti radioattive dalla radiografia gamma industriale, utilizzata, ad esempio, per l'ispezione radiografica di giunti e saldature. Tuttavia, le sorgenti radioattive possono anche essere perse da sorgenti mediche (tabella 5). In entrambi i casi, sono possibili due scenari: la fonte può essere raccolta e conservata da una persona per diverse ore (ad esempio, in una tasca), quindi segnalata e ripristinata, oppure può essere raccolta e portata a casa. Mentre il primo scenario provoca ustioni locali, il secondo può comportare l'irradiazione a lungo termine di diversi membri del pubblico in generale.

Tabella 5. Incidenti che comportano la perdita di sorgenti radioattive e che hanno comportato l'esposizione del pubblico in generale

Paese (anno)

Numero di
esposto
individui

Numero di
esposto
individui
ricezione alta
dosi
*

Numero di morti**

Materiale radioattivo coinvolto

Messico (1962)

?

5

4

Cobalto-60

La Cina (1963)

?

6

2

Cobalto 60

Algeria (1978)

22

5

1

Iridio-192

Marocco (1984)

?

11

8

Iridio-192

Messico
(Juárez, 1984)

≈4,000

5

0

Cobalto-60

Brasil
(Goiania, 1987)

249

50

4

Cesio-137

Cina
(Xinhou, 1992)

≈90

12

3

Cobalto-60

Stati Uniti
(Indiana, 1992)

≈90

1

1

Iridio-192

* Individui esposti a dosi in grado di provocare effetti acuti oa lungo termine o la morte.
** Tra gli individui che ricevono alte dosi.

Fonte: Nenot 1993.

 

Il recupero di sorgenti radioattive da apparecchiature di radioterapia ha provocato diversi incidenti che hanno comportato l'esposizione di lavoratori rottamati. In due casi, gli incidenti di Juarez e Goiânia, anche il pubblico in generale è stato esposto (vedi tabella 5 e riquadro sottostante).


L'incidente di Goiвnia, 1987

Tra il 21 settembre e il 28 settembre 1987 diverse persone affette da vomito, diarrea, vertigini e lesioni cutanee in varie parti del corpo sono state ricoverate nell'ospedale specializzato in malattie tropicali di Goiânia, una città di un milione di abitanti nello stato brasiliano di Goias . Questi problemi sono stati attribuiti a una malattia parassitaria comune in Brasile. Il 28 settembre, il medico responsabile della sorveglianza sanitaria della città ha visto una donna che gli ha consegnato un sacchetto contenente detriti di un dispositivo raccolto da una clinica abbandonata, e una polvere che emetteva, secondo la donna, “una luce blu”. Pensando che l'apparecchio fosse probabilmente un'apparecchiatura a raggi X, il medico ha contattato i suoi colleghi dell'ospedale per le malattie tropicali. Il dipartimento dell'ambiente di Goias è stato avvisato e il giorno successivo un fisico ha effettuato misurazioni nel cortile del dipartimento di igiene, dove la borsa è stata conservata durante la notte. Sono stati trovati livelli di radioattività molto elevati. Nelle indagini successive la fonte di radioattività è stata identificata come fonte di cesio-137 (attività totale: circa 50 TBq (1,375 Ci)) che era stata contenuta all'interno di apparecchiature di radioterapia utilizzate in una clinica abbandonata dal 1985. L'alloggiamento protettivo che circondava il cesio era stato smontato il 10 settembre 1987 da due operai della discarica e la fonte di cesio, in polvere, rimossa. Sia il cesio che i frammenti delle abitazioni contaminate furono gradualmente dispersi in tutta la città. Diverse persone che avevano trasportato o maneggiato il materiale, o che erano semplicemente venute a vederlo (compresi genitori, amici e vicini di casa) sono risultate contaminate. In tutto sono state esaminate oltre 100,000 persone, di cui 129 contaminate in modo molto grave; 50 sono stati ricoverati (14 per insufficienza midollare) e 4, tra cui una bambina di 6 anni, sono deceduti. L'incidente ha avuto conseguenze economiche e sociali drammatiche per l'intera città di Goiânia e lo stato di Goias: 1/1000 della superficie della città è stata contaminata e il prezzo dei prodotti agricoli, degli affitti, degli immobili e dei terreni è crollato. Gli abitanti dell'intero stato subirono una vera e propria discriminazione.

Fonte: AIEA 1989a


L'incidente di Juarez è stato scoperto per caso (AIEA 1989b). Il 16 gennaio 1984, un camion che entrava nel laboratorio scientifico di Los Alamos (New Mexico, Stati Uniti) carico di sbarre d'acciaio fece scattare un rilevatore di radiazioni. L'indagine ha rivelato la presenza di cobalto-60 nelle barre e ha fatto risalire il cobalto-60 a una fonderia messicana. Il 21 gennaio, una discarica fortemente contaminata a Juarez è stata identificata come fonte del materiale radioattivo. Il monitoraggio sistematico di strade e autostrade da parte di rilevatori ha portato all'identificazione di un camion fortemente contaminato. L'ultima fonte di radiazioni è stata determinata essere un dispositivo di radioterapia immagazzinato in un centro medico fino al dicembre 1983, momento in cui è stato smontato e trasportato al deposito di rottami. Al deposito di rottami, l'involucro protettivo che circondava il cobalt-60 è stato rotto, liberando i pallini di cobalto. Una parte del pellet è caduta nel camion utilizzato per il trasporto dei rottami, mentre un'altra è stata dispersa nella discarica durante le operazioni successive, mescolandosi con l'altro rottame.

Si sono verificati incidenti che hanno comportato l'ingresso di lavoratori in irradiatori industriali attivi (ad es. quelli utilizzati per conservare alimenti, sterilizzare prodotti medici o polimerizzare sostanze chimiche). In tutti i casi, questi sono stati dovuti al mancato rispetto delle procedure di sicurezza oa sistemi di sicurezza e allarmi scollegati o difettosi. I livelli di dose di irradiazione esterna a cui sono stati esposti i lavoratori in questi incidenti erano sufficientemente elevati da causare la morte. Le dosi sono state ricevute entro pochi secondi o minuti (tabella 6).

Tabella 6. Principali incidenti che coinvolgono irradiatori industriali

Sito, data

Attrezzatura*

Numero di
vittime

Livello di esposizione
e durata

Organi colpiti
e tessuti

Dose ricevuta (Gy),
site

Effetti medici

Forbach, agosto 1991

EA

2

diversi deciGy/
secondo

Mani, testa, tronco

40, pelle

Ustioni che colpiscono il 25-60% di
area del corpo

Maryland, dicembre 1991

EA

1

?

Mani

55, mani

Amputazione bilaterale delle dita

Vietnam, novembre 1992

EA

1

1,000 Gy/minuto

Mani

1.5, corpo intero

Amputazione della mano destra e di un dito della mano sinistra

Italia, maggio 1975

CI

1

Diversi minuti

Testa, tutto il corpo

8, midollo osseo

Morte

San Salvador, febbraio 1989

CI

3

?

Tutto il corpo, gambe,
piedi

3–8, corpo intero

2 amputazioni di gamba, 1 morte

Israele, giugno 1990

CI

1

minuti 1

Testa, tutto il corpo

10-20

Morte

Bielorussia, ottobre 1991

CI

1

Diversi minuti

Tutto il corpo

10

Morte

* EA: acceleratore di elettroni CI: irradiatore di cobalto-60.

Fonte: Zerbib 1993; Nenot 1993.

 

Infine, il personale medico e scientifico che prepara o maneggia sorgenti radioattive può essere esposto attraverso la contaminazione della pelle e delle ferite o l'inalazione o l'ingestione di materiali radioattivi. Va notato che questo tipo di incidente è possibile anche nelle centrali nucleari.

Aspetti di sanità pubblica del problema

Modelli temporali

Lo United States Radiation Accident Registry (Oak Ridge, Stati Uniti) è un registro mondiale degli incidenti causati dalle radiazioni che coinvolgono esseri umani dal 1944. Per essere incluso nel registro, un incidente deve essere stato oggetto di un rapporto pubblicato e aver provocato danni a tutto il corpo esposizione superiore a 0.25 Sievert (Sv), o esposizione cutanea superiore a 6 Sv o esposizione di altri tessuti e organi superiore a 0.75 Sv (vedere "Caso di studio: cosa significa dose?" per una definizione di dose). Sono quindi esclusi gli incidenti che sono di interesse dal punto di vista della salute pubblica ma che hanno comportato esposizioni inferiori (vedi sotto per una discussione delle conseguenze dell'esposizione).

L'analisi dei dati anagrafici dal 1944 al 1988 rivela un netto aumento sia della frequenza degli incidenti da radiazioni sia del numero di individui esposti a partire dal 1980 (tabella 7). L'aumento del numero di individui esposti è probabilmente dovuto all'incidente di Chernobyl, in particolare i circa 135,000 individui inizialmente residenti nell'area proibita entro 30 km dal luogo dell'incidente. In questo periodo si sono verificati anche gli incidenti di Goiânia (Brasile) e Juarez (Messico) che hanno comportato un'esposizione significativa di molte persone (tabella 5).

Tabella 7. Incidenti da radiazioni elencati nel registro degli incidenti di Oak Ridge (Stati Uniti) (in tutto il mondo, 1944-88)

 

1944-79

1980-88

1944-88

Numero totale di incidenti

98

198

296

Numero di individui coinvolti

562

136,053

136,615

Numero di individui esposti a dosi eccedenti
criteri di esposizione*

306

24,547

24,853

Numero di decessi (effetti acuti)

16

53

69

* 0.25 Sv per l'esposizione del corpo intero, 6 Sv per l'esposizione della pelle, 0.75 Sv per altri tessuti e organi.

 

Popolazioni potenzialmente esposte

Dal punto di vista dell'esposizione alle radiazioni ionizzanti, ci sono due popolazioni di interesse: le popolazioni professionalmente esposte e il pubblico in generale. Il Comitato Scientifico delle Nazioni Unite sugli Effetti delle Radiazioni Atomiche (UNSCEAR 1993) stima che 4 milioni di lavoratori in tutto il mondo siano stati professionalmente esposti a radiazioni ionizzanti nel periodo 1985-1989; di questi, circa il 20% era impiegato nella produzione, utilizzo e lavorazione del combustibile nucleare (tabella 8). Si stima che i paesi membri dell'AIEA possedessero 760 irradiatori nel 1992, di cui 600 acceleratori di elettroni e 160 irradiatori gamma.

Tabella 8. Schema temporale dell'esposizione professionale alle radiazioni ionizzanti nel mondo (in migliaia)

Attività

1975-79

1980-84

1985-89

Elaborazione del combustibile nucleare*

560

800

880

Applicazioni militari**

310

350

380

Applicazioni industriali

530

690

560

Applicazioni mediche

1,280

1,890

2,220

Totale

2,680

3,730

4,040

* Produzione e ritrattamento di carburante: 40,000; funzionamento del reattore: 430,000.
** di cui 190,000 membri del personale di bordo.

Fonte: UNSCEAR 1993.

 

Il numero di siti nucleari per paese è un buon indicatore del potenziale di esposizione del pubblico in generale (figura 6).

Figura 6. Distribuzione dei reattori di generazione di energia e degli impianti di ritrattamento del combustibile nel mondo, 1989-90

DIS080F6

Effetti sulla salute

Effetti diretti sulla salute delle radiazioni ionizzanti

In generale, gli effetti sulla salute delle radiazioni ionizzanti sono ben noti e dipendono dal livello di dose ricevuta e dal rateo di dose (dose ricevuta per unità di tempo (cfr. "Caso di studio: cosa significa dose?").

Effetti deterministici

Questi si verificano quando la dose supera una determinata soglia e il rateo di dose è elevato. La gravità degli effetti è proporzionale alla dose, sebbene la soglia di dose sia organo specifica (tabella 9).

Tabella 9. Effetti deterministici: soglie per organi selezionati

Tessuto o effetto

Dose singola equivalente
ricevuto all'organo (Sv)

Testicoli:

Sterilità temporanea

0.15

Sterilità permanente

3.5-6.0

ovaie:

Sterilità

2.5-6.0

Cristallino:

Opacità rilevabili

0.5-2.0

Visione alterata (cataratta)

5.0

Midollo osseo:

Depressione dell'emopoiesi

0.5

Fonte: ICRP 1991.

Negli incidenti come quelli discussi sopra, gli effetti deterministici possono essere causati da un'intensa irradiazione locale, come quella causata dall'irradiazione esterna, dal contatto diretto con una fonte (ad esempio, una fonte fuori posto raccolta e intascata) o dalla contaminazione della pelle. Tutto ciò provoca ustioni radiologiche. Se la dose locale è dell'ordine di 20-25 Gy (tabella 6, "Caso di studio: cosa significa dose?") può verificarsi necrosi tissutale. Una sindrome nota come sindrome da irradiazione acuta, caratterizzata da disturbi digestivi (nausea, vomito, diarrea) e aplasia del midollo osseo di gravità variabile, può essere indotta quando la dose media di irradiazione su tutto il corpo supera 0.5 Gy. Va ricordato che l'irradiazione su tutto il corpo e quella locale possono verificarsi simultaneamente.

Nove dei 60 lavoratori esposti durante incidenti critici negli impianti di trattamento del combustibile nucleare o nei reattori di ricerca sono morti (Rodrigues 1987). I deceduti hanno ricevuto da 3 a 45 Gy, mentre i sopravvissuti hanno ricevuto da 0.1 a 7 Gy. Nei sopravvissuti sono stati osservati i seguenti effetti: sindrome acuta da irradiazione (effetti gastrointestinali ed ematologici), cataratta bilaterale e necrosi degli arti, che hanno richiesto l'amputazione.

A Chernobyl, il personale della centrale elettrica, così come il personale di pronto intervento che non utilizzava dispositivi di protezione speciali, ha subito un'elevata esposizione a radiazioni beta e gamma nelle prime ore o giorni successivi all'incidente. Cinquecento persone hanno richiesto il ricovero in ospedale; 237 individui che hanno ricevuto l'irradiazione di tutto il corpo hanno mostrato una sindrome da irradiazione acuta e 28 individui sono morti nonostante il trattamento (tabella 10) (UNSCEAR 1988). Altri hanno ricevuto irradiazione locale degli arti, interessando in alcuni casi oltre il 50% della superficie corporea e continuano a soffrire, molti anni dopo, di disturbi cutanei multipli (Peter, Braun-Falco e Birioukov 1994).

Tabella 10. Distribuzione dei pazienti con sindrome acuta da irradiazione (AIS) dopo l'incidente di Chernobyl, per gravità della condizione

Gravità dell'AIS

Dose equivalente
(Gi)

Numero di
soggetti

Numero di
deceduti (%)

Sopravvivenza media
periodo (giorni)

I

1-2

140

-

-

II

2-4

55

1 (1.8)

96

III

4-6

21

7 (33.3)

29.7

IV

>6

21

20 (95.2)

26.6

Fonte: UNSCEAR 1988.

Effetti stocastici

Questi sono di natura probabilistica (cioè la loro frequenza aumenta con la dose ricevuta), ma la loro gravità è indipendente dalla dose. I principali effetti stocastici sono:

  • Mutazione. Questo è stato osservato negli esperimenti sugli animali ma è stato difficile da documentare negli esseri umani.
  • Cancro. L'effetto dell'irradiazione sul rischio di sviluppare il cancro è stato studiato nei pazienti sottoposti a radioterapia e nei sopravvissuti agli attentati di Hiroshima e Nagasaki. UNSCEAR (1988, 1994) riassume regolarmente i risultati di questi studi epidemiologici. La durata del periodo di latenza è tipicamente da 5 a 15 anni dalla data di esposizione a seconda dell'organo e del tessuto. La tabella 11 elenca i tumori per i quali è stata stabilita un'associazione con le radiazioni ionizzanti. Sono stati dimostrati eccessi significativi di cancro tra i sopravvissuti agli attentati di Hiroshima e Nagasaki con esposizioni superiori a 0.2 Sv.
  • Tumori benigni selezionati. Adenomi tiroidei benigni.

 

Tabella 11. Risultati degli studi epidemiologici sull'effetto dell'alto tasso di dose di irradiazione esterna sul cancro

Sito del cancro

Hiroshima/Nagasaki

Altri studi
N. positivo/
totale n.
1

 

Mortalità

Incidenza

 

Sistema ematopoietico

     

Leucemia

+*

+*

6/11

Linfoma (non specificato)

+

 

0/3

Linfoma non Hodgkin

 

+*

1/1

Mieloma

+

+

1/4

Cavità orale

+

+

0/1

Ghiandole salivari

 

+*

1/3

Apparato digerente

     

Esofago

+*

+

2/3

Stomaco

+*

+*

2/4

Intestino tenue

   

1/2

Colon

+*

+*

0/4

Retto

+

+

3/4

Fegato

+*

+*

0/3

Cistifellea

   

0/2

Pancreas

   

3/4

Sistema respiratorio

     

Laringe

   

0/1

Trachea, bronchi, polmoni

+*

+*

1/3

Pelle

     

Non specificato

   

1/3

Melanoma

   

0/1

Altri tumori

 

+*

0/1

Seno (donne)

+*

+*

9/14

Sistema riproduttivo

     

Utero (non specifico)

+

+

2/3

Corpo uterino

   

1/1

ovaie

+*

+*

2/3

Altre donne)

   

2/3

Prostata

+

+

2/2

Apparato urinario

     

Vescica

+*

+*

3/4

Reni

   

0/3

Altro

   

0/1

Sistema nervoso centrale

+

+

2/4

Tiroide

 

+*

4/7

Bone

   

2/6

Tessuto connettivo

   

0/4

Tutti i tumori, escluse le leucemie

   

1/2

+ Siti di cancro studiati nei sopravvissuti di Hiroshima e Nagasaki.
* Associazione positiva con radiazioni ionizzanti.
1 Studi di coorte (incidenza o mortalità) o caso-controllo.

Fonte: UNSCEAR 1994.

 

Due punti importanti riguardanti gli effetti delle radiazioni ionizzanti rimangono controversi.

In primo luogo, quali sono gli effetti dell'irradiazione a basse dosi (inferiori a 0.2 Sv) e dei bassi ratei di dose? La maggior parte degli studi epidemiologici ha esaminato i sopravvissuti agli attentati di Hiroshima e Nagasaki o i pazienti sottoposti a radioterapia - popolazioni esposte per periodi molto brevi a dosi relativamente elevate - e le stime del rischio di sviluppare il cancro a seguito dell'esposizione a basse dosi e i tassi di dose dipendono essenzialmente su estrapolazioni da queste popolazioni. Diversi studi sui lavoratori delle centrali nucleari, esposti a basse dosi per diversi anni, hanno riportato rischi di cancro per leucemia e altri tumori che sono compatibili con estrapolazioni da gruppi ad alta esposizione, ma questi risultati rimangono non confermati (UNSCEAR 1994; Cardis, Gilbert e Carpenter 1995).

In secondo luogo, esiste una dose soglia (ovvero una dose al di sotto della quale non vi è alcun effetto)? Questo è attualmente sconosciuto. Studi sperimentali hanno dimostrato che i danni al materiale genetico (DNA) causati da errori spontanei o da fattori ambientali vengono costantemente riparati. Tuttavia, questa riparazione non è sempre efficace e può determinare una trasformazione maligna delle cellule (UNSCEAR 1994).

Altri effetti

Infine, va segnalata la possibilità di effetti teratogeni dovuti all'irradiazione durante la gravidanza. Microcefalia e ritardo mentale sono stati osservati nei bambini nati da donne sopravvissute ai bombardamenti di Hiroshima e Nagasaki che hanno ricevuto irradiazioni di almeno 0.1 Gy durante il primo trimestre (Otake, Schull e Yoshimura 1989; Otake e Schull 1992). Non è noto se questi effetti siano deterministici o stocastici, sebbene i dati suggeriscano l'esistenza di una soglia.

Effetti osservati a seguito dell'incidente di Chernobyl

L'incidente di Chernobyl è il più grave incidente nucleare verificatosi fino ad oggi. Tuttavia, anche adesso, a distanza di dieci anni, non tutti gli effetti sulla salute delle popolazioni maggiormente esposte sono stati valutati con precisione. Ci sono diverse ragioni per questo:

  • Alcuni effetti compaiono solo molti anni dopo la data di esposizione: ad esempio, i tumori dei tessuti solidi in genere impiegano dai 10 ai 15 anni per manifestarsi.
  • Poiché è trascorso del tempo tra l'incidente e l'inizio degli studi epidemiologici, alcuni effetti verificatisi nel periodo iniziale successivo all'incidente potrebbero non essere stati rilevati.
  • Non sempre i dati utili per la quantificazione del rischio di cancro sono stati raccolti in modo tempestivo. Ciò è particolarmente vero per i dati necessari per stimare l'esposizione della ghiandola tiroidea agli ioduri radioattivi emessi durante l'incidente (tellurio-132, iodio-133) (Williams et al. 1993).
  • Infine, molti individui inizialmente esposti hanno successivamente lasciato le zone contaminate e sono stati probabilmente persi per il follow-up.

