Banner ToolsAnsatz

Kinder Kategorien

27. Biologische Überwachung

27. Biologische Überwachung (6)

4 banner

 

27. Biologische Überwachung

Kapitelherausgeber: Robert Lauwerys


 

Inhaltsverzeichnis  

Tabellen und Abbildungen

Allgemeine Grundsätze
Vito Foà und Lorenzo Alessio

Qualitätssicherung
D. Gompertz

Metalle und metallorganische Verbindungen
P. Hoet und Robert Lauwerys

Organische Lösungsmittel
Masayuki Ikeda

Genotoxische Chemikalien
Marja Sorsa

Pestizide
Marco Maroni und Adalberto Ferioli 

Tische

Klicken Sie unten auf einen Link, um die Tabelle im Artikelkontext anzuzeigen.

1. ACGIH, DFG & andere Grenzwerte für Metalle

2. Beispiele für Chemikalien- und biologisches Monitoring

3. Biologische Überwachung auf organische Lösungsmittel

4. Genotoxizität von Chemikalien, bewertet von IARC

5. Biomarker und einige Zell-/Gewebeproben und Genotoxizität

6. Menschliche Karzinogene, berufliche Exposition und zytogenetische Endpunkte

7. Ethische Prinzipien

8. Exposition durch Produktion und Verwendung von Pestiziden

9. Akute OP-Toxizität bei verschiedenen Graden der ACHE-Hemmung

10 Variationen von ACHE & PCHE & ausgewählten Gesundheitszuständen

11 Cholinesterase-Aktivitäten von nicht exponierten gesunden Menschen

12 Alkylphosphate im Urin und OP-Pestizide

13 Alkylphosphatmessungen im Urin & OP

14 Carbamat-Metaboliten im Urin

15 Dithiocarbamat-Metaboliten im Urin

16 Vorgeschlagene Indizes für die biologische Überwachung von Pestiziden

17 Empfohlene biologische Grenzwerte (Stand 1996)

Zahlen

Zeigen Sie auf eine Miniaturansicht, um die Bildunterschrift anzuzeigen, klicken Sie, um die Abbildung im Artikelkontext anzuzeigen.

BMO010F1BMO020F1BMO050F1BMO050T1BMO050F2BMO050F3BMO050T5BMO060F1BMO060F2BMO060F3

 


Klicken Sie hier, um zum Seitenanfang zurückzukehren

Artikel ansehen ...
28. Epidemiologie und Statistik

28. Epidemiologie und Statistik (12)

4 banner

 

28. Epidemiologie und Statistik

Kapitel-Editoren:  Franco Merletti, Colin L. Soskolne und Paolo Vineis


Inhaltsverzeichnis

Tabellen und Abbildungen

Epidemiologische Methode für Arbeitssicherheit und Gesundheitsschutz
Franco Merletti, Colin L. Soskolne und Paolo Vineis

Expositionsbewertung
M. Gerald Ott

Zusammenfassung der Expositionsmaßnahmen im Arbeitsleben
Colin L. Soskolne

Messung der Auswirkungen von Expositionen
Shelia Hoar Zahm

     Fallbeispiel: Maßnahmen
     Franco Merletti, Colin L. Soskolne und Paola Vineis

Optionen im Studiendesign
Sven Herberg

Validitätsprobleme im Studiendesign
Annie J. Sasco

Einfluss zufälliger Messfehler
Paolo Vineis und Colin L. Soskolne

Statistische Methoden
Annibale Biggeri und Mario Braga

Kausalitätsbewertung und Ethik in der epidemiologischen Forschung
Paolo Vineis

Fallstudien zur Veranschaulichung methodischer Probleme bei der Überwachung von Berufskrankheiten
Jung-Der Wang

Fragebögen in der epidemiologischen Forschung
Steven D. Stellman und Colin L. Soskolne

Asbest Historische Perspektive
Laurent Garfinkel

Tische

Klicken Sie unten auf einen Link, um die Tabelle im Artikelkontext anzuzeigen.

1. Fünf ausgewählte zusammenfassende Maßnahmen zur Exposition im Berufsleben

2. Maße für das Auftreten von Krankheiten

3. Assoziationsmaße für eine Kohortenstudie

4. Assoziationsmaße für Fall-Kontroll-Studien

5. Allgemeines Häufigkeitstabellenlayout für Kohortendaten

6. Musterlayout von Fallkontrolldaten

7. Layout-Fallkontrolldaten – eine Kontrolle pro Fall

8. Hypothetische Kohorte von 1950 Individuen zu T2

9. Indizes der zentralen Tendenz und Streuung

10 Ein binomiales Experiment & Wahrscheinlichkeiten

11 Mögliche Ergebnisse eines binomialen Experiments

12 Binomialverteilung, 15 Erfolge/30 Versuche

13 Binomialverteilung, p = 0.25; 30 Versuche

14 Fehler XNUMX. Art & Leistung; x = 12, n = 30, a = 0.05

15 Fehler XNUMX. Art & Leistung; x = 12, n = 40, a = 0.05

16 632 Arbeitnehmer, die 20 Jahre oder länger Asbest ausgesetzt waren

17 O/E Zahl der Todesfälle unter 632 Asbestarbeitern

Zahlen

Zeigen Sie auf eine Miniaturansicht, um die Bildunterschrift anzuzeigen, klicken Sie, um die Abbildung im Artikelkontext anzuzeigen.

EPI110F1EPI110F2


Klicken Sie hier, um zum Seitenanfang zurückzukehren

Artikel ansehen ...
29. Ergonomie

29. Ergonomie (27)

4 banner

 

29. Ergonomie

Kapitel-Editoren:  Wolfgang Laurig und Joachim Vedder

 


 

Inhaltsverzeichnis 

Tabellen und Abbildungen

Überblick
Wolfgang Laurig und Joachim Vedder

Ziele, Prinzipien und Methoden

Wesen und Ziele der Ergonomie
William T. Singleton

Analyse von Aktivitäten, Aufgaben und Arbeitssystemen
Véronique De Keyser

Ergonomie und Standardisierung
Friedhelm Nachreiner

Prüflisten
Pranab Kumar Nag

Physikalische und physiologische Aspekte

Anthropometrie
Melchiorre Masali

Muskelarbeit
Juhani Smolander und Veikko Louhevaara

Körperhaltungen bei der Arbeit
Ilkka Kurinka

Biomechanik
Frank Darby

Allgemeine Müdigkeit
Etienne Grandjean

Müdigkeit und Erholung
Rolf Helbig und Walter Rohmert

Psychologische Aspekte

Geistige Arbeitsbelastung
Winfried Hacker

Wachsamkeit
Herbert Heuer

Geistige Müdigkeit
Peter Richter

Organisatorische Aspekte der Arbeit

Arbeitsorganisation
Eberhard Ulich und Gudela Grote

Schlafentzug
Kazutaka Kogi

Gestaltung von Arbeitssystemen

Workstations
Roland Kadefors

Tools
TM Fraser

Bedienelemente, Anzeigen und Bedienfelder
Karl HE Kroemer

Informationsverarbeitung und Design
Andries F. Sanders

Designen für alle

Entwerfen für bestimmte Gruppen
Witz H. Grady-van den Nieuwboer

     Fallstudie: Die internationale Klassifikation der Funktionseinschränkung beim Menschen

Kulturelle Unterschiede
Houshang Shahnavaz

Ältere Arbeitnehmer
Antoine Laville und Serge Volkoff

Arbeitnehmer mit besonderen Bedürfnissen
Witz H. Grady-van den Nieuwboer

Vielfalt und Bedeutung der Ergonomie – zwei Beispiele

Systemdesign in der Diamantherstellung
Issachar Gilad

Missachtung ergonomischer Gestaltungsprinzipien: Tschernobyl
Wladimir M. Munipov 

Tische

Klicken Sie unten auf einen Link, um die Tabelle im Artikelkontext anzuzeigen.

1. Grundlegende anthropometrische Kernliste

2. Ermüdung und Erholung abhängig vom Aktivitätsniveau

3. Regeln der Kombinationswirkung zweier Stressfaktoren auf die Belastung

4. Es wird zwischen mehreren negativen Folgen psychischer Belastung unterschieden

5. Arbeitsorientierte Prinzipien zur Produktionsgestaltung

6. Partizipation im organisatorischen Kontext

7. Benutzerbeteiligung am Technologieprozess

8. Unregelmäßige Arbeitszeiten und Schlafentzug

9. Aspekte von Früh-, Anker- und Verzögerungsschlaf

10 Kontrollieren Sie Bewegungen und erwartete Effekte

11 Steuerungs-Wirkungs-Beziehungen gängiger Handsteuerungen

12 Regeln für die Anordnung von Kontrollen

13 Richtlinien für Etiketten

Zahlen

Zeigen Sie auf eine Miniaturansicht, um die Bildunterschrift anzuzeigen, klicken Sie, um die Abbildung im Artikelkontext anzuzeigen.

ERG040T1ERG040F1ERG040F2ERG040F3ERG040T2ERG040F5ERG070F1ERG070F2ERG070F3ERG060F2ERG060F1ERG060F3ERG080F1ERG080F4ERG090F1ERG090F2ERG090F3ERG090F4ERG225F1ERG225F2ERG150F1ERG150F2ERG150F4ERG150F5ERG150F6ERG120F1ERG130F1ERG290F1ERG160T1ERG160F1ERG185F1ERG185F2ERG185F3ERG185F4ERG190F1ERG190F2ERG190F3ERG210F1ERG210F2ERG210F3ERG210F4ERG210T4ERG210T5ERG210T6ERG220F1ERG240F1ERG240F2ERG240F3ERG240F4ERG260F1ERG300F1ERG255F1

Artikel ansehen ...
32. Aufzeichnungssysteme und Überwachung

32. Aufzeichnungssysteme und Überwachung (9)

4 banner

 

32. Aufzeichnungssysteme und Überwachung

Kapitel-Editor:  Steven D. Stellman

 


 

Inhaltsverzeichnis 

Tabellen und Abbildungen

Überwachungs- und Meldesysteme für Berufskrankheiten
Steven B. Markowitz

Überwachung von Arbeitsgefahren
David H. Wegman und Steven D. Stellman

Überwachung in Entwicklungsländern
David Koh und Kee-Seng Chia

Entwicklung und Anwendung eines Klassifizierungssystems für Arbeitsunfälle und Berufskrankheiten
Elyce Biddle

Risikoanalyse von nicht tödlichen Verletzungen und Krankheiten am Arbeitsplatz
John W. Ruser

Fallstudie: Arbeitnehmerschutz und Statistiken zu Unfällen und Berufskrankheiten - HVBG, Deutschland
Martin Butz und Burkhard Hoffmann

Fallstudie: Wismut – Eine Neuauflage der Uranexposition
Heinz Otten und Horst Schulz

Messstrategien und -techniken für die berufsbedingte Expositionsabschätzung in der Epidemiologie
Frank Bochmann und Helmut Blome

Fallstudie: Arbeitsmedizinische Erhebungen in China

Tische

Klicken Sie unten auf einen Link, um die Tabelle im Artikelkontext anzuzeigen.

1. Angiosarkom der Leber - Weltregister

2. Berufskrankheit, USA, 1986 versus 1992

3. US-Todesfälle durch Pneumokoniose und Pleuramesotheliom

4. Musterliste meldepflichtiger Berufskrankheiten

5. Codestruktur für die Meldung von Krankheiten und Verletzungen, USA

6. Nichttödliche Arbeitsunfälle und Berufskrankheiten, USA 1993

7. Risiko von Arbeitsunfällen und Berufskrankheiten

8. Relatives Risiko für sich wiederholende Bewegungszustände

9. Arbeitsunfälle, Deutschland, 1981-93

10 Schleifmaschinen bei Unfällen in der Metallverarbeitung, Deutschland, 1984-93

11 Berufskrankheit, Deutschland, 1980-93

12 Infektionskrankheiten, Deutschland, 1980-93

13 Strahlenbelastung in den Wismut-Bergwerken

14 Berufskrankheiten im Wismuter Uranbergwerk 1952-90

Zahlen

Zeigen Sie auf eine Miniaturansicht, um die Bildunterschrift anzuzeigen, klicken Sie, um die Abbildung im Artikelkontext anzuzeigen.

REC60F1AREC060F2REC100F1REC100T1REC100T2


Klicken Sie hier, um zum Seitenanfang zurückzukehren

Artikel ansehen ...
33. Toxikologie

33. Toxikologie (21)

4 banner

 

33. Toxikologie

Kapitelherausgeberin: Ellen K. Silbergeld


Inhaltsverzeichnis

Tabellen und Abbildungen

Einleitung
Ellen K. Silbergeld, Kapitelredakteurin

Allgemeine Prinzipien der Toxikologie

Definitionen und Konzepte
Bo Holmberg, Johan Hogberg und Gunnar Johanson

Toxikokinetik
Dušan Djuric

Zielorgan und kritische Wirkungen
Marek Jakubowski

Auswirkungen von Alter, Geschlecht und anderen Faktoren
Spomenka Telisman

Genetische Determinanten der toxischen Reaktion
Daniel W. Nebert und Ross A. McKinnon

Mechanismen der Toxizität

Einführung und Konzepte
Philip G. Watanabe

Zellschädigung und Zelltod
Benjamin F. Trump und Irene K. Berezesky

Genetische Toxikologie
R. Rita Misra und Michael P. Waalkes

Immuntoxikologie
Joseph G. Vos und Henk van Loveren

Zielorgan-Toxikologie
Ellen K. Silbergeld

Toxikologische Testmethoden

Biomarker
Philipp Grandjean

Bewertung der genetischen Toxizität
David M. DeMarini und James Huff

In-vitro-Toxizitätstest
Joanne Zürlo

Aktivitätsbeziehungen strukturieren
Ellen K. Silbergeld

Regulatorische Toxikologie

Toxikologie in der Gesundheits- und Sicherheitsverordnung
Ellen K. Silbergeld

Prinzipien der Gefahrenidentifizierung - Der japanische Ansatz
Masayuki Ikeda

Der Ansatz der Vereinigten Staaten zur Risikobewertung von reproduktionstoxischen und neurotoxischen Wirkstoffen
Ellen K. Silbergeld

Ansätze zur Gefahrenidentifizierung - IARC
Harri Vainio und Julian Wilbourn

Anhang – Gesamtbewertungen der Karzinogenität beim Menschen: IARC-Monographien, Bände 1–69 (836)

Karzinogen-Risikobewertung: Andere Ansätze
Cees A. van der Heijden

Tische 

Klicken Sie unten auf einen Link, um die Tabelle im Artikelkontext anzuzeigen.

  1. Beispiele für kritische Organe und kritische Effekte
  2. Grundlegende Wirkungen möglicher Mehrfachwechselwirkungen von Metallen
  3. Hämoglobinaddukte bei Arbeitern, die Anilin und Acetanilid ausgesetzt waren
  4. Erbliche, krebsanfällige Erkrankungen und Defekte in der DNA-Reparatur
  5. Beispiele für Chemikalien, die in menschlichen Zellen genotoxisch wirken
  6. Klassifizierung von Tests für Immunmarker
  7. Beispiele für Biomarker der Exposition
  8. Vor- und Nachteile von Methoden zur Identifizierung von Krebsrisiken beim Menschen
  9. Vergleich von In-vitro-Systemen für Hepatotoxizitätsstudien
  10. Vergleich von SAR- und Testdaten: OECD/NTP-Analysen
  11. Regulierung chemischer Stoffe durch Gesetze, Japan
  12. Prüfgegenstände gemäß dem Gesetz zur Kontrolle chemischer Substanzen, Japan
  13. Chemische Substanzen und das Gesetz zur Kontrolle chemischer Substanzen
  14. Ausgewählte größere Neurotoxizitätsvorfälle
  15. Beispiele für spezialisierte Tests zur Messung der Neurotoxizität
  16. Endpunkte in der Reproduktionstoxikologie
  17. Vergleich von Niedrigdosis-Extrapolationsverfahren
  18. Häufig zitierte Modelle zur Charakterisierung des Karzinogenrisikos

Zahlen

Zeigen Sie auf eine Miniaturansicht, um die Bildunterschrift anzuzeigen, klicken Sie, um die Abbildung im Artikelkontext anzuzeigen.

TestTOX050F1TOX050F2TOX050F4TOX050T1TOX050F6TOX210F1TOX210F2TOX060F1TOX090F1TOX090F2TOX090F3TOX090F4TOX110F1TOX260F1TOX260T4


Klicken Sie hier, um zum Seitenanfang zurückzukehren

Artikel ansehen ...
Montag, Februar 28 2011 20: 35

Pestizide

Einleitung

Die Exposition des Menschen gegenüber Pestiziden weist unterschiedliche Merkmale auf, je nachdem, ob sie während der industriellen Produktion oder Verwendung auftritt (Tabelle 1). Die Formulierung kommerzieller Produkte (durch Mischen von Wirkstoffen mit anderen Beistoffen) hat einige Expositionsmerkmale gemeinsam mit der Verwendung von Pestiziden in der Landwirtschaft. Da die Formulierung typischerweise von kleinen Industrien durchgeführt wird, die viele verschiedene Produkte in aufeinanderfolgenden Arbeitsgängen herstellen, sind die Arbeiter für kurze Zeit jedem von mehreren Pestiziden ausgesetzt. Im öffentlichen Gesundheitswesen und in der Landwirtschaft ist die Verwendung einer Vielzahl von Verbindungen im Allgemeinen die Regel, obwohl in einigen spezifischen Anwendungen (z. B. Baumwollentlaubung oder Malariakontrollprogramme) ein einziges Produkt verwendet werden kann.

Tabelle 1. Vergleich der Expositionseigenschaften bei der Herstellung und Verwendung von Pestiziden

 

Exposition gegenüber der Produktion

Exposition bei der Verwendung

Dauer der Exposition

Kontinuierlich und verlängert

Variabel und intermittierend

Grad der Exposition

Ziemlich konstant

Extrem variabel

Art der Exposition

Zu einer oder wenigen Verbindungen

Zu zahlreichen Verbindungen entweder nacheinander oder gleichzeitig

Aufnahme durch die Haut

Einfach zu kontrollieren

Variabel je nach Arbeitsablauf

Umgebungsüberwachung

Nützlich

Selten informativ

Biologische Überwachung

Ergänzend zur Umgebungsüberwachung

Sehr nützlich, wenn verfügbar

Quelle: WHO 1982a, modifiziert.

Die Messung biologischer Expositionsindikatoren ist besonders nützlich für Pestizidanwender, bei denen die herkömmlichen Techniken der Expositionsbewertung durch Überwachung der Umgebungsluft kaum anwendbar sind. Die meisten Pestizide sind fettlösliche Substanzen, die in die Haut eindringen. Das Auftreten einer perkutanen (Haut-)Absorption macht die Verwendung von biologischen Indikatoren sehr wichtig bei der Beurteilung des Expositionsniveaus unter diesen Umständen.

Organophosphat-Insektizide

Biologische Wirkungsindikatoren:

Cholinesterasen sind die Zielenzyme, die für die Toxizität von Organophosphaten (OP) gegenüber Insekten- und Säugetierspezies verantwortlich sind. Es gibt zwei Haupttypen von Cholinesterasen im menschlichen Organismus: Acetylcholinesterase (ACHE) und Plasmacholinesterase (PCHE). OP verursacht beim Menschen toxische Wirkungen durch die Hemmung der synaptischen Acetylcholinesterase im Nervensystem. Acetylcholinesterase kommt auch in roten Blutkörperchen vor, deren Funktion unbekannt ist. Plasmacholinesterase ist ein allgemeiner Begriff, der eine inhomogene Gruppe von Enzymen umfasst, die in Gliazellen, Plasma, Leber und einigen anderen Organen vorhanden sind. PCHE wird durch OPs gehemmt, aber seine Hemmung erzeugt keine bekannten funktionellen Störungen.

Die Hemmung der ACHE- und PCHE-Aktivität im Blut korreliert stark mit der Intensität und Dauer der OP-Exposition. Blut-ACHE, das dasselbe molekulare Ziel wie dasjenige ist, das für die akute OP-Toxizität im Nervensystem verantwortlich ist, ist ein spezifischerer Indikator als PCHE. Die Empfindlichkeit von Blut-ACHE und PCHE gegenüber OP-Hemmung variiert jedoch zwischen den einzelnen OP-Verbindungen: bei der gleichen Blutkonzentration hemmen einige mehr ACHE und andere mehr PCHE.

Es besteht eine vernünftige Korrelation zwischen der ACHE-Aktivität im Blut und den klinischen Anzeichen einer akuten Toxizität (Tabelle 2). Die Korrelation ist tendenziell besser, da die Hemmungsrate schneller ist. Wenn die Hemmung langsam eintritt, wie bei chronischen Expositionen auf niedrigem Niveau, kann die Korrelation mit Krankheit gering oder gar nicht vorhanden sein. Es muss beachtet werden, dass die Hemmung von Blut-ACHE keine Vorhersage für chronische oder verzögerte Wirkungen ist.

Tabelle 2. Schweregrad und Prognose der akuten OP-Toxizität bei verschiedenen Graden der ACHE-Hemmung

SCHMERZEN

Hemmung (%)

Mechanisierungsgrad

Vergiftung

Klinische Symptome

Prognose

50-60

Mild

Schwäche, Kopfschmerzen, Schwindel, Übelkeit, Speichelfluss, Tränenfluss, Miosis, mäßiger Bronchialkrampf

Rekonvaleszenz in 1-3 Tagen

60-90

Moderat

Plötzliche Schwäche, Sehstörungen, übermäßiger Speichelfluss, Schwitzen, Erbrechen, Durchfall, Bradykardie, Hypertonie, Zittern der Hände und des Kopfes, Gangstörungen, Miosis, Brustschmerzen, Zyanose der Schleimhäute

Rekonvaleszenz in 1-2 Wochen

90-100

Schwer

Abruptes Zittern, generalisierte Krämpfe, psychische Störungen, intensive Zyanose, Lungenödem, Koma

Tod durch Atem- oder Herzversagen

 

Variationen der ACHE- und PCHE-Aktivitäten wurden bei gesunden Menschen und bei bestimmten physiopathologischen Zuständen beobachtet (Tabelle 3). Somit kann die Sensitivität dieser Tests bei der Überwachung der OP-Exposition erhöht werden, indem individuelle Präexpositionswerte als Referenz verwendet werden. Die Cholinesterase-Aktivitäten nach der Exposition werden dann mit den individuellen Ausgangswerten verglichen. Referenzwerte für die Populationscholinesteraseaktivität sollten nur verwendet werden, wenn die Cholinesterasespiegel vor der Exposition nicht bekannt sind (Tabelle 4).

Tabelle 3. Variationen der ACHE- und PCHE-Aktivitäten bei gesunden Menschen und bei ausgewählten physiopathologischen Zuständen

Anforderungen

ACHE-Aktivität

PCHE-Aktivität

 

Gesunde Menschen

Interindividuelle Variation1

10-18%

15-25%

Intraindividuelle Variation1

3-7%

6%

Geschlechtsunterschiede

Nein

10–15 % höher bei Männern

Alter

Bis 6 Monate reduziert

 

Körpermasse

 

Positive Korrelation

Serum Cholesterin

 

Positive Korrelation

Saisonale Unterschiede

Nein

Nein

Zirkadiane Variation

Nein

Nein

Menstruation

 

Verringert

Schwangerschaft

 

Verringert

 

Pathologische Zustände

Reduzierte Aktivität

Leukämie, Neubildung

Leber erkrankung; Urämie; Krebs; Herzfehler; allergische Reaktionen

Erhöhte Aktivität

Polyzythämie; Thalassämie; andere angeborene Blutdyskrasie

Hyperthyreose; andere Zustände mit hoher Stoffwechselrate

1 Quelle: Augustinsson 1955 und Gage 1967.

Tabelle 4. Mit ausgewählten Methoden gemessene Cholinesterase-Aktivitäten von gesunden Menschen ohne OP-Exposition

Versandart

Geschlecht

SCHMERZEN*

PCE*

Michel1 (DpH/h)

männlich

weiblich

0.77 0.08 ±

0.75 0.08 ±

0.95 0.19 ±

0.82 0.19 ±

Titrimetrisch1 (mmol/min ml)

männlich Weiblich

13.2 0.31 ±

4.90 0.02 ±

Ellman ist modifiziert2 (UI/ml)

männlich

weiblich

4.01 0.65 ±

3.45 0.61 ±

3.03 0.66 ±

3.03 0.68 ±

* Mittelwert, ± Standardabweichung.
Quelle: 1 Gesetze 1991.    2 Alciniet al. 1988.