 

Lavoratori. Attualmente non sono disponibili informazioni complete per tutti i lavoratori che sono stati fortemente irradiati nei primi giorni successivi all'incidente. Sono in corso studi sul rischio per gli addetti alle pulizie e ai soccorsi di sviluppare leucemia e tumori dei tessuti solidi (vedi tabella 3). Questi studi incontrano molti ostacoli. Il monitoraggio regolare dello stato di salute degli addetti alle pulizie e ai soccorsi è notevolmente ostacolato dal fatto che molti di loro provenivano da diverse parti dell'ex URSS e sono stati rispediti dopo aver lavorato sul sito di Chernobyl. Inoltre, la dose ricevuta deve essere stimata retrospettivamente, poiché non ci sono dati affidabili per questo periodo.

Popolazione generale. L'unico effetto ad oggi plausibilmente associato alle radiazioni ionizzanti in questa popolazione è un aumento, a partire dal 1989, dell'incidenza del cancro alla tiroide nei bambini di età inferiore ai 15 anni. Ciò è stato rilevato in Bielorussia (Bielorussia) nel 1989, solo tre anni dopo l'incidente, ed è stato confermato da diversi gruppi di esperti (Williams et al. 1993). L'aumento è stato particolarmente degno di nota nelle aree più fortemente contaminate della Bielorussia, in particolare nella regione di Gomel. Mentre il cancro alla tiroide era normalmente raro nei bambini di età inferiore ai 15 anni (tasso di incidenza annuale da 1 a 3 per milione), la sua incidenza è aumentata di dieci volte su base nazionale e di venti volte nell'area di Gomel (tabella 12, figura 7), (Stsjazhko et al.1995). Successivamente è stato segnalato un aumento di dieci volte dell'incidenza del cancro alla tiroide nelle cinque aree più fortemente contaminate dell'Ucraina e un aumento del cancro alla tiroide è stato riportato anche nella regione di Bryansk (Russia) (tabella 12). Si sospetta un aumento tra gli adulti, ma non è stato confermato. I programmi sistematici di screening intrapresi nelle regioni contaminate hanno consentito di rilevare i tumori latenti presenti prima dell'incidente; programmi ecografici in grado di rilevare tumori della tiroide piccoli come pochi millimetri sono stati particolarmente utili a questo proposito. L'entità dell'aumento dell'incidenza nei bambini, insieme all'aggressività dei tumori e al loro rapido sviluppo, suggerisce che gli aumenti osservati nel cancro della tiroide siano in parte dovuti all'incidente.

Tabella 12. Modello temporale dell'incidenza e numero totale di tumori della tiroide nei bambini in Bielorussia, Ucraina e Russia, 1981-94

 

Incidenza* (/100,000)

Numero di casi

 

1981-85

1991-94

1981-85

1991-94

Bielorussia

Paese intero

0.3

3.06

3

333

Zona di Gomel

0.5

9.64

1

164

Ucraina

Paese intero

0.05

0.34

25

209

Cinque più pesantemente
zone contaminate

0.01

1.15

1

118

Russia

Paese intero

?

?

?

?

Bryansk e
Aree di Kaluga

0

1.00

0

20

* Incidenza: il rapporto tra il numero di nuovi casi di una malattia durante un dato periodo e la dimensione della popolazione studiata nello stesso periodo.

Fonte: Stsjazhko et al. 1995.

 

Figura 7. Incidenza del cancro della tiroide nei bambini di età inferiore ai 15 anni in Bielorussia

DIS080F7

Nelle zone più pesantemente contaminate (ad esempio, la regione di Gomel), le dosi tiroidee erano elevate, in particolare tra i bambini (Williams et al. 1993). Ciò è coerente con le significative emissioni di iodio associate all'incidente e con il fatto che lo iodio radioattivo, in assenza di misure preventive, si concentrerà preferenzialmente nella ghiandola tiroidea.

L'esposizione alle radiazioni è un fattore di rischio ben documentato per il cancro alla tiroide. Un chiaro aumento dell'incidenza del cancro alla tiroide è stato osservato in una dozzina di studi su bambini sottoposti a radioterapia alla testa e al collo. Nella maggior parte dei casi, l'aumento era evidente da dieci a 15 anni dopo l'esposizione, ma in alcuni casi era rilevabile entro tre o sette anni. D'altra parte, gli effetti nei bambini dell'irradiazione interna da iodio-131 e da isotopi di iodio a breve emivita non sono ben definiti (Shore 1992).

Dovrebbero essere studiati l'entità e il modello precisi dell'aumento nei prossimi anni dell'incidenza del cancro alla tiroide nelle popolazioni più esposte. Gli studi epidemiologici attualmente in corso dovrebbero aiutare a quantificare l'associazione tra la dose ricevuta dalla ghiandola tiroidea e il rischio di sviluppare il cancro alla tiroide ea identificare il ruolo di altri fattori di rischio genetici e ambientali. Va notato che la carenza di iodio è diffusa nelle regioni colpite.

Entro cinque-dieci anni dall'incidente è prevedibile un aumento dell'incidenza della leucemia, in particolare della leucemia giovanile (poiché i bambini sono più sensibili agli effetti delle radiazioni ionizzanti) tra i membri più esposti della popolazione. Sebbene tale aumento non sia stato ancora osservato, le debolezze metodologiche degli studi finora condotti impediscono di trarre conclusioni definitive.

Effetti psicosociali

L'insorgenza di problemi psicologici cronici più o meno gravi a seguito di traumi psicologici è ben consolidata ed è stata studiata principalmente in popolazioni che affrontano disastri ambientali come inondazioni, eruzioni vulcaniche e terremoti. Lo stress post-traumatico è una condizione grave, duratura e paralizzante (APA 1994).

La maggior parte delle nostre conoscenze sull'effetto degli incidenti da radiazioni sui problemi psicologici e sullo stress deriva da studi condotti sulla scia dell'incidente di Three Mile Island. Nell'anno successivo all'incidente, sono stati osservati effetti psicologici immediati nella popolazione esposta, e le madri di bambini piccoli in particolare hanno mostrato una maggiore sensibilità, ansia e depressione (Bromet et al. 1982). Inoltre, è stato osservato un aumento della depressione e dei problemi legati all'ansia nei lavoratori delle centrali elettriche, rispetto ai lavoratori di un'altra centrale elettrica (Bromet et al. 1982). Negli anni successivi (cioè dopo la riapertura della centrale), circa un quarto della popolazione intervistata ha manifestato problemi psicologici relativamente significativi. Non c'era alcuna differenza nella frequenza dei problemi psicologici nel resto della popolazione intervistata, rispetto alle popolazioni di controllo (Dew e Bromet 1993). I problemi psicologici erano più frequenti tra gli individui che vivevano vicino alla centrale elettrica che erano senza una rete di supporto sociale, avevano una storia di problemi psichiatrici o che avevano evacuato la loro casa al momento dell'incidente (Baum, Cohen e Hall 1993).

Sono inoltre in corso studi tra le popolazioni esposte durante l'incidente di Chernobyl e per le quali lo stress sembra essere un importante problema di salute pubblica (ad esempio, operatori di pulizia e soccorso e individui che vivono in una zona contaminata). Per il momento, tuttavia, non esistono dati affidabili sulla natura, la gravità, la frequenza e la distribuzione dei problemi psicologici nelle popolazioni target. Tra i fattori di cui tenere conto nella valutazione delle conseguenze psicologiche e sociali dell'incidente sui residenti delle zone contaminate vi sono la difficile situazione socio-economica, la diversità dei sistemi di indennizzo disponibili, gli effetti dell'evacuazione e del reinsediamento (circa 100,000 ulteriori le persone sono state reinsediate negli anni successivi all'incidente) e gli effetti delle limitazioni dello stile di vita (ad es. modifica della nutrizione).

Principi di prevenzione e linee guida

Principi e linee guida sulla sicurezza

Uso industriale e medico delle sorgenti radioattive

Se è vero che i principali incidenti da radiazioni segnalati si sono tutti verificati in centrali nucleari, l'uso di sorgenti radioattive in altri contesti ha comunque provocato incidenti con gravi conseguenze per i lavoratori o per la popolazione in generale. La prevenzione di incidenti come questi è essenziale, soprattutto alla luce della prognosi deludente nei casi di esposizione ad alte dosi. La prevenzione dipende da un'adeguata formazione dei lavoratori e dal mantenimento di un inventario completo del ciclo di vita delle sorgenti radioattive che includa informazioni sia sulla natura che sull'ubicazione delle sorgenti. L'AIEA ha stabilito una serie di linee guida e raccomandazioni sulla sicurezza per l'uso di sorgenti radioattive nell'industria, nella medicina e nella ricerca (Safety Series No. 102). I principi in questione sono simili a quelli presentati di seguito per le centrali nucleari.

Sicurezza nelle centrali nucleari (AIEA Safety Series No. 75, INSAG-3)

L'obiettivo qui è proteggere sia gli esseri umani che l'ambiente dall'emissione di materiali radioattivi in ​​​​qualsiasi circostanza. A tal fine, è necessario applicare una serie di misure durante la progettazione, la costruzione, il funzionamento e lo smantellamento delle centrali nucleari.

La sicurezza delle centrali nucleari dipende fondamentalmente dal principio della "difesa in profondità", ovvero dalla ridondanza di sistemi e dispositivi progettati per compensare errori e carenze tecniche o umane. Concretamente, i materiali radioattivi sono separati dall'ambiente da una serie di barriere successive. Nei reattori di produzione di energia nucleare, l'ultima di queste barriere è il struttura di contenimento (assente sul sito di Chernobyl ma presente a Three Mile Island). Per evitare la rottura di queste barriere e per limitare le conseguenze dei guasti, le seguenti tre misure di sicurezza dovrebbero essere praticate durante la vita operativa della centrale: controllo della reazione nucleare, raffreddamento del combustibile e contenimento del materiale radioattivo.

Un altro principio di sicurezza essenziale è "l'analisi dell'esperienza operativa", ovvero l'utilizzo di informazioni raccolte da eventi, anche minori, che si verificano in altri siti per aumentare la sicurezza di un sito esistente. Pertanto, l'analisi degli incidenti di Three Mile Island e Chernobyl ha portato all'attuazione di modifiche volte a garantire che incidenti simili non si verifichino altrove.

Si segnala infine che sono stati compiuti notevoli sforzi per promuovere una cultura della sicurezza, ovvero una cultura costantemente attenta alle problematiche di sicurezza legate all'organizzazione, alle attività e alle prassi dello stabilimento, nonché ai comportamenti individuali. Per aumentare la visibilità degli incidenti e degli incidenti che coinvolgono le centrali nucleari, è stata sviluppata una scala internazionale degli eventi nucleari (INES), identica in linea di principio alle scale utilizzate per misurare la gravità dei fenomeni naturali come i terremoti e il vento (tabella 12). Questa scala non è tuttavia adatta per la valutazione della sicurezza di un sito o per effettuare confronti internazionali.

Tabella 13. Scala internazionale degli incidenti nucleari

Livello

fuori sede

Sul posto

Struttura protettiva

7-Incidente grave

Emissione maggiore,
salute estesa
e ambientale
effetti

   

6-Incidente grave

Emissione significativa,
può richiedere l'applicazione di tutte le contromisure.

   

5—Incidente

Emissione limitata,
può richiedere
l'applicazione di
qualche contro-
provvedimenti.

Gravi danni a
reattori e strutture di protezione

 

4—Incidente

Bassa emissione, pubblico
esposizione che si avvicina ai limiti di esposizione

Danni ai reattori
e protettivo
strutture, fatale
esposizione dei lavoratori

 

3—Incidente grave

Emissioni molto basse,
esposizione pubblica
inferiori ai limiti di esposizione

Grave
livello di contaminazione, gravi effetti su
salute dei lavoratori

Incidente appena evitato

2—Incidente

 

Grave contaminazione
livello, sovraesposizione dei lavoratori

Gravi fallimenti delle misure di sicurezza

1—Anomalia

   

Anomalia oltre
normali limiti funzionali

0: disparità

Nessun significato da
il punto di vista della sicurezza

 

 

Principi della protezione del pubblico in generale dall'esposizione alle radiazioni

Nei casi che comportano la potenziale esposizione del pubblico in generale, può essere necessario applicare misure protettive volte a prevenire o limitare l'esposizione alle radiazioni ionizzanti; ciò è particolarmente importante se si vogliono evitare effetti deterministici. Le prime misure da applicare in caso di emergenza sono l'evacuazione, il ricovero e la somministrazione di iodio stabile. Lo iodio stabile dovrebbe essere distribuito alle popolazioni esposte, poiché questo saturerà la tiroide e inibirà il suo assorbimento di iodio radioattivo. Per essere efficace, tuttavia, la saturazione della tiroide deve avvenire prima o subito dopo l'inizio dell'esposizione. Infine, alla fine potrebbero essere necessari il reinsediamento temporaneo o permanente, la decontaminazione e il controllo dell'agricoltura e del cibo.

Ognuna di queste contromisure ha un proprio “livello di azione” (tabella 14), da non confondere con i limiti di dose ICRP per i lavoratori e il pubblico in generale, sviluppati per garantire un'adeguata protezione nei casi di esposizione non accidentale (ICRP 1991).

Tabella 14. Esempi di livelli di intervento generici per misure di protezione per la popolazione generale

Misura di protezione

Livello di intervento (dose evitata)

Situazioni di Emergenza

Contenimento

10 mSv

Evacuazione

50 mSv

Distribuzione di iodio stabile

100 mgy

Ritardato

Reinsediamento temporaneo

30 mSv in 30 giorni; 10 mSv nei prossimi 30 giorni

Reinsediamento permanente

1 Sv vita

Fonte: AIEA 1994.

Esigenze di ricerca e tendenze future

L'attuale ricerca sulla sicurezza si concentra sul miglioramento della progettazione dei reattori di generazione di energia nucleare, più specificamente sulla riduzione del rischio e degli effetti della fusione del nocciolo.

L'esperienza acquisita da incidenti precedenti dovrebbe portare a miglioramenti nella gestione terapeutica di individui gravemente irradiati. Attualmente, l'uso di fattori di crescita delle cellule del midollo osseo (fattori di crescita emopoietici) nel trattamento dell'aplasia midollare indotta da radiazioni (insufficienza dello sviluppo) è in fase di studio (Thierry et al. 1995).

Gli effetti delle basse dosi e dei ratei di dose delle radiazioni ionizzanti rimangono poco chiari e devono essere chiariti, sia da un punto di vista puramente scientifico sia ai fini della definizione dei limiti di dose per la popolazione e per i lavoratori. La ricerca biologica è necessaria per chiarire i meccanismi cancerogeni coinvolti. I risultati di studi epidemiologici su larga scala, in particolare quelli attualmente in corso sui lavoratori delle centrali nucleari, dovrebbero rivelarsi utili per migliorare l'accuratezza delle stime del rischio di cancro per le popolazioni esposte a basse dosi o ratei di dose. Gli studi sulle popolazioni che sono o sono state esposte a radiazioni ionizzanti a causa di incidenti dovrebbero aiutare a comprendere meglio gli effetti di dosi più elevate, spesso somministrate a basse dosi.

L'infrastruttura (organizzazione, attrezzature e strumenti) necessaria per la raccolta tempestiva dei dati essenziali per la valutazione degli effetti sulla salute degli incidenti da radiazioni deve essere predisposta con largo anticipo rispetto all'incidente.

Infine, è necessaria un'ampia ricerca per chiarire gli effetti psicologici e sociali degli incidenti da radiazioni (ad esempio, la natura e la frequenza ei fattori di rischio per le reazioni psicologiche post-traumatiche patologiche e non). Questa ricerca è essenziale se si vuole migliorare la gestione delle popolazioni sia professionalmente che non professionalmente esposte.

 

Di ritorno

La massiccia contaminazione dei terreni agricoli da parte dei radionuclidi si verifica, di norma, a causa di grandi incidenti nelle imprese dell'industria nucleare o nelle centrali nucleari. Tali incidenti si sono verificati a Windscale (Inghilterra) e South Ural (Russia). Il più grande incidente è avvenuto nell'aprile 1986 alla centrale nucleare di Chernobyl. Quest'ultimo ha comportato un'intensa contaminazione dei suoli per diverse migliaia di chilometri quadrati.

I principali fattori che contribuiscono agli effetti delle radiazioni nelle aree agricole sono i seguenti:

  • se le radiazioni provengono da un'esposizione singola o a lungo termine
  • quantità totale di sostanze radioattive immesse nell'ambiente
  • rapporto di radionuclidi nel fallout
  • distanza dalla fonte di radiazioni ai terreni agricoli e agli insediamenti
  • caratteristiche idrogeologiche e pedologiche dei terreni agricoli e finalità del loro utilizzo
  • peculiarità del lavoro della popolazione rurale; alimentazione, approvvigionamento idrico
  • tempo dall'incidente radiologico.

 

A seguito dell'incidente di Chernobyl più di 50 milioni di Curie (Ci) di radionuclidi per lo più volatili sono entrati nell'ambiente. Nella prima fase, che ha coperto 2.5 mesi (il "periodo dello iodio"), lo iodio-131 ha prodotto il maggior rischio biologico, con dosi significative di radiazioni gamma ad alta energia.

Il lavoro sui terreni agricoli durante il periodo dello iodio dovrebbe essere rigorosamente regolamentato. Lo iodio-131 si accumula nella ghiandola tiroidea e la danneggia. Dopo l'incidente di Chernobyl, una zona ad altissima intensità di radiazioni, dove a nessuno era permesso vivere o lavorare, è stata delimitata da un raggio di 30 km intorno alla stazione.

Al di fuori di questa zona proibita, sono state distinte quattro zone con diversi tassi di radiazioni gamma sui suoli in base ai tipi di lavoro agricolo che potevano essere eseguiti; durante il periodo dello iodio, le quattro zone avevano i seguenti livelli di radiazione misurati in roentgen (R):

  • zona 1—meno di 0.1 mR/h
  • zona 2: da 0.1 a 1 mR/h
  • zona 3: da 1.0 a 5 mR/h
  • zona 4—5 mR/h e oltre.

 

In realtà, a causa della contaminazione “spot” da radionuclidi durante il periodo dello iodio, il lavoro agricolo in queste zone è stato svolto a livelli di irraggiamento gamma da 0.2 a 25 mR/h. Oltre alla contaminazione irregolare, la variazione dei livelli di radiazioni gamma è stata causata da diverse concentrazioni di radionuclidi in diverse colture. Le colture foraggere, in particolare, sono esposte ad alti livelli di emettitori gamma durante la raccolta, il trasporto, l'insilaggio e quando vengono utilizzate come foraggio.

Dopo il decadimento dello iodio-131, il pericolo maggiore per i lavoratori agricoli è rappresentato dai nuclidi di lunga durata cesio-137 e stronzio-90. Il cesio-137, un emettitore gamma, è un analogo chimico del potassio; la sua assunzione da parte dell'uomo o degli animali risulta in una distribuzione uniforme in tutto il corpo ed è escreta in tempi relativamente brevi con l'urina e le feci. Pertanto, il letame nelle aree contaminate è un'ulteriore fonte di radiazioni e deve essere rimosso il più rapidamente possibile dagli allevamenti e stoccato in siti speciali.

Lo stronzio-90, un emettitore beta, è un analogo chimico del calcio; è depositato nel midollo osseo negli esseri umani e negli animali. Lo stronzio-90 e il cesio-137 possono entrare nel corpo umano attraverso latte, carne o verdure contaminati.

La divisione dei terreni agricoli in zone dopo il decadimento dei radionuclidi di breve durata viene effettuata secondo un principio diverso. Qui non viene preso in considerazione il livello di radiazione gamma, ma la quantità di contaminazione del suolo da cesio-137, stronzio-90 e plutonio-239.

In caso di contaminazione particolarmente grave, la popolazione viene evacuata da tali aree e il lavoro agricolo viene svolto secondo un programma di rotazione di 2 settimane. I criteri per la delimitazione delle zone nelle aree contaminate sono riportati nella tabella 1.

Tabella 1. Criteri per le zone di contaminazione

Zone di contaminazione

Limiti di contaminazione del suolo

Limiti di dosaggio

Tipo di azione

1. Zona di 30 km

-

-

Residente di
popolazione e
lavoro agricolo
sono vietati.

2. Incondizionato
insediamento

15 (ci)/km2
cesio- 137
3 Ci/km2
stronzio- 90
0.1 Ci/km2 plutonio

0.5 cSv/anno

Il lavoro agricolo viene eseguito con un programma di rotazione di 2 settimane sotto stretto controllo radiologico.