Blutproben sollten vorzugsweise innerhalb von zwei Stunden nach der Exposition entnommen werden. Die Venenpunktion wird der Entnahme von Kapillarblut aus einem Finger oder Ohrläppchen vorgezogen, da die Entnahmestelle mit Pestiziden kontaminiert sein kann, die sich bei exponierten Personen auf der Haut befinden. Es werden drei aufeinanderfolgende Proben empfohlen, um für jeden Arbeiter vor der Exposition einen normalen Ausgangswert festzulegen (WHO 1982b).

Zur Bestimmung von ACHE und PCHE im Blut stehen mehrere Analysemethoden zur Verfügung. Als Referenzmethode soll laut WHO die spektrophotometrische Methode nach Ellman (Ellman et al. 1961) dienen.

Biologische Expositionsindikatoren.

Die Bestimmung von Metaboliten im Urin, die von der Alkylphosphateinheit des OP-Moleküls stammen, oder von Rückständen, die durch die Hydrolyse der P-X-Bindung entstehen (Abbildung 1), wurde zur Überwachung der OP-Exposition verwendet.

Abbildung 1. Hydrolyse von OP-Insektiziden

BMO060F1

Alkylphosphat-Metaboliten.

Die im Urin nachweisbaren Alkylphosphat-Metaboliten und die Hauptausgangsverbindung, von der sie abstammen können, sind in Tabelle 5 aufgeführt. Alkylphosphate im Urin sind empfindliche Indikatoren für die Exposition gegenüber OP-Verbindungen: Die Ausscheidung dieser Metaboliten im Urin ist normalerweise bei einer Expositionshöhe von nachweisbar welche Hemmung der Plasma- oder Erythrozyten-Cholinesterase nicht nachweisbar ist. Die Urinausscheidung von Alkylphosphaten wurde für verschiedene Expositionsbedingungen und für verschiedene OP-Verbindungen gemessen (Tabelle 6). Die Existenz einer Beziehung zwischen externen Dosen von OP und Alkylphosphat-Konzentrationen im Urin wurde in einigen Studien festgestellt. In einigen Studien wurde auch ein signifikanter Zusammenhang zwischen Cholinesterase-Aktivität und Alkylphosphatspiegeln im Urin nachgewiesen.

Tabelle 5. Im Urin nachweisbare Alkylphosphate als Metaboliten von OP-Pestiziden

Metabolite

Abkürzung

Hauptstammverbindungen

Monomethylphosphat

MMP

Malathion, Parathion

Dimethylphosphat

DMP

Dichlorvos, Trichlorfon, Mevinphos, Malaoxon, Dimethoat, Fenchlorphos

Diethylphosphat

DEP

Paraoxon, Demeton-Oxon, Diazinon-Oxon, Dichlorfenthion

Dimethylthiophosphat

DMTP

Fenitrothion, Fenchlorphos, Malathion, Dimethoat

Diethylthiophosphat

DETP

Diazinon, Demethon, Parathion, Fenchlorphos

Dimethyldithiophosphat

DMDTP

Malathion, Dimethoat, Azinphos-methyl

Diethyldithiophosphat

DEDTP

Disulfoton, Phorat

Phenylphosphorsäure

 

Leptophos, EPN

Tabelle 6. Beispiele für Konzentrationen von Alkylphosphaten im Urin, gemessen unter verschiedenen OP-Expositionsbedingungen

Compounds

Bedingung der Exposition

Expositionsweg

Metabolitenkonzentrationen1 (mg/L)

Parathion2

Nicht tödliche Vergiftung

Mündlich

DEP = 0.5

DETP = 3.9

Disulfoton2

Formulierer

Dermal/Inhalation

DEP = 0.01-4.40

DETP = 0.01–1.57

DEDTP = <0.01-05

Phorate2

Formulierer

Dermal/Inhalation

DEP = 0.02-5.14

DETP = 0.08–4.08

DEDTP = <0.01–0.43

Malathion3

Pflanzenschutzspritzen

dermal

DMDTP = <0.01

Fenitrothion3

Pflanzenschutzspritzen

dermal

DMP = 0.01-0.42

DMTP = 0.02–0.49

Monocrotophos4

Pflanzenschutzspritzen

Dermal/Inhalation

DMP = < 0.04–6.3/24 h

1 Abkürzungen siehe Tabelle 27.12 [BMO12TE].
2 Dillon und Ho 1987.
3 Richter 1993.
4 van Sittert und Dumas 1990.

 Alkylphosphate werden in der Regel innerhalb kurzer Zeit mit dem Urin ausgeschieden. Zur Metabolitenbestimmung eignen sich Proben, die kurz nach Feierabend entnommen werden.

Die Messung von Alkylphosphaten im Urin erfordert ein ziemlich ausgeklügeltes analytisches Verfahren, basierend auf der Derivatisierung der Verbindungen und dem Nachweis durch Gas-Flüssigkeits-Chromatographie (Shafik et al. 1973a; Reid und Watts 1981).

Hydrolyserückstände.

p-Nitrophenol (PNP) ist der phenolische Metabolit von Parathion, Methylparathion und Ethylparathion, EPN. Die Messung von PNP im Urin (Cranmer 1970) ist weit verbreitet und hat sich bei der Bewertung der Exposition gegenüber Parathion als erfolgreich erwiesen. PNP im Urin korreliert gut mit der absorbierten Dosis von Parathion. Bei PNP-Konzentrationen im Urin von bis zu 2 mg/l verursacht die Resorption von Parathion keine Symptome, und es wird eine geringe oder keine Verringerung der Cholinesterase-Aktivitäten beobachtet. Die Ausscheidung von PNP erfolgt schnell und die PNP-Spiegel im Urin werden 48 Stunden nach der Exposition unbedeutend. Daher sollten Urinproben bald nach der Exposition gesammelt werden.

Carbamate

Biologische Wirkungsindikatoren.

Carbamat-Pestizide umfassen Insektizide, Fungizide und Herbizide. Die Toxizität von insektiziden Carbamaten beruht auf der Hemmung von synaptischem Schmerz, während bei herbiziden und fungiziden Carbamaten andere Toxizitätsmechanismen beteiligt sind. Somit kann nur die Exposition gegenüber Carbamat-Insektiziden durch den Assay der Cholinesterase-Aktivität in roten Blutkörperchen (ACHE) oder Plasma (PCHE) überwacht werden. ACHE ist normalerweise empfindlicher gegenüber Carbamat-Inhibitoren als PCHE. Cholinerge Symptome wurden gewöhnlich bei Carbamat-exponierten Arbeitern mit einer ACHE-Aktivität im Blut von weniger als 70 % des individuellen Ausgangswertes beobachtet (WHO 1982a).

Die Hemmung von Cholinesterasen durch Carbamate ist schnell reversibel. Daher können falsch negative Ergebnisse erhalten werden, wenn zwischen Exposition und biologischer Probenahme oder zwischen Probenahme und Analyse zu viel Zeit vergeht. Um solche Probleme zu vermeiden, wird empfohlen, Blutproben innerhalb von vier Stunden nach der Exposition zu entnehmen und zu analysieren. Den Analysemethoden, die die Bestimmung der Cholinesterase-Aktivität unmittelbar nach der Blutentnahme ermöglichen, ist der Vorzug zu geben, wie für Organophosphate diskutiert.

Biologische Expositionsindikatoren.

Die Messung der Urinausscheidung von Carbamat-Metaboliten als Methode zur Überwachung der Exposition des Menschen wurde bisher nur auf wenige Verbindungen und in begrenzten Studien angewendet. Tabelle 7 fasst die relevanten Daten zusammen. Da Carbamate zeitnah mit dem Urin ausgeschieden werden, eignen sich zeitnah nach Expositionsende entnommene Proben zur Metabolitenbestimmung. Analytische Verfahren zur Messung von Carbamat-Metaboliten im Urin wurden von Dawson et al. (1964); DeBernardinis und Wargin (1982) und Verberk et al. (1990).

Tabelle 7. In Feldstudien gemessene Konzentrationen von Carbamat-Metaboliten im Urin

Compounds

Biologische Kennzahl

Bedingung der Exposition

Umweltkonzentrationen

Die Ergebnisse

Bibliographie

Carbaryl

a-Naphthol

a-Naphthol

a-Naphthol

Formulierer

Mischer/Applikatoren

nicht exponierte Bevölkerung

0.23–0.31 mg/mXNUMX3

x = 18.5 mg/l1 , max. Ausscheidungsrate = 80 mg/Tag

x = 8.9 mg/l, Bereich = 0.2–65 mg/l

Bereich = 1.5–4 mg/l

WER 1982a

Pirimicarb

Metaboliten I2 und V3

Applikatoren

 

Bereich = 1–100 mg/l

Verberk et al. 1990

1 Systemische Vergiftungen wurden gelegentlich berichtet.
2 2-Dimethylamino-4-hydroxy-5,6-dimethylpyrimidin.
3 2-Methylamino-4-hydroxy-5,6-dimethylpyrimidin.
x = Standardabweichung.

Dithiocarbamate

Biologische Expositionsindikatoren.

Dithiocarbamate (DTC) sind weit verbreitete Fungizide, die chemisch in drei Klassen eingeteilt werden: Thiurame, Dimethyldithiocarbamate und Ethylen-bis-dithiocarbamate.

Schwefelkohlenstoff (CS2) und sein Hauptmetabolit 2-Thiothiazolidin-4-Carbonsäure (TTCA) sind Metaboliten, die fast allen DTC gemeinsam sind. Ein signifikanter Anstieg der Urinkonzentrationen dieser Verbindungen wurde bei verschiedenen Expositionsbedingungen und bei verschiedenen DTC-Pestiziden beobachtet. Ethylenthioharnstoff (ETU) ist ein wichtiger Harnmetabolit von Ethylen-bis-dithiocarbamaten. Es kann auch als Verunreinigung in Marktformulierungen vorhanden sein. Da festgestellt wurde, dass ETU bei Ratten und anderen Arten teratogen und karzinogen ist und mit Schilddrüsentoxizität in Verbindung gebracht wurde, wurde es in großem Umfang zur Überwachung der Ethylen-bis-dithiocarbamat-Exposition eingesetzt. ETU ist nicht verbindungsspezifisch, da es von Maneb, Mancozeb oder Zineb abgeleitet sein kann.

Die Messung der im DTC vorhandenen Metalle wurde als alternativer Ansatz zur Überwachung der DTC-Exposition vorgeschlagen. Bei Mancozeb-exponierten Arbeitern wurde eine erhöhte Manganausscheidung im Urin beobachtet (Tabelle 8).

Tabelle 8. In Feldstudien gemessene Konzentrationen von Dithiocarbamat-Metaboliten im Urin

Compounds

Biologische Kennzahl

Zustand von

Belichtung

Umweltkonzentrationen*

± Standardabweichung

Ergebnisse ± Standardabweichung

Bibliographie

Ziram

Schwefelkohlenstoff (CS2)

TTCA1

Formulierer

Formulierer

1.03 ± 0.62 mg/mXNUMX3

3.80 ± 3.70 mg/l

0.45 ± 0.37 mg/l

Maroniet al. 1992

Maneb/Mancozeb

ETU2

Applikatoren

 

Bereich = < 0.2–11.8 mg/l

Kurttio et al. 1990

Mancozeb

Mangan

Applikatoren

57.2 mg/m3

Präexposition: 0.32 ± 0.23 mg/g Kreatinin;

nach Exposition: 0.53 ± 0.34 mg/g Kreatinin

Canossaet al. 1993

* Mittleres Ergebnis nach Maroni et al. 1992.
1 TTCA = 2-Thiothiazolidin-4-Carbonsäure.
2 ETU = Ethylenthioharnstoff.

 CS2, TTCA und Mangan werden häufig im Urin nicht exponierter Personen gefunden. Daher wird die Messung der Urinspiegel dieser Verbindungen vor der Exposition empfohlen. Urinproben sollten morgens nach Beendigung der Exposition gesammelt werden. Analytische Methoden für die Messung von CS2, TTCA und ETU wurden von Maroni et al. (1992).

Synthetische Pyrethroide

Biologische Expositionsindikatoren.

Synthetische Pyrethroide sind den natürlichen Pyrethrinen ähnliche Insektizide. Metaboliten im Urin, die für die Anwendung bei der biologischen Expositionsüberwachung geeignet sind, wurden durch Studien mit freiwilligen Probanden identifiziert. Der saure Metabolit 3-(2,2'-Dichlor-vinyl)-2,2'-dimethyl-cyclopropancarbonsäure (Cl2CA) wird sowohl von Personen ausgeschieden, denen Permethrin und Cypermethrin oral verabreicht wurden, als auch von dem Bromanalog (Br2CA) von mit Deltamethrin behandelten Probanden. Bei den mit Cypermethrin behandelten Probanden wurde auch ein Phenoxymetabolit, 4-Hydroxyphenoxybenzoesäure (4-HPBA), identifiziert. Diese Tests wurden jedoch wegen der erforderlichen komplexen Analysetechniken nicht oft zur Überwachung beruflicher Expositionen eingesetzt (Eadsforth, Bragt und van Sittert 1988; Kolmodin-Hedman, Swensson und Akerblom 1982). Bei Anwendern, die Cypermethrin ausgesetzt waren, lagen die Urinspiegel von Cl2Es wurde festgestellt, dass CA im Bereich von 0.05 bis 0.18 mg/l liegt, während bei Formulierern, die a-Cypermethrin ausgesetzt waren, 4-HPBA-Konzentrationen im Urin unter 0.02 mg/l liegen.

Für Metabolitenbestimmungen wird eine 24-stündige Urinsammelperiode empfohlen, die nach Expositionsende beginnt.

Organochlore

Biologische Expositionsindikatoren.

Organochlorinsektizide (OC) wurden in den 1950er und 1960er Jahren weit verbreitet eingesetzt. Anschließend wurde die Verwendung vieler dieser Verbindungen in vielen Ländern wegen ihrer Persistenz und der daraus resultierenden Kontamination der Umwelt eingestellt.

Ein biologisches Monitoring der OC-Exposition kann durch die Bestimmung von intakten Pestiziden oder deren Metaboliten im Blut oder Serum erfolgen (Dale, Curley und Cueto 1966; Barquet, Morgade und Pfaffenberger 1981). Nach der Resorption wird Aldrin schnell zu Dieldrin metabolisiert und kann als Dieldrin im Blut gemessen werden. Endrin hat im Blut eine sehr kurze Halbwertszeit. Daher ist die Endrin-Blutkonzentration nur zur Bestimmung der jüngsten Expositionswerte von Nutzen. Auch die Bestimmung des Urinmetaboliten Anti-12-hydroxy-endrin hat sich zur Überwachung der Endrin-Exposition bewährt (van Sittert und Tordoir 1987) .

Für einige OC-Verbindungen wurden signifikante Korrelationen zwischen der Konzentration biologischer Indikatoren und dem Einsetzen toxischer Wirkungen nachgewiesen. Fälle von Toxizität aufgrund einer Aldrin- und Dieldrin-Exposition wurden mit Dieldrin-Konzentrationen im Blut über 200 μg/l in Verbindung gebracht. Als oberer kritischer Wert für neurologische Symptome wurde eine Lindankonzentration im Blut von 20 µg/l angegeben. Bei Arbeitern mit Blutendrinkonzentrationen unter 50 μg/l wurden keine akuten Nebenwirkungen berichtet. Das Fehlen früher Nebenwirkungen (Induktion von mikrosomalen Leberenzymen) wurde bei wiederholter Exposition gegenüber Endrin bei anti-12-Hydroxy-Endrin-Konzentrationen im Urin unter 130 μg/g Kreatinin und bei wiederholter Exposition gegenüber DDT bei DDT- oder DDE-Serumkonzentrationen unter 250 gezeigt μg/l.

OC kann in geringen Konzentrationen im Blut oder Urin der Allgemeinbevölkerung gefunden werden. Beispiele für beobachtete Werte sind: Lindan-Blutkonzentrationen bis 1 μg/l, Dieldrin bis 10 μg/l, DDT oder DDE bis 100 μg/l und Anti-12-hydroxy-endrin bis 1 μg/g Kreatinin. Daher wird eine Ausgangsbeurteilung vor der Exposition empfohlen.

Bei exponierten Personen sollten Blutproben unmittelbar nach dem Ende einer einzelnen Exposition entnommen werden. Bei Langzeitexposition ist der Zeitpunkt der Entnahme der Blutprobe nicht kritisch. Am Ende der Exposition sollten Urinproben zur Metabolitenbestimmung im Urin entnommen werden.

Triazine

Biologische Expositionsindikatoren.

Die Messung der Urinausscheidung von Triazin-Metaboliten und der unmodifizierten Ausgangsverbindung wurde in begrenzten Studien an Probanden durchgeführt, die Atrazin ausgesetzt waren. Abbildung 2 zeigt die Ausscheidungsprofile von Atrazin-Metaboliten im Urin eines Arbeiters in der Produktion mit einer dermalen Exposition gegenüber Atrazin im Bereich von 174 bis 275 μmol/Arbeitsschicht (Catenacci et al. 1993). Da andere Chlortriazine (Simazin, Propazin, Terbuthylazin) dem gleichen Biotransformationsweg wie Atrazin folgen, können die Konzentrationen von dealkylierten Triazin-Metaboliten bestimmt werden, um die Exposition gegenüber allen Chlortriazin-Herbiziden zu überwachen. 

Abbildung 2. Urinausscheidungsprofile von Atrazin-Metaboliten

BMO060F2

Die Bestimmung nicht modifizierter Verbindungen im Urin kann als qualitative Bestätigung der Art der Verbindung, die die Exposition verursacht hat, nützlich sein. Für die Metabolitenbestimmung wird eine 24-Stunden-Urinsammelperiode empfohlen, die zu Beginn der Exposition beginnt.

Kürzlich wurde unter Verwendung eines enzymgebundenen Immunadsorptionstests (ELISA-Test) ein Mercaptursäurekonjugat von Atrazin als sein Hauptmetabolit im Urin bei exponierten Arbeitern identifiziert. Diese Verbindung wurde in Konzentrationen gefunden, die mindestens zehnmal höher sind als die aller dealkylierten Produkte. Ein Zusammenhang zwischen der kumulativen dermalen und inhalativen Exposition und der Gesamtmenge des über einen Zeitraum von 10 Tagen ausgeschiedenen Mercaptursäure-Konjugats wurde beobachtet (Lucas et al. 10).

 

 

 

 

Cumarin-Derivate

Biologische Wirkungsindikatoren.

Cumarin-Rodentizide hemmen die Aktivität der Enzyme des Vitamin-K-Zyklus in der Leber von Säugetieren einschließlich des Menschen (Abbildung 3) und bewirken so eine dosisabhängige Verringerung der Synthese von Vitamin-K-abhängigen Gerinnungsfaktoren, nämlich Faktor II (Prothrombin) , VII, IX und X. Antikoagulatorische Wirkungen treten auf, wenn die Plasmaspiegel der Gerinnungsfaktoren unter etwa 20 % des Normalwerts gefallen sind.

Abbildung 3. Vitamin-K-Zyklus

BMO060F3

Diese Vitamin-K-Antagonisten wurden in Verbindungen der sogenannten „ersten Generation“ (z. B. Warfarin) und der „zweiten Generation“ (z. B. Brodifacoum, Difenacoum) eingeteilt, wobei letztere durch eine sehr lange biologische Halbwertszeit (100 bis 200 Tage) gekennzeichnet sind ).

Die Bestimmung der Prothrombinzeit wird häufig zur Überwachung der Exposition gegenüber Cumarinen verwendet. Dieser Test reagiert jedoch nur auf eine Abnahme des Gerinnungsfaktors um etwa 20 % der normalen Plasmaspiegel. Der Test ist nicht geeignet, um frühe Wirkungen einer Exposition zu erkennen. Zu diesem Zweck wird die Bestimmung der Prothrombinkonzentration im Plasma empfohlen.

Diese Tests könnten in Zukunft durch die Bestimmung von Gerinnungsfaktorvorläufern (PIVKA) ersetzt werden, also Substanzen, die nur bei einer Blockade des Vitamin-K-Kreislaufs durch Cumarine im Blut nachweisbar sind.

Bei längerer Exposition ist der Zeitpunkt der Blutentnahme nicht kritisch. Bei akuter Überexposition sollte wegen der Latenz der gerinnungshemmenden Wirkung ein biologisches Monitoring für mindestens fünf Tage nach dem Ereignis durchgeführt werden. Um die Sensitivität dieser Tests zu erhöhen, wird die Messung der Ausgangswerte vor der Exposition empfohlen.

Biologische Expositionsindikatoren.

Die Messung von unmodifizierten Cumarinen im Blut wurde als Test zur Überwachung der menschlichen Exposition vorgeschlagen. Die Erfahrung mit der Anwendung dieser Indizes ist jedoch sehr begrenzt, hauptsächlich weil die analytischen Techniken viel komplexer (und weniger standardisiert) sind im Vergleich zu denen, die zur Überwachung der Auswirkungen auf das Gerinnungssystem erforderlich sind (Chalermchaikit, Felice und Murphy 1993).

Phenoxy-Herbizide

Biologische Expositionsindikatoren.

Phenoxy-Herbizide werden in Säugetieren kaum biotransformiert. Beim Menschen werden mehr als 95 % einer Dosis von 2,4-Dichlorphenoxyessigsäure (2,4-D) innerhalb von fünf Tagen unverändert im Urin ausgeschieden, und 2,4,5-Trichlorphenoxyessigsäure (2,4,5-T) und 4-Chlor-2-methylphenoxyessigsäure (MCPA) werden innerhalb weniger Tage nach oraler Aufnahme ebenfalls größtenteils unverändert über den Urin ausgeschieden. Die Messung unveränderter Verbindungen im Urin wurde zur Überwachung der beruflichen Exposition gegenüber diesen Herbiziden angewendet. In Feldstudien wurden Werte im Urin von exponierten Arbeitern im Bereich von 0.10 bis 8 μg/l für 2,4-D, von 0.05 bis 4.5 μg/l für 2,4,5-T und von unter 0.1 μg/l gefunden auf 15 μg/l für MCPA. Für die Bestimmung unveränderter Verbindungen wird eine 24-stündige Urinsammlung ab Expositionsende empfohlen. Analytische Verfahren zur Messung von Phenoxy-Herbiziden im Urin wurden von Draper (1982) beschrieben.

Quartäre Ammoniumverbindungen

Biologische Expositionsindikatoren.

Diquat und Paraquat sind vom menschlichen Organismus kaum biotransformierbare Herbizide. Aufgrund ihrer hohen Wasserlöslichkeit werden sie ohne Weiteres unverändert im Urin ausgeschieden. Bei Paraquat-exponierten Arbeitern wurden häufig Urinkonzentrationen unterhalb der analytischen Nachweisgrenze (0.01 μg/l) beobachtet; während in tropischen Ländern nach unsachgemäßem Umgang mit Paraquat Konzentrationen bis zu 0.73 μg/l gemessen wurden. Diquat-Konzentrationen im Urin unter der analytischen Nachweisgrenze (0.047 μg/l) wurden bei Personen mit dermaler Exposition von 0.17 bis 1.82 μg/h und inhalativer Exposition von weniger als 0.01 μg/h berichtet. Idealerweise sollte eine 24-Stunden-Urinprobenahme am Ende der Exposition für die Analyse verwendet werden. Wenn dies nicht praktikabel ist, kann eine Stichprobe am Ende des Arbeitstages verwendet werden.

Die Bestimmung des Paraquat-Spiegels im Serum ist für prognostische Zwecke im Falle einer akuten Vergiftung nützlich: Patienten mit Serum-Paraquat-Spiegeln von bis zu 0.1 μg/l XNUMX Stunden nach der Einnahme werden wahrscheinlich überleben.

Die analytischen Methoden zur Bestimmung von Paraquat und Diquat wurden von Summers (1980) zusammengefasst.

Verschiedene Pestizide

4,6-Dinitro-o-kresol (DNOC).

DNOC ist ein Herbizid, das 1925 eingeführt wurde, aber die Verwendung dieser Verbindung wurde aufgrund ihrer hohen Toxizität für Pflanzen und Menschen zunehmend verringert. Da die Blut-DNOC-Konzentrationen bis zu einem gewissen Grad mit der Schwere gesundheitlicher Beeinträchtigungen korrelieren, wurde die Messung von unverändertem DNOC im Blut zur Überwachung beruflicher Expositionen und zur Beurteilung des klinischen Verlaufs von Vergiftungen vorgeschlagen.

Pentachlorphenol.

Pentachlorphenol (PCP) ist ein Breitbandbiozid mit pestizider Wirkung gegen Unkräuter, Insekten und Pilze. Messungen von unverändertem PCP im Blut oder Urin wurden als geeignete Indizes zur Überwachung beruflicher Expositionen empfohlen (Colosio et al. 1993), da diese Parameter signifikant mit der PCP-Körperbelastung korrelieren. Bei Arbeitern mit längerer PCP-Exposition ist der Zeitpunkt der Blutentnahme nicht kritisch, während Urinfleckproben am Morgen nach der Exposition entnommen werden sollten.

Eine Methode mit mehreren Rückständen zur Messung von halogenierten und nitrophenolischen Pestiziden wurde von Shafik et al. (1973b) beschrieben.

Andere Tests, die für die biologische Überwachung der Pestizidexposition vorgeschlagen werden, sind in Tabelle 9 aufgeführt.

Tabelle 9. Andere in der Literatur vorgeschlagene Indizes für die biologische Überwachung der Pestizidexposition

Compounds

Biologische Kennzahl

 

Urin

Blut

Bromophos

Bromophos

Bromophos

Captan

Tetrahydrophthalimid

 

Carbofuran

3-Hydroxycarbofuran

 

Chlordimeform

4-Chlor-o-Toluidinderivate

 

Chlorbenzilat

p,p-1-Dichlorbenzophenon

 

Dichlorpropen

Mercaptursäure-Metabolite

 

Fenitrothion

p-Nitrokresol

 

Ferbam

 

Thirami

Fluazifop-Butyl

Fluazifop

 

Flufenoxuron

 

Flufenoxuron

Glyphosat

Glyphosat

 

Malathion

Malathion

Malathion

Organozinnverbindungen

Zinn

Zinn

Trifenomorph

Morpholin, Triphenylcarbinol

 

Ziram

 

Thirami

 

Schlussfolgerungen

Biologische Indikatoren zur Überwachung der Pestizidexposition wurden in einer Reihe von experimentellen und Feldstudien angewendet.

Einige Tests, wie die für Cholinesterase im Blut oder für ausgewählte unmodifizierte Pestizide im Urin oder Blut, wurden durch umfangreiche Erfahrung validiert. Für diese Tests wurden Grenzwerte für die biologische Exposition vorgeschlagen (Tabelle 10). Andere Tests, insbesondere solche für Metabolite aus Blut oder Urin, unterliegen größeren Einschränkungen aufgrund von analytischen Schwierigkeiten oder aufgrund von Einschränkungen bei der Interpretation der Ergebnisse.

Tabelle 10. Empfohlene biologische Grenzwerte (Stand 1996)

Compounds

Biologische Kennzahl

BEI1

BAT2

HBBL3

BLV4

ACHE-Hemmer

SCHMERZ im Blut

70%

70%

70%,

 

DNOC

DNOC im Blut

   

20mg/l,

 

Lindan

Lindan im Blut

 

0.02mg / l

0.02mg / l

 

Parathion

PNP im Urin

0.5mg / l

0.5mg / l

   

Pentachlorphenol (PCP)

PCP im Urin

PCP im Plasma

2 mg / l

5 mg / l

0.3mg / l

1 mg / l

   

Dieldrin/Aldrin

Dieldrin im Blut

     

100 mg / l

Endrin

Anti-12-Hydroxy-Endrin im Urin

     

130 mg / l

DDT

DDT- und DDEin-Serum

     

250 mg / l

Cumarine

Prothrombinzeit im Plasma

Prothrombinkonzentration im Plasma

     

10 % über dem Ausgangswert

60 % der Basis

MCPA

MCPA im Urin

     

0.5 mg / l

2,4-D

2,4-D im Urin

     

0.5 mg / l

1 Biologische Expositionsindizes (BEIs) werden von der American Conference of Governmental Industrial Hygienists (ACGIH 1995) empfohlen.
2 Biologische Toleranzwerte (BVT) werden von der Deutschen Kommission zur Untersuchung gesundheitsgefährdender Arbeitsstoffe (DFG 1992) empfohlen.
3 Health-based Biological Limits (HBBLs) werden von einer WHO-Studiengruppe empfohlen (WHO 1982a).
4 Biologische Grenzwerte (BLVs) werden von einer Studiengruppe des Wissenschaftlichen Ausschusses für Pestizide der Internationalen Kommission für Arbeitsmedizin vorgeschlagen (Tordoir et al. 1994). Wird dieser Wert überschritten, ist eine Bewertung der Arbeitsbedingungen erforderlich.

Dieser Bereich befindet sich in einer rasanten Entwicklung, und angesichts der enormen Bedeutung der Verwendung biologischer Indikatoren zur Bewertung der Exposition gegenüber diesen Stoffen werden ständig neue Tests entwickelt und validiert.

 

Zurück

Epidemiologie

Die Epidemiologie ist sowohl als wissenschaftliche Grundlage der Präventivmedizin als auch als Grundlage für den Prozess der öffentlichen Gesundheitspolitik anerkannt. Es wurden mehrere operative Definitionen der Epidemiologie vorgeschlagen. Die einfachste ist, dass Epidemiologie die Untersuchung des Auftretens von Krankheiten oder anderen gesundheitsbezogenen Merkmalen in Menschen- und Tierpopulationen ist. Epidemiologen untersuchen nicht nur die Häufigkeit von Krankheiten, sondern ob sich die Häufigkeit zwischen Personengruppen unterscheidet; dh sie untersuchen die Ursache-Wirkungs-Beziehung zwischen Exposition und Krankheit. Krankheiten treten nicht zufällig auf; sie haben Ursachen – sehr oft menschengemachte Ursachen – die vermeidbar sind. So könnten viele Krankheiten verhindert werden, wenn die Ursachen bekannt wären. Die Methoden der Epidemiologie waren entscheidend für die Identifizierung vieler ursächlicher Faktoren, die wiederum zu einer Gesundheitspolitik geführt haben, die darauf abzielt, Krankheiten, Verletzungen und vorzeitigen Tod zu verhindern.

Welche Aufgabe hat die Epidemiologie und wo liegen ihre Stärken und Schwächen, wenn Definitionen und Konzepte der Epidemiologie auf den betrieblichen Gesundheitsschutz übertragen werden? Dieses Kapitel befasst sich mit diesen Fragen und den Möglichkeiten, wie arbeitsbedingte Gesundheitsgefahren mit epidemiologischen Methoden untersucht werden können. Dieser Artikel stellt die Ideen vor, die in aufeinanderfolgenden Artikeln in diesem Kapitel zu finden sind.

Berufsepidemiologie

Berufsepidemiologie ist definiert als die Untersuchung der Auswirkungen von Expositionen am Arbeitsplatz auf die Häufigkeit und Verbreitung von Krankheiten und Verletzungen in der Bevölkerung. Sie ist damit eine expositionsorientierte Disziplin mit Bezügen sowohl zur Epidemiologie als auch zur Arbeitsmedizin (Checkoway et al. 1989). Als solche verwendet sie Methoden, die denen der Epidemiologie im Allgemeinen ähneln.

Das Hauptziel der Arbeitsepidemiologie ist die Prävention durch die Ermittlung der gesundheitlichen Folgen von Expositionen am Arbeitsplatz. Dies unterstreicht den präventiven Fokus der Arbeitsepidemiologie. Tatsächlich sollte jede Forschung auf dem Gebiet des Arbeitsschutzes präventiven Zwecken dienen. Daher kann und sollte epidemiologisches Wissen leicht umsetzbar sein. Während das Interesse der öffentlichen Gesundheit immer das Hauptanliegen der epidemiologischen Forschung sein sollte, können Interessengruppen Einfluss nehmen, und es muss darauf geachtet werden, diesen Einfluss auf die Formulierung, Durchführung und/oder Interpretation von Studien zu minimieren (Soskolne 1985; Soskolne 1989).

Ein zweites Ziel der Berufsepidemiologie ist es, Ergebnisse aus spezifischen Settings zu nutzen, um Gefährdungen in der Bevölkerung insgesamt zu reduzieren oder zu eliminieren. Daher spielen die Ergebnisse aus berufsepidemiologischen Studien nicht nur Informationen über die gesundheitlichen Auswirkungen von Expositionen am Arbeitsplatz, sondern auch eine Rolle bei der Einschätzung des Risikos, das mit denselben Expositionen verbunden ist, jedoch auf dem niedrigeren Niveau, das die allgemeine Bevölkerung allgemein erfährt. Umweltverschmutzung durch industrielle Prozesse und Produkte würde normalerweise zu geringeren Expositionsniveaus führen als am Arbeitsplatz.

Die Anwendungsebenen der Berufsepidemiologie sind:

  • Überwachung, um das Auftreten von Krankheiten in verschiedenen Kategorien von Arbeitnehmern zu beschreiben und so Frühwarnsignale für unerkannte Berufsgefahren zu liefern
  • Generierung und Prüfung einer Hypothese, dass eine bestimmte Exposition schädlich sein kann, und die Quantifizierung einer Wirkung
  • Bewertung einer Intervention (z. B. einer vorbeugenden Maßnahme wie der Reduzierung von Expositionswerten) durch Messung der Veränderungen des Gesundheitszustands einer Bevölkerung im Laufe der Zeit.

 

Die ursächliche Rolle, die berufsbedingte Expositionen bei der Entstehung von Krankheiten, Verletzungen und vorzeitigem Tod spielen können, wurde schon vor langer Zeit erkannt und ist Teil der Geschichte der Epidemiologie. Hinzuweisen ist auf Bernardino Ramazzini, Begründer der Arbeitsmedizin und einer der ersten, der die hippokratische Tradition der Abhängigkeit der Gesundheit von identifizierbaren natürlichen äußeren Faktoren wiederbelebte und ergänzte. Im Jahr 1700 schrieb er in seinem „De Morbis Artificum Diatriba“ (Ramazzini 1705; Saracci 1995):

Der Arzt muss den Patienten viele Fragen stellen. Hippokrates erklärt in De Affectionibus: „Wenn Sie einem Kranken gegenüberstehen, sollten Sie ihn fragen, woran er leidet, aus welchem ​​Grund, seit wie vielen Tagen, was er isst und wie sein Stuhlgang ist. Zu all diesen Fragen sollte noch eine hinzugefügt werden: ‚Welche Arbeit macht er?‘.“

Dieses Wiedererwachen der klinischen Beobachtung und der Aufmerksamkeit für die Umstände des Auftretens von Krankheiten veranlasste Ramazzini, viele Berufskrankheiten zu identifizieren und zu beschreiben, die später von Arbeitsmedizinern und Epidemiologen untersucht wurden.

Mit diesem Ansatz berichtete Pott erstmals 1775 (Pott 1775) über die mögliche Verbindung zwischen Krebs und Beruf (Clayson 1962). Seine Beobachtungen zum Hodensackkrebs bei Schornsteinfegern begannen mit einer Beschreibung der Krankheit und setzten sich fort:

Das Schicksal dieser Menschen scheint einzigartig hart: In ihrer frühen Kindheit werden sie am häufigsten mit großer Brutalität behandelt und vor Kälte und Hunger fast ausgehungert; sie werden in enge und manchmal heiße Schornsteine ​​geschoben, wo sie verletzt, verbrannt und fast erstickt werden; und wenn sie die Pubertät erreichen, werden sie besonders anfällig für eine höchst lästige, schmerzhafte und tödliche Krankheit.

Über diesen letzten Umstand gibt es nicht den geringsten Zweifel, obgleich vielleicht nicht ausreichend darauf geachtet wurde, um ihn allgemein bekannt zu machen. Andere Menschen haben Krebs der gleichen Teile; und so haben andere, außer Bleiarbeitern, die Poitou-Kolik und die daraus resultierende Lähmung; aber es ist dennoch eine Krankheit, für die sie besonders anfällig sind; und Schornsteinfeger zu Hoden- und Hodenkrebs.

Die Krankheit scheint bei diesen Menschen ihren Ursprung in einer Rußablagerung in der Hodensackfalte zu haben und zunächst keine Gewohnheitskrankheit zu sein … aber hier sind die Probanden jung, im Allgemeinen zumindest bei guter Gesundheit zunaechst; die Krankheit, die ihnen durch ihren Beruf zugefügt wurde, und aller Wahrscheinlichkeit nach lokal; welcher letzte Umstand kann, denke ich, ziemlich davon ausgegangen werden, dass er immer dieselben Teile ergreift; All dies macht es (zunächst) zu einem ganz anderen Fall als ein Krebs, der bei einem älteren Mann auftritt.

Dieser erste Bericht über einen Berufskrebs bleibt immer noch ein Musterbeispiel an Klarheit. Die Art der Krankheit, der betroffene Beruf und der wahrscheinliche Erreger sind klar definiert. Es wird eine erhöhte Inzidenz von Hodenkrebs bei Schornsteinfegern festgestellt, obwohl keine quantitativen Daten zur Untermauerung dieser Behauptung vorgelegt werden.

Weitere fünfzig Jahre vergingen, bis Ayrton-Paris 1822 (Ayrton-Paris 1822) die häufige Entwicklung von Hodenkrebs bei den Kupfer- und Zinnhütten von Cornwall bemerkte und vermutete, dass Arsendämpfe die Ursache sein könnten. Von Volkmann berichtete 1874 von Hauttumoren bei Paraffinarbeitern in Sachsen, und kurz darauf schlug Bell 1876 vor, dass Schieferöl für Hautkrebs verantwortlich sei (Von Volkmann 1874; Bell 1876). Berichte über die berufliche Entstehung von Krebs wurden dann relativ häufiger (Clayson 1962).

Zu den frühen Beobachtungen von Berufskrankheiten gehörte das vermehrte Auftreten von Lungenkrebs bei Schneeberger Bergleuten (Harting und Hesse 1879). Es ist bemerkenswert (und tragisch), dass eine aktuelle Fallstudie zeigt, dass die Lungenkrebsepidemie in Schneeberg mehr als ein Jahrhundert nach der ersten Beobachtung im Jahr 1879 immer noch ein großes Problem für die öffentliche Gesundheit darstellt. Ein Ansatz zur Identifizierung einer „Zunahme“ von Krankheiten und sogar zu quantifizieren, war in der Geschichte der Arbeitsmedizin präsent. Wie beispielsweise Axelson (1994) betonte, untersuchte WA Guy 1843 die „Lungenschwindsucht“ bei Buchdruckern und fand ein höheres Risiko bei Setzern als bei Druckern; Dies geschah durch Anwendung eines dem Fall-Kontroll-Ansatz ähnlichen Designs (Lilienfeld und Lilienfeld 1979). Dennoch begann sich die moderne Berufsepidemiologie und ihre Methodik erst in den frühen 1950er Jahren zu entwickeln. Wichtige Beiträge zu dieser Entwicklung waren die Studien über Blasenkrebs bei Färbereiarbeitern (Case und Hosker 1954) und Lungenkrebs bei Gasarbeitern (Doll 1952).

Probleme der Berufsepidemiologie

Die Artikel in diesem Kapitel stellen sowohl die Philosophie als auch die Werkzeuge der epidemiologischen Untersuchung vor. Sie konzentrieren sich auf die Bewertung der Expositionserfahrung von Arbeitnehmern und auf die Krankheiten, die in diesen Bevölkerungsgruppen auftreten. Probleme beim Ziehen gültiger Schlussfolgerungen über mögliche ursächliche Zusammenhänge auf dem Weg von der Exposition gegenüber gefährlichen Stoffen bis zur Entstehung von Krankheiten werden in diesem Kapitel behandelt.

Den Kern der Berufsepidemiologie bildet die Erhebung der individuellen Expositionserfahrung im Arbeitsleben. Die Aussagekraft einer epidemiologischen Studie hängt in erster Linie von der Qualität und dem Umfang der verfügbaren Expositionsdaten ab. Zweitens müssen die gesundheitlichen Auswirkungen (oder die Krankheiten), die für den Berufsepidemiologen von Belang sind, für eine klar definierte und zugängliche Gruppe von Arbeitnehmern genau bestimmbar sein. Schließlich sollten dem Epidemiologen Daten über andere potenzielle Einflüsse auf die interessierende Krankheit zur Verfügung stehen, damit alle aus der Studie ermittelten Wirkungen der beruflichen Exposition der beruflichen Exposition zugeschrieben werden können an sich eher als auf andere bekannte Ursachen der betreffenden Krankheit. In einer Gruppe von Arbeitnehmern, die möglicherweise mit einer Chemikalie arbeiten, von der vermutet wird, dass sie Lungenkrebs verursacht, haben einige Arbeitnehmer möglicherweise auch eine Vorgeschichte des Tabakrauchens, einer weiteren Ursache für Lungenkrebs. In der letzteren Situation müssen Arbeitsepidemiologen feststellen, welche Exposition (oder welcher Risikofaktor – die Chemikalie oder der Tabak oder sogar beides in Kombination) für eine Erhöhung des Lungenkrebsrisikos in der Gruppe der Arbeitnehmer verantwortlich ist studiert.

Expositionsabschätzung

Wenn eine Studie nur Zugriff auf die Tatsache hat, dass ein Arbeitnehmer in einer bestimmten Branche beschäftigt war, können die Ergebnisse einer solchen Studie gesundheitliche Auswirkungen nur mit dieser Branche in Verbindung bringen. Auch wenn für die Berufe der Arbeitnehmer Kenntnisse über die Exposition vorliegen, können nur in Bezug auf die Berufe direkt Rückschlüsse gezogen werden. Es können indirekte Rückschlüsse auf chemische Expositionen gezogen werden, aber ihre Zuverlässigkeit muss von Situation zu Situation bewertet werden. Wenn eine Studie jedoch Zugang zu Informationen über die Abteilung und/oder Berufsbezeichnung jedes Arbeitnehmers hat, können Rückschlüsse auf diese feinere Ebene der Arbeitsplatzerfahrung gezogen werden. Wenn dem Epidemiologen (in Zusammenarbeit mit einem Industriehygieniker) Informationen über die tatsächlichen Substanzen bekannt sind, mit denen eine Person arbeitet, dann wäre dies die beste verfügbare Ebene von Expositionsinformationen, da selten verfügbare Dosimetrien fehlen. Darüber hinaus können die Ergebnisse solcher Studien der Industrie nützlichere Informationen zur Schaffung sicherer Arbeitsplätze liefern.

Die Epidemiologie war bisher eine Art „Black Box“-Disziplin, weil sie die Beziehung zwischen Exposition und Krankheit (den beiden Extremen der Kausalkette) untersuchte, ohne die mechanistischen Zwischenschritte zu berücksichtigen. Dieser Ansatz war trotz seines offensichtlichen Mangels an Verfeinerung äußerst nützlich: Tatsächlich wurden beispielsweise alle bekannten Ursachen von Krebs beim Menschen mit den Werkzeugen der Epidemiologie entdeckt.

Die epidemiologische Methode basiert auf verfügbaren Aufzeichnungen – Fragebögen, Berufsbezeichnungen oder anderen „Proxies“ der Exposition; dies macht die Durchführung epidemiologischer Studien und die Interpretation ihrer Ergebnisse relativ einfach.

Die Grenzen des groberen Ansatzes zur Expositionsbewertung sind jedoch in den letzten Jahren deutlich geworden, da Epidemiologen vor komplexeren Problemen stehen. Beschränken wir unsere Betrachtung auf die berufliche Krebsepidemiologie, so wurden die meisten bekannten Risikofaktoren aufgrund der hohen Exposition in der Vergangenheit entdeckt; eine begrenzte Anzahl von Aufnahmen für jeden Job; große Populationen exponierter Arbeiter; und eine eindeutige Übereinstimmung zwischen „Proxy“-Informationen und Expositionen gegenüber Chemikalien (z. B. Schuharbeiter und Benzol, Werften und Asbest usw.). Heutzutage ist die Situation wesentlich anders: Die Expositionsniveaus sind in den westlichen Ländern erheblich niedriger (diese Einschränkung sollte immer betont werden); Arbeitnehmer sind in derselben Berufsbezeichnung vielen verschiedenen Chemikalien und Mischungen ausgesetzt (z. B. Landarbeiter); homogene Populationen exponierter Arbeitnehmer sind schwieriger zu finden und in der Regel zahlenmäßig klein; und die Übereinstimmung zwischen „Proxy“-Informationen und tatsächlicher Exposition wird zunehmend schwächer. In diesem Zusammenhang haben die Werkzeuge der Epidemiologie aufgrund der Fehlklassifizierung der Exposition eine reduzierte Sensitivität.

Darüber hinaus hat sich die Epidemiologie in den meisten Kohortenstudien auf „harte“ Endpunkte wie den Tod verlassen. Arbeitnehmer ziehen es jedoch möglicherweise vor, etwas anderes als „Körperzahlen“ zu sehen, wenn die potenziellen gesundheitlichen Auswirkungen beruflicher Expositionen untersucht werden. Daher hätte die Verwendung direkterer Indikatoren sowohl für die Exposition als auch für die frühe Reaktion einige Vorteile. Biologische Marker können nur ein Werkzeug sein.

Biologische Marker

Die Verwendung von biologischen Markern, wie beispielsweise Bleiwerten in Blut- oder Leberfunktionstests, ist in der Arbeitsepidemiologie nicht neu. Der Einsatz molekularer Techniken in epidemiologischen Studien hat jedoch die Verwendung von Biomarkern zur Bewertung der Exposition gegenüber Zielorganen, zur Bestimmung der Anfälligkeit und zur Feststellung früher Erkrankungen ermöglicht.

Einsatzmöglichkeiten von Biomarkern im Rahmen der Berufsepidemiologie sind:

  • Expositionsbewertung in Fällen, in denen traditionelle epidemiologische Instrumente nicht ausreichen (insbesondere bei niedrigen Dosen und niedrigen Risiken)
  • die ursächliche Rolle einzelner chemischer Agenzien oder Substanzen bei Mehrfachexposition oder Mischungen zu entwirren
  • Abschätzung der Gesamtbelastung durch Chemikalien mit demselben mechanistischen Ziel
  • Untersuchung pathogenetischer Mechanismen
  • Untersuchung der individuellen Anfälligkeit (z. B. metabolische Polymorphismen, DNA-Reparatur) (Vineis 1992)
  • Exposition und/oder Krankheit genauer zu klassifizieren und damit die Aussagekraft der Statistik zu erhöhen.

 

In der wissenschaftlichen Gemeinschaft ist große Begeisterung über diese Verwendungen entstanden, aber, wie oben erwähnt, sollte die methodische Komplexität der Verwendung dieser neuen „molekularen Werkzeuge“ dazu dienen, vor übermäßigem Optimismus zu warnen. Biomarker für chemische Belastungen (wie DNA-Addukte) haben mehrere Mängel:

  1. Sie spiegeln in der Regel aktuelle Expositionen wider und sind daher in Fall-Kontroll-Studien von begrenztem Nutzen, während sie für die Verwendung in Kohortenuntersuchungen wiederholte Probenahmen über längere Zeiträume erfordern.
  2. Obwohl sie sehr spezifisch sein können und somit die Fehleinstufung der Exposition verbessern, bleiben die Ergebnisse oft schwer zu interpretieren.
  3. Wenn komplexe chemische Belastungen untersucht werden (z. B. Luftverschmutzung oder Tabakrauch in der Umwelt), ist es möglich, dass der Biomarker eine bestimmte Komponente des Gemischs widerspiegelt, während die biologische Wirkung auf eine andere zurückzuführen sein könnte.
  4. In vielen Situationen ist nicht klar, ob ein Biomarker eine relevante Exposition, ein Korrelat der relevanten Exposition, eine individuelle Anfälligkeit oder ein frühes Krankheitsstadium widerspiegelt, wodurch kausale Rückschlüsse eingeschränkt werden.
  5. Die Bestimmung der meisten Biomarker erfordert einen teuren Test oder ein invasives Verfahren oder beides, wodurch Einschränkungen für eine angemessene Studiengröße und statistische Aussagekraft entstehen.
  6. Ein Biomarker der Exposition ist nur ein Stellvertreter für das eigentliche Ziel einer epidemiologischen Untersuchung, die in der Regel auf eine vermeidbare Umweltexposition abzielt (Trichopoulos 1995; Pearce et al. 1995).