3. Volontariato
insediamento

5–15 Ci/km2
cesio-137
0.15–3.0 Ci/km2
stronzio-90
0.01–0.1 Ci/km2
plutonio

0.01-0.5
cSv/anno

Vengono intraprese misure per ridurre
contaminazione di
strato superiore del terreno;
lavoro agricolo
è effettuato sotto controllo radiologico rigoroso
controllare.

4. Radioecologico
monitoraggio

1–5 Ci/km2
cesio-137
0.02–0.15 Ci/km2
stronzio-90
0.05–0.01 Ci/km2
plutonio

0.01 cSv/anno

Il lavoro agricolo è
effettuato in modo usuale ma sotto
controllo radiologico.

 

Quando le persone lavorano su terreni agricoli contaminati da radionuclidi, può verificarsi l'assunzione di radionuclidi da parte dell'organismo attraverso la respirazione e il contatto con il suolo e le polveri vegetali. Qui, sia gli emettitori beta (stronzio-90) che gli emettitori alfa sono estremamente pericolosi.

A seguito di incidenti nelle centrali nucleari, parte dei materiali radioattivi che entrano nell'ambiente sono particelle a bassa dispersione e altamente attive del combustibile del reattore - "particelle calde".

Durante i lavori agricoli e nei periodi ventosi si generano notevoli quantità di polvere contenente particelle calde. Ciò è stato confermato dai risultati delle indagini sui filtri dell'aria del trattore prelevati da macchine che sono state azionate sui terreni contaminati.

La valutazione dei carichi di dose sui polmoni dei lavoratori agricoli esposti a particelle calde ha rivelato che al di fuori della zona di 30 km le dosi ammontavano a diversi millisievert (Loshchilov et al. 1993).

Secondo i dati di Bruk et al. (1989) l'attività totale del cesio-137 e del cesio-134 nella polvere inspirata negli operatori delle macchine era compresa tra 0.005 e 1.5 nCi/m3. Secondo i loro calcoli, durante il periodo totale di lavoro sul campo la dose efficace ai polmoni variava da 2 a
70 csv.

È stata stabilita la relazione tra la quantità di contaminazione del suolo da parte del cesio-137 e la radioattività dell'aria nella zona di lavoro. Secondo i dati dell'Istituto per la salute sul lavoro di Kiev, è stato rilevato che quando la contaminazione del suolo da cesio-137 ammontava a 7.0-30.0 Ci/km2 la radioattività dell'aria della zona di respirazione ha raggiunto 13.0 Bq/m3. Nell'area di controllo, dove la densità di contaminazione era compresa tra 0.23 e 0.61 Ci/km3, la radioattività dell'aria nella zona di lavoro variava da 0.1 a 1.0 Bq/m3 (Krasnyuk, Chernyuk e Stezhka 1993).

Le visite mediche degli operatori di macchine agricole nelle zone “pulite” e contaminate hanno evidenziato un aumento delle malattie cardiovascolari nei lavoratori delle zone contaminate, sotto forma di cardiopatia ischemica e distonia neurocircolatoria. Tra gli altri disturbi sono stati registrati più frequentemente la displasia della ghiandola tiroidea e un aumento del livello di monociti nel sangue.

Requisiti igienici

Orari di lavoro

Dopo grandi incidenti nelle centrali nucleari, di solito vengono adottati regolamenti temporanei per la popolazione. Dopo l'incidente di Chernobyl sono state adottate norme provvisorie per un periodo di un anno, con il TLV di 10 cSv. Si presume che i lavoratori ricevano il 50% della loro dose a causa delle radiazioni esterne durante il lavoro. In questo caso, la soglia dell'intensità della dose di radiazioni durante la giornata lavorativa di otto ore non dovrebbe superare i 2.1 mR/h.

Durante il lavoro agricolo, i livelli di radiazione nei luoghi di lavoro possono fluttuare in modo significativo, a seconda delle concentrazioni di sostanze radioattive nel suolo e nelle piante; fluttuano anche durante le lavorazioni tecnologiche (insilamento, preparazione di foraggi secchi e così via). Al fine di ridurre i dosaggi ai lavoratori, viene introdotta la disciplina dei limiti di tempo per il lavoro agricolo. La figura 1 mostra i regolamenti che sono stati introdotti dopo l'incidente di Chernobyl.

Figura 1. Limiti di tempo per il lavoro agricolo a seconda dell'intensità della radiazione di raggi gamma nei luoghi di lavoro.

DIS090T2

Agrotecnologie

Quando si eseguono lavori agricoli in condizioni di elevata contaminazione di suoli e piante, è necessario osservare rigorosamente le misure dirette alla prevenzione della contaminazione da polvere. Il carico e lo scarico di sostanze secche e polverose dovrebbe essere meccanizzato; il collo del tubo convogliatore deve essere ricoperto di tessuto. Le misure dirette alla diminuzione del rilascio di polvere devono essere intraprese per tutti i tipi di lavoro sul campo.

I lavori con macchine agricole devono essere eseguiti tenendo conto della pressurizzazione della cabina e della scelta del corretto senso di marcia, preferendo il vento laterale. Se possibile è auspicabile innaffiare prima le aree coltivate. Si raccomanda l'ampio utilizzo di tecnologie industriali in modo da eliminare il più possibile il lavoro manuale sui campi.

È opportuno applicare al suolo sostanze in grado di favorire l'assorbimento e la fissazione dei radionuclidi, trasformandoli in composti insolubili e impedendo così il trasferimento dei radionuclidi nelle piante.

Macchinari agricoli

Uno dei maggiori rischi per i lavoratori sono le macchine agricole contaminate da radionuclidi. Il tempo di lavoro consentito sulle macchine dipende dall'intensità della radiazione gamma emessa dalle superfici della cabina. Non solo è richiesta la completa pressurizzazione delle cabine, ma anche il dovuto controllo dei sistemi di ventilazione e condizionamento dell'aria. Dopo il lavoro, è necessario eseguire la pulizia a umido delle cabine e la sostituzione dei filtri.

Durante la manutenzione e la riparazione delle macchine dopo le procedure di decontaminazione, l'intensità della radiazione gamma sulle superfici esterne non deve superare 0.3 mR/h.

Edifici

La pulizia a umido di routine deve essere eseguita all'interno e all'esterno degli edifici. Gli edifici dovrebbero essere dotati di docce. Nella preparazione di mangimi che contengono componenti polverosi, è necessario attenersi a procedure atte a prevenire l'aspirazione di polvere da parte degli operatori, nonché a tenere lontana la polvere da pavimenti, attrezzature e quant'altro.

La pressurizzazione dell'apparecchiatura dovrebbe essere sotto controllo. I luoghi di lavoro devono essere dotati di un'efficace ventilazione generale.

Uso di pesticidi e fertilizzanti minerali

L'applicazione di polveri e pesticidi granulari e fertilizzanti minerali, nonché l'irrorazione da aeroplani, dovrebbe essere limitata. Sono preferibili la spruzzatura meccanica e l'applicazione di prodotti chimici granulari e di fertilizzanti misti liquidi. I fertilizzanti minerali in polvere devono essere immagazzinati e trasportati solo in contenitori ben chiusi.

I lavori di carico e scarico, la preparazione di soluzioni antiparassitarie e altre attività devono essere eseguiti utilizzando la massima attrezzatura di protezione individuale (tute, caschi, occhiali, respiratori, guanti di gomma e stivali).

Approvvigionamento idrico e dieta

Dovrebbero esserci appositi locali chiusi o autocarri senza correnti d'aria dove i lavoratori possono consumare i pasti. Prima di consumare i pasti, i lavoratori devono pulire i propri indumenti e lavarsi accuratamente le mani e il viso con sapone e acqua corrente. Durante i periodi estivi i lavoratori nei campi dovrebbero essere riforniti di acqua potabile. L'acqua deve essere conservata in contenitori chiusi. La polvere non deve entrare nei contenitori durante il riempimento con acqua.

Visite mediche preventive dei lavoratori

Le visite mediche periodiche devono essere effettuate da un medico; sono obbligatorie le analisi di laboratorio del sangue, l'ECG e le prove di funzionalità respiratoria. Laddove i livelli di radiazione non superano i limiti consentiti, la frequenza degli esami medici non deve essere inferiore a una volta ogni 12 mesi. In presenza di livelli più elevati di radiazioni ionizzanti gli esami dovrebbero essere eseguiti con maggiore frequenza (dopo la semina, il raccolto e così via) tenendo conto dell'intensità delle radiazioni nei luoghi di lavoro e della dose totale assorbita.

Organizzazione del controllo radiologico delle aree agricole

I principali indici che caratterizzano la situazione radiologica dopo il fallout sono l'intensità della radiazione gamma nell'area, la contaminazione dei terreni agricoli da parte dei radionuclidi selezionati e il contenuto di radionuclidi nei prodotti agricoli.

La determinazione dei livelli di radiazioni gamma nelle aree consente di tracciare i confini delle aree gravemente contaminate, stimare le dosi di radiazioni esterne alle persone impegnate in lavori agricoli e stabilire i relativi programmi che prevedono la sicurezza radiologica.

Le funzioni di monitoraggio radiologico in agricoltura sono di norma affidate ai laboratori radiologici del servizio sanitario, nonché ai laboratori radiologici veterinari e agrochimici. La formazione e l'istruzione del personale addetto al controllo dosimetrico e alle consulenze per la popolazione rurale sono svolte da questi laboratori.

 

Di ritorno

Un tragico incendio industriale in Thailandia ha attirato l'attenzione mondiale sulla necessità di adottare e applicare codici e standard all'avanguardia nelle occupazioni industriali.

Il 10 maggio 1993, un grave incendio presso la fabbrica Kader Industrial (Thailand) Co. Ltd. situata nella provincia thailandese di Nakhon Pathom uccise 188 lavoratori (Grant e Klem 1994). Questo disastro rappresenta il peggior incendio accidentale al mondo in un edificio industriale della storia recente, un riconoscimento detenuto per 82 anni dall'incendio della fabbrica Triangle Shirtwaist che ha ucciso 146 lavoratori a New York City (Grant 1993). Nonostante gli anni trascorsi tra questi due disastri, condividono sorprendenti somiglianze.

Diverse agenzie nazionali e internazionali si sono concentrate su questo incidente dopo il suo verificarsi. Per quanto riguarda i problemi di protezione antincendio, la National Fire Protection Association (NFPA) ha collaborato con l'Organizzazione internazionale del lavoro (ILO) e con i vigili del fuoco della polizia di Bangkok nel documentare questo incendio.

Domande per un'economia globale

In Tailandia, l'incendio di Kader ha creato un grande interesse per le misure di sicurezza antincendio del paese, in particolare i requisiti di progettazione del codice edilizio e le politiche di applicazione. Il primo ministro thailandese Chuan Leekpai, che si è recato sul posto la sera dell'incendio, ha promesso che il governo affronterà i problemi di sicurezza antincendio. Secondo il Wall Street Journal (1993), Leekpai ha chiesto un'azione dura contro coloro che violano le leggi sulla sicurezza. Il ministro dell'Industria thailandese Sanan Kachornprasart avrebbe affermato che "a quelle fabbriche prive di sistemi antincendio verrà ordinato di installarne uno, altrimenti le chiuderemo".

I Wall Street Journal prosegue affermando che i leader sindacali, gli esperti di sicurezza e i funzionari affermano che l'incendio di Kader può aiutare a rafforzare i codici edilizi e le norme di sicurezza, ma temono che un progresso duraturo sia ancora lontano poiché i datori di lavoro violano le regole e i governi consentono alla crescita economica di avere la priorità sui lavoratori sicurezza.

Poiché la maggioranza delle azioni di Kader Industrial (Thailand) Co. Ltd. è di proprietà di interessi stranieri, l'incendio ha anche alimentato il dibattito internazionale sulle responsabilità degli investitori stranieri nel garantire la sicurezza dei lavoratori nel loro paese sponsor. Il 79.96% degli azionisti di Kader proviene da Taiwan e il 0.04% da Hong Kong. Solo lo XNUMX% di Kader è di proprietà di cittadini tailandesi.

Entrare in un'economia globale implica che i prodotti siano fabbricati in un luogo e utilizzati in altri luoghi in tutto il mondo. Il desiderio di competitività in questo nuovo mercato non dovrebbe portare a compromessi nelle disposizioni fondamentali sulla sicurezza antincendio industriale. Esiste l'obbligo morale di fornire ai lavoratori un livello adeguato di protezione antincendio, indipendentemente da dove si trovino.

La struttura

Lo stabilimento di Kader, che produceva peluche e bambole di plastica destinate principalmente all'esportazione negli Stati Uniti e in altri paesi sviluppati, si trova nel distretto di Sam Phran, nella provincia di Nakhon Pathom. Non è proprio a metà strada tra Bangkok e la vicina città di Kanchanaburi, il sito del famigerato ponte ferroviario della seconda guerra mondiale sul fiume Kwai.

Le strutture distrutte dall'incendio erano tutte di proprietà e gestite direttamente da Kader, che possiede il sito. Kader ha due consociate che operano anch'esse nella sede con un contratto di leasing.

La Kader Industrial (Thailand) Co. Ltd. è stata registrata per la prima volta il 27 gennaio 1989, ma la licenza della società è stata sospesa il 21 novembre 1989, dopo che un incendio il 16 agosto 1989 ha distrutto il nuovo impianto. Questo incendio è stato attribuito all'accensione del tessuto in poliestere utilizzato nella fabbricazione di bambole in un filatoio. Dopo che lo stabilimento fu ricostruito, il Ministero dell'Industria ne autorizzò la riapertura il 4 luglio 1990.

Tra la riapertura della fabbrica e l'incendio del maggio 1993, la struttura ha subito numerosi altri incendi minori. Uno di questi, verificatosi nel febbraio 1993, ha causato notevoli danni all'Edificio Tre, che era ancora in riparazione al momento dell'incendio del maggio 1993. L'incendio di febbraio è avvenuto a tarda notte in un'area di stoccaggio e ha coinvolto materiali in poliestere e cotone. Diversi giorni dopo questo incendio, un ispettore del lavoro ha visitato il sito e ha emesso un avviso che ha sottolineato la necessità dell'impianto di addetti alla sicurezza, attrezzature di sicurezza e un piano di emergenza.

I primi rapporti successivi all'incendio del maggio 1993 hanno rilevato che c'erano quattro edifici sul sito di Kader, tre dei quali sono stati distrutti dall'incendio. In un certo senso questo è vero, ma i tre edifici erano in realtà un'unica struttura a forma di E (vedi figura 1), le cui tre porzioni principali erano designate Edifici Uno, Due e Tre. Nelle vicinanze c'era un'officina a un piano e un'altra struttura a quattro piani denominata Building Four.

Figura 1. Planimetria della fabbrica di giocattoli Kader

DIS095F1

L'edificio a forma di E era una struttura a quattro piani composta da lastre di cemento sostenute da un telaio strutturale in acciaio. C'erano finestre attorno al perimetro di ogni piano e il tetto era una disposizione leggermente inclinata e appuntita. Ogni porzione dell'edificio aveva un montacarichi e due trombe delle scale larghe ciascuna 1.5 metri (3.3 piedi). I montacarichi erano gruppi ingabbiati.

Ogni edificio dello stabilimento era dotato di un sistema di allarme antincendio. Nessuno degli edifici disponeva di irrigatori automatici, ma sulle pareti esterne e nelle trombe delle scale di ogni edificio sono stati installati estintori portatili e stazioni di irrigazione. Nessuna delle strutture in acciaio dell'edificio era ignifuga.

Ci sono informazioni contrastanti sul numero totale di lavoratori nel sito. La Federation of Thai Industries si era impegnata ad aiutare 2,500 dipendenti dell'impianto sfollati a causa dell'incendio, ma non è chiaro quanti dipendenti fossero presenti sul sito in qualsiasi momento. Quando si è verificato l'incendio, è stato riferito che c'erano 1,146 lavoratori nell'edificio uno. Trentasei erano al primo piano, 10 al secondo, 500 al terzo e 600 al quarto. C'erano 405 lavoratori nell'edificio due. Sessanta erano al primo piano, 5 al secondo, 300 al terzo e 40 al quarto. Non è chiaro quanti lavoratori ci fossero nell'Edificio Tre poiché una parte di esso era ancora in fase di ristrutturazione. La maggior parte dei lavoratori dello stabilimento erano donne.

Il fuoco

Lunedì 10 maggio è stato un normale giorno lavorativo presso lo stabilimento di Kader. Verso le 4:00, mentre si avvicinava la fine del turno diurno, qualcuno ha scoperto un piccolo incendio al primo piano vicino all'estremità sud dell'Edificio Uno. Questa porzione di fabbricato era adibita al confezionamento e allo stoccaggio dei prodotti finiti, quindi conteneva un notevole carico di combustibile (vedi figura 2). Ogni edificio della struttura aveva un carico di carburante composto da tessuto, plastica e materiali utilizzati per l'imbottitura, oltre ad altri normali materiali di lavoro.

Figura 2. Disposizione interna degli edifici uno, due e tre

DIS095F2

Le guardie di sicurezza in prossimità dell'incendio hanno tentato senza successo di spegnere le fiamme prima di chiamare i vigili del fuoco della polizia locale alle 4:21. Le autorità hanno ricevuto altre due chiamate, alle 4:30 e alle 4:31. La struttura di Kader è appena oltre il confini giurisdizionali di Bangkok, ma l'apparato antincendio di Bangkok, così come l'apparato della provincia di Nakhon Pathom, ha risposto.

Mentre gli operai e le guardie giurate tentavano invano di spegnere l'incendio, l'edificio ha iniziato a riempirsi di fumo e altri prodotti della combustione. I sopravvissuti hanno riferito che l'allarme antincendio non è mai suonato nell'edificio uno, ma molti lavoratori si sono preoccupati quando hanno visto del fumo ai piani superiori. Nonostante il fumo, secondo quanto riferito, le guardie di sicurezza hanno detto ad alcuni lavoratori di rimanere nelle loro postazioni perché si trattava di un piccolo incendio che presto sarebbe stato sotto controllo.

L'incendio si è diffuso rapidamente in tutto l'edificio uno ei piani superiori sono diventati presto insostenibili. L'incendio ha bloccato la tromba delle scale all'estremità sud dell'edificio, quindi la maggior parte degli operai si è precipitata alla tromba delle scale nord. Ciò significava che circa 1,100 persone stavano cercando di lasciare il terzo e il quarto piano attraverso un'unica tromba delle scale.

Il primo apparato antincendio è arrivato alle 4:40, il loro tempo di risposta è stato esteso a causa della posizione relativamente remota della struttura e delle condizioni di ingorgo tipiche del traffico di Bangkok. I vigili del fuoco in arrivo hanno trovato l'edificio uno pesantemente coinvolto nelle fiamme e che stava già iniziando a crollare, con persone che saltavano dal terzo e dal quarto piano.

Nonostante gli sforzi dei vigili del fuoco, l'Edificio Uno è crollato completamente intorno alle 5:14. Alimentato da forti venti che soffiavano verso nord, l'incendio si è diffuso rapidamente negli Edifici Due e Tre prima che i vigili del fuoco potessero difenderli efficacemente. Secondo quanto riferito, l'Edificio Due è crollato alle 5:30 e l'Edificio Tre alle 6:05 7:45 Circa 50 pezzi di apparati antincendio sono stati coinvolti nella battaglia.

Secondo quanto riferito, gli allarmi antincendio negli edifici due e tre hanno funzionato correttamente e tutti i lavoratori di quei due edifici sono fuggiti. I lavoratori del Building One non furono così fortunati. Un gran numero di loro è saltato dai piani superiori. In tutto, 469 lavoratori sono stati portati in ospedale, dove 20 sono morti. Gli altri morti sono stati trovati durante la perquisizione post-incendio di quella che era stata la tromba delle scale nord dell'edificio. Molti di loro apparentemente hanno ceduto ai prodotti letali della combustione prima o durante il crollo dell'edificio. Secondo le ultime informazioni disponibili, 188 persone, la maggior parte donne, sono morte a causa di questo incendio.

Anche con l'aiuto di sei grandi gru idrauliche che sono state spostate sul posto per facilitare la ricerca delle vittime, ci sono voluti diversi giorni prima che tutti i corpi potessero essere rimossi dalle macerie. Non ci sono state vittime tra i vigili del fuoco, anche se si è registrato un ferito.

Il traffico nelle vicinanze, normalmente congestionato, ha reso difficile il trasporto delle vittime agli ospedali. Quasi 300 lavoratori feriti sono stati portati al vicino ospedale Sriwichai II, anche se molti di loro sono stati trasferiti in strutture mediche alternative quando il numero delle vittime ha superato la capacità dell'ospedale di curarle.

Il giorno dopo l'incendio, l'ospedale Sriwichai II ha riferito di aver trattenuto 111 vittime dell'incendio. L'ospedale Kasemrat ne ha ricevuti 120; Sriwichai Pattanana ne ha ricevuti 60; Sriwichai ne ho ricevuti 50; Ratanathibet ne ho ricevuti 36; Siriraj ne ha ricevuti 22; e Bang Phai ne ha ricevuti 17. I restanti 53 lavoratori feriti sono stati inviati a varie altre strutture mediche della zona. In tutto, 22 ospedali in tutta Bangkok e nella provincia di Nakhon Pathom hanno partecipato al trattamento delle vittime del disastro.

L'ospedale Sriwichai II ha riferito che l'80% delle 111 vittime ha riportato ferite gravi e che il 30% ha richiesto un intervento chirurgico. La metà dei pazienti soffriva solo di inalazione di fumo, mentre il resto soffriva anche di ustioni e fratture che andavano da caviglie rotte a crani fratturati. Almeno il 10% dei lavoratori Kader feriti ricoverati all'ospedale Sriwichai II rischia la paralisi permanente.

Determinare la causa di questo incendio è diventata una sfida perché la parte della struttura in cui è iniziato è stata completamente distrutta ei sopravvissuti hanno fornito informazioni contrastanti. Poiché l'incendio è scoppiato vicino a un grande quadro elettrico, gli investigatori hanno inizialmente pensato che la causa potesse essere un problema con l'impianto elettrico. Hanno anche considerato incendio doloso. In questo momento, tuttavia, le autorità thailandesi ritengono che una sigaretta gettata con noncuranza possa essere stata la fonte dell'accensione.

Analizzare il fuoco

Per 82 anni, il mondo ha riconosciuto l'incendio della fabbrica Triangle Shirtwaist del 1911 a New York City come il peggior incendio industriale accidentale con perdite di vite umane in cui le vittime erano limitate all'edificio di origine dell'incendio. Con 188 vittime, tuttavia, l'incendio della fabbrica di Kader sostituisce ora l'incendio di Triangle nei libri dei record.

Quando si analizza l'incendio di Kader, un confronto diretto con l'incendio di Triangle fornisce un utile punto di riferimento. I due edifici erano simili in molti modi. La disposizione delle uscite era scadente, i sistemi fissi di protezione antincendio erano insufficienti o inefficaci, il pacchetto iniziale di combustibile era facilmente combustibile e le separazioni antincendio orizzontali e verticali erano inadeguate. Inoltre, nessuna delle due società aveva fornito ai propri lavoratori un'adeguata formazione in materia di sicurezza antincendio. Tuttavia, c'è una netta differenza tra questi due incendi: l'edificio della fabbrica Triangle Shirtwaist non è crollato e gli edifici Kader sì.

Disposizioni di uscita inadeguate sono state forse il fattore più significativo nell'elevata perdita di vite umane negli incendi di Kader e Triangle. Aveva le disposizioni esistenti di NFPA 101, il Codice di sicurezza della vita, che è stato istituito come diretta conseguenza dell'incendio di Triangle, è stato applicato alla struttura di Kader, si sarebbero perse sostanzialmente meno vite umane (NFPA 101, 1994).

Diversi requisiti fondamentali del Codice di sicurezza della vita appartengono direttamente al fuoco di Kader. Ad esempio, il Code esige che ogni edificio o struttura sia costruito, sistemato e gestito in modo tale che i suoi occupanti non siano posti in indebito pericolo da fuoco, fumo, vapori o dal panico che può verificarsi durante un'evacuazione o durante il tempo necessario per difendere il occupanti in posizione.

I Code richiede inoltre che ogni edificio disponga di uscite sufficienti e altre protezioni di dimensioni adeguate e nei punti appropriati per fornire una via di fuga per ogni occupante di un edificio. Queste uscite dovrebbero essere adeguate al singolo edificio o struttura, tenendo conto del carattere dell'occupazione, delle capacità degli occupanti, del numero di occupanti, della protezione antincendio disponibile, dell'altezza e del tipo di costruzione dell'edificio e di qualsiasi altro fattore necessario per fornire a tutti gli occupanti un ragionevole grado di sicurezza. Questo ovviamente non era il caso della struttura di Kader, dove l'incendio ha bloccato una delle due trombe delle scale dell'Edificio Uno, costringendo circa 1,100 persone a fuggire dal terzo e dal quarto piano attraverso un'unica tromba delle scale.

Inoltre, le uscite dovrebbero essere sistemate e mantenute in modo tale da fornire un'uscita libera e senza ostacoli da tutte le parti di un edificio quando questo è occupato. Ognuna di queste uscite dovrebbe essere chiaramente visibile, oppure il percorso verso ogni uscita dovrebbe essere contrassegnato in modo tale che ogni occupante dell'edificio fisicamente e mentalmente capace conosca prontamente la direzione di fuga da qualsiasi punto.

Ogni uscita o apertura verticale tra i piani di un edificio deve essere chiusa o protetta come necessario per mantenere gli occupanti ragionevolmente al sicuro mentre escono e per impedire che il fuoco, il fumo e le esalazioni si diffondano da un piano all'altro prima che gli occupanti abbiano avuto la possibilità di utilizzare le uscite.

Gli esiti degli incendi di Triangle e Kader sono stati significativamente influenzati dalla mancanza di adeguate separazioni orizzontali e verticali del fuoco. Le due strutture sono state sistemate e costruite in modo tale che un incendio da un piano inferiore potesse propagarsi rapidamente ai piani superiori, intrappolando così un gran numero di lavoratori.

Spazi di lavoro ampi e aperti sono tipici degli impianti industriali e pavimenti e pareti resistenti al fuoco devono essere installati e mantenuti per rallentare la propagazione del fuoco da un'area all'altra. Bisogna inoltre evitare che il fuoco si propaghi esternamente dalle finestre di un piano a quelle di un altro piano, come avvenne durante l'incendio del Triangolo.

Il modo più efficace per limitare la propagazione verticale dell'incendio consiste nel chiudere le trombe delle scale, gli ascensori e altre aperture verticali tra i piani. Segnalazioni di caratteristiche come i montacarichi a gabbia nello stabilimento di Kader sollevano interrogativi significativi sulla capacità delle caratteristiche di protezione antincendio passiva degli edifici di prevenire la diffusione verticale di fuoco e fumo.

Formazione sulla sicurezza antincendio e altri fattori

Un altro fattore che ha contribuito alla grande perdita di vite umane negli incendi di Triangle e Kader è stata la mancanza di un'adeguata formazione sulla sicurezza antincendio e le rigide procedure di sicurezza di entrambe le società.

Dopo l'incendio nella struttura di Kader, i sopravvissuti hanno riferito che le esercitazioni antincendio e l'addestramento alla sicurezza antincendio erano minimi, sebbene le guardie di sicurezza avessero apparentemente ricevuto un addestramento antincendio incipiente. La fabbrica Triangle Shirtwaist non aveva un piano di evacuazione e le esercitazioni antincendio non sono state implementate. Inoltre, i rapporti post-incendio dei sopravvissuti di Triangle indicano che sono stati regolarmente fermati mentre lasciavano l'edificio alla fine della giornata lavorativa per motivi di sicurezza. Varie accuse post-incendio da parte dei sopravvissuti di Kader implicano anche che le misure di sicurezza abbiano rallentato la loro uscita, sebbene queste accuse siano ancora oggetto di indagine. In ogni caso, la mancanza di un piano di evacuazione ben compreso sembra essere stato un fattore importante nell'elevata perdita di vite umane subita nell'incendio di Kader. Capitolo 31 del Codice di sicurezza della vita affronta le esercitazioni antincendio e l'addestramento all'evacuazione.

Anche l'assenza di sistemi automatici fissi di protezione antincendio ha influito sull'esito degli incendi di Triangle e Kader. Nessuna delle due strutture era dotata di irrigatori automatici, sebbene gli edifici Kader avessero un sistema di allarme antincendio. Secondo il Codice di sicurezza della vita, gli allarmi antincendio dovrebbero essere forniti negli edifici le cui dimensioni, disposizione o occupazione rendono improbabile che gli occupanti stessi notino immediatamente un incendio. Sfortunatamente, secondo quanto riferito, gli allarmi non sono mai entrati in funzione nell'Edificio Uno, il che ha comportato un notevole ritardo nell'evacuazione. Non ci sono state vittime negli edifici due e tre, dove il sistema di allarme antincendio ha funzionato come previsto.

I sistemi di allarme antincendio devono essere progettati, installati e mantenuti in conformità con documenti come NFPA 72, il National Fire Alarm Code (NFPA 72, 1993). I sistemi sprinkler devono essere progettati e installati in conformità con documenti come NFPA 13, Installazione di sistemi di irrigazione, e mantenuto in conformità con NFPA 25, Ispezione, collaudo e manutenzione di sistemi antincendio ad acqua (NFPA 13, 1994; NFPA 25, 1995).

I pacchetti di carburante iniziali negli incendi Triangle e Kader erano simili. L'incendio del Triangolo è iniziato nei bidoni degli stracci e si è diffuso rapidamente a indumenti e indumenti combustibili prima di coinvolgere arredi in legno, alcuni dei quali erano impregnati di olio per macchine. Il pacchetto iniziale di carburante nello stabilimento di Kader consisteva in tessuti di poliestere e cotone, varie materie plastiche e altri materiali utilizzati per fabbricare giocattoli imbottiti, bambole di plastica e altri prodotti correlati. Si tratta di materiali che in genere possono essere facilmente incendiati, possono contribuire alla rapida crescita e diffusione del fuoco e hanno un'elevata velocità di rilascio del calore.

L'industria probabilmente gestirà sempre materiali con caratteristiche di protezione antincendio impegnative, ma i produttori dovrebbero riconoscere queste caratteristiche e adottare le precauzioni necessarie per ridurre al minimo i rischi associati.

L'integrità strutturale dell'edificio

Probabilmente la differenza più notevole tra gli incendi Triangle e Kader è l'effetto che hanno avuto sull'integrità strutturale degli edifici coinvolti. Anche se l'incendio del Triangolo ha sventrato gli ultimi tre piani dell'edificio industriale di dieci piani, l'edificio è rimasto strutturalmente intatto. Gli edifici Kader, d'altra parte, sono crollati relativamente presto durante l'incendio perché i loro supporti strutturali in acciaio mancavano dell'impermeabilizzazione che avrebbe consentito loro di mantenere la loro resistenza quando esposti a temperature elevate. Una revisione post-incendio dei detriti nel sito di Kader non ha mostrato alcuna indicazione che nessuno degli elementi in acciaio fosse stato reso ignifugo.

Ovviamente, il crollo dell'edificio durante un incendio rappresenta una grande minaccia sia per gli occupanti dell'edificio che per i vigili del fuoco coinvolti nel controllo dell'incendio. Tuttavia, non è chiaro se il crollo dell'edificio Kader abbia avuto un effetto diretto sul numero di vittime, poiché le vittime potrebbero aver già ceduto agli effetti del calore e dei prodotti della combustione prima del crollo dell'edificio. Se gli operai ai piani superiori dell'Edificio Uno fossero stati protetti dai prodotti della combustione e del calore mentre cercavano di scappare, il crollo dell'edificio sarebbe stato un fattore più diretto nella perdita di vite umane.

Fuoco Attenzione focalizzata sui principi di protezione antincendio

Tra i principi di protezione antincendio su cui Kader Fire ha focalizzato l'attenzione ci sono la progettazione delle uscite, la formazione sulla sicurezza antincendio degli occupanti, i sistemi automatici di rilevamento e soppressione, le separazioni antincendio e l'integrità strutturale. Queste lezioni non sono nuove. Sono stati insegnati per la prima volta più di 80 anni fa all'incendio di Triangle Shirtwaist e di nuovo, più recentemente, in una serie di altri incendi mortali sul posto di lavoro, compresi quelli nell'impianto di lavorazione del pollo ad Hamlet, North Carolina, USA, che ha ucciso 25 lavoratori; in una fabbrica di bambole a Kuiyong, in Cina, che ha ucciso 81 lavoratori; e alla centrale elettrica di Newark, New Jersey, USA, che uccise tutti e 3 i lavoratori dell'impianto (Grant e Klem 1994; Klem 1992; Klem e Grant 1993).

Gli incendi nel North Carolina e nel New Jersey, in particolare, dimostrano che la mera disponibilità di codici e standard all'avanguardia, come gli NFPA Codice di sicurezza della vita, non può evitare tragiche perdite. Questi codici e standard devono anche essere adottati e rigorosamente applicati se si vuole che abbiano effetto.

Le autorità pubbliche nazionali, statali e locali dovrebbero esaminare il modo in cui applicano i loro codici edilizi e antincendio per determinare se sono necessari nuovi codici o se i codici esistenti devono essere aggiornati. Questa revisione dovrebbe anche determinare se è in atto un processo di revisione e ispezione del piano di costruzione per garantire che vengano seguiti i codici appropriati. Infine, devono essere previste ispezioni periodiche di follow-up degli edifici esistenti per garantire che i massimi livelli di protezione antincendio siano mantenuti per tutta la vita dell'edificio.

I proprietari e gli operatori degli edifici devono anche essere consapevoli di essere responsabili di garantire che l'ambiente di lavoro dei propri dipendenti sia sicuro. Per lo meno, deve essere messo in atto il progetto di protezione antincendio all'avanguardia riflesso nei codici e negli standard antincendio per ridurre al minimo la possibilità di un incendio catastrofico.

Se gli edifici Kader fossero stati dotati di irrigatori e allarmi antincendio funzionanti, la perdita di vite umane non sarebbe stata così alta. Se le uscite del Building One fossero state progettate meglio, centinaia di persone potrebbero non essersi ferite saltando dal terzo e dal quarto piano. Se ci fossero state separazioni verticali e orizzontali, l'incendio potrebbe non essersi diffuso così rapidamente in tutto l'edificio. Se gli elementi strutturali in acciaio degli edifici fossero stati resi ignifughi, gli edifici potrebbero non essere crollati.

Il filosofo George Santayana ha scritto: "Coloro che dimenticano il passato sono condannati a ripeterlo". Il Kader Fire del 1993 è stato purtroppo, per molti versi, una ripetizione del Triangle Shirtwaist Fire del 1911. Mentre guardiamo al futuro, dobbiamo riconoscere tutto ciò che dobbiamo fare, come società globale, per evitare che la storia si ripeta. si.

 

Di ritorno

Questo articolo è stato adattato, con permesso, da Zeballos 1993b.

L'America Latina ei Caraibi non sono stati risparmiati dalla loro quota di disastri naturali. Quasi ogni anno eventi catastrofici provocano morti, feriti e ingenti danni economici. Complessivamente, si stima che i maggiori disastri naturali degli ultimi due decenni in questa regione abbiano causato danni alla proprietà che hanno colpito quasi 8 milioni di persone, circa 500,000 feriti e 150,000 morti. Queste cifre si basano in gran parte su fonti ufficiali. (È abbastanza difficile ottenere informazioni accurate in caso di disastri improvvisi, poiché esistono molteplici fonti di informazioni e nessun sistema di informazione standardizzato.) La Commissione economica per l'America Latina e i Caraibi (ECLAC) stima che durante un anno medio, i disastri in America latina L'America ei Caraibi costano 1.5 miliardi di dollari e uccidono 6,000 persone (Jovel 1991).

La tabella 1 elenca i principali disastri naturali che hanno colpito i paesi della regione nel periodo 1970-93. Va notato che i disastri a lenta insorgenza, come la siccità e le inondazioni, non sono inclusi.

Tabella 1. Grandi catastrofi in America Latina e nei Caraibi, 1970-93

Anno

Paese

Tipo di
disastro

N. di morti
segnalati

Est. no. di
persone colpite

1970

Perù

terremoto

66,679

3,139,000

1972

Nicaragua

terremoto

10,000

400,000

1976

Guatemala

terremoto

23,000

1,200,000

1980

Haiti

Uragano (Allen)

220

330,000

1982

Messico

Eruzione vulcanica

3,000

60,000

1985

Messico

terremoto

10,000

60,000

1985

Colombia

Eruzione vulcanica

23,000

200,000

1986

El Salvador

terremoto

1,100

500,000

1988

Giamaica

Uragano (Gilbert)

45

500,000

1988

Messico

Uragano (Gilbert)

250

200,000

1988

Nicaragua

Uragano (Giovanna)

116

185,000

1989

Montserrat,
Dominica

Uragano (Hugo)

56

220,000

1990

Perù

terremoto

21

130,000

1991

Costa Rica

terremoto

51

19,700

1992

Nicaragua

Tsunami

116

13,500

1993

Honduras

Tempesta tropicale

103

11,000

Fonte: PAHO 1989; OFDA (USAID), 1989; SOTTO 1990.

Impatto economico

Negli ultimi decenni, l'ECLAC ha svolto ricerche approfondite sugli impatti sociali ed economici delle catastrofi. Ciò ha chiaramente dimostrato che le catastrofi hanno ripercussioni negative sullo sviluppo sociale ed economico nei paesi in via di sviluppo. In effetti, le perdite monetarie causate da un grave disastro spesso superano il reddito lordo annuo totale del paese colpito. Non sorprende che tali eventi possano paralizzare i paesi colpiti e favorire diffusi disordini politici e sociali.

In sostanza, i disastri hanno tre tipi di impatti economici:

  • impatti diretti sulla proprietà della popolazione colpita
  • impatti indiretti causati dalla perdita di produzione economica e servizi
  • impatti secondari che diventano evidenti dopo il disastro, come la riduzione del reddito nazionale, l'aumento dell'inflazione, i problemi del commercio estero, l'aumento delle spese finanziarie, il conseguente deficit fiscale, la diminuzione delle riserve monetarie e così via (Jovel 1991).

 

La tabella 2 mostra le perdite stimate causate da sei gravi calamità naturali. Mentre tali perdite potrebbero non sembrare particolarmente devastanti per i paesi sviluppati con economie forti, possono avere un impatto serio e duraturo sulle economie deboli e vulnerabili dei paesi in via di sviluppo (PAHO 1989).

Tabella 2. Perdite dovute a sei calamità naturali

Disastro

Dove

Anni)

Perdite totali
(Milioni di dollari)

terremoto

Messico

1985

4,337

terremoto

El Salvador

1986

937

terremoto

Ecuador

1987

1,001

Eruzione vulcanica (Nevado del Ruiz)

Colombia

1985

224

Inondazioni, siccità ("El Niño")

Perù, Ecuador, Bolivia

1982-83

3,970

Uragano (Giovanna)

Nicaragua

1988

870

Fonte: PAHO 1989; CECLA.

L'infrastruttura sanitaria

In qualsiasi grave emergenza correlata a un disastro, la prima priorità è salvare vite umane e fornire cure di emergenza immediate ai feriti. Tra i servizi medici di emergenza mobilitati per questi scopi, gli ospedali svolgono un ruolo chiave. Infatti, nei paesi con un sistema di risposta alle emergenze standardizzato (un sistema in cui il concetto di "servizi medici di emergenza" comprende la fornitura di cure di emergenza attraverso il coordinamento di sottosistemi indipendenti che coinvolgono paramedici, vigili del fuoco e squadre di soccorso) gli ospedali costituiscono la componente principale di tale sistema (PAHO 1989).

Ospedali e altre strutture sanitarie sono densamente occupati. Ospitano pazienti, personale e visitatori e operano 24 ore al giorno. I pazienti possono essere circondati da attrezzature speciali o collegati a sistemi di supporto vitale dipendenti da alimentatori. Secondo i documenti di progetto disponibili presso l'Inter-American Development Bank (IDB) (comunicazione personale, Tomas Engler, IDB), il costo stimato di un letto d'ospedale in un ospedale specializzato varia da paese a paese, ma la media va da 60,000 USD a US $ 80,000 ed è maggiore per le strutture altamente specializzate.

Negli Stati Uniti, in particolare in California, con la sua vasta esperienza nell'ingegneria antisismica, il costo di un letto d'ospedale può superare i 110,000 dollari. In sintesi, gli ospedali moderni sono strutture altamente complesse che combinano le funzioni di hotel, uffici, laboratori e magazzini (Peisert et al. 1984; FEMA 1990).

Queste strutture sanitarie sono altamente vulnerabili agli uragani e ai terremoti. Ciò è stato ampiamente dimostrato dall'esperienza passata in America Latina e nei Caraibi. Ad esempio, come mostra la tabella 3, solo tre disastri degli anni '1980 hanno danneggiato 39 ospedali e distrutto circa 11,332 posti letto in El Salvador, Giamaica e Messico. Oltre ai danni a questi impianti fisici in momenti critici, è necessario considerare la perdita di vite umane (compresa la morte di professionisti locali altamente qualificati con un futuro promettente) (vedere tabella 4 e tabella 5).

Tabella 3. Numero di ospedali e posti letto danneggiati o distrutti da tre gravi calamità naturali

Tipo di disastro

N. di ospedali
danneggiato o distrutto

N. letti persi

Terremoto, Messico (Distretto Federale, settembre 1985)

13

4,387

Terremoto, El Salvador (San Salvador, ottobre 1986)

4

1,860

Uragano Gilbert (Giamaica, settembre 1988)

23

5,085

Totale

40

11,332

Fonte: PAHO 1989; OFDA(USAID) 1989; CECLA.