 

Noch wichtiger als die methodischen Mängel ist die Überlegung, dass molekulare Techniken uns dazu veranlassen könnten, unseren Fokus von der Identifizierung von Risiken in der exogenen Umgebung auf die Identifizierung von Personen mit hohem Risiko umzulenken und dann personalisierte Risikobewertungen durch Messung von Phänotyp, Adduktbelastung und erworbenen Mutationen vorzunehmen. Dies würde unseren Fokus, wie von McMichael angemerkt, auf eine Form der klinischen Bewertung lenken, anstatt auf eine Epidemiologie der öffentlichen Gesundheit. Die Konzentration auf Einzelpersonen könnte uns von dem wichtigen Ziel der öffentlichen Gesundheit ablenken, eine weniger gefährliche Umgebung zu schaffen (McMichael 1994).

Zwei weitere wichtige Fragen ergeben sich in Bezug auf die Verwendung von Biomarkern:

  1. Der Einsatz von Biomarkern in der Berufsepidemiologie muss von einer klaren Politik der informierten Einwilligung begleitet werden. Der Arbeitnehmer kann mehrere Gründe haben, die Zusammenarbeit abzulehnen. Ein sehr praktischer Grund ist, dass die Identifizierung von beispielsweise einer Veränderung eines frühen Reaktionsmarkers wie Schwesterchromatidaustausch die Möglichkeit einer Diskriminierung durch Kranken- und Lebensversicherer und durch Arbeitgeber impliziert, die den Arbeitnehmer möglicherweise meiden, weil er oder sie möglicherweise anfälliger ist zu Krankheit. Ein zweiter Grund betrifft das genetische Screening: Da die Verteilung von Genotypen und Phänotypen je nach ethnischer Gruppe unterschiedlich ist, könnten die Beschäftigungsmöglichkeiten für Minderheiten durch das genetische Screening behindert werden. Drittens können Zweifel an der Vorhersagbarkeit von Gentests geäußert werden: Da der Vorhersagewert von der Prävalenz der Erkrankung abhängt, die der Test identifizieren soll, ist der Vorhersagewert gering, wenn letztere selten ist, und der praktische Nutzen des Screenings Test wird fraglich sein. Bisher wurde keiner der genetischen Screening-Tests als im Feld anwendbar beurteilt (Ashford et al. 1990).
  2. Vor dem Einsatz von Biomarkern müssen ethische Grundsätze beachtet werden. Diese Grundsätze wurden von einer interdisziplinären Arbeitsgruppe des Technischen Büros der Europäischen Gewerkschaften mit Unterstützung der Kommission der Europäischen Gemeinschaften für Biomarker zur Identifizierung individueller Krankheitsanfälligkeit evaluiert (Van Damme et al. 1995); Ihr Bericht hat die Ansicht bekräftigt, dass Tests nur mit dem Ziel durchgeführt werden können, Krankheiten bei einer Belegschaft vorzubeugen. Unter anderem müssen Tests verwendet werden hört niemals .

 

  • dienen als Mittel zur „Auswahl der Stärksten“
  • verwendet werden, um die Umsetzung wirksamer Präventivmaßnahmen zu vermeiden, wie z. B. die Identifizierung und Substitution von Risikofaktoren oder Verbesserungen der Bedingungen am Arbeitsplatz
  • soziale Ungleichheit schaffen, bestätigen oder verstärken
  • eine Kluft zwischen den am Arbeitsplatz befolgten ethischen Grundsätzen und den ethischen Grundsätzen schaffen, die in einer demokratischen Gesellschaft aufrechterhalten werden müssen
  • eine Person, die eine Stelle sucht, dazu verpflichten, personenbezogene Daten offenzulegen, die nicht unbedingt für die Erlangung der Stelle erforderlich sind.

 

Schließlich mehren sich die Hinweise darauf, dass die metabolische Aktivierung oder Inaktivierung gefährlicher Substanzen (insbesondere von Karzinogenen) in menschlichen Populationen sehr unterschiedlich und teilweise genetisch bedingt ist. Darüber hinaus kann die interindividuelle Variabilität der Anfälligkeit gegenüber Karzinogenen bei geringer beruflicher und umweltbedingter Exposition besonders wichtig sein (Vineis et al. 1994). Solche Erkenntnisse können Regulierungsentscheidungen stark beeinflussen, die den Risikobewertungsprozess auf die anfälligsten Personen konzentrieren (Vineis und Martone 1995).

Studiendesign und Validität

Hernbergs Artikel über epidemiologische Studiendesigns und ihre Anwendung in der Arbeitsmedizin konzentriert sich auf das Konzept der „Studienbasis“, definiert als die Morbiditätserfahrung (in Bezug auf eine bestimmte Exposition) einer Bevölkerung, während sie im Laufe der Zeit verfolgt wird. Die Untersuchungsgrundlage ist also nicht nur eine Population (also eine Personengruppe), sondern die Erfahrung des Krankheitsgeschehens dieser Population in einem bestimmten Zeitraum (Miettinen 1985, Hernberg 1992). Wenn dieses vereinheitlichende Konzept einer Studienbasis übernommen wird, ist es wichtig zu erkennen, dass die unterschiedlichen Studiendesigns (z. B. Fall-Kontroll- und Kohortendesigns) einfach unterschiedliche Arten der „Ernte“ von Informationen sowohl über die Exposition als auch über die Krankheit aus derselben Studie sind Base; es handelt sich nicht um diametral unterschiedliche Ansätze.

Der Artikel zur Validität im Studiendesign von Sasco befasst sich mit Definitionen und der Bedeutung von Confounding. Studienforscher müssen bei berufsbezogenen Studien immer die Möglichkeit von Confounding berücksichtigen, und es kann nie genug betont werden, dass die Identifizierung potenziell verwirrender Variablen ein integraler Bestandteil jedes Studiendesigns und jeder Analyse ist. Zwei Aspekte des Confounding müssen in der Berufsepidemiologie adressiert werden:

  1. Negative Confounding sollte untersucht werden: Beispielsweise sind einige industrielle Bevölkerungsgruppen aufgrund eines rauchfreien Arbeitsplatzes nur gering mit lebensstilbedingten Risikofaktoren konfrontiert; Glasbläser neigen dazu, weniger zu rauchen als die allgemeine Bevölkerung.
  2. Wenn Confounding in Betracht gezogen wird, sollte eine Schätzung seiner Richtung und seiner potenziellen Auswirkung bewertet werden. Dies gilt insbesondere dann, wenn die Daten zur Kontrolle des Confounding spärlich sind. Beispielsweise ist Rauchen ein wichtiger Confounder in der Berufsepidemiologie und sollte immer berücksichtigt werden. Wenn jedoch keine Daten zum Rauchen verfügbar sind (was häufig in Kohortenstudien der Fall ist), ist es unwahrscheinlich, dass das Rauchen einen großen Risikoüberschuss erklären kann, der in einer Berufsgruppe gefunden wird. Dies wird in einem Artikel von Axelson (1978) schön beschrieben und von Greenland (1987) weiter diskutiert. Als in der Literatur detaillierte Daten sowohl zum Beruf als auch zum Rauchen verfügbar waren, schien Confounding die Schätzungen zum Zusammenhang zwischen Lungenkrebs und Beruf nicht stark zu verzerren (Vineis und Simonato 1991). Darüber hinaus führt eine vermutete Verwechslung nicht immer zu ungültigen Assoziationen. Da die Forscher auch Gefahr laufen, durch andere unentdeckte Beobachtungs- und Auswahlverzerrungen in die Irre geführt zu werden, sollten diese beim Design einer Studie ebenso viel Gewicht erhalten wie die Frage der Verwirrung (Stellman 1987).

 

Zeitliche und zeitbezogene Variablen wie Risikoalter, Kalenderzeitraum, Zeit seit Einstellung, Zeit seit erster Exposition, Expositionsdauer und deren Behandlung in der Analysephase gehören zu den komplexesten methodischen Fragestellungen der Arbeitsepidemiologie. Sie werden in diesem Kapitel nicht behandelt, aber es wird auf zwei relevante und neuere methodische Referenzen hingewiesen (Pearce 1992; Robins et al. 1992).

Statistiken

Der statistische Artikel von Biggeri und Braga sowie der Titel dieses Kapitels weisen darauf hin, dass statistische Methoden nicht von epidemiologischer Forschung getrennt werden können. Dies liegt daran, dass: (a) ein solides Verständnis der Statistik wertvolle Einblicke in das richtige Design einer Untersuchung liefern kann und (b) Statistik und Epidemiologie ein gemeinsames Erbe teilen und die gesamte quantitative Grundlage der Epidemiologie auf dem Begriff der Wahrscheinlichkeit basiert ( Clayton 1992; Clayton und Hills 1993). In vielen der folgenden Artikel werden empirische Beweise und Beweise für hypothetische kausale Zusammenhänge mit probabilistischen Argumenten und geeigneten Studiendesigns bewertet. Beispielsweise wird der Schwerpunkt auf die Schätzung des Risikomaßes von Interesse gelegt, wie Zinssätze oder relative Risiken, und auf die Konstruktion von Konfidenzintervallen um diese Schätzungen herum, anstatt statistische Wahrscheinlichkeitstests durchzuführen (Poole 1987; Gardner und Altman 1989; Greenland 1990 ). Es wird eine kurze Einführung in das statistische Denken unter Verwendung der Binomialverteilung gegeben. Statistik sollte ein Begleiter des wissenschaftlichen Denkens sein. Aber es ist wertlos, wenn es an richtig konzipierter und durchgeführter Forschung mangelt. Statistiker und Epidemiologen sind sich bewusst, dass die Wahl der Methoden bestimmt, was und in welchem ​​Umfang wir Beobachtungen machen. Die wohlüberlegte Auswahl der Gestaltungsmöglichkeiten ist daher von grundlegender Bedeutung, um valide Beobachtungen zu gewährleisten.

Ethik

Der letzte Artikel von Vineis befasst sich mit ethischen Fragen in der epidemiologischen Forschung. Die in dieser Einführung zu erwähnenden Punkte beziehen sich auf die Epidemiologie als eine Disziplin, die per Definition präventive Maßnahmen impliziert. Spezifische ethische Aspekte im Hinblick auf den Schutz der Arbeitnehmer und der Bevölkerung insgesamt erfordern die Anerkennung, dass:

  • Epidemiologische Studien im betrieblichen Umfeld sollten Präventionsmaßnahmen am Arbeitsplatz keinesfalls verzögern.
  • Berufsepidemiologie bezieht sich nicht auf Lebensstilfaktoren, sondern auf Situationen, in denen bei der Wahl der Exposition normalerweise keine oder nur eine geringe persönliche Rolle gespielt wird. Dies impliziert ein besonderes Engagement für eine wirksame Prävention und die unverzügliche Übermittlung von Informationen an die Arbeitnehmer und die Öffentlichkeit.
  • Forschung deckt Gesundheitsgefahren auf und liefert das Wissen für vorbeugende Maßnahmen. Die ethischen Probleme, wenn es möglich ist, keine Forschung durchzuführen, sollten berücksichtigt werden.
  • Die Benachrichtigung der Arbeitnehmer über die Ergebnisse epidemiologischer Studien ist sowohl ein ethisches als auch ein methodisches Problem in der Risikokommunikation. Der Forschung zur Bewertung der potenziellen Auswirkungen und Wirksamkeit der Benachrichtigung sollte hohe Priorität eingeräumt werden (Schulte et al. 1993).

 

Ausbildung in Berufsepidemiologie

In die Spezialisierung Berufsepidemiologie finden Menschen mit unterschiedlichsten Hintergründen den Weg. Medizin, Krankenpflege und Statistik sind einige der wahrscheinlicheren Hintergründe, die unter Fachleuten auf diesem Gebiet zu finden sind. In Nordamerika hat etwa die Hälfte aller ausgebildeten Epidemiologen einen naturwissenschaftlichen Hintergrund, während die andere Hälfte den Weg zum Doktor der Medizin eingeschlagen hat. In Ländern außerhalb Nordamerikas haben die meisten Spezialisten für Berufsepidemiologie den Doktortitel erreicht. In Nordamerika werden Menschen mit medizinischer Ausbildung eher als „Inhaltsexperten“ betrachtet, während diejenigen, die auf dem wissenschaftlichen Weg ausgebildet wurden, als „methodische Experten“ gelten. Oft ist es für einen Inhaltsexperten von Vorteil, sich mit einem Methodenexperten zusammenzuschließen, um die bestmögliche Studie zu konzipieren und durchzuführen.

Für das Fach Berufsepidemiologie sind nicht nur Kenntnisse in epidemiologischen Methoden, Statistiken und Computern erforderlich, sondern auch Kenntnisse in Toxikologie, Arbeitshygiene und Krankheitsregistern (Merletti und Comba 1992). Da große Studien eine Verknüpfung mit Krankheitsregistern erfordern können, ist die Kenntnis von Quellen für Bevölkerungsdaten hilfreich. Auch Kenntnisse der Arbeits- und Unternehmensorganisation sind wichtig. Diplomarbeiten auf Master-Ebene und Dissertationen auf Doktorats-Ausbildungsebene statten die Studierenden mit dem Wissen aus, das für die Durchführung umfangreicher datensatzbasierter und interviewbasierter Studien unter Arbeitnehmern erforderlich ist.

Anteil der berufsbedingten Erkrankungen

Der Anteil der Erkrankungen, der entweder bei einer Gruppe exponierter Arbeitnehmer oder in der Allgemeinbevölkerung auf berufliche Expositionen zurückzuführen ist, wird zumindest im Hinblick auf Krebs in einem anderen Teil davon erfasst Enzyklopädie. Hier sollten wir bedenken, dass, wenn eine Schätzung berechnet wird, diese für eine bestimmte Krankheit (und einen bestimmten Ort im Fall von Krebs), einen bestimmten Zeitraum und ein bestimmtes geografisches Gebiet gelten sollte. Darüber hinaus sollte es auf genauen Messungen des Anteils exponierter Personen und des Expositionsgrads beruhen. Dies impliziert, dass der Anteil der berufsbedingten Erkrankungen von sehr niedrig oder null in bestimmten Bevölkerungsgruppen bis zu sehr hoch in anderen in Industriegebieten reichen kann, wo beispielsweise bis zu 40 % der Lungenkrebsfälle auf berufliche Exposition zurückzuführen sind (Vineis und Simonato 1991). Schätzungen, die nicht auf einer detaillierten Überprüfung gut konzipierter epidemiologischer Studien beruhen, können bestenfalls als fundierte Vermutungen angesehen werden und sind von begrenztem Wert.

Übertragung gefährlicher Industrien

Die meisten epidemiologischen Forschungen werden in den Industrieländern durchgeführt, wo die Regulierung und Kontrolle bekannter Berufsgefahren das Krankheitsrisiko in den letzten Jahrzehnten verringert hat. Gleichzeitig fand jedoch eine große Verlagerung gefährlicher Industrien in die Entwicklungsländer statt (Jeyaratnam 1994). Chemikalien, die zuvor in den Vereinigten Staaten oder Europa verboten waren, werden jetzt in Entwicklungsländern hergestellt. Beispielsweise wurde die Asbestzerkleinerung von den USA nach Mexiko verlagert und die Benzidinproduktion aus europäischen Ländern in das ehemalige Jugoslawien und nach Korea (Simonato 1986; LaDou 1991; Pearce et al. 1994).

Ein indirektes Zeichen für das Berufsrisiko und die Arbeitsbedingungen in den Entwicklungsländern ist die Epidemie akuter Vergiftungen, die in einigen dieser Länder auftritt. Einer Schätzung zufolge gibt es jedes Jahr weltweit etwa 20,000 Todesfälle durch akute Pestizidvergiftung, aber dies ist wahrscheinlich eine erhebliche Unterschätzung (Kogevinas et al. 1994). Schätzungen zufolge ereignen sich 99 % aller Todesfälle durch akute Pestizidvergiftung in Entwicklungsländern, wo nur 20 % der weltweiten Agrochemikalien verwendet werden (Kogevinas et al. 1994). Das heißt, selbst wenn die epidemiologische Forschung auf eine Verringerung der Berufsrisiken hinzuweisen scheint, könnte dies einfach darauf zurückzuführen sein, dass der größte Teil dieser Forschung in den Industrieländern durchgeführt wird. Die berufsbedingten Gefahren könnten einfach auf die Entwicklungsländer übertragen worden sein, und die Belastung durch die berufsbedingte Exposition insgesamt könnte weltweit gestiegen sein (Vineis et al. 1995).

Veterinärepidemiologie

Aus offensichtlichen Gründen ist die Veterinär-Epidemiologie nicht direkt relevant für Arbeitsmedizin und Berufsepidemiologie. Dennoch können epidemiologische Studien an Tieren aus mehreren Gründen Hinweise auf umweltbedingte und berufliche Ursachen von Krankheiten liefern:

  1. Die Lebensspanne von Tieren ist im Vergleich zu der von Menschen relativ kurz, und die Latenzzeit für Krankheiten (z. B. die meisten Krebsarten) ist bei Tieren kürzer als bei Menschen. Dies impliziert, dass eine Krankheit, die bei einem Wild- oder Haustier auftritt, als Sentinel-Ereignis dienen kann, um uns auf das Vorhandensein eines potenziellen Umweltgiftes oder Karzinogens für den Menschen aufmerksam zu machen, bevor es auf andere Weise identifiziert worden wäre (Glickman 1993).
  2. Expositionsmarker wie Hämoglobinaddukte oder Absorptions- und Ausscheidungsniveaus von Toxinen können bei Wild- und Heimtieren gemessen werden, um die Umweltkontamination durch industrielle Quellen zu bewerten (Blondin und Viau 1992; Reynolds et al. 1994; Hungerford et al. 1995). .
  3. Tiere werden einigen Faktoren nicht ausgesetzt, die in Studien am Menschen als Störfaktoren wirken können, und Untersuchungen an Tierpopulationen können daher ohne Berücksichtigung dieser potenziellen Störfaktoren durchgeführt werden. Beispielsweise könnte eine Studie über Lungenkrebs bei Haushunden signifikante Zusammenhänge zwischen der Krankheit und der Exposition gegenüber Asbest erkennen (z. B. über die asbestbezogenen Berufe der Besitzer und die Nähe zu industriellen Asbestquellen). Natürlich würde eine solche Studie die Wirkung des aktiven Rauchens als Confounder beseitigen.

 

Tierärzte sprechen von einer epidemiologischen Revolution in der Veterinärmedizin (Schwabe 1993) und es sind Lehrbücher über das Fach erschienen (Thrusfield 1986; Martin et al. 1987). Sicherlich stammen Hinweise auf Umwelt- und Berufsgefahren aus den gemeinsamen Bemühungen von Human- und Tierepidemiologen. Unter anderem die Wirkung von Phenoxyherbiziden bei Schafen und Hunden (Newell et al. 1984; Hayes et al. 1990), von Magnetfeldern (Reif et al. 1995) und mit asbestähnlichen Verbindungen kontaminierten Pestiziden (insbesondere Flohpräparaten) bei Hunden (Glickman et al. 1983) sind bemerkenswerte Beiträge.

Partizipative Forschung, Ergebnisvermittlung und Prävention

Es ist wichtig anzuerkennen, dass viele epidemiologische Studien auf dem Gebiet der Gesundheit am Arbeitsplatz durch die Erfahrung und Besorgnis der Arbeitnehmer selbst initiiert werden (Olsen et al. 1991). Oft glaubten die Arbeiter – diejenigen, die historisch und/oder gegenwärtig exponiert waren –, dass etwas nicht stimmte, lange bevor dies durch die Forschung bestätigt wurde. Berufsepidemiologie kann als eine Möglichkeit betrachtet werden, die Erfahrungen der Arbeitnehmer „zu verstehen“, die Daten systematisch zu sammeln und zu gruppieren und Rückschlüsse auf die beruflichen Ursachen ihrer Krankheit zu ziehen. Darüber hinaus sind die Arbeitnehmer selbst, ihre Vertreter und die für die Gesundheit der Arbeitnehmer zuständigen Personen die am besten geeigneten Personen, um die gesammelten Daten zu interpretieren. Sie sollten daher immer aktiv an allen am Arbeitsplatz durchgeführten Ermittlungen teilnehmen. Nur ihre direkte Beteiligung garantiert, dass der Arbeitsplatz auch nach der Abreise der Forschenden sicher bleibt. Das Ziel jeder Studie ist die Nutzung der Ergebnisse zur Prävention von Krankheiten und Behinderungen, und der Erfolg davon hängt zu einem großen Teil davon ab, sicherzustellen, dass die Exponierten an der Gewinnung und Interpretation der Studienergebnisse teilnehmen. Die Rolle und Verwendung von Forschungsergebnissen in Rechtsstreitigkeiten, wenn Arbeitnehmer Entschädigung für Schäden verlangen, die durch Exposition am Arbeitsplatz verursacht wurden, geht über den Rahmen dieses Kapitels hinaus. Für diesbezügliche Einblicke wird der Leser an anderer Stelle verwiesen (Soskolne, Lilienfeld und Black 1994).

Partizipative Ansätze zur Sicherstellung der Durchführung berufsepidemiologischer Forschung sind mancherorts gängige Praxis in Form von Lenkungsausschüssen geworden, die die Forschungsinitiative von der Anfänge bis zum Abschluss begleiten. Diese Ausschüsse sind in ihrer Struktur mehrteilig, darunter Arbeitnehmer, Wissenschaft, Verwaltung und/oder Regierung. Mit Vertretern aller Stakeholder-Gruppen im Forschungsprozess wird die Ergebniskommunikation durch ihre erhöhte Glaubwürdigkeit effektiver, da „einer aus der eigenen“ die Forschung beaufsichtigt und die Ergebnisse an die jeweiligen Personen kommuniziert Wahlkreis. Auf diese Weise ist wahrscheinlich das größte Maß an wirksamer Prävention zu erwarten.

Diese und andere partizipative Ansätze in der arbeitsmedizinischen Forschung werden unter Einbeziehung derer durchgeführt, die von dem besorgniserregenden expositionsbedingten Problem betroffen oder anderweitig davon betroffen sind. Dies sollte häufiger in der gesamten epidemiologischen Forschung beobachtet werden (Laurell et al. 1992). Es ist wichtig, sich daran zu erinnern, dass das Ziel der Analyse in der epidemiologischen Arbeit die Abschätzung des Ausmaßes und der Verteilung des Risikos ist, in der partizipativen Forschung aber auch die Vermeidbarkeit des Risikos ein Ziel ist (Loewenson und Biocca 1995). Diese Komplementarität von Epidemiologie und effektiver Prävention ist Teil der Botschaft davon Enzyklopädie und dieses Kapitels.

Wahrung der Relevanz für die öffentliche Gesundheit

Obwohl neue Entwicklungen in der epidemiologischen Methodik, in der Datenanalyse und in der Expositionsabschätzung und -messung (wie neue molekularbiologische Techniken) willkommen und wichtig sind, können sie auch zu einem reduktionistischen Ansatz beitragen, der sich auf Einzelpersonen statt auf Bevölkerungsgruppen konzentriert. Es wurde gesagt, dass:

… Epidemiologie hat weitgehend aufgehört, als Teil eines multidisziplinären Ansatzes zum Verständnis der Krankheitsursachen in Bevölkerungen zu fungieren, und ist zu einer Reihe generischer Methoden zur Messung von Zusammenhängen zwischen Exposition und Krankheit bei Einzelpersonen geworden. … Derzeit werden soziale, wirtschaftliche und kulturelle Aspekte vernachlässigt , historische, politische und andere Bevölkerungsfaktoren als Hauptursachen für Krankheiten … Die Epidemiologie muss sich wieder in die öffentliche Gesundheit integrieren und die Bevölkerungsperspektive neu entdecken (Pearce 1996).

Arbeits- und Umweltepidemiologen spielen eine wichtige Rolle, nicht nur bei der Entwicklung neuer epidemiologischer Methoden und Anwendungen für diese Methoden, sondern auch bei der Sicherstellung, dass diese Methoden immer in die richtige Bevölkerungsperspektive integriert werden.

 

Zurück

Dienstag, 08 März 2011 20: 55

Anthropometrie

 

Dieser Artikel ist eine Adaption der 3. Auflage der Encyclopaedia of Occupational Health and Safety.