Tabella 4. Vittime in due ospedali crollati a causa del terremoto del 1985 in Messico

 

Ospedali crollati

 

Policlinico

Ospedale Juárez

 

Numero

%

Numero

%

Morti

295

62.6

561

75.8

Rescued

129

27.4

179

24.2

Mancante

47

10.0

-

-

Totale

471

100.0

740

100.0

Fonte: PAHO 1987.

Tabella 5. Posti letto persi a seguito del terremoto cileno del marzo 1985

Regione

N. di ospedali esistenti

No. di letti

Posti letto persi in regione

     

No.

%

Area metropolitana
(Santiago)

26

11,464

2,373

20.7

Regione 5 (Viña del Mar, Valparaíso,
Sant 'Antonio)

23

4,573

622

13.6

Regione 6 (Rancagua)

15

1,413

212

15.0

Regione 7 (Ralca, Meula)

15

2,286

64

2.8

Totale

79

19,736

3,271

16.6

Fonte: Wyllie e Durkin 1986.

Al momento la capacità di molti ospedali latinoamericani di sopravvivere ai disastri del terremoto è incerta. Molti di questi ospedali sono ospitati in vecchie strutture, alcune risalenti all'epoca coloniale spagnola; e mentre molti altri occupano edifici contemporanei dal design architettonico accattivante, l'applicazione lassista dei codici di costruzione rende discutibile la loro capacità di resistere ai terremoti.

Fattori di rischio nei terremoti

Tra i vari tipi di calamità naturali improvvise, i terremoti sono di gran lunga i più dannosi per gli ospedali. Ovviamente ogni terremoto ha le sue caratteristiche relative al suo epicentro, tipo di onde sismiche, natura geologica del suolo attraverso il quale le onde viaggiano e così via. Tuttavia, gli studi hanno rivelato alcuni fattori comuni che tendono a causare morte e lesioni e alcuni altri che tendono a prevenirli. Questi fattori includono caratteristiche strutturali legate al cedimento dell'edificio, vari fattori legati al comportamento umano e alcune caratteristiche di attrezzature non strutturali, arredi e altri oggetti all'interno degli edifici.

Negli ultimi anni, studiosi e progettisti hanno prestato particolare attenzione all'identificazione dei fattori di rischio che interessano gli ospedali, nella speranza di formulare migliori raccomandazioni e norme per governare la costruzione e l'organizzazione degli ospedali in zone altamente vulnerabili. Un breve elenco dei fattori di rischio rilevanti è riportato nella tabella 6. Questi fattori di rischio, in particolare quelli relativi agli aspetti strutturali, sono stati osservati influenzare i modelli di distruzione durante un terremoto del dicembre 1988 in Armenia che ha ucciso circa 25,000 persone, colpito 1,100,000 e distrutto o distrutto gravemente danneggiato 377 scuole, 560 strutture sanitarie e 324 centri comunitari e culturali (USAID 1989).


Tabella 6. Fattori di rischio associati ai danni da terremoto alle infrastrutture ospedaliere

 Strutturale

 Non strutturale

 Comportamentale

 Design

 Dispositivi medicali

 Informazione pubblica

 Qualità costruttiva    

 Attrezzatura da laboratorio

 Motivazione

 

 apparecchiature per ufficio

 Piani

 Materiali

 Armadi, scaffali

 Programmi educativi      

 Condizioni del suolo

 Stufe, frigoriferi, termosifoni    

 Formazione del personale sanitario

 Caratteristiche sismiche

 Macchine a raggi X.

 

 Ora dell'evento

 Materiali reattivi

 

 Densità demografica

 

 


Danni di scala simile si sono verificati nel giugno 1990, quando un terremoto in Iran ha ucciso circa 40,000 persone, ferito altre 60,000, lasciato 500,000 senzatetto e fatto crollare dal 60 al 90% degli edifici nelle zone colpite (UNDRO 1990).

Per affrontare queste e simili calamità, nel 1989 si tenne a Lima, in Perù, un seminario internazionale sulla pianificazione, progettazione, riparazione e gestione degli ospedali nelle zone soggette a terremoti. Il seminario, promosso dal PAHO, dall'Università nazionale di ingegneria del Perù e dal Centro peruviano-giapponese per la ricerca sismica (CISMID), ha riunito architetti, ingegneri e amministratori ospedalieri per approfondire le problematiche relative alle strutture sanitarie presenti in queste aree. Il seminario ha approvato un nucleo di raccomandazioni e impegni tecnici volti a realizzare analisi di vulnerabilità delle infrastrutture ospedaliere, migliorare la progettazione di nuove strutture e mettere in sicurezza gli ospedali esistenti, con particolare attenzione a quelli situati in aree ad alto rischio sismico (CISMID 1989).

Raccomandazioni sulla preparazione ospedaliera

Come suggerisce quanto sopra, la preparazione alle catastrofi ospedaliere costituisce una componente importante dell'Office of Emergency Preparedness and Disaster Relief dell'OPS. Negli ultimi dieci anni, i paesi membri sono stati incoraggiati a perseguire attività dirette a questo fine, tra cui:

  • classificare gli ospedali in base ai loro fattori di rischio e vulnerabilità
  • sviluppo di piani di risposta ospedaliera interna ed esterna e formazione del personale
  • sviluppare piani di emergenza e stabilire misure di sicurezza per il personale ospedaliero professionale e tecnico
  • rafforzare i sistemi di backup della linea di vita che aiutano gli ospedali a funzionare durante le situazioni di emergenza.

 

Più in generale, uno degli obiettivi principali dell'attuale Decennio internazionale per la riduzione dei disastri naturali (IDNDR) è attrarre, motivare e impegnare le autorità sanitarie nazionali e i responsabili politici di tutto il mondo, incoraggiandoli così a rafforzare i servizi sanitari diretti a far fronte ai disastri e ridurre la vulnerabilità di tali servizi nel mondo in via di sviluppo.

Questioni relative agli incidenti tecnologici

Durante gli ultimi due decenni, i paesi in via di sviluppo sono entrati in un'intensa competizione per raggiungere lo sviluppo industriale. I motivi principali di questa competizione sono i seguenti:

  • attrarre investimenti di capitale e creare posti di lavoro
  • soddisfare la domanda interna di prodotti a basso costo e alleviare la dipendenza dal mercato internazionale
  • competere con i mercati internazionali e subregionali
  • gettare le basi per lo sviluppo.

 

Purtroppo, gli sforzi compiuti non sempre hanno portato al raggiungimento degli obiettivi prefissati. In effetti, la flessibilità nell'attrarre investimenti di capitale, la mancanza di una solida regolamentazione in materia di sicurezza industriale e protezione ambientale, la negligenza nel funzionamento degli impianti industriali, l'uso di tecnologie obsolete e altri aspetti hanno contribuito ad aumentare il rischio di incidenti tecnologici in alcune aree .

Inoltre, la mancanza di regolamentazione in merito all'insediamento di insediamenti umani in prossimità o attorno agli impianti industriali costituisce un ulteriore fattore di rischio. Nelle principali città latinoamericane è comune vedere insediamenti umani praticamente attorno a complessi industriali, e gli abitanti di questi insediamenti ignorano i potenziali rischi (Zeballos 1993a).

Al fine di evitare incidenti come quelli verificatisi a Guadalajara (Messico) nel 1992, si suggeriscono le seguenti linee guida per l'insediamento di industrie chimiche, a tutela dei lavoratori dell'industria e della popolazione in generale:

  • selezione della tecnologia appropriata e studio delle alternative
  • ubicazione adeguata degli impianti industriali
  • regolazione degli insediamenti umani in prossimità di impianti industriali
  • considerazioni di sicurezza per il trasferimento di tecnologia
  • ispezione ordinaria degli impianti industriali da parte delle autorità locali
  • competenze fornite da agenzie specializzate
  • ruolo dei lavoratori nel rispetto delle norme di sicurezza
  • legislazione rigida
  • classificazione dei materiali tossici e stretta supervisione del loro utilizzo
  • pubblica istruzione e formazione dei lavoratori
  • istituzione di meccanismi di risposta in caso di emergenza
  • formazione degli operatori sanitari sui piani di emergenza per gli incidenti tecnologici.

 

Di ritorno

80a sessione dell'ILO, 2 giugno 1993

80a sessione dell'ILO, 2 giugno 1993

PARTE I. AMBITO E DEFINIZIONI

Articolo 1

1. Lo scopo della presente Convenzione è la prevenzione di incidenti rilevanti che coinvolgono sostanze pericolose e la limitazione delle conseguenze di tali incidenti....

Articolo 3

Ai fini della presente Convenzione:

a) il termine "sostanza pericolosa" designa una sostanza o una miscela di sostanze che, in virtù delle loro proprietà chimiche, fisiche o tossicologiche, singolarmente o in combinazione, costituisce un pericolo;

b) il termine "quantità soglia" designa per una determinata sostanza pericolosa o categoria di sostanze quella quantità, prescritta da leggi e regolamenti nazionali in riferimento a condizioni specifiche, che se superata identifica un impianto a rischio elevato;

c) il termine "impianto a rischio elevato" designa un impianto che produce, tratta, manipola, utilizza, elimina o immagazzina, in modo permanente o temporaneo, una o più sostanze o categorie di sostanze pericolose in quantità che superano la quantità soglia;

d) il termine "incidente rilevante" designa un evento improvviso — come un'emissione importante, un incendio o un'esplosione — nel corso di un'attività all'interno di un impianto a rischio elevato, che coinvolge una o più sostanze pericolose e comporta un grave pericolo per i lavoratori , il pubblico o l'ambiente, immediato o ritardato;

e) il termine "relazione sulla sicurezza" indica una presentazione scritta delle informazioni tecniche, gestionali e operative relative ai pericoli e ai rischi di un impianto a rischio elevato e al loro controllo e che giustificano le misure adottate per la sicurezza dell'impianto;

f) il termine "mancato incidente" indica qualsiasi evento improvviso che coinvolga una o più sostanze pericolose che, se non fosse per l'attenuazione di effetti, azioni o sistemi, avrebbe potuto trasformarsi in un incidente rilevante.

SECONDA PARTE. PRINCIPI GENERALI

Articolo 4

1. Alla luce delle leggi e dei regolamenti nazionali, delle condizioni e delle pratiche, e in consultazione con le organizzazioni più rappresentative dei datori di lavoro e dei lavoratori e con le altre parti interessate che possono essere interessate, ciascun Membro formula, attua e riesamina periodicamente una politica nazionale coerente concernente la protezione dei lavoratori, della popolazione e dell'ambiente contro il rischio di incidenti rilevanti.

2. Questa politica deve essere attuata attraverso misure preventive e protettive per gli impianti a rischio elevato e, ove possibile, deve promuovere l'uso delle migliori tecnologie di sicurezza disponibili.

Articolo 5

1. L'autorità competente, o un organismo approvato o riconosciuto dall'autorità competente, previa consultazione delle organizzazioni più rappresentative dei datori di lavoro e dei lavoratori e delle altre parti interessate che possono essere interessate, istituisce un sistema per l'identificazione degli impianti a rischio elevato come definiti all'articolo 3, lettera c), sulla base di un elenco di sostanze pericolose o di categorie di sostanze pericolose o di entrambe, unitamente alle rispettive quantità di soglia, conformemente alle disposizioni legislative e regolamentari nazionali o alle norme internazionali.

2. Il sistema di cui al precedente comma 1 è periodicamente rivisto e aggiornato.

Articolo 6

L'autorità competente, previa consultazione delle organizzazioni rappresentative dei datori di lavoro e dei lavoratori interessati, adotta disposizioni speciali per proteggere le informazioni riservate trasmesse o messe a sua disposizione a norma degli articoli 8, 12, 13 o 14, la cui divulgazione potrebbe arrecare danno a l'attività di un datore di lavoro, purché tale disposizione non comporti gravi rischi per i lavoratori, la collettività o l'ambiente.

PARTE III. RESPONSABILITA' DEI DATORI DI LAVORO IDENTIFICAZIONE

Articolo 7

I datori di lavoro identificano gli impianti a rischio elevato sotto il loro controllo sulla base del sistema di cui all'articolo 5.

NOTIFICA

Articolo 8

1. I datori di lavoro notificano all'autorità competente qualsiasi impianto a rischio rilevante da essi individuato:

a) entro un periodo di tempo fisso per un impianto esistente;

b) prima della sua messa in funzione nel caso di un nuovo impianto.

2. I datori di lavoro informano inoltre l'autorità competente prima di qualsiasi chiusura definitiva di un impianto a rischio elevato.

Articolo 9

In relazione a ciascun impianto a rischio maggiore, i datori di lavoro devono istituire e mantenere un sistema documentato di controllo dei rischi maggiori che includa disposizioni per:

a) l'identificazione e l'analisi dei pericoli e la valutazione dei rischi, compresa la considerazione delle possibili interazioni tra le sostanze;

b) misure tecniche, compresa la progettazione, i sistemi di sicurezza, la costruzione, la scelta dei prodotti chimici, il funzionamento, la manutenzione e l'ispezione sistematica dell'impianto;

c) misure organizzative, comprese la formazione e l'istruzione del personale, la fornitura di attrezzature per garantirne la sicurezza, i livelli di personale, l'orario di lavoro, la definizione delle responsabilità e i controlli sugli appaltatori esterni e sui lavoratori temporanei sul sito dell'impianto;

d) piani e procedure di emergenza, tra cui:

(i) la preparazione di efficaci piani e procedure di emergenza del sito, inclusi
procedure mediche di emergenza, da applicare in caso di incidenti rilevanti o minaccia
dello stesso, con periodiche verifiche e valutazioni della loro efficacia e revisione come da art
necessario;

(ii) la fornitura di informazioni su potenziali incidenti e piani di emergenza del sito a
autorità e organismi preposti alla predisposizione dei piani di emergenza e
procedure per la protezione del pubblico e dell'ambiente al di fuori del sito di
l'installazione;

(iii) ogni necessaria consultazione con tali autorità ed organismi;

e) misure per limitare le conseguenze di un incidente rilevante;

f) consultazione dei lavoratori e dei loro rappresentanti;

(g) miglioramento del sistema, comprese le misure per la raccolta di informazioni e l'analisi degli incidenti e dei quasi incidenti. Gli insegnamenti così appresi devono essere discussi con i lavoratori e i loro rappresentanti e devono essere registrati in conformità con la legislazione e la prassi nazionale....

* * *

PARTE IV. RESPONSABILITA' DELLE AUTORITA' COMPETENTI

PREPARAZIONE ALL'EMERGENZA FUORI SEDE

Articolo 15

Tenendo conto delle informazioni fornite dal datore di lavoro, l'autorità competente assicura che i piani e le procedure di emergenza contenenti disposizioni per la protezione del pubblico e dell'ambiente al di fuori del sito di ciascun impianto a rischio elevato siano stabiliti, aggiornati a intervalli adeguati e coordinati con il autorità e organi competenti.

Articolo 16

L'autorità competente garantisce che:

a) le informazioni sulle misure di sicurezza e sul comportamento corretto da adottare in caso di incidente rilevante siano divulgate alle persone che possono essere colpite da un incidente rilevante senza che queste debbano richiederlo e che tali informazioni siano aggiornate e ridiffuse all'occorrenza intervalli appropriati;

b) l'avvertimento sia dato il prima possibile in caso di incidente rilevante;

(c) qualora un incidente rilevante possa avere effetti transfrontalieri, le informazioni richieste ai precedenti punti (a) e (b) siano fornite agli Stati interessati, per assisterli negli accordi di cooperazione e coordinamento.

Articolo 17

L'autorità competente stabilisce una politica globale di ubicazione che preveda un'adeguata separazione degli impianti a rischio elevato proposti dalle aree di lavoro e residenziali e dalle strutture pubbliche e misure appropriate per gli impianti esistenti. Tale politica rifletterà i Principi generali enunciati nella Parte II della Convenzione.

ISPEZIONE

Articolo 18

1. L'autorità competente dispone di personale adeguatamente qualificato e formato con le competenze appropriate e un supporto tecnico e professionale sufficiente per ispezionare, indagare, valutare e consigliare sulle questioni trattate nella presente Convenzione e per garantire il rispetto delle leggi e dei regolamenti nazionali .

2. I rappresentanti del datore di lavoro e i rappresentanti dei lavoratori di un impianto a rischio elevato avranno la possibilità di accompagnare gli ispettori che controllano l'applicazione delle misure prescritte in applicazione della presente Convenzione, a meno che gli ispettori non considerino, alla luce delle istruzioni generali del autorità competente, che ciò possa pregiudicare l'esercizio delle loro funzioni.

Articolo 19

L'autorità competente ha il diritto di sospendere qualsiasi operazione che presenti una minaccia imminente di incidente rilevante.

PARTE V. DIRITTI E DOVERI DEI LAVORATORI E DEI LORO RAPPRESENTANTI

Articolo 20

I lavoratori ei loro rappresentanti in un impianto a rischio elevato devono essere consultati attraverso meccanismi di cooperazione appropriati al fine di garantire un sistema di lavoro sicuro. In particolare, i lavoratori e i loro rappresentanti devono:

a) essere adeguatamente e opportunamente informati dei pericoli associati all'impianto a rischio elevato e delle loro probabili conseguenze;

b) essere informato di qualsiasi ordine, istruzione o raccomandazione formulata dall'autorità competente;

c) essere consultato nella preparazione e avere accesso ai seguenti documenti:

i) il rapporto sulla sicurezza;

(ii) piani e procedure di emergenza;

(iii) denunce di infortuni;

d) essere regolarmente istruito e formato sulle pratiche e sulle procedure per la prevenzione degli incidenti rilevanti e il controllo degli sviluppi che possono portare a un incidente rilevante e sulle procedure di emergenza da seguire in caso di incidente rilevante;

(e) nell'ambito del loro lavoro, e senza essere svantaggiati, intraprendono azioni correttive e se necessario interrompono l'attività qualora, sulla base della loro formazione ed esperienza, abbiano una ragionevole giustificazione per ritenere che vi sia un pericolo imminente di un incidente grave e informare il proprio supervisore o lanciare l'allarme, a seconda dei casi, prima o il prima possibile dopo aver intrapreso tale azione;

f) discutono con il datore di lavoro di eventuali pericoli potenziali che ritengono in grado di generare un incidente rilevante e hanno il diritto di notificare tali pericoli all'autorità competente.

Articolo 21

I lavoratori impiegati presso il sito di un impianto a rischio elevato devono:

a) rispettare tutte le prassi e le procedure relative alla prevenzione degli incidenti rilevanti e al controllo degli sviluppi che possono provocare un incidente rilevante all'interno dell'impianto a rischio rilevante;

(b) rispettare tutte le procedure di emergenza in caso di incidente rilevante.

PARTE VI. RESPONSABILITA' DEGLI STATI ESPORTATORI

Articolo 22

Quando, in uno Stato membro esportatore, l'uso di sostanze, tecnologie o processi pericolosi è vietato come fonte potenziale di un incidente rilevante, le informazioni su tale divieto e le relative ragioni sono messe a disposizione dallo Stato membro esportatore a qualsiasi importatore nazione.

Fonte: Estratti, Convenzione n. 174 (ILO 1993).

 

Di ritorno

Giovedì, 27 ottobre 2011 19: 36

Caso di studio: cosa significa dose?

Esistono diversi modi per definire una dose di radiazioni ionizzanti, ciascuno appropriato per scopi diversi.

Dose assorbita

La dose assorbita assomiglia di più alla dose farmacologica. Mentre la dose farmacologica è la quantità di sostanza somministrata a un soggetto per unità di peso o superficie, la dose radiologica assorbita è la quantità di energia trasmessa dalle radiazioni ionizzanti per unità di massa. La dose assorbita è misurata in Gray (1 Gray = 1 joule/kg).

Quando gli individui sono esposti in maniera omogenea, ad esempio per irradiazione esterna da raggi cosmici e terrestri o per irradiazione interna da parte del potassio-40 presente nell'organismo, tutti gli organi ei tessuti ricevono la stessa dose. In queste circostanze, è opportuno parlare di tutto il corpo dose. È tuttavia possibile che l'esposizione non sia omogenea, nel qual caso alcuni organi e tessuti riceveranno dosi significativamente più elevate rispetto ad altri. In questo caso, è più rilevante pensare in termini di dose d'organo. Ad esempio, l'inalazione di figlie di radon provoca l'esposizione essenzialmente solo dei polmoni e l'incorporazione di iodio radioattivo provoca l'irradiazione della ghiandola tiroidea. In questi casi si può parlare di dose polmonare e di dose tiroidea.