Anthropometrie ist ein grundlegender Zweig der physikalischen Anthropologie. Es repräsentiert den quantitativen Aspekt. Ein breites Theorie- und Praxissystem widmet sich der Definition von Methoden und Variablen, um die Ziele in den verschiedenen Anwendungsbereichen in Beziehung zu setzen. In den Bereichen Arbeitsschutz, Arbeitssicherheit und Ergonomie befassen sich anthropometrische Systeme hauptsächlich mit Körperbau, -zusammensetzung und -konstitution sowie mit den Dimensionen der Wechselbeziehungen des menschlichen Körpers zu Arbeitsplatzdimensionen, Maschinen, dem industriellen Umfeld und der Kleidung.

Anthropometrische Variablen

Eine anthropometrische Größe ist ein messbares Merkmal des Körpers, das definiert, standardisiert und auf eine Maßeinheit bezogen werden kann. Lineare Variablen werden im Allgemeinen durch Landmarken definiert, die sich genau auf den Körper zurückführen lassen. Es gibt im Allgemeinen zwei Arten von Orientierungspunkten: skelettanatomische, die durch Abtasten von Knochenvorsprüngen durch die Haut gefunden und verfolgt werden können, und virtuelle Orientierungspunkte, die einfach als maximale oder minimale Entfernungen unter Verwendung der Zweige eines Messschiebers gefunden werden.

Anthropometrische Variablen haben sowohl genetische als auch Umweltkomponenten und können verwendet werden, um individuelle und Populationsvariabilität zu definieren. Die Auswahl der Variablen muss sich auf den spezifischen Forschungszweck beziehen und mit anderen Forschungen auf demselben Gebiet standardisiert werden, da die Anzahl der in der Literatur beschriebenen Variablen sehr groß ist und bis zu 2,200 für den menschlichen Körper beschrieben wurden.

Anthropometrische Variablen sind hauptsächlich linear Maße wie Höhen, Entfernungen von Orientierungspunkten bei stehender oder sitzender Versuchsperson in standardisierter Körperhaltung; Durchmesser, wie z. B. Entfernungen zwischen bilateralen Orientierungspunkten; Längen, wie z. B. Entfernungen zwischen zwei verschiedenen Orientierungspunkten; gebogene Maßnahmen, nämlich Bögen, wie Abstände auf der Körperoberfläche zwischen zwei Landmarken; und GurteB. geschlossene Rundummaßnahmen an Körperoberflächen, in der Regel an mindestens einer Landmarke oder in definierter Höhe positioniert.

Andere Variablen können spezielle Methoden und Instrumente erfordern. Beispielsweise wird die Hautfaltendicke mit speziellen Konstantdruck-Messschiebern gemessen. Volumen werden durch Berechnung oder durch Eintauchen in Wasser gemessen. Um vollständige Informationen über die Eigenschaften der Körperoberfläche zu erhalten, kann eine Computermatrix von Oberflächenpunkten unter Verwendung biostereometrischer Techniken gezeichnet werden.

Instrumente

Obwohl hochentwickelte anthropometrische Instrumente im Hinblick auf eine automatisierte Datensammlung beschrieben und verwendet wurden, sind grundlegende anthropometrische Instrumente ziemlich einfach und leicht zu verwenden. Es muss viel Sorgfalt darauf verwendet werden, häufige Fehler zu vermeiden, die aus einer Fehlinterpretation von Orientierungspunkten und falschen Körperhaltungen von Subjekten resultieren.

Das übliche anthropometrische Instrument ist das Anthropometer – ein 2 Meter langer, starrer Stab mit zwei Zählerablesungsskalen, mit dem vertikale Körpermaße, wie Höhen von Orientierungspunkten vom Boden oder Sitz, und Quermaße, wie Durchmesser, abgenommen werden können.

Üblicherweise kann die Rute in 3 oder 4 Teile geteilt werden, die ineinander passen. Ein verschiebbarer Ast mit gerader oder gebogener Klaue ermöglicht das Messen von Abständen vom Boden für Höhen oder von einem festen Ast für Durchmesser. Ausgefeiltere Anthropometer haben eine einzige Skala für Höhen und Durchmesser, um Skalenfehler zu vermeiden, oder sind mit digitalen mechanischen oder elektronischen Lesegeräten ausgestattet (Abbildung 1).

Abbildung 1. Ein Anthropometer

ERG070F1

Ein Stadiometer ist ein festes Anthropometer, das im Allgemeinen nur für die Statur verwendet wird und häufig mit einer Gewichtsbalkenwaage verbunden ist.

Für Querdurchmesser kann eine Reihe von Messschiebern verwendet werden: das Pelvimeter für Messungen bis 600 mm und das Cephalometer bis 300 mm. Letzteres eignet sich besonders für Kopfmessungen in Verbindung mit einem Gleitkompass (Bild 2).

Abbildung 2. Ein Cephalometer zusammen mit einem verschiebbaren Kompass

ERG070F2

Das Fußbrett dient zur Vermessung der Füße und das Kopfbrett liefert kartesische Koordinaten des Kopfes bei Orientierung in der „Frankfurter Ebene“ (einer horizontal verlaufenden Ebene). Portion und orbital Orientierungspunkte des Kopfes).

Die Hautfaltendicke wird mit einem Hautfaltenzirkel mit konstantem Druck im Allgemeinen mit einem Druck von 9.81 x 10 gemessen4 Pa (der Druck, der durch ein Gewicht von 10 g auf eine Fläche von 1 mm ausgeübt wird2).

Für Bögen und Gurte wird ein schmales, flexibles Stahlband mit flachem Querschnitt verwendet. Selbstrichtende Stahlbänder sind zu vermeiden.

Systeme von Variablen

Ein System anthropometrischer Variablen ist ein kohärenter Satz von Körpermaßen zur Lösung bestimmter Probleme.

Im Bereich Ergonomie und Sicherheit besteht das Hauptproblem darin, Geräte und Arbeitsplatz an den Menschen anzupassen und Kleidung auf die richtige Größe zuzuschneiden.

Ausrüstung und Arbeitsbereich erfordern hauptsächlich lineare Maße von Gliedmaßen und Körpersegmenten, die leicht aus Höhen und Durchmessern von Orientierungspunkten berechnet werden können, während Schneidergrößen hauptsächlich auf Bögen, Umfang und flexiblen Bandlängen basieren. Beide Systeme können je nach Bedarf kombiniert werden.

In jedem Fall ist es zwingend erforderlich, für jede Messung einen genauen Raumbezug zu haben. Die Orientierungspunkte müssen daher durch Höhen und Durchmesser verbunden sein und jeder Bogen oder Umfang muss eine definierte Orientierungspunktreferenz haben. Höhen und Neigungen müssen angegeben werden.

Bei einer bestimmten Erhebung muss die Anzahl der Variablen auf ein Minimum beschränkt werden, um eine übermäßige Belastung der Versuchsperson und des Bedieners zu vermeiden.

Ein grundlegender Satz von Variablen für den Arbeitsbereich wurde auf 33 gemessene Variablen (Abbildung 3) plus 20 durch eine einfache Berechnung abgeleitete Variablen reduziert. Für eine militärische Allzweckumfrage verwenden Hertzberg und Mitarbeiter 146 Variablen. Für Kleidung und allgemeine biologische Zwecke hat das Italian Fashion Board (Geben Sie Italiano della Moda ein) verwendet einen Satz von 32 allgemeinen und 28 technischen Variablen. Die deutsche Norm (DIN 61 516) der Kontrollkörpermaße für Kleidung umfasst 12 Variablen. Die Empfehlung der Internationalen Organisation für Normung (ISO) für Anthropometrie enthält eine Kernliste von 36 Variablen (siehe Tabelle 1). Die von der ILO veröffentlichten International Data on Anthropometry-Tabellen listen 19 Körpermaße für die Bevölkerung von 20 verschiedenen Regionen der Welt auf (Jürgens, Aune und Pieper 1990).

Abbildung 3. Grundlegender Satz anthropometrischer Variablen

ERG070F3


Tabelle 1. Grundlegende anthropometrische Kernliste

 

1.1 Vorwärtsreichweite (zum Handgriff, während der Proband aufrecht an einer Wand steht)

1.2 Statur (vertikaler Abstand vom Boden zum Scheitel des Kopfes)

1.3 Augenhöhe (vom Boden bis zum inneren Augenwinkel)

1.4 Schulterhöhe (vom Boden bis zum Schulterdach)

1.5 Ellenbogenhöhe (vom Boden bis zur radialen Vertiefung des Ellenbogens)

1.6 Schritthöhe (vom Boden bis zum Schambein)

1.7 Fingerspitzenhöhe (vom Boden bis zur Griffachse der Faust)

1.8 Schulterbreite (Biakromialdurchmesser)

1.9 Hüftbreite, stehend (der maximale Abstand über den Hüften)

2.1 Sitzhöhe (von Sitzfläche bis Kopfscheitel)

2.2 Augenhöhe sitzend (vom Sitz bis zum inneren Augenwinkel)

2.3 Schulterhöhe sitzend (vom Sitz bis zum Schulterdach)

2.4 Ellbogenhöhe sitzend (vom Sitz bis zum tiefsten Punkt des gebeugten Ellbogens)

2.5 Kniehöhe (von der Fußstütze bis zur Oberschenkeloberseite)

2.6 Unterschenkellänge (Höhe der Sitzfläche)

2.7 Unterarm-Hand-Länge (von der Rückseite des gebeugten Ellbogens bis zur Griffachse)

2.8 Körpertiefe sitzend (Sitztiefe)

2.9 Gesäß-Knie-Länge (von der Kniescheibe bis zum hintersten Punkt des Gesäßes)

2.10 Ellbogen zu Ellbogenbreite (Abstand zwischen den Seitenflächen der Ellbogen)

2.11 Hüftbreite sitzend (Sitzbreite)

3.1 Zeigefingerbreite, proximal (am Gelenk zwischen Mittel- und Grundphalangen)

3.2 Zeigefingerbreite, distal (am Gelenk zwischen End- und Mittelglied)

3.3 Zeigefingerlänge

3.4 Handlänge (von der Spitze des Mittelfingers bis zum Griffel)

3.5 Handbreite (an Mittelhand)

3.6 Umfang des Handgelenks

4.1 Fußbreite

4.2 Fußlänge

5.1 Wärmeumfang (bei Glabella)

5.2 Sagittalbogen (von Glabella bis Inion)

5.3 Kopflänge (von Glabella bis Opisthocranion)

5.4 Kopfbreite (maximal über dem Ohr)

5.5 Bitragionsbogen (über dem Kopf zwischen den Ohren)

6.1 Taillenumfang (am Nabel)

6.2 Tibiahöhe (vom Boden bis zum höchsten Punkt am anteromedialen Rand des Glenoids der Tibia)

6.3 Halswirbelsäule sitzend (bis zur Spitze des Dornfortsatzes des 7. Halswirbels).

Quelle: Adaptiert von ISO/DP 7250 1980).


 

 Präzision und Fehler

Die Präzision lebender Körpermaße muss stochastisch betrachtet werden, da der menschliche Körper sowohl als statische als auch als dynamische Struktur höchst unberechenbar ist.

Ein einzelnes Individuum kann in seiner Muskulatur und Fettleibigkeit wachsen oder sich verändern; aufgrund von Alter, Krankheit oder Unfällen Skelettveränderungen erleiden; oder Verhalten oder Körperhaltung ändern. Verschiedene Fächer unterscheiden sich durch Proportionen, nicht nur durch allgemeine Abmessungen. Hochgewachsene Personen sind nicht bloße Vergrößerungen von Kleinwüchsigen; Konstitutionstypen und Somatotypen variieren wahrscheinlich mehr als allgemeine Dimensionen.

Die Verwendung von Schaufensterpuppen, insbesondere von Schaufensterpuppen, die das 5., 50. und 95. Perzentil darstellen, für Anprobeversuche kann sehr irreführend sein, wenn Körpervariationen bei den Körperproportionen nicht berücksichtigt werden.

Fehler resultieren aus der Fehlinterpretation von Orientierungspunkten und der falschen Verwendung von Instrumenten (persönlicher Fehler), ungenauen oder ungenauen Instrumenten (instrumenteller Fehler) oder Änderungen in der Haltung des Subjekts (Subjektfehler – letzteres kann auf Kommunikationsschwierigkeiten zurückzuführen sein, wenn der kulturelle oder sprachliche Hintergrund von das Thema unterscheidet sich von dem des Betreibers).

Statistische Behandlung

Anthropometrische Daten müssen mit statistischen Verfahren behandelt werden, hauptsächlich im Bereich der Inferenzmethoden, die univariate (Mittelwert, Modus, Perzentile, Histogramme, Varianzanalyse usw.), bivariate (Korrelation, Regression) und multivariate (multiple Korrelation und Regression, Faktorenanalyse) anwenden , usw.) Methoden. Zur Klassifizierung von Menschentypen wurden verschiedene grafische Methoden entwickelt, die auf statistischen Anwendungen basieren (Anthropometrogramme, Morphosomatogramme).

Probenahme und Erhebung

Da anthropometrische Daten nicht für die gesamte Population erhoben werden können (außer im seltenen Fall einer besonders kleinen Population), ist in der Regel eine Stichprobenziehung erforderlich. Ausgangspunkt jeder anthropometrischen Erhebung sollte eine grundsätzlich stichprobenartige Stichprobe sein. Um die Zahl der gemessenen Probanden auf einem vertretbaren Niveau zu halten, muss in der Regel auf eine mehrstufig geschichtete Stichprobe zurückgegriffen werden. Dies ermöglicht eine möglichst homogene Unterteilung der Bevölkerung in mehrere Klassen oder Schichten.

Die Bevölkerung kann nach Geschlecht, Altersgruppe, geografischem Gebiet, sozialen Variablen, körperlicher Aktivität usw. unterteilt werden.

Erhebungsbögen müssen unter Berücksichtigung sowohl des Messverfahrens als auch der Datenverarbeitung gestaltet werden. Eine genaue ergonomische Untersuchung des Messverfahrens sollte durchgeführt werden, um die Ermüdung des Bedieners und mögliche Fehler zu reduzieren. Aus diesem Grund müssen Variablen nach dem verwendeten Instrument gruppiert und der Reihe nach geordnet werden, um die Anzahl der Körperbeugungen zu reduzieren, die der Bediener ausführen muss.

Um die Auswirkungen persönlicher Fehler zu verringern, sollte die Umfrage von einem Bediener durchgeführt werden. Wenn mehr als ein Bediener verwendet werden muss, ist eine Schulung erforderlich, um die Reproduzierbarkeit der Messungen sicherzustellen.

Bevölkerungsanthropometrie

Ungeachtet des stark kritisierten Begriffs „Rasse“ sind menschliche Populationen dennoch sehr unterschiedlich in der Größe der Individuen und in der Größenverteilung. Im Allgemeinen sind menschliche Populationen nicht streng mendelsch; sie sind üblicherweise das Ergebnis einer Beimischung. Manchmal leben zwei oder mehr Populationen mit unterschiedlicher Herkunft und Anpassung im selben Gebiet zusammen, ohne sich zu kreuzen. Dies erschwert die theoretische Verteilung von Merkmalen. Aus anthropometrischer Sicht sind Geschlechter unterschiedliche Populationen. Populationen von Arbeitnehmern entsprechen möglicherweise nicht genau der biologischen Population desselben Gebiets als Folge einer möglichen Eignungsauswahl oder automatischen Auswahl aufgrund der Berufswahl.

Populationen aus verschiedenen Gebieten können sich aufgrund unterschiedlicher Anpassungsbedingungen oder biologischer und genetischer Strukturen unterscheiden.

Wenn eine enge Anpassung wichtig ist, ist eine Erhebung an einer Stichprobe erforderlich.

Anpassungsversuche und Regulierung

Die Anpassung des Arbeitsplatzes oder der Ausrüstung an den Benutzer kann nicht nur von den Körpermaßen abhängen, sondern auch von solchen Variablen wie Unbequemlichkeit und Art der Tätigkeiten, Kleidung, Werkzeuge und Umgebungsbedingungen. Es kann eine Kombination aus einer Checkliste relevanter Faktoren, einem Simulator und einer Reihe von Anpassungsversuchen unter Verwendung einer Stichprobe von Probanden verwendet werden, die ausgewählt wurden, um den Bereich der Körpergrößen der erwarteten Benutzerpopulation darzustellen.

Ziel ist es, Toleranzbereiche für alle Probanden zu finden. Wenn sich die Bereiche überschneiden, ist es möglich, einen engeren Endbereich zu wählen, der nicht außerhalb der Toleranzgrenzen eines Subjekts liegt. Wenn es keine Überlappung gibt, ist es notwendig, die Struktur verstellbar zu machen oder sie in verschiedenen Größen bereitzustellen. Wenn mehr als zwei Dimensionen einstellbar sind, kann ein Proband möglicherweise nicht entscheiden, welche der möglichen Einstellungen am besten zu ihm passt.

Die Einstellbarkeit kann eine komplizierte Angelegenheit sein, insbesondere wenn unbequeme Körperhaltungen zu Ermüdung führen. Dem Benutzer, der häufig wenig oder gar nichts über seine eigenen anthropometrischen Eigenschaften weiß, müssen daher genaue Angaben gemacht werden. Im Allgemeinen sollte ein genaues Design den Anpassungsbedarf auf ein Minimum reduzieren. Auf jeden Fall sollte man sich immer vor Augen halten, dass es sich um Anthropometrie handelt, nicht nur um Technik.

Dynamische Anthropometrie

Statische Anthropometrie kann umfassende Informationen über Bewegungen liefern, wenn ein geeigneter Satz von Variablen ausgewählt wurde. Wenn Bewegungen jedoch kompliziert sind und eine enge Anpassung an das industrielle Umfeld erwünscht ist, wie bei den meisten Benutzer-Maschine- und Mensch-Fahrzeug-Schnittstellen, ist eine genaue Erfassung von Körperhaltungen und Bewegungen erforderlich. Dies kann mit geeigneten Attrappen, die das Nachzeichnen von Reichweiten ermöglichen, oder durch Fotografie erfolgen. In diesem Fall ermöglicht eine mit einem Teleobjektiv und einem anthropometrischen Stab ausgestattete Kamera, die in der Sagittalebene des Objekts platziert ist, standardisierte Aufnahmen mit geringer Bildverzerrung. Kleine Markierungen an den Artikulationen der Probanden ermöglichen die genaue Bewegungsverfolgung.

Eine andere Möglichkeit, Bewegungen zu studieren, besteht darin, Haltungsänderungen gemäß einer Reihe horizontaler und vertikaler Ebenen zu formalisieren, die durch die Artikulationen verlaufen. Auch hier ist die Verwendung computergestützter menschlicher Modelle mit CAD-Systemen (Computer Aided Design) ein praktikabler Weg, dynamische Anthropometrie in die ergonomische Arbeitsplatzgestaltung einzubeziehen.

 

Zurück

Sonntag, Januar 16 2011 16: 18

Einführung und Konzepte

Mechanistische Toxikologie ist die Lehre davon, wie chemische oder physikalische Stoffe mit lebenden Organismen interagieren, um Toxizität zu verursachen. Die Kenntnis des Toxizitätsmechanismus einer Substanz verbessert die Fähigkeit, Toxizität zu verhindern und wünschenswertere Chemikalien zu entwickeln; sie bildet die Grundlage für die Therapie bei Überexposition und ermöglicht häufig ein tieferes Verständnis grundlegender biologischer Prozesse. Zu diesem Zweck Enzyklopädie Der Schwerpunkt liegt auf Tieren, um die Humantoxizität vorherzusagen. Verschiedene Bereiche der Toxikologie umfassen mechanistische, deskriptive, regulatorische, forensische und Umwelttoxikologie (Klaassen, Amdur und Doull 1991). All dies profitiert vom Verständnis der grundlegenden Toxizitätsmechanismen.

Warum Toxizitätsmechanismen verstehen?

Das Verständnis des Mechanismus, durch den eine Substanz Toxizität verursacht, verbessert verschiedene Bereiche der Toxikologie auf unterschiedliche Weise. Das mechanistische Verständnis hilft der staatlichen Regulierungsbehörde, rechtsverbindliche Sicherheitsgrenzwerte für die Exposition des Menschen festzulegen. Es hilft Toxikologen bei der Empfehlung von Maßnahmen zur Sanierung oder Sanierung kontaminierter Standorte und kann zusammen mit den physikalischen und chemischen Eigenschaften des Stoffes oder Gemisches zur Auswahl des erforderlichen Schutzausrüstungsgrades herangezogen werden. Mechanistisches Wissen ist auch nützlich, um die Grundlage für die Therapie und das Design neuer Arzneimittel zur Behandlung menschlicher Krankheiten zu bilden. Für den forensischen Toxikologen liefert der Toxizitätsmechanismus oft einen Einblick, wie ein chemischer oder physikalischer Stoff zum Tod oder zur Handlungsunfähigkeit führen kann.

Wenn der Toxizitätsmechanismus verstanden ist, wird die deskriptive Toxikologie nützlich, um die toxischen Wirkungen verwandter Chemikalien vorherzusagen. Es ist jedoch wichtig zu verstehen, dass ein Mangel an mechanistischen Informationen Gesundheitsfachkräfte nicht davon abhält, die menschliche Gesundheit zu schützen. Es werden umsichtige Entscheidungen auf der Grundlage von Tierversuchen und menschlicher Erfahrung getroffen, um sichere Expositionsniveaus festzulegen. Herkömmlicherweise wurde eine Sicherheitsspanne festgelegt, indem die „Stufe ohne nachteilige Wirkung“ oder eine „Stufe mit der niedrigsten nachteiligen Wirkung“ aus Tierversuchen (unter Verwendung von Designs mit wiederholter Exposition) verwendet und diese Stufe durch einen Faktor von 100 für berufliche Exposition oder 1,000 für berufliche Exposition dividiert wurde andere menschliche Umweltexposition. Der Erfolg dieses Prozesses zeigt sich an den wenigen Vorfällen von gesundheitsschädlichen Wirkungen, die der Exposition gegenüber Chemikalien bei Arbeitern zugeschrieben werden, bei denen in der Vergangenheit angemessene Expositionsgrenzwerte festgelegt und eingehalten wurden. Zudem nimmt die Lebenserwartung der Menschen weiter zu, ebenso wie die Lebensqualität. Insgesamt hat die Verwendung von Toxizitätsdaten zu einer wirksamen behördlichen und freiwilligen Kontrolle geführt. Detailliertes Wissen über toxische Mechanismen wird die Vorhersagbarkeit neuerer Risikomodelle, die derzeit entwickelt werden, verbessern und zu kontinuierlichen Verbesserungen führen.

Das Verständnis von Umweltmechanismen ist komplex und setzt ein Wissen über Ökosystemstörungen und Homöostase (Gleichgewicht) voraus. Obwohl in diesem Artikel nicht diskutiert, würde ein verbessertes Verständnis der toxischen Mechanismen und ihrer endgültigen Folgen in einem Ökosystem den Wissenschaftlern helfen, umsichtige Entscheidungen in Bezug auf den Umgang mit kommunalen und industriellen Abfallmaterialien zu treffen. Die Abfallwirtschaft ist ein wachsendes Forschungsgebiet und wird auch in Zukunft sehr wichtig sein.

Techniken zur Untersuchung von Toxizitätsmechanismen

Die meisten mechanistischen Studien beginnen mit einer deskriptiven toxikologischen Studie an Tieren oder klinischen Beobachtungen am Menschen. Idealerweise umfassen Tierversuche sorgfältige Verhaltens- und klinische Beobachtungen, eine sorgfältige biochemische Untersuchung von Elementen des Blutes und Urins auf Anzeichen einer nachteiligen Funktion wichtiger biologischer Systeme im Körper und eine Post-Mortem-Bewertung aller Organsysteme durch mikroskopische Untersuchung zur Überprüfung Verletzungen (siehe OECD-Testrichtlinien; EG-Richtlinien zur Chemikalienbewertung; US EPA-Testregeln; japanische Chemikalienvorschriften). Dies entspricht einer gründlichen körperlichen Untersuchung beim Menschen, die in einem Krankenhaus über einen Zeitraum von zwei bis drei Tagen mit Ausnahme der Obduktion stattfinden würde.

Toxizitätsmechanismen zu verstehen, ist die Kunst und Wissenschaft der Beobachtung, der Kreativität bei der Auswahl von Techniken zum Testen verschiedener Hypothesen und der innovativen Integration von Anzeichen und Symptomen in eine kausale Beziehung. Mechanistische Studien beginnen mit der Exposition, verfolgen die zeitbezogene Verteilung und den Verbleib im Körper (Pharmakokinetik) und messen die resultierende toxische Wirkung auf einer bestimmten Ebene des Systems und auf einer bestimmten Dosisebene. Verschiedene Substanzen können auf verschiedenen Ebenen des biologischen Systems wirken, indem sie Toxizität verursachen.