Tuttavia, sono state sviluppate anche altre unità di dose che tengono conto delle differenze negli effetti dei diversi tipi di radiazioni e delle diverse sensibilità alle radiazioni di tessuti e organi.

Dose equivalente

Lo sviluppo di effetti biologici (p. es., inibizione della crescita cellulare, morte cellulare, azoospermia) dipende non solo dalla dose assorbita, ma anche dal tipo specifico di radiazione. La radiazione alfa ha un potenziale ionizzante maggiore rispetto alla radiazione beta o gamma. La dose equivalente tiene conto di questa differenza applicando fattori di ponderazione specifici per la radiazione. Il fattore di ponderazione per le radiazioni gamma e beta (basso potenziale ionizzante), è pari a 1, mentre quello per le particelle alfa (alto potenziale ionizzante) è 20 (ICRP 60). La dose equivalente è misurata in Sievert (Sv).

Dose efficace

Nei casi di irradiazione non omogenea (es. esposizione di vari organi a radionuclidi diversi), può essere utile calcolare una dose globale che integri le dosi ricevute da tutti gli organi e tessuti. Ciò richiede di tenere conto della sensibilità alle radiazioni di ciascun tessuto e organo, calcolata dai risultati degli studi epidemiologici sui tumori indotti dalle radiazioni. La dose efficace è misurata in Sieverts (Sv) (ICRP 1991). La dose efficace è stata sviluppata ai fini della protezione dalle radiazioni (vale a dire, la gestione del rischio) ed è quindi inappropriata per l'uso in studi epidemiologici sugli effetti delle radiazioni ionizzanti.

Dose collettiva

La dose collettiva riflette l'esposizione di un gruppo o di una popolazione e non di un individuo ed è utile per valutare le conseguenze dell'esposizione a radiazioni ionizzanti a livello di popolazione o di gruppo. Viene calcolato sommando le dosi individuali ricevute, oppure moltiplicando la dose individuale media per il numero di individui esposti nei gruppi o popolazioni in questione. La dose collettiva è misurata in uomo-Sieverts (uomo Sv).

 

Di ritorno

Lunedi, Febbraio 28 2011 19: 19

Elettricità-Effetti fisiologici

Lo studio dei pericoli, dell'elettrofisiologia e della prevenzione degli incidenti elettrici richiede la comprensione di diversi concetti tecnici e medici.

Le seguenti definizioni dei termini elettrobiologici sono tratte dal capitolo 891 dell'International Electrotechnical Vocabulary (Electrobiology) (International Electrotechnical Commission) (IEC) (1979).

An scossa elettrica è l'effetto fisiopatologico derivante dal passaggio diretto o indiretto di una corrente elettrica esterna attraverso il corpo. Include contatti diretti e indiretti e correnti sia unipolari che bipolari.

Si dice che gli individui, vivi o deceduti, che hanno subito scosse elettriche abbiano sofferto elettrificazione; il termine elettrocuzione dovrebbero essere riservati ai casi in cui sopraggiunge la morte. Fulmini sono scosse elettriche mortali derivanti da fulmini (Gourbiere et al. 1994).

Le statistiche internazionali sugli incidenti elettrici sono state compilate dall'Ufficio internazionale del lavoro (ILO), dall'Unione europea (UE), dal Union Internationale des producteurs etdistribuurs d'énergie électrique (UNIPEDE), l'International Social Security Association (ISSA) e il Comitato TC64 della Commissione Elettrotecnica Internazionale. L'interpretazione di queste statistiche è ostacolata dalle differenze nelle tecniche di raccolta dei dati, nelle polizze assicurative e nelle definizioni di incidenti mortali da paese a paese. Tuttavia, sono possibili le seguenti stime del tasso di elettrocuzione (tabella 1).

Tabella 1. Stime del tasso di folgorazione - 1988

 

elettrocuzioni
per milione di abitanti

Totale
morti

Stati Uniti*

2.9

714

Francia

2.0

115

Germania

1.6

99

Austria

0.9

11

Giappone

0.9

112

Svezia

0.6

13

 

* Secondo la National Fire Protection Association (Massachusetts, Stati Uniti) queste statistiche statunitensi riflettono più un'ampia raccolta di dati e obblighi di segnalazione legale che un ambiente più pericoloso. Le statistiche statunitensi includono i decessi per esposizione ai sistemi di trasmissione di pubblica utilità e le scariche elettriche causate dai prodotti di consumo. Nel 1988, 290 morti sono state causate da prodotti di consumo (1.2 morti per milione di abitanti). Nel 1993 il tasso di morte per folgorazione per tutte le cause è sceso a 550 (2.1 morti per milione di abitanti); Il 38% era legato ai prodotti di consumo (0.8 decessi per milione di abitanti).

 

Il numero di folgorazioni sta lentamente diminuendo, sia in termini assoluti sia, in modo ancora più marcato, in funzione del consumo totale di energia elettrica. Circa la metà degli incidenti elettrici è di origine professionale, mentre l'altra metà si verifica in casa e durante le attività del tempo libero. In Francia, il numero medio di decessi tra il 1968 e il 1991 è stato di 151 decessi all'anno, secondo il Istituto nazionale di sanità e ricerca medica (INSERISCI).

Basi fisiche e fisiopatologiche dell'elettrificazione

Gli specialisti elettrici dividono i contatti elettrici in due gruppi: contatti diretti, che comportano il contatto con componenti sotto tensione, e contatti indiretti, che comportano contatti con messa a terra. Ognuno di questi richiede misure preventive fondamentalmente diverse.

Da un punto di vista medico, il percorso della corrente attraverso il corpo è il determinante chiave prognostico e terapeutico. Ad esempio, il contatto bipolare della bocca di un bambino con la spina di una prolunga provoca ustioni estremamente gravi alla bocca, ma non la morte se il bambino è ben isolato da terra.

In contesti professionali, dove sono comuni tensioni elevate, è anche possibile che si formi un arco elettrico tra un componente attivo ad alta tensione e lavoratori che si avvicinano troppo. Anche situazioni lavorative specifiche possono influire sulle conseguenze degli incidenti elettrici: ad esempio, i lavoratori possono cadere o agire in modo inappropriato se sorpresi da una scossa elettrica altrimenti relativamente innocua.

Gli incidenti elettrici possono essere causati dall'intera gamma di tensioni presenti nei luoghi di lavoro. Ogni settore industriale ha il proprio insieme di condizioni in grado di causare contatti diretti, indiretti, unipolari, bipolari, archi o indotti e, in ultima analisi, incidenti. Sebbene esuli ovviamente dallo scopo di questo articolo descrivere tutte le attività umane che coinvolgono l'elettricità, è utile ricordare al lettore i seguenti principali tipi di lavoro elettrico, che sono stati oggetto di linee guida preventive internazionali descritte nel capitolo su prevenzione:

  1. attività che prevedono lavori su cavi sotto tensione (l'applicazione di protocolli estremamente rigorosi è riuscita a ridurre il numero di elettrificazioni durante questo tipo di lavori)
  2. attività che comportano lavori su cavi non alimentati, e
  3. attività svolte in prossimità di cavi sotto tensione (queste attività richiedono la massima attenzione, in quanto spesso sono svolte da personale non elettricista).

 

Fisiopatologia

Tutte le variabili della legge di Joule della corrente continua—

L=V x I x t = RI2t

(il calore prodotto da una corrente elettrica è proporzionale alla resistenza e al quadrato della corrente) - sono strettamente correlati. Nel caso di corrente alternata si deve tener conto anche dell'effetto della frequenza (Folliot 1982).

Gli organismi viventi sono conduttori elettrici. L'elettrificazione si verifica quando c'è una differenza di potenziale tra due punti nell'organismo. È importante sottolineare che il pericolo di incidenti elettrici non nasce dal mero contatto con un conduttore in tensione, ma piuttosto dal contatto simultaneo con un conduttore in tensione e un altro corpo a diverso potenziale.

I tessuti e gli organi lungo il percorso della corrente possono subire un'eccitazione motoria funzionale, in alcuni casi irreversibile, oppure possono subire lesioni temporanee o permanenti, generalmente a seguito di ustioni. L'entità di queste lesioni è una funzione dell'energia rilasciata o della quantità di elettricità che le attraversa. Il tempo di transito della corrente elettrica è quindi fondamentale per determinare il grado di lesione. (Ad esempio, anguille elettriche e razze producono scariche estremamente sgradevoli, capaci di indurre una perdita di coscienza. Tuttavia, nonostante una tensione di 600V, una corrente di circa 1A e una resistenza soggetta di circa 600 ohm, questi pesci non sono in grado di indurre un shock letale, poiché la durata della scarica è troppo breve, dell'ordine di decine di microsecondi.) Pertanto, ad alte tensioni (> 1,000 V), la morte è spesso dovuta all'entità delle ustioni. A tensioni più basse, la morte è una funzione della quantità di elettricità (D=Io x t), raggiungendo il cuore, determinato dal tipo, dalla posizione e dall'area dei punti di contatto.

Le sezioni seguenti discutono il meccanismo di morte dovuto a incidenti elettrici, le terapie immediate più efficaci ei fattori che determinano la gravità della lesione, vale a dire resistenza, intensità, voltaggio, frequenza e forma d'onda.

Cause di morte negli incidenti elettrici nell'industria

In rari casi, l'asfissia può essere la causa della morte. Ciò può derivare da tetano prolungato del diaframma, inibizione dei centri respiratori in caso di contatto con la testa o densità di corrente molto elevate, ad esempio a seguito di fulmini (Gourbiere et al. 1994). Se le cure possono essere fornite entro tre minuti, la vittima può essere rianimata con pochi sbuffi di respirazione bocca a bocca.

D'altra parte, il collasso circolatorio periferico secondario alla fibrillazione ventricolare rimane la principale causa di morte. Ciò si sviluppa invariabilmente in assenza di massaggio cardiaco applicato contemporaneamente alla rianimazione bocca a bocca. Questi interventi, che dovrebbero essere insegnati a tutti gli elettricisti, dovrebbero essere mantenuti fino all'arrivo del pronto soccorso medico, che richiede quasi sempre più di tre minuti. Moltissimi elettropatologi e ingegneri in tutto il mondo hanno studiato le cause della fibrillazione ventricolare, al fine di progettare migliori misure protettive passive o attive (International Electrotechnical Commission 1987; 1994). La desincronizzazione casuale del miocardio richiede una corrente elettrica sostenuta di frequenza, intensità e tempo di transito specifici. Soprattutto, il segnale elettrico deve arrivare al miocardio durante il cosiddetto fase vulnerabile del ciclo cardiaco, corrispondente all'inizio dell'onda T dell'elettrocardiogramma.

La Commissione elettrotecnica internazionale (1987; 1994) ha prodotto curve che descrivono l'effetto dell'intensità di corrente e del tempo di transito sulla probabilità (espressa in percentuale) di fibrillazione e sul percorso della corrente mano-piede in un maschio di 70 kg in buona salute. Questi strumenti sono appropriati per le correnti industriali nella gamma di frequenza da 15 a 100 Hz, con frequenze più elevate attualmente in fase di studio. Per tempi di transito inferiori a 10 ms, l'area sotto la curva del segnale elettrico è un'approssimazione ragionevole dell'energia elettrica.

Ruolo dei vari parametri elettrici

Ciascuno dei parametri elettrici (corrente, tensione, resistenza, tempo, frequenza) e forma d'onda sono determinanti importanti del danno, sia di per sé che in virtù della loro interazione.

Sono state stabilite soglie di corrente per la corrente alternata, nonché per altre condizioni sopra definite. L'intensità della corrente durante l'elettrificazione non è nota, poiché è funzione della resistenza del tessuto al momento del contatto (I = V/R), ma è generalmente percepibile a livelli di circa 1 mA. Correnti relativamente basse possono causare contrazioni muscolari che possono impedire a una vittima di lasciare andare un oggetto energizzato. La soglia di questa corrente è funzione della densità, dell'area di contatto, della pressione di contatto e delle variazioni individuali. Praticamente tutti gli uomini e quasi tutte le donne e i bambini possono lasciar andare correnti fino a 6 mA. A 10 mA è stato osservato che il 98.5% degli uomini e il 60% delle donne e il 7.5% dei bambini possono lasciar andare. Solo il 7.5% degli uomini e nessuna donna o bambino può lasciare andare a 20mA. Nessuno può lasciar andare a 30 mA e oltre.

Correnti di circa 25 mA possono provocare il tetano del diaframma, il muscolo respiratorio più potente. Se il contatto viene mantenuto per tre minuti, può verificarsi anche un arresto cardiaco.

La fibrillazione ventricolare diventa un pericolo a livelli di circa 45 mA, con una probabilità negli adulti del 5% dopo un contatto di 5 secondi. Durante l'intervento al cuore, certamente una condizione speciale, una corrente da 20 a 100 × 10-6Una applicata direttamente al miocardio è sufficiente per indurre la fibrillazione. Questa sensibilità miocardica è la ragione per i severi standard applicati ai dispositivi elettromedicali.

Tutte le altre cose (V, R, frequenza) a parità di frequenza, le soglie di corrente dipendono anche dalla forma d'onda, dalla specie animale, dal peso, dalla direzione della corrente nel cuore, dal rapporto tra il tempo di transito della corrente e il ciclo cardiaco, il punto del ciclo cardiaco in cui arriva la corrente e fattori individuali.

La tensione coinvolta negli incidenti è generalmente nota. In caso di contatto diretto, la fibrillazione ventricolare e la gravità delle ustioni sono direttamente proporzionali alla tensione, poiché

V = RI ed W = V x I x t

Le ustioni derivanti da scosse elettriche ad alta tensione sono associate a molte complicazioni, solo alcune delle quali sono prevedibili. Di conseguenza le vittime di incidenti devono essere assistite da specialisti competenti. Il rilascio di calore avviene principalmente nei muscoli e nei fasci neurovascolari. La fuoriuscita di plasma a seguito di un danno tissutale provoca uno shock, in alcuni casi rapido e intenso. Per una data superficie, le ustioni elettrotermiche, ustioni causate da una corrente elettrica, sono sempre più gravi di altri tipi di ustione. Le ustioni elettrotermiche sono sia esterne che interne e, sebbene ciò possa non essere inizialmente evidente, possono indurre danni vascolari con gravi effetti secondari. Questi includono stenosi interne e trombi che, in virtù della necrosi che inducono, richiedono spesso l'amputazione.

La distruzione dei tessuti è anche responsabile del rilascio di cromoproteine ​​come la mioglobina. Tale rilascio si osserva anche nelle vittime di lesioni da schiacciamento, sebbene l'entità del rilascio sia notevole nelle vittime di ustioni da alta tensione. Si ritiene che la precipitazione della mioglobina nei tubuli renali, secondaria all'acidosi causata dall'anossia e dall'iperkaliemia, sia la causa dell'anuria. Questa teoria, confermata sperimentalmente ma non universalmente accettata, è alla base delle raccomandazioni per la terapia immediata di alcalinizzazione. L'alcalinizzazione endovenosa, che corregge anche l'ipovolemia e l'acidosi secondarie alla morte cellulare, è la pratica raccomandata.

Nel caso di contatti indiretti, la tensione di contatto (V) e anche il limite di tensione convenzionale deve essere preso in considerazione.

La tensione di contatto è la tensione a cui è sottoposta una persona quando tocca contemporaneamente due conduttori tra i quali esiste un differenziale di tensione dovuto ad un isolamento difettoso. L'intensità del flusso di corrente risultante dipende dalle resistenze del corpo umano e del circuito esterno. Questa corrente non deve superare i livelli di sicurezza, vale a dire che deve conformarsi a curve tempo-corrente sicure. La più alta tensione di contatto che può essere tollerata indefinitamente senza indurre effetti elettropatologici è definita limite di tensione convenzionale o, più intuitivamente, il tensione di sicurezza.

Il valore effettivo della resistenza durante gli incidenti elettrici è sconosciuto. Le variazioni nelle resistenze in serie, ad esempio vestiti e scarpe, spiegano gran parte della variazione osservata negli effetti di incidenti elettrici apparentemente simili, ma esercitano poca influenza sull'esito di incidenti che coinvolgono contatti bipolari ed elettrificazioni ad alta tensione. Nel caso di corrente alternata, al calcolo standard basato su tensione e corrente deve essere aggiunto l'effetto dei fenomeni capacitivi e induttivi (R=V/I).

La resistenza del corpo umano è la somma della resistenza della pelle (R) nei due punti di contatto e la resistenza interna del corpo (R). La resistenza della pelle varia con i fattori ambientali e, come notato da Biegelmeir (International Electrotechnical Commission 1987; 1994), è parzialmente funzione della tensione di contatto. Anche altri fattori come la pressione, l'area di contatto, lo stato della pelle nel punto di contatto e fattori individuali influenzano la resistenza. Non è quindi realistico tentare di basare le misure preventive su stime della resistenza cutanea. La prevenzione dovrebbe invece basarsi sull'adattamento di attrezzature e procedure all'uomo, piuttosto che il contrario. Per semplificare le cose, la CEI ha definito quattro tipologie di ambiente – secco, umido, umido e per immersione – e ha definito di volta in volta dei parametri utili alla programmazione delle attività di prevenzione.

La frequenza del segnale elettrico responsabile degli incidenti elettrici è generalmente nota. In Europa è quasi sempre 50 Hz e nelle Americhe è generalmente 60 Hz. In rari casi che coinvolgono ferrovie in paesi come Germania, Austria e Svizzera, può essere 16 2/3 Hz, frequenza che teoricamente rappresenta un maggior rischio di tetanizzazione e di fibrillazione ventricolare. Va ricordato che la fibrillazione non è una reazione muscolare ma è causata da stimoli ripetuti, con una sensibilità massima a circa 10 Hz. Questo spiega perché, a parità di tensione, la corrente alternata a bassissima frequenza è considerata da tre a cinque volte più pericolosa della corrente continua per quanto riguarda gli effetti diversi dalle ustioni.

Le soglie precedentemente descritte sono direttamente proporzionali alla frequenza della corrente. Pertanto, a 10 kHz, la soglia di rilevamento è dieci volte superiore. L'IEC sta studiando curve di rischio di fibrillazione riviste per frequenze superiori a 1,000 Hz (International Electrotechnical Commission 1994).

Al di sopra di una certa frequenza, le leggi fisiche che regolano la penetrazione della corrente nel corpo cambiano completamente. Gli effetti termici legati alla quantità di energia rilasciata diventano l'effetto principale, poiché i fenomeni capacitivi e induttivi iniziano a prevalere.

La forma d'onda del segnale elettrico responsabile di un incidente elettrico è generalmente nota. Può essere un importante determinante di lesioni in incidenti che comportano il contatto con condensatori o semiconduttori.

Studio clinico di scosse elettriche

Classicamente, le elettrificazioni sono state suddivise in incidenti a bassa tensione (da 50 a 1,000 V) e ad alta tensione (> 1,000 V).

La bassa tensione è un pericolo familiare, anzi onnipresente, e gli shock dovuti ad essa si verificano in ambito domestico, ricreativo, agricolo, ospedaliero e industriale.

Nell'esaminare la gamma di scosse elettriche a bassa tensione, dalle più banali alle più gravi, dobbiamo iniziare con scosse elettriche semplici. In questi casi, le vittime sono in grado di liberarsi dal danno da sole, mantenere la coscienza e mantenere una ventilazione normale. Gli effetti cardiaci sono limitati alla semplice tachicardia sinusale con o senza alterazioni elettrocardiografiche minori. Nonostante le conseguenze relativamente minori di tali incidenti, l'elettrocardiografia rimane una precauzione medica e medico-legale appropriata. L'indagine tecnica su questi incidenti potenzialmente gravi è indicata come complemento all'esame clinico (Gilet e Choquet 1990).

Le vittime di scosse che comportano scosse elettriche da contatto un po' più forti e più durature possono soffrire di perturbazioni o perdita di coscienza, ma guarire completamente più o meno rapidamente; il trattamento accelera il recupero. L'esame obiettivo rivela generalmente ipertonie neuromuscolari, problemi di ventilazione iperriflessiva e congestione, l'ultima delle quali è spesso secondaria ad ostruzione orofaringea. I disturbi cardiovascolari sono secondari all'ipossia o all'anossia, o possono assumere la forma di tachicardia, ipertensione e, in alcuni casi, anche infarto. I pazienti con queste condizioni richiedono cure ospedaliere.

Le vittime occasionali che perdono conoscenza entro pochi secondi dal contatto appaiono pallide o cianotiche, smettono di respirare, hanno polsi appena percettibili e mostrano midriasi indicativa di lesione cerebrale acuta. Anche se di solito è dovuto alla fibrillazione ventricolare, la patogenesi precisa di questa morte apparente è, tuttavia, irrilevante. Il punto importante è il rapido inizio di una terapia ben definita, poiché è noto da tempo che questo stato clinico non porta mai alla morte vera e propria. La prognosi in questi casi di scosse elettriche, da cui è possibile una guarigione totale, dipende dalla rapidità e dalla qualità dei primi soccorsi. Statisticamente, è molto probabile che questo venga somministrato da personale non medico, ed è quindi indicata la formazione di tutti gli elettricisti negli interventi di base atti a garantire la sopravvivenza.