Belichtung

Der Expositionsweg in mechanistischen Studien ist normalerweise derselbe wie bei der Exposition beim Menschen. Der Weg ist wichtig, da neben den systemischen Wirkungen, nachdem die Chemikalie ins Blut aufgenommen und im ganzen Körper verteilt wurde, auch lokale Wirkungen am Expositionsort auftreten können. Ein einfaches, aber überzeugendes Beispiel für eine lokale Wirkung wäre eine Reizung und eventuelle Verätzung der Haut nach dem Auftragen starker Säure- oder Alkalilösungen, die zum Reinigen harter Oberflächen bestimmt sind. In ähnlicher Weise können Reizungen und Zelltod in Zellen auftreten, die die Nase und/oder Lungen auskleiden, nachdem sie reizenden Dämpfen oder Gasen, wie Stickoxiden oder Ozon, ausgesetzt wurden. (Beide sind Bestandteile der Luftverschmutzung oder des Smogs). Nach Aufnahme einer Chemikalie ins Blut durch Haut, Lunge oder Magen-Darm-Trakt wird die Konzentration in jedem Organ oder Gewebe durch viele Faktoren gesteuert, die die Pharmakokinetik der Chemikalie im Körper bestimmen. Der Körper hat die Fähigkeit, verschiedene Chemikalien zu aktivieren und zu entgiften, wie unten angegeben.

Rolle der Pharmakokinetik bei der Toxizität

Die Pharmakokinetik beschreibt die zeitlichen Zusammenhänge von chemischer Aufnahme, Verteilung, Stoffwechsel (biochemische Veränderungen im Körper) und Ausscheidung bzw. Ausscheidung aus dem Körper. In Bezug auf Toxizitätsmechanismen können diese pharmakokinetischen Variablen sehr wichtig sein und in einigen Fällen bestimmen, ob eine Toxizität auftritt oder nicht. Wenn beispielsweise ein Material nicht in ausreichender Menge absorbiert wird, tritt keine systemische Toxizität (innerhalb des Körpers) auf. Umgekehrt hat eine hochreaktive Chemikalie, die schnell (Sekunden oder Minuten) durch Verdauungs- oder Leberenzyme entgiftet wird, möglicherweise nicht die Zeit, Toxizität zu verursachen. Einige polyzyklische halogenierte Substanzen und Gemische sowie bestimmte Metalle wie Blei würden bei schneller Ausscheidung keine signifikante Toxizität verursachen; aber die Akkumulation auf ausreichend hohe Niveaus bestimmt ihre Toxizität, da die Ausscheidung nicht schnell erfolgt (manchmal in Jahren gemessen). Glücklicherweise bleiben die meisten Chemikalien nicht so lange im Körper. Die Ansammlung eines unschädlichen Materials würde immer noch keine Toxizität hervorrufen. Die Ausscheidungsrate aus dem Körper und die Entgiftung wird häufig als Halbwertszeit der Chemikalie bezeichnet, das ist die Zeit, in der 50 % der Chemikalie ausgeschieden oder in eine nicht toxische Form umgewandelt werden.

Wenn sich jedoch eine Chemikalie in einer bestimmten Zelle oder einem bestimmten Organ anreichert, kann dies ein Grund dafür sein, ihre potenzielle Toxizität in diesem Organ weiter zu untersuchen. In jüngerer Zeit wurden mathematische Modelle entwickelt, um pharmakokinetische Variablen von Tieren auf Menschen zu extrapolieren. Diese pharmakokinetischen Modelle sind äußerst nützlich, um Hypothesen zu generieren und zu testen, ob das Versuchstier eine gute Repräsentation für den Menschen sein kann. Zahlreiche Kapitel und Texte wurden zu diesem Thema verfasst (Gehring et al. 1976; Reitz et al. 1987; Nolan et al. 1995). Ein vereinfachtes Beispiel eines physiologischen Modells ist in Abbildung 1 dargestellt.

Abbildung 1. Ein vereinfachtes pharmakokinetisches Modell

TOX210F1

Verschiedene Ebenen und Systeme können beeinträchtigt werden

Die Toxizität kann auf verschiedenen biologischen Ebenen beschrieben werden. Die Verletzung kann am ganzen Menschen (oder Tier), am Organsystem, an der Zelle oder am Molekül beurteilt werden. Organsysteme umfassen das Immun-, Atmungs-, Herz-Kreislauf-, Nieren-, Hormon-, Verdauungs-, Muskel-Skelett-, Blut-, Fortpflanzungs- und Zentralnervensystem. Einige Schlüsselorgane sind Leber, Niere, Lunge, Gehirn, Haut, Augen, Herz, Hoden oder Eierstöcke und andere wichtige Organe. Auf zellulärer/biochemischer Ebene umfassen Nebenwirkungen die Beeinträchtigung der normalen Proteinfunktion, der endokrinen Rezeptorfunktion, die Hemmung der Stoffwechselenergie oder die Hemmung oder Induktion xenobiotischer (Fremdsubstanzen) Enzyme. Unerwünschte Wirkungen auf molekularer Ebene umfassen eine Veränderung der normalen Funktion der DNA-RNA-Transkription, der spezifischen zytoplasmatischen und nukleären Rezeptorbindung und von Genen oder Genprodukten. Letztendlich wird eine Funktionsstörung in einem wichtigen Organsystem wahrscheinlich durch eine molekulare Veränderung in einer bestimmten Zielzelle innerhalb dieses Organs verursacht. Die Rückverfolgung eines Mechanismus auf einen molekularen Verursachungsursprung ist jedoch nicht immer möglich und auch nicht erforderlich. Intervention und Therapie können ohne vollständiges Verständnis des molekularen Ziels entworfen werden. Das Wissen um den spezifischen Mechanismus der Toxizität erhöht jedoch den Vorhersagewert und die Genauigkeit der Extrapolation auf andere Chemikalien. Fig. 2 ist eine schematische Darstellung der verschiedenen Ebenen, auf denen eine Störung normaler physiologischer Prozesse festgestellt werden kann. Die Pfeile zeigen an, dass die Folgen für eine Person von oben nach unten (Exposition, Pharmakokinetik bis hin zu System-/Organtoxizität) oder von unten nach oben (molekulare Veränderung, zelluläre/biochemische Wirkung bis hin zu System-/Organtoxizität) bestimmt werden können.

Abbildung 2. Repräsentation von Toxizitätsmechanismen

TOX210F2

Beispiele für Toxizitätsmechanismen

Toxizitätsmechanismen können einfach oder sehr komplex sein. Häufig besteht ein Unterschied zwischen der Art der Toxizität, dem Toxizitätsmechanismus und dem Ausmaß der Wirkung, je nachdem, ob die Nebenwirkungen auf eine einzelne, akute hohe Dosis (wie eine versehentliche Vergiftung) oder eine niedrigere Dosis zurückzuführen sind wiederholte Exposition (durch berufliche oder umweltbedingte Exposition). Klassischerweise wird zu Testzwecken eine akute, einzelne hohe Dosis durch direkte Intubation in den Magen eines Nagetiers oder durch zwei- bis vierstündiges Aussetzen gegenüber einer Gas- oder Dampfatmosphäre verabreicht, je nachdem, was der Exposition beim Menschen am ähnlichsten ist. Die Tiere werden nach der Exposition über einen Zeitraum von zwei Wochen beobachtet, und dann werden die wichtigsten äußeren und inneren Organe auf Verletzungen untersucht. Tests mit wiederholter Gabe reichen von Monaten bis zu Jahren. Bei Nagetierspezies gelten zwei Jahre als chronische (lebenslange) Studie, die ausreicht, um Toxizität und Karzinogenität zu bewerten, während bei nichtmenschlichen Primaten zwei Jahre als subchronische (weniger als lebenslange) Studie zur Bewertung der Toxizität bei wiederholter Verabreichung angesehen würden. Nach der Exposition wird eine vollständige Untersuchung aller Gewebe, Organe und Flüssigkeiten durchgeführt, um etwaige nachteilige Wirkungen festzustellen.

Akute Toxizitätsmechanismen

Die folgenden Beispiele sind spezifisch für hochdosierte, akute Wirkungen, die zum Tod oder zu schwerer Handlungsunfähigkeit führen können. In einigen Fällen führt die Intervention jedoch zu vorübergehenden und vollständig reversiblen Wirkungen. Die Dosis oder Schwere der Exposition bestimmt das Ergebnis.

Einfache Erstickungsmittel. Der Toxizitätsmechanismus für Inertgase und einige andere nicht reaktive Substanzen ist Sauerstoffmangel (Anoxie). Diese Chemikalien, die Sauerstoffentzug im Zentralnervensystem (ZNS) verursachen, werden als Sauerstoffmangel bezeichnet einfache Erstickungsmittel. Wenn eine Person einen geschlossenen Raum betritt, der Stickstoff ohne ausreichend Sauerstoff enthält, kommt es im Gehirn zu einem sofortigen Sauerstoffmangel und führt zu Bewusstlosigkeit und schließlich zum Tod, wenn die Person nicht schnell entfernt wird. In extremen Fällen (fast null Sauerstoff) kann innerhalb weniger Sekunden Bewusstlosigkeit eintreten. Die Rettung hängt von der schnellen Entfernung in eine sauerstoffreiche Umgebung ab. Ein Überleben mit irreversiblen Hirnschäden kann durch verzögerte Rettung aufgrund des Todes von Neuronen erfolgen, die sich nicht regenerieren können.

Chemische Erstickungsmittel. Kohlenmonoxid (CO) konkurriert mit Sauerstoff um die Bindung an Hämoglobin (in roten Blutkörperchen) und entzieht dem Gewebe daher Sauerstoff für den Energiestoffwechsel; Zelltod kann die Folge sein. Die Intervention umfasst die Entfernung von der CO-Quelle und die Behandlung mit Sauerstoff. Die direkte Verwendung von Sauerstoff basiert auf der toxischen Wirkung von CO. Ein weiteres starkes chemisches Erstickungsmittel ist Cyanid. Das Cyanidion stört den Zellstoffwechsel und die Nutzung von Sauerstoff zur Energiegewinnung. Die Behandlung mit Natriumnitrit bewirkt eine Veränderung des Hämoglobins in den roten Blutkörperchen zu Methämoglobin. Methämoglobin hat eine größere Bindungsaffinität zum Cyanidion als das zelluläre Ziel von Cyanid. Folglich bindet das Methämoglobin das Cyanid und hält das Cyanid von den Zielzellen fern. Dies bildet die Grundlage für eine Antidottherapie.

Beruhigungsmittel des zentralen Nervensystems (ZNS).. Akute Toxizität ist bei einer Reihe von Stoffen wie Lösungsmitteln, die nicht reaktiv sind oder in reaktive Zwischenprodukte umgewandelt werden, durch Sedierung oder Bewusstlosigkeit gekennzeichnet. Es wird die Hypothese aufgestellt, dass die Sedierung/Anästhesie auf eine Wechselwirkung des Lösungsmittels mit den Membranen von Zellen im ZNS zurückzuführen ist, was deren Fähigkeit zur Übertragung elektrischer und chemischer Signale beeinträchtigt. Während die Sedierung als milde Form der Toxizität erscheinen mag und die Grundlage für die Entwicklung der frühen Anästhetika war, „macht die Dosis immer noch das Gift“. Wenn eine ausreichende Dosis durch Verschlucken oder Einatmen verabreicht wird, kann das Tier an Atemstillstand sterben. Wenn der Narkosetod nicht eintritt, ist diese Art von Toxizität normalerweise leicht reversibel, wenn das Subjekt aus der Umgebung entfernt wird oder die Chemikalie neu verteilt oder aus dem Körper eliminiert wird.

Skin-Effekte. Schädliche Wirkungen auf die Haut können je nach angetroffener Substanz von Reizungen bis zu Ätzwirkungen reichen. Starke Säuren und alkalische Lösungen sind mit lebendem Gewebe nicht kompatibel und ätzend, was zu chemischen Verbrennungen und möglichen Narbenbildungen führen kann. Die Narbenbildung ist auf den Tod der dermalen, tiefen Hautzellen zurückzuführen, die für die Regeneration verantwortlich sind. Niedrigere Konzentrationen können lediglich zu Reizungen der ersten Hautschicht führen.

Ein weiterer spezifischer toxischer Mechanismus der Haut ist die chemische Sensibilisierung. Beispielsweise tritt eine Sensibilisierung auf, wenn 2,4-Dinitrochlorbenzol an natürliche Proteine ​​in der Haut bindet und das Immunsystem den veränderten proteingebundenen Komplex als Fremdmaterial erkennt. Als Reaktion auf diesen Fremdstoff aktiviert das Immunsystem spezielle Zellen, um den Fremdstoff durch Freisetzung von Mediatoren (Zytokinen) zu eliminieren, die einen Hautausschlag oder eine Dermatitis verursachen (siehe „Immuntoxikologie“). Dies ist die gleiche Reaktion des Immunsystems, wenn es Giftefeu ausgesetzt wird. Die Immunsensibilisierung ist sehr spezifisch für die jeweilige Chemikalie und erfordert mindestens zwei Expositionen, bevor eine Reaktion hervorgerufen wird. Die erste Exposition sensibilisiert (setzt die Zellen in die Lage, die Chemikalie zu erkennen), und nachfolgende Expositionen lösen die Reaktion des Immunsystems aus. Kontaktentfernung und symptomatische Therapie mit steroidhaltigen entzündungshemmenden Cremes sind in der Regel wirksam bei der Behandlung sensibilisierter Personen. In schweren oder refraktären Fällen wird ein systemisch wirkendes Immunsuppressivum wie Prednison in Verbindung mit einer topischen Behandlung verwendet.

Lungensensibilisierung. Eine Immunsensibilisierungsreaktion wird durch Toluoldiisocyanat (TDI) ausgelöst, aber der Zielort ist die Lunge. TDI-Überexposition bei anfälligen Personen verursacht Lungenödeme (Flüssigkeitsansammlung), Bronchialverengung und Atembeschwerden. Dies ist ein schwerwiegender Zustand und erfordert, dass die Person von möglichen nachfolgenden Expositionen ausgeschlossen wird. Die Behandlung ist in erster Linie symptomatisch. Haut- und Lungensensibilisierung folgen einer Dosisreaktion. Die Überschreitung des für die berufliche Exposition festgelegten Grenzwerts kann schädliche Wirkungen haben.

Augeneffekte. Die Schädigung des Auges reicht von der Rötung der äußeren Schicht (Schwimmbadrötung) über die Kataraktbildung der Hornhaut bis hin zur Schädigung der Iris (farbiger Teil des Auges). Augenreizungstests werden durchgeführt, wenn davon ausgegangen wird, dass keine ernsthaften Verletzungen auftreten werden. Viele der Mechanismen, die Hautverätzungen verursachen, können auch Augenverletzungen verursachen. Für die Haut ätzende Materialien wie starke Säuren (pH-Wert unter 2) und Laugen (pH-Wert über 11.5) werden nicht in den Augen von Tieren getestet, da die meisten aufgrund eines ähnlichen Mechanismus wie der Hautverätzung zu Verätzungen und Erblindung führen . Darüber hinaus können oberflächenaktive Mittel wie Reinigungsmittel und Tenside Augenverletzungen verursachen, die von Reizungen bis hin zu Korrosion reichen. Eine Gruppe von Stoffen, bei denen Vorsicht geboten ist, sind die positiv geladenen (kationischen) Tenside, die Verbrennungen, dauerhafte Trübung der Hornhaut und Vaskularisierung (Bildung von Blutgefäßen) verursachen können. Eine andere Chemikalie, Dinitrophenol, hat eine spezifische Wirkung auf die Kataraktbildung. Dies scheint mit der Konzentration dieser Chemikalie im Auge zusammenzuhängen, was ein Beispiel für pharmakokinetische Verteilungsspezifität ist.

Obwohl die obige Auflistung bei weitem nicht erschöpfend ist, soll sie dem Leser eine Wertschätzung für verschiedene akute Toxizitätsmechanismen vermitteln.

Subchronische und chronische Toxizitätsmechanismen

Wenn sie als einzelne hohe Dosis verabreicht werden, haben einige Chemikalien nicht den gleichen Toxizitätsmechanismus wie wenn sie wiederholt als niedrigere, aber immer noch toxische Dosis verabreicht werden. Wenn eine einzelne hohe Dosis verabreicht wird, besteht immer die Möglichkeit, dass die Fähigkeit der Person, die Chemikalie zu entgiften oder auszuscheiden, überschritten wird, und dies kann zu einer anderen toxischen Reaktion führen als wenn niedrigere wiederholte Dosen verabreicht werden. Alkohol ist ein gutes Beispiel. Hohe Alkoholdosen führen zu primären Wirkungen auf das Zentralnervensystem, während niedrigere wiederholte Dosen zu Leberschäden führen.

Anticholinesterase-Hemmung. Die meisten Organophosphat-Pestizide haben zum Beispiel eine geringe Toxizität für Säugetiere, bis sie metabolisch aktiviert werden, hauptsächlich in der Leber. Der primäre Wirkungsmechanismus von Organophosphaten ist die Hemmung der Acetylcholinesterase (AChE) im Gehirn und im peripheren Nervensystem. AChE ist das normale Enzym, das die Stimulation des Neurotransmitters Acetylcholin beendet. Eine leichte Hemmung der AChE über einen längeren Zeitraum wurde nicht mit Nebenwirkungen in Verbindung gebracht. Bei hohen Expositionsniveaus führt die Unfähigkeit, diese neuronale Stimulation zu beenden, zu einer Überstimulation des cholinergen Nervensystems. Eine cholinerge Überstimulation führt letztendlich zu einer Vielzahl von Symptomen, einschließlich Atemstillstand, gefolgt vom Tod, wenn sie nicht behandelt wird. Die primäre Behandlung ist die Verabreichung von Atropin, das die Wirkung von Acetylcholin blockiert, und die Verabreichung von Pralidoximchlorid, das die gehemmte AChE reaktiviert. Daher werden sowohl die Ursache als auch die Behandlung der Organophosphattoxizität angesprochen, indem die biochemischen Grundlagen der Toxizität verstanden werden.

Stoffwechselaktivierung. Viele Chemikalien, einschließlich Tetrachlorkohlenstoff, Chloroform, Acetylaminofluoren, Nitrosamine und Paraquat, werden metabolisch zu freien Radikalen oder anderen reaktiven Zwischenprodukten aktiviert, die die normale Zellfunktion hemmen und stören. Bei hoher Exposition führt dies zum Zelltod (siehe „Zellschädigung und Zelltod“). Während die spezifischen Wechselwirkungen und zellulären Ziele unbekannt bleiben, sind die Organsysteme, die die Fähigkeit haben, diese Chemikalien zu aktivieren, wie Leber, Niere und Lunge, alle potenzielle Ziele für Verletzungen. Insbesondere haben bestimmte Zellen innerhalb eines Organs eine größere oder geringere Fähigkeit, diese Zwischenprodukte zu aktivieren oder zu entgiften, und diese Fähigkeit bestimmt die intrazelluläre Anfälligkeit innerhalb eines Organs. Der Stoffwechsel ist ein Grund, warum ein Verständnis der Pharmakokinetik, die diese Arten von Umwandlungen und die Verteilung und Eliminierung dieser Zwischenprodukte beschreibt, wichtig ist, um den Wirkungsmechanismus dieser Chemikalien zu erkennen.

Krebsmechanismen. Krebs ist eine Vielzahl von Krankheiten, und obwohl das Verständnis bestimmter Krebsarten aufgrund der vielen molekularbiologischen Techniken, die seit 1980 entwickelt wurden, schnell zunimmt, gibt es noch viel zu lernen. Es ist jedoch klar, dass die Krebsentstehung ein mehrstufiger Prozess ist und kritische Gene der Schlüssel zu verschiedenen Krebsarten sind. Veränderungen in der DNA (somatische Mutationen) in einer Reihe dieser kritischen Gene können eine erhöhte Anfälligkeit oder kanzeröse Läsionen verursachen (siehe „Gentoxikologie“). Die Exposition gegenüber natürlichen Chemikalien (in gekochten Lebensmitteln wie Rindfleisch und Fisch) oder synthetischen Chemikalien (wie Benzidin, das als Farbstoff verwendet wird) oder physikalischen Einwirkungen (ultraviolettes Licht von der Sonne, Radon aus dem Boden, Gammastrahlung aus medizinischen Verfahren oder industriellen Aktivitäten) sind alle Mitwirkende an somatischen Genmutationen. Es gibt jedoch natürliche und synthetische Substanzen (z. B. Antioxidantien) und DNA-Reparaturprozesse, die schützen und die Homöostase aufrechterhalten. Es ist klar, dass die Genetik ein wichtiger Faktor bei Krebs ist, da genetische Krankheitssyndrome wie Xeroderma pigmentosum, bei denen eine normale DNA-Reparatur fehlt, die Anfälligkeit für Hautkrebs durch UV-Licht der Sonne dramatisch erhöhen.

Fortpflanzungsmechanismen. Ähnlich wie bei Krebs sind viele Mechanismen der Reproduktions- und/oder Entwicklungstoxizität bekannt, aber es gibt noch viel zu lernen. Es ist bekannt, dass bestimmte Viren (wie Röteln), bakterielle Infektionen und Medikamente (wie Thalidomid und Vitamin A) die Entwicklung beeinträchtigen. Kürzlich zeigten Arbeiten von Khera (1991), die von Carney (1994) überprüft wurden, gute Beweise dafür, dass die abnormen Entwicklungseffekte in Tierversuchen mit Ethylenglykol auf saure Stoffwechselprodukte der Mutter zurückzuführen sind. Dies tritt auf, wenn Ethylenglykol zu Säuremetaboliten, einschließlich Glykol- und Oxalsäure, metabolisiert wird. Die Folgewirkungen auf Plazenta und Fötus scheinen auf diesen metabolischen Vergiftungsprozess zurückzuführen zu sein.

Fazit

Die Absicht dieses Artikels ist es, einen Überblick über mehrere bekannte Toxizitätsmechanismen und die Notwendigkeit zukünftiger Studien zu geben. Es ist wichtig zu verstehen, dass mechanistisches Wissen nicht unbedingt notwendig ist, um die Gesundheit von Mensch und Umwelt zu schützen. Dieses Wissen wird die Fähigkeit des Fachmanns verbessern, die Toxizität besser vorherzusagen und zu handhaben. Die tatsächlichen Techniken, die zur Aufklärung eines bestimmten Mechanismus verwendet werden, hängen vom kollektiven Wissen der Wissenschaftler und dem Denken derjenigen ab, die Entscheidungen über die menschliche Gesundheit treffen.

 

Zurück

Montag, Februar 28 2011 21: 01

Expositionsbewertung

Die Bewertung von Expositionen ist ein entscheidender Schritt bei der Identifizierung von Gefahren am Arbeitsplatz durch epidemiologische Untersuchungen. Der Expositionsbeurteilungsprozess kann in eine Reihe von Tätigkeiten unterteilt werden. Diese beinhalten:

  1. Zusammenstellung eines Verzeichnisses potenziell toxischer Stoffe und Mischungen, die in der angestrebten Arbeitsumgebung vorhanden sind
  2. Bestimmung, wie Expositionen auftreten und wie wahrscheinlich es ist, dass sie zwischen den Mitarbeitern variieren
  3. Auswahl geeigneter Messgrößen oder Indizes zur Quantifizierung von Expositionen
  4. Sammeln von Daten, die es den Studienteilnehmern ermöglichen, qualitative oder quantitative Expositionswerte für jede Maßnahme zuzuordnen. Wenn möglich, sollten diese Tätigkeiten unter Anleitung eines qualifizierten Industriehygienikers durchgeführt werden.

 

Arbeitsmedizinische Studien werden oft wegen Unzulänglichkeiten bei der Bewertung von Expositionen kritisiert. Unzulänglichkeiten können zu einer differentiellen oder nicht differentiellen Fehlklassifizierung der Exposition und daraus resultierender Verzerrung oder Präzisionsverlust in den Expositions-Wirkungs-Analysen führen. Bemühungen zur Verbesserung der Situation werden durch mehrere kürzlich durchgeführte internationale Konferenzen und Texte zu diesem Thema belegt (ACGIH 1991; Armstrong et al. 1992; Proceedings of the Conference on Retrospective Assessment of Occupational Exposures in Epidemiology 1995). Offensichtlich bieten technische Entwicklungen neue Möglichkeiten zur Verbesserung der Expositionsbewertung. Diese Entwicklungen umfassen Verbesserungen bei der analytischen Instrumentierung, ein besseres Verständnis pharmakokinetischer Prozesse und die Entdeckung neuer Expositions-Biomarker. Da arbeitsmedizinische Studien häufig auf historischen Expositionsinformationen beruhen, für die keine spezifische Überwachung durchgeführt worden wäre, fügt die Notwendigkeit einer rückwirkenden Expositionsbewertung diesen Studien eine zusätzliche Dimension der Komplexität hinzu. Es werden jedoch weiterhin verbesserte Standards für die Bewertung und die Gewährleistung der Zuverlässigkeit solcher Bewertungen entwickelt (Sieemiatycki et al. 1986). Prospektive Expositionsabschätzungen können natürlich leichter validiert werden.

Die Belichtung bezeichnet die Konzentration eines Agens an der Grenze zwischen Individuum und Umwelt. Eine Exposition wird normalerweise angenommen, wenn bekannt ist, dass ein Arbeitsstoff in einer Arbeitsumgebung vorhanden ist, und eine vernünftige Erwartung besteht, dass ein Mitarbeiter mit diesem Arbeitsstoff in Kontakt kommt. Expositionen können als zeitgewichtete durchschnittliche 8-Stunden-Konzentration (TWA) ausgedrückt werden, die ein Maß für die Expositionsintensität ist, die über eine 8-stündige Arbeitsschicht gemittelt wurde. Spitzenkonzentrationen sind Intensitäten, die über kürzere Zeiträume, z. B. 15 Minuten, gemittelt werden. Die kumulative Exposition ist ein Maß für das Produkt aus durchschnittlicher Intensität und Dauer (z. B. eine mittlere 8-Stunden-TWA-Konzentration multipliziert mit den Jahren, in denen bei dieser mittleren Konzentration gearbeitet wurde). Abhängig von der Art der Studie und den interessierenden Gesundheitsergebnissen kann eine Bewertung der Spitzen-, Durchschnittsintensitäts-, kumulativen oder verzögerten Expositionen wünschenswert sein.

Im Gegensatz, empfohlen bezieht sich auf die Abscheidung oder Absorption eines Mittels pro Zeiteinheit. Die Dosis oder die tägliche Aufnahme eines Mittels kann abgeschätzt werden, indem Umgebungsmessdaten mit Standardannahmen bezüglich unter anderem Atemfrequenzen und dermaler Penetration kombiniert werden. Alternativ kann die Aufnahme auf der Grundlage von Biomonitoring-Daten geschätzt werden. Die Dosis würde idealerweise an dem interessierenden Zielorgan gemessen.

Wichtige Faktoren der Expositionsbeurteilung sind:

  1. Identifizierung der relevanten Agenten
  2. Bestimmung ihres Vorhandenseins und ihrer Konzentration in geeigneten Umweltmedien (z. B. Luft, Kontaktflächen)
  3. Bewertung der wahrscheinlichen Aufnahmewege (Inhalation, Aufnahme über die Haut, Verschlucken), des zeitlichen Verlaufs der Exposition (tägliche Schwankungen) und der kumulativen Expositionsdauer, ausgedrückt in Wochen, Monaten oder Jahren
  4. Bewertung der Wirksamkeit von technischen und persönlichen Kontrollen (z. B. die Verwendung von Schutzkleidung und Atemschutz kann Expositionen vermitteln) und schließlich
  5. Wirt und andere Erwägungen, die Zielorgankonzentrationen modulieren können.

 

Dazu gehören das körperliche Niveau der Arbeitstätigkeit und der vorherige Gesundheitszustand von Personen. Bei der Beurteilung der Exposition gegenüber Stoffen, die persistent sind oder zur Bioakkumulation neigen (z. B. bestimmte Metalle, Radionuklide oder stabile organische Verbindungen), ist besondere Sorgfalt geboten. Bei diesen Materialien können die inneren Körperbelastungen selbst bei scheinbar niedrigen Umweltkonzentrationen schleichend zunehmen.

Auch wenn die Situation recht komplex sein kann, ist sie es oft nicht. Sicherlich stammen viele wertvolle Beiträge zur Identifizierung von Berufsgefahren aus Studien, die vernünftige Ansätze zur Expositionsbewertung verwenden. Zu den Informationsquellen, die bei der Identifizierung und Kategorisierung von Expositionen hilfreich sein können, gehören:

  1. Mitarbeitergespräche
  2. Personal- und Produktionsaufzeichnungen des Arbeitgebers (dazu gehören Arbeitsaufzeichnungen, Stellenbeschreibungen, Anlagen- und Prozesshistorien und Chemikalieninventare)
  3. Experten Urteil
  4. Arbeitshygieneaufzeichnungen (Bereichs-, Personen- und Compliance-Überwachung und Oberflächenwischproben zusammen mit Gesundheitsgefährdungs- oder umfassenden Untersuchungsberichten)
  5. Interviews mit langjährigen oder pensionierten Mitarbeitern und
  6. Biomonitoring-Daten.

 

Eine möglichst detaillierte Kategorisierung einzelner Engagements hat mehrere Vorteile. Die Aussagekraft einer Studie wird natürlich in dem Maße gesteigert, in dem die relevanten Expositionen angemessen beschrieben wurden. Zweitens kann die Glaubwürdigkeit der Befunde erhöht werden, da dem Confounding-Potenzial zufriedenstellender begegnet werden kann. Beispielsweise unterscheiden sich Referenten und exponierte Personen im Expositionsstatus, können sich aber auch in Bezug auf andere gemessene und nicht gemessene erklärende Faktoren für die interessierende Krankheit unterscheiden. Wenn jedoch innerhalb der Studienpopulation ein Expositionsgradient festgestellt werden kann, ist es weniger wahrscheinlich, dass derselbe Grad an Confounding innerhalb der Expositionsuntergruppen bestehen bleibt, wodurch die Studienergebnisse insgesamt gestärkt werden.

Job-Exposure-Matrizen

Einer der praktischeren und häufiger verwendeten Ansätze zur Expositionsbewertung war die indirekte Schätzung der Exposition auf der Grundlage von Berufsbezeichnungen. Die Verwendung von Job-Exposure-Matrizen kann effektiv sein, wenn vollständige Arbeitsverläufe verfügbar sind und sowohl die Aufgaben als auch die Expositionen, die mit den zu studierenden Jobs verbunden sind, eine angemessene Konstanz aufweisen. Im weitesten Sinne wurden standardmäßige Branchen- und Berufsbezeichnungsgruppierungen aus routinemäßig erhobenen Volkszählungsdaten oder Berufsdaten auf Sterbeurkunden entwickelt. Leider beschränken sich die in diesen großen Aktensystemen geführten Informationen oft auf den „aktuellen“ oder „üblichen“ Beruf. Da die Standardgruppierungen außerdem die Bedingungen an bestimmten Arbeitsplätzen nicht berücksichtigen, müssen sie in der Regel als grobe Expositionssurrogate betrachtet werden.

Für gemeinschafts- und registerbasierte Fall-Kontroll-Studien wurde eine detailliertere Expositionsbewertung erreicht, indem Expertenmeinungen verwendet wurden, um Daten aus dem beruflichen Werdegang, die durch persönliche Interviews erhalten wurden, in halbquantitative Bewertungen wahrscheinlicher Expositionen gegenüber bestimmten Wirkstoffen zu übersetzen (Sieemiatycki et al. 1986 ). Experten wie Chemiker und Industriehygieniker werden aufgrund ihres Wissens und ihrer Vertrautheit mit verschiedenen industriellen Prozessen ausgewählt, um bei der Expositionsbewertung zu helfen. Durch die Kombination der detaillierten Fragebogendaten mit dem Wissen über industrielle Prozesse war dieser Ansatz hilfreich bei der Charakterisierung von Expositionsunterschieden zwischen Arbeitsstätten.

Der Job-Exposure-Matrix-Ansatz wurde auch erfolgreich in branchen- und unternehmensspezifischen Studien eingesetzt (Gamble und Spirtas 1976). Individuelle Jobverläufe (eine chronologische Auflistung früherer Abteilungs- und Jobzuweisungen für jeden Mitarbeiter) werden häufig in den Personalakten des Unternehmens aufbewahrt und bieten, sofern verfügbar, einen vollständigen Jobverlauf für die Mitarbeiter, während sie in dieser Einrichtung arbeiten. Diese Daten können durch persönliche Befragungen der Studienteilnehmer ergänzt werden. Im nächsten Schritt werden alle während der Studienzeit verwendeten Berufsbezeichnungen und Abteilungs- bzw. Arbeitsbereichsbezeichnungen inventarisiert. Diese können in großen Anlagen mit mehreren Prozessen oder in Unternehmen innerhalb einer Branche leicht in die Hunderte oder sogar Tausende gehen, wenn Produktion, Wartung, Forschung, Engineering, Anlagenunterstützungsdienste und Verwaltungsaufgaben alle über einen Zeitraum (oft mehrere Jahrzehnte) betrachtet werden. Änderungen in industriellen Prozessen ermöglichen. Die Datenkonsolidierung kann erleichtert werden, indem eine Computerdatei aller Aufzeichnungen des Arbeitsverlaufs erstellt wird und dann Bearbeitungsroutinen verwendet werden, um die Berufsbezeichnungsterminologie zu standardisieren. Diese Jobs mit relativ homogenen Expositionen können kombiniert werden, um den Prozess der Verknüpfung von Expositionen mit einzelnen Jobs zu vereinfachen. Die Gruppierung von Arbeitsplätzen und Arbeitsorten sollte jedoch nach Möglichkeit durch Messdaten gestützt werden, die nach einer fundierten Stichprobenstrategie erhoben wurden.

Auch bei computergestützten Arbeitsverläufen kann eine nachträgliche Zuordnung von Expositionsdaten zu Personen eine schwierige Aufgabe sein. Sicherlich werden sich die Bedingungen am Arbeitsplatz ändern, wenn sich Technologien ändern, sich die Produktnachfrage ändert und neue Vorschriften eingeführt werden. In vielen Branchen kann es auch zu Änderungen bei Produktformulierungen und saisonalen Produktionsmustern kommen. Über einige Änderungen können dauerhafte Aufzeichnungen geführt werden. Es ist jedoch weniger wahrscheinlich, dass Aufzeichnungen über saisonale und andere marginale Prozess- und Produktionsänderungen aufbewahrt werden. Mitarbeiter können auch geschult werden, um mehrere Jobs auszuführen, und dann zwischen den Jobs wechseln, wenn sich die Produktionsanforderungen ändern. All diese Umstände erhöhen die Komplexität der Expositionsprofile der Mitarbeiter. Dennoch gibt es auch Arbeitsumgebungen, die seit vielen Jahren relativ unverändert geblieben sind. Letztendlich muss jede Arbeitseinstellung für sich bewertet werden.

Letztendlich wird es notwendig sein, die Arbeitslebens-Expositionsgeschichte jeder Person in einer Studie zusammenzufassen. Es wurde ein beträchtlicher Einfluss auf die endgültigen Expositions-Wirkungs-Risikomaße nachgewiesen (Suarez-Almazor et al. 1992), und daher muss bei der Auswahl des am besten geeigneten zusammenfassenden Expositionsmaßes große Sorgfalt walten.

Arbeitshygiene – Umweltmessung

Die Überwachung der Arbeitsbelastung ist eine grundlegende kontinuierliche Aktivität zum Schutz der Gesundheit der Mitarbeiter. So können zum Zeitpunkt der Planung einer epidemiologischen Studie bereits arbeitshygienische Aufzeichnungen vorliegen. Wenn dies der Fall ist, sollten diese Daten überprüft werden, um festzustellen, wie gut die Zielpopulation abgedeckt ist, wie viele Jahre Daten in den Dateien vertreten sind und wie einfach die Messungen mit Jobs, Arbeitsbereichen und Personen verknüpft werden können. Diese Feststellungen werden sowohl bei der Beurteilung der Durchführbarkeit der epidemiologischen Studie als auch bei der Identifizierung von Datenlücken hilfreich sein, die durch zusätzliche Probenahmen der Exposition geschlossen werden könnten.

Besonders wichtig ist die Frage, wie Messdaten am besten mit bestimmten Jobs und Personen verknüpft werden können. Probenahmen aus Bereichen und Atemzonen können für Industriehygieniker hilfreich sein, um Emissionsquellen für Korrekturmaßnahmen zu identifizieren, könnten jedoch weniger nützlich sein, um die tatsächliche Exposition der Mitarbeiter zu charakterisieren, es sei denn, es wurden sorgfältige Zeitstudien der Arbeitsaktivitäten der Mitarbeiter durchgeführt. Beispielsweise kann eine kontinuierliche Bereichsüberwachung zu bestimmten Tageszeiten Exkursionsbelastungen erkennen, es bleibt jedoch die Frage, ob sich Mitarbeiter zu diesem Zeitpunkt im Arbeitsbereich aufgehalten haben oder nicht.

Personenbezogene Probenahmedaten liefern im Allgemeinen genauere Schätzungen der Mitarbeiterexposition, solange die Probenahme unter repräsentativen Bedingungen durchgeführt wird, die Verwendung persönlicher Schutzausrüstung angemessen berücksichtigt wird und die Arbeitsaufgaben und Prozessbedingungen von Tag zu Tag relativ konstant sind. Personenbezogene Proben können durch die Verwendung persönlicher Identifikatoren leicht mit dem einzelnen Mitarbeiter verknüpft werden. Diese Daten können nach Bedarf auf andere Mitarbeiter in denselben Jobs und auf andere Zeiträume verallgemeinert werden. Aufgrund ihrer eigenen Erfahrung haben Rappaport et al. (1993) haben davor gewarnt, dass die Expositionskonzentrationen selbst bei Mitarbeitern, die als homogene Expositionsgruppen eingestuft sind, sehr unterschiedlich sein können. Auch hier ist Expertenmeinung erforderlich, um zu entscheiden, ob von homogenen Expositionsgruppen ausgegangen werden kann oder nicht.

Forscher haben erfolgreich einen Arbeitsplatz-Expositions-Matrix-Ansatz mit der Nutzung von Umweltmessdaten kombiniert, um die Expositionen innerhalb der Zellen der Matrix abzuschätzen. Bei fehlenden Messdaten können ggf. Datenlücken durch Expositionsmodellierung geschlossen werden. Im Allgemeinen beinhaltet dies die Entwicklung eines Modells zur Zuordnung von Umweltkonzentrationen zu leichter zu beurteilenden Determinanten von Expositionskonzentrationen (z. B. Produktionsvolumen, physische Eigenschaften der Anlage einschließlich der Verwendung von Abluftsystemen, Flüchtigkeit der Wirkstoffe und Art der Arbeitstätigkeit). Das Modell wird für Arbeitsumgebungen mit bekannten Umweltkonzentrationen konstruiert und dann verwendet, um Konzentrationen in ähnlichen Arbeitsumgebungen abzuschätzen, denen Messdaten fehlen, die jedoch Informationen über solche Parameter wie Bestandteile und Produktionsmengen haben. Dieser Ansatz kann insbesondere für die retrospektive Schätzung von Expositionen hilfreich sein.

Ein weiteres wichtiges Bewertungsthema ist der Umgang mit der Exposition gegenüber Gemischen. Erstens liegt aus analytischer Sicht der separate Nachweis chemisch verwandter Verbindungen und die Eliminierung von Interferenzen durch andere in der Probe vorhandene Substanzen möglicherweise nicht innerhalb der Möglichkeiten des Analyseverfahrens. Die verschiedenen Limitationen der Analyseverfahren zur Bereitstellung von Messdaten müssen evaluiert und die Studienziele entsprechend angepasst werden. Zweitens kann es sein, dass bestimmte Wirkstoffe fast immer zusammen verwendet werden und daher in ungefähr den gleichen relativen Anteilen in der gesamten untersuchten Arbeitsumgebung vorkommen. In diesem Fall interne statistische Auswertungen an sich nicht hilfreich bei der Unterscheidung, ob Wirkungen auf einen oder die anderen Wirkstoffe oder auf eine Kombination der Wirkstoffe zurückzuführen sind. Solche Beurteilungen wären nur auf der Grundlage externer Studien möglich, in denen die gleichen Wirkstoffkombinationen nicht aufgetreten sind. Schließlich kann es in Situationen, in denen je nach Produktspezifikation verschiedene Materialien austauschbar verwendet werden (z. B. die Verwendung verschiedener Farbstoffe, um gewünschte Farbkontraste zu erhalten), unmöglich sein, Wirkungen einem bestimmten Mittel zuzuschreiben.

Biologische Überwachung

Biomarker sind molekulare, biochemische oder zelluläre Veränderungen, die in biologischen Medien wie menschlichem Gewebe, Zellen oder Flüssigkeiten gemessen werden können. Ein Hauptgrund für die Entwicklung von Expositions-Biomarkern ist die Bereitstellung einer Schätzung der internen Dosis für einen bestimmten Wirkstoff. Dieser Ansatz ist besonders nützlich, wenn mehrere Expositionswege wahrscheinlich sind (z. B. Einatmen und Hautabsorption), wenn Schutzkleidung zeitweise getragen wird oder wenn die Expositionsbedingungen unvorhersehbar sind. Biomonitoring kann besonders vorteilhaft sein, wenn bekannt ist, dass die interessierenden Wirkstoffe relativ lange biologische Halbwertszeiten haben. Aus statistischer Sicht kann ein Vorteil des biologischen Monitorings gegenüber dem Luftmonitoring bei Wirkstoffen mit einer Halbwertszeit von nur zehn Stunden gesehen werden, abhängig vom Grad der Umweltvariabilität (Droz und Wu 1991). Die außerordentlich langen Halbwertszeiten von Materialien wie chlorierten Dioxinen (gemessen in Jahren) machen diese Verbindungen zu idealen Kandidaten für die biologische Überwachung. Wie bei Analysemethoden zur Messung von Luftkonzentrationen muss man sich möglicher Interferenzen bewusst sein. Bevor beispielsweise ein bestimmter Metabolit als Biomarker verwendet wird, sollte bestimmt werden, ob andere gängige Substanzen, wie die in bestimmten Medikamenten und im Zigarettenrauch enthaltenen, zum selben Endpunkt metabolisiert werden könnten oder nicht. Im Allgemeinen sind grundlegende Kenntnisse der Pharmakokinetik eines Wirkstoffs erforderlich, bevor das biologische Monitoring als Grundlage für die Expositionsbewertung verwendet wird.

Die häufigsten Messpunkte sind Alveolarluft, Urin und Blut. Alveolarluftproben können hilfreich sein, um kurzfristige hohe Lösungsmittelbelastungen zu charakterisieren, die innerhalb von Minuten oder Stunden nach der Entnahme der Probe aufgetreten sind. Typischerweise werden Urinproben gesammelt, um die Ausscheidungsraten für Metaboliten der interessierenden Verbindung zu bestimmen. Blutproben können zur direkten Messung der Verbindung, zur Messung von Metaboliten oder zur Bestimmung von Protein- oder DNA-Addukten (z. B. Albumin- oder Hämoglobin-Addukte und DNA-Addukte in zirkulierenden Lymphozyten) entnommen werden. Zugängliche Gewebezellen, wie z. B. Epithelzellen aus dem bukkalen Bereich des Mundes, können ebenfalls zur Identifizierung von DNA-Addukten entnommen werden.

Die Bestimmung der Cholinesterase-Aktivität in roten Blutkörperchen und Plasma veranschaulicht die Verwendung biochemischer Veränderungen als Maß für die Exposition. Organophosphor-Pestizide hemmen die Cholinesterase-Aktivität, und daher kann die Messung dieser Aktivität vor und nach einer wahrscheinlichen Exposition gegenüber diesen Verbindungen ein nützlicher Indikator für die Expositionsintensität sein. Je weiter man jedoch durch das Spektrum der biologischen Veränderungen fortschreitet, desto schwieriger wird es, zwischen Expositions- und Wirkungsbiomarkern zu unterscheiden. Im Allgemeinen sind Wirkungsmaße in der Regel unspezifisch für den interessierenden Stoff, und daher müssen möglicherweise andere mögliche Erklärungen für die Wirkung bewertet werden, um die Verwendung dieses Parameters als Expositionsmaß zu unterstützen. Expositionsmessungen sollten entweder direkt mit dem interessierenden Agens verbunden sein oder es sollte eine solide Grundlage für die Verknüpfung jeglicher indirekten Messung mit dem Agens geben. Trotz dieser Einschränkungen ist die biologische Überwachung viel versprechend als Mittel zur Verbesserung der Expositionsabschätzung zur Unterstützung epidemiologischer Studien.

Schlussfolgerungen

Bei Vergleichen in berufsepidemiologischen Studien muss eine Gruppe von Arbeitnehmern mit Exposition gegenüber einer Gruppe von Arbeitnehmern ohne Exposition verglichen werden. Solche Unterscheidungen sind grob, können aber hilfreich sein, um Problembereiche zu identifizieren. Je verfeinerter die Expositionsmessung ist, desto nützlicher wird die Studie jedoch sein, insbesondere im Hinblick auf ihre Fähigkeit, angemessen zielgerichtete Interventionsprogramme zu identifizieren und zu entwickeln.

 

Zurück

Dienstag, 08 März 2011 21: 01

Muskelarbeit

Muskelarbeit in beruflichen Aktivitäten

In den Industrieländern sind noch etwa 20 % der Erwerbstätigen in Tätigkeiten beschäftigt, die Muskelkraft erfordern (Rutenfranz et al. 1990). Die Zahl der konventionellen schweren körperlichen Tätigkeiten hat abgenommen, andererseits sind viele Tätigkeiten statischer, asymmetrischer und stationärer geworden. In Entwicklungsländern ist Muskelarbeit in allen Formen immer noch weit verbreitet.

Muskelarbeit bei beruflichen Tätigkeiten kann grob in vier Gruppen eingeteilt werden: schwere dynamische Muskelarbeit, manuelle Materialhandhabung, statische Arbeit und repetitive Arbeit. Schwere dynamische Arbeitsaufgaben finden sich beispielsweise in der Forstwirtschaft, der Landwirtschaft und dem Baugewerbe. Die Materialhandhabung ist beispielsweise in der Pflege, im Transportwesen und in der Lagerhaltung üblich, während statische Belastungen in der Büroarbeit, der Elektronikindustrie und bei Reparatur- und Wartungsarbeiten auftreten. Repetitive Arbeitsaufgaben finden sich beispielsweise in der Lebensmittel- und Holz verarbeitenden Industrie.

Es ist wichtig zu beachten, dass manuelle Materialhandhabung und repetitive Arbeit grundsätzlich entweder dynamische oder statische Muskelarbeit oder eine Kombination aus diesen beiden sind.

Physiologie der Muskelarbeit

Dynamische Muskelarbeit

Bei dynamischer Arbeit kontrahieren und entspannen sich aktive Skelettmuskeln rhythmisch. Der Blutfluss zu den Muskeln wird erhöht, um den Stoffwechselanforderungen gerecht zu werden. Die erhöhte Durchblutung wird durch erhöhtes Pumpen des Herzens (Herzzeitvolumen), verringerte Durchblutung in inaktiver Bereiche wie Nieren und Leber und eine erhöhte Anzahl offener Blutgefäße in der arbeitenden Muskulatur erreicht. Herzfrequenz, Blutdruck und Sauerstoffentzug in der Muskulatur steigen linear zur Arbeitsintensität. Auch die Lungenventilation wird durch tieferes Atmen und erhöhte Atemfrequenz erhöht. Der Zweck der Aktivierung des gesamten Herz-Kreislauf-Systems besteht darin, die Sauerstoffzufuhr zu den aktiven Muskeln zu verbessern. Der bei schwerer dynamischer Muskelarbeit gemessene Sauerstoffverbrauch zeigt die Intensität der Arbeit an. Der maximale Sauerstoffverbrauch (VO2max) gibt die maximale Kapazität der Person für aerobes Training an. Sauerstoffverbrauchswerte können in Energieverbrauch umgerechnet werden (1 Liter Sauerstoffverbrauch pro Minute entspricht ca. 5 kcal/min oder 21 kJ/min).