In caso di morte apparente, il trattamento di emergenza deve avere la priorità. In altri casi, invece, occorre prestare attenzione a traumi multipli conseguenti a tetano violento, cadute o proiezione in aria della vittima. Una volta risolto il pericolo immediato di pericolo di vita, è necessario occuparsi di traumi e ustioni, compresi quelli causati da contatti a bassa tensione.

Gli incidenti che coinvolgono alta tensione provocano ustioni significative così come gli effetti descritti per gli incidenti a bassa tensione. La conversione dell'energia elettrica in calore avviene sia internamente che esternamente. In uno studio sugli incidenti elettrici in Francia realizzato dal dipartimento medico dell'azienda elettrica EDF-GDF, quasi l'80% delle vittime ha riportato ustioni. Questi possono essere classificati in quattro gruppi:

  1. ustioni da arco, che di solito coinvolgono la pelle esposta e complicate in alcuni casi da ustioni dovute a indumenti bruciati
  2. ustioni elettrotermiche multiple, estese e profonde, causate da contatti ad alta tensione
  3. ustioni classiche, causate da indumenti in fiamme e dalla proiezione di materia in fiamme, e
  4. ustioni miste, causate da archi elettrici, ustioni e flusso di corrente.

 

Gli esami di follow-up e complementari vengono eseguiti secondo necessità, a seconda dei particolari dell'infortunio. La strategia utilizzata per stabilire una prognosi oa fini medico-legali è ovviamente determinata dalla natura delle complicanze osservate o attese. Nelle elettrificazioni ad alta tensione (Folliot 1982) e nei fulmini (Gourbiere et al. 1994), l'enzimologia e l'analisi delle cromoproteine ​​e dei parametri della coagulazione del sangue sono obbligatorie.

Il corso del recupero dal trauma elettrico può essere compromesso da complicanze precoci o tardive, in particolare quelle che coinvolgono i sistemi cardiovascolare, nervoso e renale. Queste complicazioni di per sé sono una ragione sufficiente per ricoverare le vittime di elettrificazioni ad alta tensione. Alcune complicanze possono lasciare sequele funzionali o estetiche.

Se il percorso della corrente è tale che una corrente significativa raggiunge il cuore, saranno presenti complicazioni cardiovascolari. I più frequentemente osservati e i più benigni di questi sono i disturbi funzionali, in presenza o in assenza di correlati clinici. Le aritmie - tachicardia sinusale, extrasistole, flutter e fibrillazione atriale (in quest'ordine) - sono le anomalie elettrocardiografiche più comuni e possono lasciare sequele permanenti. I disturbi della conduzione sono più rari e difficilmente correlabili a incidenti elettrici in assenza di un precedente elettrocardiogramma.

Sono stati segnalati anche disturbi più gravi come insufficienza cardiaca, lesioni valvolari e ustioni miocardiche, ma sono rari, anche nelle vittime di incidenti ad alta tensione. Sono stati segnalati anche casi netti di angina e persino infarto.

Lesioni vascolari periferiche possono essere osservate nella settimana successiva all'elettrificazione ad alta tensione. Sono stati proposti diversi meccanismi patogenetici: lo spasmo arterioso, l'azione della corrente elettrica sugli strati mediali e muscolari dei vasi e la modificazione dei parametri della coagulazione del sangue.

È possibile un'ampia varietà di complicazioni neurologiche. Il primo a comparire è l'ictus, indipendentemente dal fatto che la vittima abbia inizialmente subito una perdita di coscienza. La fisiopatologia di queste complicanze comporta il trauma cranico (di cui occorre accertare la presenza), l'effetto diretto della corrente sulla testa, o la modificazione del flusso ematico cerebrale e l'induzione di un edema cerebrale ritardato. Inoltre, le complicanze periferiche midollari e secondarie possono essere causate da traumi o dall'azione diretta della corrente elettrica.

I disturbi sensoriali coinvolgono l'occhio e il sistema audiovestibolare o cocleare. È importante esaminare la cornea, il cristallino e il fondo oculare il prima possibile e seguire le vittime di arco elettrico e contatto diretto con la testa per effetti ritardati. La cataratta può svilupparsi dopo un periodo intermedio senza sintomi di diversi mesi. I disturbi vestibolari e la perdita dell'udito sono principalmente dovuti agli effetti dell'esplosione e, nelle vittime di fulmini trasmessi attraverso le linee telefoniche, a traumi elettrici (Gourbiere et al. 1994).

I miglioramenti nelle pratiche di emergenza mobile hanno notevolmente ridotto la frequenza delle complicanze renali, in particolare l'oligo-anuria, nelle vittime di elettrificazioni ad alta tensione. La reidratazione precoce e attenta e l'alcalinizzazione per via endovenosa sono il trattamento di scelta nelle vittime di gravi ustioni. Sono stati segnalati alcuni casi di albuminuria ed ematuria microscopica persistente.

Ritratti clinici e problemi diagnostici

Il quadro clinico delle scosse elettriche è complicato dalla varietà delle applicazioni industriali dell'elettricità e dalla crescente frequenza e varietà delle applicazioni mediche dell'elettricità. Per molto tempo, tuttavia, gli incidenti elettrici sono stati causati esclusivamente da fulmini (Gourbiere et al. 1994). I fulmini possono comportare quantità notevoli di elettricità: una vittima su tre dei fulmini muore. Gli effetti di un fulmine - ustioni e morte apparente - sono paragonabili a quelli derivanti dall'elettricità industriale e sono attribuibili a scosse elettriche, alla trasformazione dell'energia elettrica in calore, agli effetti delle esplosioni e alle proprietà elettriche dei fulmini.

I fulmini sono tre volte più diffusi negli uomini che nelle donne. Ciò riflette modelli di lavoro con diversi rischi di esposizione ai fulmini.

Le ustioni derivanti dal contatto con superfici metalliche collegate a terra di bisturi elettrici sono gli effetti più comuni osservati nelle vittime di elettrificazione iatrogena. L'entità delle correnti di dispersione accettabili nei dispositivi elettromedicali varia da un dispositivo all'altro. Per lo meno, dovrebbero essere seguite le specifiche dei produttori e le raccomandazioni sull'uso.

Per concludere questa sezione, vorremmo discutere il caso speciale di scossa elettrica che coinvolge donne incinte. Ciò può causare la morte della donna, del feto o di entrambi. In un caso notevole, un feto vivo è stato partorito con successo mediante taglio cesareo 15 minuti dopo che sua madre era morta a causa di una scossa elettrica da 220 V (Folliot 1982).

I meccanismi fisiopatologici dell'aborto causato da scosse elettriche richiedono ulteriori studi. È causata da disturbi della conduzione nel tubo cardiaco embrionale sottoposto a gradiente di voltaggio o da una lacerazione della placenta secondaria a vasocostrizione?

Il verificarsi di incidenti elettrici come questo fortunatamente raro è un altro motivo per richiedere la notifica di tutti i casi di lesioni derivanti dall'elettricità.

Diagnosi Positiva e Medico-Legale

Le circostanze in cui si verifica la scossa elettrica sono generalmente sufficientemente chiare da consentire una diagnosi eziologica inequivocabile. Tuttavia, questo non è sempre il caso, anche in ambienti industriali.

La diagnosi di insufficienza circolatoria a seguito di scossa elettrica è estremamente importante, poiché richiede che gli astanti inizino un pronto soccorso immediato e di base una volta che la corrente è stata interrotta. L'arresto respiratorio in assenza di polso è un'indicazione assoluta per l'inizio del massaggio cardiaco e della respirazione bocca a bocca. In precedenza, questi venivano eseguiti solo in presenza di midriasi (dilatazione delle pupille), segno diagnostico di danno cerebrale acuto. La pratica corrente è, tuttavia, iniziare questi interventi non appena il polso non è più rilevabile.

Poiché la perdita di coscienza dovuta alla fibrillazione ventricolare può richiedere alcuni secondi per svilupparsi, le vittime potrebbero essere in grado di prendere le distanze dall'attrezzatura responsabile dell'incidente. Ciò può avere una certa importanza medico-legale, ad esempio quando una vittima di un incidente viene trovata a diversi metri da un armadio elettrico o da un'altra fonte di tensione senza tracce di lesioni elettriche.

Non si può sottovalutare il fatto che l'assenza di ustioni elettriche non esclude la possibilità di folgorazione. Se l'autopsia di soggetti trovati in ambienti elettrici o vicino ad apparecchiature in grado di sviluppare voltaggi pericolosi non rivela lesioni Jelinek visibili e nessun segno apparente di morte, dovrebbe essere presa in considerazione la folgorazione.

Se il corpo viene trovato all'aperto, si arriva a una diagnosi di fulmine con il processo di eliminazione. I segni di un fulmine dovrebbero essere ricercati entro un raggio di 50 metri dal corpo. Il Museo di Elettropatologia di Vienna offre un'interessante mostra di tali segni, tra cui vegetazione carbonizzata e sabbia vetrificata. Gli oggetti metallici indossati dalla vittima possono fondersi.

Sebbene il suicidio con mezzi elettrici rimanga fortunatamente raro nell'industria, la morte per concorso di colpa rimane una triste realtà. Ciò è particolarmente vero nei siti non standard, in particolare quelli che comportano l'installazione e il funzionamento di impianti elettrici provvisori in condizioni difficili.

Gli incidenti elettrici dovrebbero a tutti gli effetti non verificarsi più, data la disponibilità di efficaci misure preventive descritte nell'articolo “Prevenzione e norme”.

 

Di ritorno

Lunedi, Febbraio 28 2011 19: 25

Elettricità statica

Tutti i materiali differiscono nel grado in cui le cariche elettriche possono attraversarli. conduttori consentire alle cariche di fluire, mentre isolatori ostacolare il movimento delle cariche. L'elettrostatica è il campo dedicato allo studio delle cariche, o corpi carichi a riposo. Elettricità statica risultati quando cariche elettriche che non si muovono sono accumulate su oggetti. Se le cariche fluiscono, ne risulta una corrente e l'elettricità non è più statica. La corrente che risulta dallo spostamento delle cariche è comunemente chiamata dai profani elettricità, ed è discussa negli altri articoli di questo capitolo. Elettrificazione statica è il termine utilizzato per designare qualsiasi processo che porti alla separazione di cariche elettriche positive e negative. La conduzione è misurata con una proprietà chiamata conduttanza, mentre un isolante è caratterizzato dalla sua resistività. La separazione della carica che porta all'elettrificazione può verificarsi come risultato di processi meccanici, ad esempio il contatto tra oggetti e l'attrito o la collisione di due superfici. Le superfici possono essere due solidi o un solido e un liquido. Il processo meccanico può, meno comunemente, essere la rottura o la separazione di superfici solide o liquide. Questo articolo si concentra sul contatto e l'attrito.

Processi di elettrificazione

Il fenomeno della generazione di elettricità statica per attrito (triboelettrificazione) è noto da migliaia di anni. Il contatto tra due materiali è sufficiente per indurre l'elettrificazione. L'attrito è semplicemente un tipo di interazione che aumenta l'area di contatto e genera calore—attrito è il termine generico per descrivere il movimento di due oggetti in contatto; la pressione esercitata, la sua velocità di taglio e il calore generato sono i principali determinanti della carica generata dall'attrito. A volte l'attrito porterà anche allo strappo di particelle solide.

Quando i due solidi in contatto sono metalli (contatto metallo-metallo), gli elettroni migrano dall'uno all'altro. Ogni metallo è caratterizzato da un diverso potenziale iniziale (potenziale di Fermi) e la natura va sempre verso l'equilibrio, cioè i fenomeni naturali lavorano per eliminare le differenze di potenziale. Questa migrazione di elettroni provoca la generazione di un potenziale di contatto. Poiché le cariche in un metallo sono molto mobili (i metalli sono ottimi conduttori), le cariche si ricombineranno anche nell'ultimo punto di contatto prima che i due metalli si separino. È quindi impossibile indurre l'elettrificazione avvicinando due metalli e poi separandoli; le cariche fluiranno sempre per eliminare la differenza di potenziale.

Quando metallo e isolante entrano in contatto quasi senza attrito nel vuoto, il livello di energia degli elettroni nel metallo si avvicina a quello dell'isolante. Le impurità superficiali o sfuse fanno sì che ciò si verifichi e impediscono anche la formazione di archi (la scarica di elettricità tra i due corpi carichi, gli elettrodi) al momento della separazione. La carica trasferita all'isolante è proporzionale all'affinità elettronica del metallo, e ogni isolante ha anche un'affinità elettronica, o attrazione per gli elettroni, ad essa associata. Pertanto, è anche possibile il trasferimento di ioni positivi o negativi dall'isolante al metallo. La carica sulla superficie dopo il contatto e la separazione è descritta dall'equazione 1 nella tabella 1.


Tabella 1. Relazioni di base in elettrostatica - Raccolta di equazioni

Equazione 1: carica per contatto di un metallo e un isolante

In generale, la densità di carica superficiale () dopo il contatto e la separazione 

può essere espresso da:

where

e è la carica di un elettrone
NE è la densità dello stato energetico sulla superficie dell'isolante
fi è l'affinità elettronica dell'isolante, e
fm è l'affinità elettronica del metallo

Equazione 2: carica in seguito al contatto tra due isolanti

La seguente forma generale dell'equazione 1 si applica al trasferimento di carica
tra due isolanti con stati energetici diversi (solo superfici perfettamente pulite):

where NE1 ed NE2 sono le densità di stato energetico sulla superficie dei due isolanti, 

ed  Ø1 ed Ø 2 sono le affinità elettroniche dei due isolanti.

Equazione 3: Massima densità di carica superficiale

La rigidità dielettrica (EG) del gas circostante impone un limite superiore alla carica che è
possibile generare su una superficie isolante piana. In aria, EG è di circa 3 MV/m.
La massima densità di carica superficiale è data da:

Equazione 4: carica massima su una particella sferica

Quando le particelle nominalmente sferiche vengono caricate dall'effetto corona, il massimo
La carica che ogni particella può acquisire è data dal limite di Pauthenier:

where

qmax è la carica massima
a è il raggio della particella
eI è la permittività relativa e

Equazione 5: Scariche dai conduttori

Il potenziale di un conduttore isolato che trasporta carica Q è dato da V = Q/C ed
l'energia immagazzinata da:

Equazione 6: Andamento temporale del potenziale del conduttore carico

In un conduttore caricato da una corrente costante (IG), il corso temporale del
potenziale è descritto da:

where Rf è la resistenza alla perdita del conduttore

Equazione 7: Potenziale finale del conduttore carico

Per lungo tempo corso, t >Rf C, questo si riduce a:

e l'energia immagazzinata è data da:

Equazione 8: Energia immagazzinata del conduttore carico


Quando due isolanti entrano in contatto, si verifica il trasferimento di carica a causa dei diversi stati della loro energia superficiale (equazione 2, tabella 1). Le cariche trasferite sulla superficie di un isolante possono migrare più in profondità all'interno del materiale. L'umidità e la contaminazione superficiale possono modificare notevolmente il comportamento delle cariche. L'umidità superficiale in particolare aumenta le densità dello stato energetico superficiale aumentando la conduzione superficiale, che favorisce la ricombinazione di carica e facilita la mobilità ionica. La maggior parte delle persone lo riconoscerà dalle loro esperienze di vita quotidiana dal fatto che tendono ad essere soggette a elettricità statica durante le condizioni di siccità. Il contenuto di acqua di alcuni polimeri (plastica) cambierà man mano che vengono caricati. L'aumento o la diminuzione del contenuto d'acqua può anche invertire la direzione del flusso di carica (la sua polarità).

La polarità (positività e negatività relative) di due isolanti in contatto tra loro dipende dall'affinità elettronica di ciascun materiale. Gli isolanti possono essere classificati in base alle loro affinità elettroniche e alcuni valori illustrativi sono elencati nella tabella 2. L'affinità elettronica di un isolante è una considerazione importante per i programmi di prevenzione, discussi più avanti in questo articolo.

Tabella 2. Affinità elettroniche di polimeri selezionati*

Ricarica

Materiali

Affinità elettronica (EV)

-

PVC (cloruro di polivinile)

4.85

 

Poliammide

4.36

 

policarbonato

4.26

 

PTFE (politetrafluoroetilene)

4.26

 

PETP (polietilene tereftalato)

4.25

 

Polistirolo

4.22

+

Poliammide

4.08

* Un materiale acquista una carica positiva quando entra in contatto con un materiale elencato sopra di esso, e una carica negativa quando entra in contatto con un materiale elencato sotto di esso. Tuttavia, l'affinità elettronica di un isolante è multifattoriale.

 

Sebbene ci siano stati tentativi di stabilire una serie triboelettrica che classificherebbe i materiali in modo che quelli che acquisiscono una carica positiva al contatto con i materiali appaiano più in alto nella serie rispetto a quelli che acquisiscono una carica negativa al contatto, non è stata stabilita alcuna serie universalmente riconosciuta.

Quando un solido e un liquido si incontrano (per formare a interfaccia solido-liquido), il trasferimento di carica avviene a causa della migrazione degli ioni presenti nel liquido. Questi ioni derivano dalla dissociazione di impurità eventualmente presenti o da reazioni elettrochimiche di ossidoriduzione. Poiché, in pratica, non esistono liquidi perfettamente puri, ci saranno sempre almeno alcuni ioni positivi e negativi nel liquido disponibili per legarsi all'interfaccia liquido-solido. Esistono molti tipi di meccanismi mediante i quali può verificarsi questo legame (p. es., adesione elettrostatica a superfici metalliche, assorbimento chimico, iniezione elettrolitica, dissociazione di gruppi polari e, se la parete del vaso è isolante, reazioni liquido-solido).

Poiché le sostanze che si dissolvono (dissociano) sono elettricamente neutre per cominciare, genereranno un numero uguale di cariche positive e negative. L'elettrificazione avviene solo se le cariche positive o negative aderiscono preferenzialmente alla superficie del solido. In questo caso si forma uno strato molto compatto, noto come strato di Helmholtz. Poiché lo strato di Helmholtz è carico, attirerà verso di sé ioni di polarità opposta. Questi ioni si raggrupperanno in uno strato più diffuso, noto come strato di Gouy, che poggia sulla superficie dello strato compatto di Helmholtz. Lo spessore dello strato Gouy aumenta con la resistività del liquido. I liquidi conduttori formano strati di Gouy molto sottili.

Questo doppio strato si separerà se il liquido scorre, con lo strato di Helmholtz che rimane legato all'interfaccia e lo strato di Gouy che viene trascinato dal liquido che scorre. Il movimento di questi strati carichi produce una differenza di potenziale (il zeta potenziale), e la corrente indotta dalle cariche in movimento è nota come corrente continua. La quantità di carica che si accumula nel liquido dipende dalla velocità con cui gli ioni si diffondono verso l'interfaccia e dalla resistività del liquido (R). La corrente in streaming è, tuttavia, costante nel tempo.

Né i liquidi altamente isolanti né quelli conduttori si caricheranno: il primo perché sono presenti pochissimi ioni, e il secondo perché nei liquidi che conducono molto bene l'elettricità, gli ioni si ricombineranno molto rapidamente. In pratica l'elettrificazione avviene solo nei liquidi con resistività maggiore di 107Ωm o inferiore a 1011Ωm, con i valori più alti osservati per r 109 a 1011 Ωm.

I liquidi che scorrono indurranno l'accumulo di carica nelle superfici isolanti su cui scorrono. La misura in cui la densità di carica superficiale si accumulerà è limitata da (1) quanto velocemente gli ioni nel liquido si ricombinano all'interfaccia liquido-solido, (2) quanto velocemente gli ioni nel liquido vengono condotti attraverso l'isolante, o ( 3) se si verifica un arco superficiale o di massa attraverso l'isolatore e la carica viene quindi scaricata. Il flusso turbolento e il flusso su superfici ruvide favoriscono l'elettrificazione.

Quando un'alta tensione, diciamo diversi kilovolt, viene applicata a un corpo carico (un elettrodo) che ha un piccolo raggio (ad esempio un filo), il campo elettrico nelle immediate vicinanze del corpo carico è elevato, ma diminuisce rapidamente con distanza. Se c'è una scarica delle cariche immagazzinate, la scarica sarà limitata alla regione in cui il campo elettrico è più forte della rigidità dielettrica dell'atmosfera circostante, un fenomeno noto come effetto corona, perché anche l'arco emette luce. (Le persone potrebbero effettivamente aver visto formarsi piccole scintille quando hanno sperimentato personalmente uno shock dovuto all'elettricità statica.)

La densità di carica su una superficie isolante può anche essere modificata dagli elettroni in movimento generati da un campo elettrico ad alta intensità. Questi elettroni genereranno ioni da qualsiasi molecola di gas nell'atmosfera con cui entrano in contatto. Quando la carica elettrica sul corpo è positiva, il corpo carico respingerà tutti gli ioni positivi che sono stati creati. Gli elettroni creati da oggetti caricati negativamente perderanno energia mentre si allontanano dall'elettrodo e si legheranno alle molecole di gas nell'atmosfera, formando così ioni negativi che continuano a ritirarsi lontano dai punti di carica. Questi ioni positivi e negativi possono posarsi su qualsiasi superficie isolante e modificare la densità di carica della superficie. Questo tipo di carica è molto più facile da controllare e più uniforme delle cariche create dall'attrito. Ci sono limiti all'entità degli oneri che è possibile generare in questo modo. Il limite è descritto matematicamente nell'equazione 3 nella tabella 1.

Per generare cariche più elevate è necessario aumentare la rigidità dielettrica dell'ambiente, creando il vuoto o metallizzando l'altra superficie del film isolante. Quest'ultimo stratagemma attira il campo elettrico nell'isolante e di conseguenza riduce l'intensità del campo nel gas circostante.

Quando un conduttore in un campo elettrico (E) è collegato a terra (vedi figura 1), le cariche possono essere prodotte per induzione. In queste condizioni, il campo elettrico induce la polarizzazione, la separazione dei centri di gravità degli ioni negativi e positivi del conduttore. Un conduttore temporaneamente messo a terra in un solo punto trasporterà una carica netta quando scollegato da terra, a causa della migrazione di cariche in prossimità del punto. Questo spiega perché le particelle conduttrici situate in un campo uniforme oscillano tra gli elettrodi, caricandosi e scaricandosi ad ogni contatto.

Figura 1. Meccanismo di carica di un conduttore per induzione

ELE030F1

Rischi associati all'elettricità statica

Gli effetti negativi causati dall'accumulo di elettricità statica vanno dal disagio che si prova quando si tocca un oggetto carico, come la maniglia di una porta, alle lesioni molto gravi, anche mortali, che possono verificarsi a causa di un'esplosione indotta dall'elettricità statica. L'effetto fisiologico delle scariche elettrostatiche sull'uomo varia da fastidiosi formicolii ad azioni riflesse violente. Questi effetti sono prodotti dalla corrente di scarica e, soprattutto, dalla densità di corrente sulla pelle.

In questo articolo descriveremo alcuni modi pratici in cui le superfici e gli oggetti possono caricarsi (elettrificazione). Quando il campo elettrico indotto supera la capacità dell'ambiente circostante di sopportare la carica (ovvero supera la rigidità dielettrica dell'ambiente), si verifica una scarica. (In aria, la rigidità dielettrica è descritta dalla curva di Paschen ed è una funzione del prodotto della pressione per la distanza tra i corpi carichi.)

Gli scarichi di disturbo possono assumere le seguenti forme:

  • scintille o archi che collegano due corpi carichi (due elettrodi metallici)
  • scariche parziali, oa pennello, che collegano un elettrodo metallico e un isolante, o anche due isolanti; queste scariche sono dette parziali perché il percorso conduttivo non cortocircuita totalmente due elettrodi metallici, ma è solitamente multiplo e a spazzola
  • scariche corona, note anche come effetti puntiformi, che si verificano nel forte campo elettrico attorno a corpi o elettrodi carichi di piccolo raggio.

 

I conduttori isolati hanno una capacità netta C rispetto al suolo. Questa relazione tra carica e potenziale è espressa nell'equazione 5 nella tabella 1.

Una persona che indossa scarpe isolanti è un esempio comune di conduttore isolato. Il corpo umano è un conduttore elettrostatico, con una capacità tipica rispetto a terra di circa 150 pF e un potenziale fino a 30 kV. Poiché le persone possono essere conduttori isolanti, possono sperimentare scariche elettrostatiche, come la sensazione più o meno dolorosa che talvolta si produce quando una mano si avvicina alla maniglia di una porta o ad un altro oggetto metallico. Quando il potenziale raggiunge circa 2 kV, si sperimenterà l'equivalente di un'energia di 0.3 mJ, sebbene questa soglia vari da persona a persona. Scariche più forti possono causare movimenti incontrollabili con conseguenti cadute. Nel caso di lavoratori che utilizzano strumenti, i movimenti riflessi involontari possono causare lesioni alla vittima e ad altri che potrebbero lavorare nelle vicinanze. Le equazioni da 6 a 8 nella tabella 1 descrivono l'andamento temporale del potenziale.

L'arco elettrico effettivo si verificherà quando la forza del campo elettrico indotto supera la rigidità dielettrica dell'aria. A causa della rapida migrazione delle cariche nei conduttori, essenzialmente tutte le cariche fluiscono verso il punto di scarica, rilasciando tutta l'energia immagazzinata in una scintilla. Ciò può avere gravi implicazioni quando si lavora con sostanze infiammabili o esplosive o in condizioni infiammabili.

L'avvicinamento di un elettrodo messo a terra a una superficie isolante carica modifica il campo elettrico e induce una carica nell'elettrodo. Man mano che le superfici si avvicinano l'una all'altra, l'intensità del campo aumenta, portando infine a una scarica parziale dalla superficie isolata carica. Poiché le cariche sulle superfici isolanti non sono molto mobili, solo una piccola parte della superficie partecipa alla scarica e l'energia rilasciata da questo tipo di scarica è quindi molto inferiore a quella degli archi.

La carica e l'energia trasferita sembrano essere direttamente proporzionali al diametro dell'elettrodo metallico, fino a circa 20 mm. La polarità iniziale dell'isolante influenza anche la carica e l'energia trasferita. Le scariche parziali da superfici caricate positivamente sono meno energetiche di quelle da superfici caricate negativamente. Impossibile stabilire, a priori, l'energia trasferita da una scarica da una superficie isolante, in contrasto con la situazione che coinvolge le superfici conduttrici. Infatti, poiché la superficie isolante non è equipotenziale, non è nemmeno possibile definire le capacità in gioco.

Scarico strisciante

Abbiamo visto nell'equazione 3 (tabella 1) che la densità di carica superficiale di una superficie isolante in aria non può superare 2,660 pC/cm2.

Se consideriamo una lastra isolante o un film di spessore a, appoggiato su un elettrodo metallico o avente una faccia metallica, è facile dimostrare che il campo elettrico viene attirato nell'isolante dalla carica indotta sull'elettrodo quando le cariche si depositano sulla faccia non metallica. Di conseguenza, il campo elettrico nell'aria è molto debole e inferiore a quello che sarebbe se una delle facce non fosse di metallo. In questo caso la rigidità dielettrica dell'aria non limita l'accumulo di carica sulla superficie isolante ed è possibile raggiungere densità superficiali di carica molto elevate (>2,660 pC/cm2). Questo accumulo di carica aumenta la conducibilità superficiale dell'isolante.

Quando un elettrodo si avvicina a una superficie isolante, si verifica una scarica strisciante che coinvolge gran parte della superficie carica che è diventata conduttrice. A causa delle grandi superfici interessate, questo tipo di scarica rilascia grandi quantità di energia. Nel caso delle pellicole, il campo d'aria è molto debole e la distanza tra l'elettrodo e la pellicola non deve essere superiore allo spessore della pellicola affinché si verifichi una scarica. Una scarica strisciante può verificarsi anche quando un isolante carico viene separato dal suo sottorivestimento metallico. In queste circostanze, il campo d'aria aumenta bruscamente e l'intera superficie dell'isolante si scarica per ristabilire l'equilibrio.

Scariche elettrostatiche e rischi di incendio ed esplosione

In atmosfere esplosive, violente reazioni di ossidazione esotermica, che comportano trasferimento di energia all'atmosfera, possono essere innescate da:

  • fiamme libere
  • scintille elettriche
  • scintille di radiofrequenza vicino a una forte sorgente radio
  • scintille prodotte da collisioni (p. es., tra metallo e cemento)
  • scariche elettrostatiche.

 

A noi interessa qui solo l'ultimo caso. I punti di infiammabilità (la temperatura alla quale i vapori liquidi si infiammano a contatto con una fiamma libera) di vari liquidi e la temperatura di autoaccensione di vari vapori sono riportati nella Sezione Chimica di questo Enciclopedia. Il rischio di incendio associato alle scariche elettrostatiche può essere valutato facendo riferimento al limite inferiore di infiammabilità di gas, vapori e aerosol solidi o liquidi. Questo limite può variare notevolmente, come illustra la tabella 3.

Tabella 3. Limiti inferiori tipici di infiammabilità

Scarico

Limitare

Alcune polveri

Diversi joule

Aerosol finissimi di zolfo e alluminio

Diversi millijoule

Vapori di idrocarburi e altri liquidi organici

200 microjoule

Idrogeno e acetilene

20 microjoule

Esplosivi

1 microjoule

 

Una miscela di aria e un gas o vapore infiammabile può esplodere solo quando la concentrazione della sostanza infiammabile è compresa tra i suoi limiti di esplosività superiore e inferiore. All'interno di questo intervallo, l'energia minima di accensione (MIE), l'energia che una scarica elettrostatica deve possedere per accendere la miscela, dipende fortemente dalla concentrazione. È stato costantemente dimostrato che l'energia di accensione minima dipende dalla velocità del rilascio di energia e, per estensione, dalla durata della scarica. Anche il raggio dell'elettrodo è un fattore:

  • Gli elettrodi di piccolo diametro (dell'ordine di diversi millimetri) provocano scariche corona piuttosto che scintille.
  • Con elettrodi di diametro maggiore (dell'ordine di alcuni centimetri), la massa dell'elettrodo serve a raffreddare le scintille.

 

In generale, le MIE più basse si ottengono con elettrodi sufficientemente grandi da prevenire le scariche corona.

La MIE dipende anche dalla distanza interelettrodica, ed è minima alla distanza di tempra (“distanza di pincement”), la distanza alla quale l'energia prodotta nella zona di reazione supera le perdite termiche agli elettrodi. È stato dimostrato sperimentalmente che ogni sostanza infiammabile ha una distanza massima di sicurezza, corrispondente alla minima distanza interelettrodica alla quale può verificarsi un'esplosione. Per gli idrocarburi, questo è inferiore a 1 mm.

La probabilità di esplosioni di polvere dipende dalla concentrazione, con la probabilità più alta associata a concentrazioni dell'ordine da 200 a 500 g/m3. Il MIE dipende anche dalla dimensione delle particelle, con polveri più fini che esplodono più facilmente. Sia per i gas che per gli aerosol, la MIE diminuisce con la temperatura.

Esempi industriali

Molti processi abitualmente utilizzati per la manipolazione e il trasporto di prodotti chimici generano cariche elettrostatiche. Questi includono:

  • versando polveri dai sacchi
  • screening
  • trasporto in tubazioni
  • agitazione di liquidi, soprattutto in presenza di più fasi, solidi sospesi o goccioline di liquidi non miscibili
  • spruzzatura o nebulizzazione di liquidi.

 

Le conseguenze della generazione di cariche elettrostatiche includono problemi meccanici, pericolo di scariche elettrostatiche per gli operatori e, se si utilizzano prodotti contenenti solventi o vapori infiammabili, anche esplosioni (vedi tabella 4).

Tabella 4. Onere specifico associato a operazioni industriali selezionate

Funzionamento

Carica specifica
(q/m) (C/kg)

Screening

10-8 -10 all'11 ottobre

Riempimento o svuotamento silo

10-7 -10-9

Trasporto con trasportatore a coclea

10-6 -10-8

Rettifica

10-6 -10-7

Micronizzazione

10-4 -10-7

Trasporto pneumatico

10-4 -10-6

 

Gli idrocarburi liquidi, come petrolio, cherosene e molti comuni solventi, hanno due caratteristiche che li rendono particolarmente sensibili ai problemi di elettricità statica:

  • alta resistività, che consente loro di accumulare alti livelli di cariche
  • vapori infiammabili, che aumentano il rischio di scariche a bassa energia che innescano incendi ed esplosioni.

 

Le cariche possono essere generate durante il flusso di trasporto (ad es. attraverso tubazioni, pompe o valvole). Il passaggio attraverso filtri fini, come quelli utilizzati durante il riempimento dei serbatoi degli aerei, può comportare la generazione di densità di carica di diverse centinaia di microcoulomb per metro cubo. Anche la sedimentazione delle particelle e la generazione di nebbie o schiume cariche durante il riempimento a flusso dei serbatoi possono generare cariche.

Tra il 1953 e il 1971, l'elettricità statica è stata responsabile di 35 incendi ed esplosioni durante o dopo il riempimento di serbatoi di cherosene, e ancora più incidenti si sono verificati durante il riempimento di serbatoi di camion. La presenza di filtri o spruzzi durante il riempimento (dovuti alla generazione di schiume o nebbie) sono stati i fattori di rischio più comunemente identificati. Incidenti si sono verificati anche a bordo di petroliere, soprattutto durante la pulizia delle cisterne.

Principi di prevenzione dell'elettricità statica

Tutti i problemi legati all'elettricità statica derivano da:

  • generazione di cariche elettriche
  • accumulo di queste cariche su isolanti o conduttori isolati
  • campo elettrico prodotto da queste cariche, che a sua volta si traduce in una forza o in una scarica dirompente.

 

Le misure preventive cercano di evitare l'accumulo di cariche elettrostatiche e la strategia scelta è evitare in primo luogo di generare le cariche elettriche. Se ciò non è possibile, dovrebbero essere attuate misure volte a mettere a terra le cariche. Infine, se le scariche sono inevitabili, gli oggetti sensibili dovrebbero essere protetti dagli effetti delle scariche.

Soppressione o riduzione della generazione di carica elettrostatica

Questo è il primo approccio alla prevenzione elettrostatica che dovrebbe essere intrapreso, perché è l'unica misura preventiva che elimina il problema alla fonte. Tuttavia, come discusso in precedenza, le cariche si generano ogni volta che due materiali, di cui almeno uno isolante, entrano in contatto e successivamente si separano. In pratica, la generazione di carica può avvenire anche per contatto e separazione di un materiale con se stesso. La generazione di carica coinvolge infatti gli strati superficiali dei materiali. Poiché la minima differenza nell'umidità superficiale o nella contaminazione della superficie provoca la generazione di cariche statiche, è impossibile evitare completamente la generazione di cariche.

Per ridurre la quantità di cariche generate dalle superfici a contatto:

  • Evita che i materiali entrino in contatto tra loro se hanno affinità elettroniche molto diverse, cioè se sono molto distanti nella serie triboelettrica. Ad esempio, evitare il contatto tra vetro e teflon (PTFE), o tra PVC e poliammide (nylon) (vedi tabella 2).
  • Ridurre la velocità di flusso tra i materiali. Questo riduce la velocità di taglio tra materiali solidi. Ad esempio, si può ridurre la portata dell'estrusione di film plastici, del movimento di materiali frantumati su un trasportatore o di liquidi in una tubazione.

 

Non sono stati stabiliti limiti di sicurezza definitivi per le portate. Lo standard britannico BS-5958-Parte 2  Codice di condotta per il controllo dell'elettricità statica indesiderabile raccomanda che il prodotto della velocità (in metri al secondo) e il diametro del tubo (in metri) sia inferiore a 0.38 per liquidi con conducibilità inferiore a 5 pS/m (in pico-siemens per metro) e inferiore a 0.5 per liquidi con conducibilità superiori a 5 pS/m. Questo criterio è valido solo per liquidi monofase trasportati a velocità non superiori a 7 m/s.

Va notato che la riduzione del taglio o della velocità del flusso non solo riduce la generazione di carica, ma aiuta anche a dissipare eventuali cariche generate. Questo perché velocità di flusso inferiori comportano tempi di permanenza superiori a quelli associati alle zone di rilassamento, dove le portate sono ridotte da strategie come l'aumento del diametro del tubo. Questo, a sua volta, aumenta la messa a terra.

Messa a terra dell'elettricità statica

La regola base della prevenzione elettrostatica è eliminare le differenze di potenziale tra gli oggetti. Questo può essere fatto collegandoli o mettendoli a terra. I conduttori isolati, tuttavia, possono accumulare cariche e quindi possono caricarsi per induzione, un fenomeno che è unico per loro. Le scariche dai conduttori possono assumere la forma di scintille ad alta energia e pericolose.

Questa regola è coerente con le raccomandazioni relative alla prevenzione delle scosse elettriche, che richiedono anche che tutte le parti metalliche accessibili delle apparecchiature elettriche siano messe a terra come nella norma francese Impianti elettrici a bassa tensione (NFC 15-100). Per la massima sicurezza elettrostatica, la nostra preoccupazione qui, questa regola dovrebbe essere generalizzata a tutti gli elementi conduttori. Ciò include i telai dei tavoli in metallo, le maniglie delle porte, i componenti elettronici, i serbatoi utilizzati nelle industrie chimiche e il telaio dei veicoli utilizzati per il trasporto di idrocarburi.

Dal punto di vista della sicurezza elettrostatica, il mondo ideale sarebbe quello in cui tutto sarebbe un conduttore e sarebbe permanentemente messo a terra, trasferendo così tutte le cariche nella terra. In queste circostanze, tutto sarebbe permanentemente equipotenziale e il campo elettrico - e il rischio di scarica - sarebbero di conseguenza nulli. Tuttavia, non è quasi mai possibile raggiungere questo ideale, per i seguenti motivi:

  • Non tutti i prodotti che devono essere maneggiati sono conduttori e molti non possono essere resi conduttivi mediante l'uso di additivi. Ne sono un esempio i prodotti agricoli e farmaceutici e i liquidi ad alta purezza.
  • Proprietà desiderabili del prodotto finale, come trasparenza ottica o bassa conduttività termica, possono precludere l'uso di materiali conduttivi.
  • È impossibile mettere a terra in modo permanente apparecchiature mobili come carrelli metallici, strumenti elettronici cordless, veicoli e persino operatori umani.

 

Protezione contro le scariche elettrostatiche

Va tenuto presente che questa sezione riguarda solo la protezione delle apparecchiature elettrostaticamente sensibili da scariche inevitabili, la riduzione della generazione di carica e l'eliminazione delle cariche. La capacità di proteggere le apparecchiature non elimina la necessità fondamentale di prevenire in primo luogo l'accumulo di cariche elettrostatiche.

Come illustra la figura 2, tutti i problemi elettrostatici coinvolgono una sorgente di scarica elettrostatica (l'oggetto caricato inizialmente), un bersaglio che riceve la scarica e l'ambiente attraverso il quale si propaga la scarica (scarica dielettrica). Va notato che il bersaglio o l'ambiente possono essere sensibili alle cariche elettrostatiche. Alcuni esempi di elementi sensibili sono elencati nella tabella 5.

Figura 2. Schema del problema delle scariche elettrostatiche

ELE030F2

Tabella 6. Esempi di apparecchiature sensibili alle scariche elettrostatiche

Elemento sensibile

Esempi

Fonte

Un operatore che tocca la maniglia di una porta o il telaio di un'auto A
Componente elettronico carico che entra in contatto con a
oggetto messo a terra

Target

Componenti elettronici o materiali che toccano un operatore carico

Ambiente

Una miscela esplosiva innescata da una scarica elettrostatica

 

Tutela dei lavoratori

I lavoratori che hanno motivo di ritenere di essersi caricati elettricamente (ad esempio, quando scendono da un veicolo con tempo asciutto o camminano con determinati tipi di scarpe), possono applicare una serie di misure protettive, come le seguenti:

  • Ridurre la densità di corrente a livello della pelle toccando un conduttore messo a terra con un pezzo di metallo come una chiave o uno strumento.
  • Ridurre il valore di picco della corrente scaricando su un oggetto dissipatore, se disponibile (un tavolo o un dispositivo speciale come un cinturino da polso protettivo con resistenza seriale).

 

Protezione in atmosfere esplosive

Nelle atmosfere esplosive, è l'ambiente stesso che è sensibile alle scariche elettrostatiche, e le scariche possono causare incendi o esplosioni. La protezione in questi casi consiste nel sostituire l'aria, o con una miscela di gas il cui contenuto di ossigeno è inferiore al limite inferiore di esplosività, oppure con un gas inerte, come l'azoto. Il gas inerte è stato utilizzato nei silos e nei recipienti di reazione nell'industria chimica e farmaceutica. In questo caso, sono necessarie adeguate precauzioni per assicurare che i lavoratori ricevano un adeguato apporto di aria.

 

Di ritorno

Pagina 2 di 7

" DISCLAIMER: L'ILO non si assume alcuna responsabilità per i contenuti presentati su questo portale Web presentati in una lingua diversa dall'inglese, che è la lingua utilizzata per la produzione iniziale e la revisione tra pari del contenuto originale. Alcune statistiche non sono state aggiornate da allora la produzione della 4a edizione dell'Enciclopedia (1998)."

Contenuti