Bei dynamischer Arbeit, wenn die aktive Muskelmasse kleiner ist (wie in den Armen), sind die maximale Arbeitsleistung und der maximale Sauerstoffverbrauch geringer als bei dynamischer Arbeit mit großen Muskeln. Bei gleicher externer Arbeitsleistung ruft dynamische Arbeit mit kleinen Muskeln höhere kardiorespiratorische Reaktionen hervor (z. B. Herzfrequenz, Blutdruck) als Arbeit mit großen Muskeln (Abbildung 1).

Abbildung 1. Statische versus dynamische Arbeit    

ERG060F2

Statische Muskelarbeit

Bei statischer Arbeit erzeugt die Muskelkontraktion keine sichtbare Bewegung, wie beispielsweise in einem Glied. Statische Arbeit erhöht den Druck innerhalb des Muskels, was zusammen mit der mechanischen Kompression die Blutzirkulation teilweise oder vollständig blockiert. Die Zufuhr von Nährstoffen und Sauerstoff zum Muskel und der Abtransport von Stoffwechselendprodukten aus dem Muskel werden behindert. So ermüden Muskeln bei statischer Arbeit leichter als bei dynamischer Arbeit.

Das auffälligste Kreislaufmerkmal statischer Arbeit ist ein Anstieg des Blutdrucks. Herzfrequenz und Herzzeitvolumen ändern sich nicht wesentlich. Ab einer bestimmten Belastungsintensität steigt der Blutdruck in direktem Zusammenhang mit der Intensität und Dauer der Belastung. Darüber hinaus erzeugt statisches Training mit großen Muskelgruppen bei gleicher relativer Anstrengungsintensität eine stärkere Blutdruckreaktion als Training mit kleineren Muskeln. (Siehe Abbildung 2)

Abbildung 2. Das erweiterte Spannungs-Dehnungs-Modell modifiziert nach Rohmert (1984)

ERG060F1

Prinzipiell ist die Regulation von Belüftung und Kreislauf bei statischer Arbeit ähnlich wie bei dynamischer Arbeit, jedoch sind die Stoffwechselsignale der Muskulatur stärker und bewirken ein anderes Reaktionsmuster.

Folgen muskulärer Überlastung bei beruflichen Aktivitäten

Der Grad der körperlichen Belastung, die ein Arbeiter bei Muskelarbeit erfährt, hängt von der Größe der arbeitenden Muskelmasse, der Art der Muskelkontraktionen (statisch, dynamisch), der Intensität der Kontraktionen und individuellen Eigenschaften ab.

Wenn die Muskelbelastung die körperlichen Fähigkeiten des Arbeiters nicht übersteigt, passt sich der Körper an die Belastung an und die Erholung erfolgt schnell, wenn die Arbeit beendet wird. Ist die Muskelbelastung zu hoch, kommt es zu Ermüdung, verminderter Leistungsfähigkeit und verlangsamter Erholung. Spitzenbelastungen oder längere Überlastungen können zu Organschäden (in Form von Berufs- oder arbeitsbedingten Erkrankungen) führen. Andererseits kann Muskelarbeit bestimmter Intensität, Häufigkeit und Dauer auch zu Trainingseffekten führen, während andererseits eine zu geringe muskuläre Beanspruchung zu Detrainingseffekten führen kann. Diese Beziehungen werden durch die sog erweitertes Spannungs-Dehnungs-Konzept entwickelt von Rohmert (1984) (Abbildung 3).

Abbildung 3. Analyse akzeptabler Workloads

ERG060F3

Im Allgemeinen gibt es wenig epidemiologische Beweise dafür, dass Muskelüberlastung ein Risikofaktor für Krankheiten ist. In körperlich anstrengenden Berufen, insbesondere bei älteren Arbeitnehmern, treffen jedoch ein schlechter Gesundheitszustand, eine Behinderung und eine subjektive Überlastung am Arbeitsplatz aufeinander. Darüber hinaus hängen viele Risikofaktoren für arbeitsbedingte Muskel-Skelett-Erkrankungen mit verschiedenen Aspekten der muskulären Arbeitsbelastung zusammen, wie z. B. Kraftaufwand, schlechte Arbeitshaltungen, Heben und plötzliche Spitzenbelastungen.

Eines der Ziele der Ergonomie war es, akzeptable Grenzen für Muskelarbeitsbelastungen zu bestimmen, die zur Vorbeugung von Ermüdung und Störungen angewendet werden könnten. Während die Prävention chronischer Wirkungen im Mittelpunkt der Epidemiologie steht, befasst sich die Arbeitsphysiologie meist mit kurzfristigen Wirkungen, also Ermüdung bei Arbeitsaufgaben oder während eines Arbeitstages.

Akzeptable Arbeitsbelastung bei schwerer dynamischer Muskelarbeit

Die Bewertung der akzeptablen Arbeitsbelastung bei dynamischen Arbeitsaufgaben basiert traditionell auf Messungen des Sauerstoffverbrauchs (oder entsprechend des Energieverbrauchs). Der Sauerstoffverbrauch lässt sich relativ einfach im Feld mit tragbaren Geräten (z. B. Douglas-Tasche, Max-Planck-Respirometer, Oxylog, Cosmed) messen oder aus Herzfrequenzmessungen abschätzen, die z. B. am Arbeitsplatz zuverlässig durchgeführt werden können , mit dem SportTester-Gerät. Die Verwendung der Herzfrequenz bei der Schätzung des Sauerstoffverbrauchs erfordert, dass sie individuell gegen den gemessenen Sauerstoffverbrauch in einem Standardarbeitsmodus im Labor kalibriert wird, dh der Untersucher muss den Sauerstoffverbrauch des einzelnen Subjekts bei einer gegebenen Herzfrequenz kennen. Herzfrequenzaufzeichnungen sollten mit Vorsicht behandelt werden, da sie auch von Faktoren wie körperlicher Fitness, Umgebungstemperatur, psychischen Faktoren und der Größe der aktiven Muskelmasse beeinflusst werden. Daher können Herzfrequenzmessungen zu Überschätzungen des Sauerstoffverbrauchs führen, ebenso wie Sauerstoffverbrauchswerte zu Unterschätzungen der globalen physiologischen Belastung führen können, indem sie nur den Energiebedarf widerspiegeln.

Relative aerobe Belastung (RAS) ist definiert als der Bruchteil (ausgedrückt in Prozent) des Sauerstoffverbrauchs eines Arbeiters, gemessen am Arbeitsplatz, relativ zu seiner VO2max im Labor gemessen. Wenn nur Herzfrequenzmessungen verfügbar sind, kann eine gute Annäherung an RAS erfolgen, indem ein Wert für den prozentualen Herzfrequenzbereich (% HF-Bereich) mit der sogenannten Karvonen-Formel wie in Abbildung 3 berechnet wird.

VO2max wird normalerweise auf einem Fahrradergometer oder Laufband gemessen, bei denen der mechanische Wirkungsgrad hoch ist (20-25%). Wenn die aktive Muskelmasse kleiner oder die statische Komponente höher ist, wird VO2max und die mechanische Effizienz wird geringer sein als im Fall von Übungen mit großen Muskelgruppen. Beispielsweise hat sich herausgestellt, dass bei der Sortierung von Postpaketen die VO2max der Arbeiter betrug nur 65 % des auf einem Fahrradergometer gemessenen Maximums, und die mechanische Effizienz der Aufgabe betrug weniger als 1 %. Wenn Richtlinien auf dem Sauerstoffverbrauch basieren, sollte der Testmodus im Maximaltest so nah wie möglich an der realen Aufgabe sein. Dieses Ziel ist jedoch schwer zu erreichen.

Gemäß der klassischen Studie von Åstrand (1960) sollte die RAS während eines achtstündigen Arbeitstages 50 % nicht überschreiten. In ihren Experimenten nahm bei einer Arbeitsbelastung von 50 % das Körpergewicht ab, die Herzfrequenz erreichte nicht den stabilen Zustand und das subjektive Unbehagen nahm im Laufe des Tages zu. Sie empfahl eine RAS-Grenze von 50 % für Männer und Frauen. Später fand sie heraus, dass Bauarbeiter während eines Arbeitstages spontan ein durchschnittliches RAS-Niveau von 40 % (Bereich 25-55 %) wählten. Mehrere neuere Studien haben gezeigt, dass die akzeptable RAS unter 50 % liegt. Die meisten Autoren empfehlen 30-35 % als akzeptables RAS-Niveau für den gesamten Arbeitstag.

Ursprünglich wurden die akzeptablen RAS-Werte für reine dynamische Muskelarbeit entwickelt, die im realen Arbeitsleben selten vorkommt. Es kann vorkommen, dass akzeptable RAS-Werte beispielsweise bei einer Hebeaufgabe nicht überschritten werden, aber die lokale Belastung des Rückens kann akzeptable Werte erheblich überschreiten. Trotz ihrer Einschränkungen wurde die RAS-Bestimmung in großem Umfang zur Bewertung der körperlichen Belastung in verschiedenen Berufen eingesetzt.

Neben der Messung oder Abschätzung des Sauerstoffverbrauchs stehen auch andere nützliche feldphysiologische Methoden zur Quantifizierung der körperlichen Belastung oder Beanspruchung bei schwerer dynamischer Arbeit zur Verfügung. Bei der Abschätzung des Energieverbrauchs können Beobachtungstechniken eingesetzt werden (z. B. mit Hilfe des Edholm-Skala) (Edholm 1966). Bewertung der empfundenen Anstrengung (RPE) gibt die subjektive Anhäufung von Müdigkeit an. Neue ambulante Blutdrucküberwachungssysteme ermöglichen detailliertere Analysen der Kreislaufreaktionen.

Akzeptable Arbeitsbelastung bei der manuellen Materialhandhabung

Die manuelle Materialhandhabung umfasst Arbeitsaufgaben wie das Heben, Tragen, Schieben und Ziehen verschiedener externer Lasten. Der größte Teil der Forschung in diesem Bereich konzentrierte sich auf Probleme im unteren Rücken bei Hebeaufgaben, insbesondere aus biomechanischer Sicht.

Für Hebeaufgaben wurde ein RAS-Wert von 20-35 % empfohlen, wenn die Aufgabe mit einem individuellen maximalen Sauerstoffverbrauch verglichen wird, der aus einem Fahrradergometertest ermittelt wurde.

Empfehlungen für eine maximal zulässige Herzfrequenz sind entweder absolut oder bezogen auf die Ruheherzfrequenz. Die absoluten Werte für Männer und Frauen liegen bei 90-112 Schlägen pro Minute bei kontinuierlicher manueller Materialhandhabung. Diese Werte entsprechen in etwa den empfohlenen Werten für die Steigerung der Herzfrequenz über Ruhewerte, also 30 bis 35 Schläge pro Minute. Diese Empfehlungen gelten auch für schwere dynamische Muskelarbeit für junge und gesunde Männer und Frauen. Wie bereits erwähnt, sollten Herzfrequenzdaten jedoch mit Vorsicht behandelt werden, da sie auch von anderen Faktoren als der Muskelarbeit beeinflusst werden.

Die auf biomechanischen Analysen basierenden Richtlinien für die akzeptable Arbeitsbelastung bei der manuellen Materialhandhabung umfassen mehrere Faktoren, wie z. B. Gewicht der Last, Handhabungshäufigkeit, Hubhöhe, Abstand der Last vom Körper und körperliche Eigenschaften der Person.

In einer großangelegten Feldstudie (Louhevaara, Hakola und Ollila 1990) wurde festgestellt, dass gesunde männliche Arbeiter während einer Schicht 4 bis 5 kg schwere Postpakete ohne Anzeichen objektiver oder subjektiver Ermüdung handhaben konnten. Der größte Teil des Umschlags fand unter Schulterhöhe statt, die durchschnittliche Umschlagshäufigkeit lag unter 8 Paketen pro Minute und die Gesamtzahl der Pakete lag unter 1,500 pro Schicht. Die mittlere Herzfrequenz der Arbeiter betrug 101 Schläge pro Minute und ihr mittlerer Sauerstoffverbrauch 1.0 l/min, was 31 % RAS bezogen auf das Fahrradmaximum entsprach.

Auch Beobachtungen von Arbeitshaltungen und Krafteinsatz, z. B. nach der OWAS-Methode (Karhu, Kansi und Kuorinka 1977), Ratings der empfundenen Anstrengung und ambulante Blutdruckmessungen sind geeignete Methoden zur Belastungsabschätzung im manuellen Materialhandling. Mittels Elektromyographie lassen sich lokale Belastungsreaktionen beispielsweise der Arm- und Rückenmuskulatur beurteilen.

Akzeptable Arbeitsbelastung für statische Muskelarbeit

Statische Muskelarbeit ist vor allem bei der Aufrechterhaltung der Arbeitshaltung erforderlich. Die Dauer der statischen Kontraktion hängt exponentiell von der relativen Kontraktionskraft ab. Das bedeutet beispielsweise, dass bei einer statischen Kontraktion von 20 % der Maximalkraft die Standzeit 5 bis 7 Minuten beträgt und bei einer Relativkraft von 50 % etwa 1 Minute.

Ältere Studien haben gezeigt, dass keine Ermüdung auftritt, wenn die relative Kraft unter 15 % der Maximalkraft liegt. Neuere Studien haben jedoch gezeigt, dass die akzeptable relative Kraft spezifisch für den Muskel oder die Muskelgruppe ist und 2 bis 5 % der maximalen statischen Kraft beträgt. Diese Kraftgrenzen sind jedoch in praktischen Arbeitssituationen schwierig anzuwenden, da sie elektromyographische Aufzeichnungen erfordern.

Für den Praktiker stehen weniger Feldmethoden zur Quantifizierung der Belastung bei statischen Arbeiten zur Verfügung. Es gibt einige Beobachtungsmethoden (z. B. die OWAS-Methode), um den Anteil schlechter Arbeitshaltungen zu analysieren, dh Haltungen, die von normalen Mittelstellungen der Hauptgelenke abweichen. Blutdruckmessungen und Bewertungen der wahrgenommenen Anstrengung können nützlich sein, während die Herzfrequenz nicht so anwendbar ist.

Akzeptable Arbeitsbelastung bei sich wiederholender Arbeit

Repetitive Arbeit mit kleinen Muskelgruppen ähnelt statischer Muskelarbeit im Hinblick auf Kreislauf- und Stoffwechselreaktionen. Typischerweise kontrahieren die Muskeln bei sich wiederholender Arbeit über 30 Mal pro Minute. Wenn die relative Kontraktionskraft 10 % der Maximalkraft übersteigt, beginnen Ausdauer und Muskelkraft abzunehmen. Es gibt jedoch große individuelle Unterschiede in den Ausdauerzeiten. Beispielsweise variiert die Ausdauerzeit zwischen zwei und fünfzig Minuten, wenn sich der Muskel 90 bis 110 Mal pro Minute bei einem relativen Kraftniveau von 10 bis 20 % zusammenzieht (Laurig 1974).

Es ist sehr schwierig, endgültige Kriterien für repetitive Arbeit festzulegen, da selbst sehr leichte Arbeiten (wie bei der Verwendung einer Mikrocomputermaus) zu einem Anstieg des intramuskulären Drucks führen können, der manchmal zu Muskelfaserschwellungen, Schmerzen und Verringerung führen kann an Muskelkraft.

Wiederholte und statische Muskelarbeit führt bei sehr niedrigen relativen Kraftniveaus zu Ermüdung und reduzierter Arbeitskapazität. Daher sollten ergonomische Eingriffe darauf abzielen, die Anzahl sich wiederholender Bewegungen und statischer Kontraktionen so weit wie möglich zu minimieren. Für die Belastungsbewertung bei repetitiven Arbeiten stehen nur sehr wenige Feldmethoden zur Verfügung.

Prävention von Muskelüberlastung

Es gibt relativ wenige epidemiologische Beweise dafür, dass Muskelbelastung gesundheitsschädlich ist. Arbeitsphysiologische und ergonomische Studien weisen jedoch darauf hin, dass Muskelüberlastung zu Ermüdung (dh Abnahme der Arbeitsfähigkeit) führt und die Produktivität und Arbeitsqualität verringern kann.

Die Prävention einer Muskelüberlastung kann sich auf den Arbeitsinhalt, das Arbeitsumfeld und den Arbeitnehmer beziehen. Die Belastung kann durch technische Mittel angepasst werden, die sich auf das Arbeitsumfeld, die Werkzeuge und/oder die Arbeitsweise konzentrieren. Der schnellste Weg, die muskuläre Belastung zu regulieren, ist die individuelle Flexibilisierung der Arbeitszeit. Das bedeutet, Arbeits- und Ruhezeiten zu entwerfen, die die Arbeitsbelastung sowie die Bedürfnisse und Fähigkeiten des einzelnen Arbeitnehmers berücksichtigen.

Statische und sich wiederholende Muskelarbeit sollte auf ein Minimum beschränkt werden. Gelegentliche schwere dynamische Arbeitsphasen können zur Aufrechterhaltung einer ausdauerähnlichen körperlichen Fitness sinnvoll sein. Die wahrscheinlich nützlichste Form der körperlichen Aktivität, die in einen Arbeitstag integriert werden kann, ist zügiges Gehen oder Treppensteigen.

Die Verhinderung einer Muskelüberlastung ist jedoch sehr schwierig, wenn die körperliche Fitness oder die Arbeitsfähigkeiten eines Arbeiters schlecht sind. Ein angemessenes Training verbessert die Arbeitsfertigkeiten und kann die Muskelbelastung bei der Arbeit reduzieren. Auch regelmäßige körperliche Betätigung während der Arbeit oder in der Freizeit erhöht die Muskel- und Herz-Kreislauf-Kapazitäten des Arbeitnehmers.

 

Zurück

Sonntag, Januar 16 2011 16: 29

Zellschädigung und Zelltod

Nahezu die gesamte Medizin widmet sich entweder der Verhinderung des Zelltods bei Krankheiten wie Myokardinfarkt, Schlaganfall, Trauma und Schock oder seiner Verursachung, wie im Fall von Infektionskrankheiten und Krebs. Daher ist es wichtig, die Natur und die beteiligten Mechanismen zu verstehen. Der Zelltod wurde als „zufällig“, d. h. verursacht durch toxische Mittel, Ischämie usw., oder „programmiert“, wie er während der Embryonalentwicklung auftritt, einschließlich der Fingerbildung und der Resorption des Kaulquappenschwanzes, klassifiziert.

Zellverletzung und Zelltod sind daher sowohl in der Physiologie als auch in der Pathophysiologie wichtig. Der physiologische Zelltod ist während der Embryogenese und embryonalen Entwicklung äußerst wichtig. Die Untersuchung des Zelltods während der Entwicklung hat zu wichtigen und neuen Informationen über die beteiligte Molekulargenetik geführt, insbesondere durch die Untersuchung der Entwicklung bei wirbellosen Tieren. Bei diesen Tieren wurden der genaue Ort und die Bedeutung von Zellen, die zum Zelltod bestimmt sind, sorgfältig untersucht, und mithilfe klassischer Mutagenesetechniken wurden nun mehrere beteiligte Gene identifiziert. In erwachsenen Organen steuert das Gleichgewicht zwischen Zelltod und Zellproliferation die Organgröße. In manchen Organen, wie der Haut und dem Darm, findet ein ständiger Zellumsatz statt. In der Haut beispielsweise differenzieren sich Zellen, wenn sie die Oberfläche erreichen, und unterliegen schließlich einer endgültigen Differenzierung und einem Zelltod, wenn die Keratinisierung mit der Bildung von vernetzten Hüllen fortschreitet.

Viele Klassen toxischer Chemikalien sind in der Lage, eine akute Zellschädigung mit nachfolgendem Zelltod hervorzurufen. Dazu gehören Anoxie und Ischämie und ihre chemischen Analoga wie Kaliumcyanid; chemische Karzinogene, die Elektrophile bilden, die sich kovalent an Proteine ​​in Nukleinsäuren binden; oxidierende Chemikalien, die zur Bildung freier Radikale und oxidativer Schädigung führen; Aktivierung des Komplements; und eine Vielzahl von Calciumionophoren. Der Zelltod ist auch ein wichtiger Bestandteil der chemischen Karzinogenese; Viele vollständige chemische Karzinogene erzeugen in karzinogenen Dosen akute Nekrose und Entzündung, gefolgt von Regeneration und Präneoplasie.

Definitionen

Zellverletzung

Eine Zellschädigung ist definiert als ein Ereignis oder Stimulus, wie z. B. eine toxische Chemikalie, der die normale Homöostase der Zelle stört und somit das Auftreten einer Reihe von Ereignissen verursacht (Abbildung 1). Die dargestellten Hauptziele der tödlichen Verletzung sind die Hemmung der ATP-Synthese, die Störung der Integrität der Plasmamembran oder der Entzug essentieller Wachstumsfaktoren.

Abbildung 1. Zellverletzung

TOX060F1

Tödliche Verletzungen führen je nach Temperatur, Zelltyp und Stimulus nach unterschiedlicher Zeit zum Absterben einer Zelle; oder sie können subletal oder chronisch sein – das heißt, die Verletzung führt zu einem veränderten homöostatischen Zustand, der, obwohl anormal, nicht zum Zelltod führt (Trump und Arstila 1971; Trump und Berezesky 1992; Trump und Berezesky 1995; Trump, Berezesky und Osornio-Vargas 1981). Bei einer tödlichen Verletzung gibt es eine Phase vor dem Zeitpunkt des Zelltods

während dieser Zeit erholt sich die Zelle; Ab einem bestimmten Zeitpunkt (dem „Point of no return“ oder dem Zelltod) führt die Entfernung der Verletzung jedoch nicht zur Genesung, sondern die Zelle wird degradiert und hydrolysiert, wodurch schließlich ein physikalisch-chemisches Gleichgewicht mit der Zelle erreicht wird Umgebung. Dies ist die Phase, die als Nekrose bekannt ist. Während der präletalen Phase treten abhängig von der Zelle und der Art der Verletzung mehrere Haupttypen von Veränderungen auf. Diese sind als Apoptose und Onkose bekannt.

 

 

 

 

 

Apoptosis

Apoptose leitet sich von den griechischen Wörtern ab apo, was weg von und bedeutet Ptosis, bedeutet fallen. Der Begriff abfallen leitet sich aus der Tatsache ab, dass die Zellen während dieser Art von präletaler Veränderung schrumpfen und an der Peripherie eine deutliche Blasenbildung erfahren. Die Bläschen lösen sich dann und schweben weg. Apoptose tritt in einer Vielzahl von Zelltypen nach verschiedenen Arten von toxischer Verletzung auf (Wyllie, Kerr und Currie 1980). Es ist besonders ausgeprägt in Lymphozyten, wo es der vorherrschende Mechanismus für den Turnover von Lymphozytenklonen ist. Die resultierenden Fragmente führen zu den basophilen Körperchen, die innerhalb von Makrophagen in Lymphknoten zu sehen sind. In anderen Organen tritt Apoptose typischerweise in einzelnen Zellen auf, die vor und nach dem Tod schnell durch Phagozytose der Fragmente durch benachbarte Parenchymzellen oder durch Makrophagen beseitigt werden. Die in einzelnen Zellen auftretende Apoptose mit anschließender Phagozytose führt typischerweise nicht zu einer Entzündung. Vor dem Tod zeigen apoptotische Zellen ein sehr dichtes Zytosol mit normalen oder verdichteten Mitochondrien. Das endoplasmatische Retikulum (ER) ist normal oder nur leicht dilatiert. Das Kernchromatin ist entlang der Kernhülle und um den Nukleolus deutlich verklumpt. Auch die Kernkontur ist unregelmäßig und es kommt zur Kernfragmentierung. Die Chromatinkondensation ist mit einer DNA-Fragmentierung verbunden, die in vielen Fällen zwischen Nukleosomen auftritt und bei der Elektrophorese ein charakteristisches Leiterbild ergibt.

Bei Apoptose erhöhte [Ca2+]i kann K stimulieren+ Ausfluss, der zu einer Zellschrumpfung führt, die wahrscheinlich ATP erfordert. Verletzungen, die die ATP-Synthese vollständig hemmen, führen daher eher zu Apoptose. Ein anhaltender Anstieg von [Ca2+]i hat eine Reihe schädlicher Wirkungen, einschließlich der Aktivierung von Proteasen, Endonukleasen und Phospholipasen. Endonuklease-Aktivierung führt zu Einzel- und Doppel-DNA-Strangbrüchen, die wiederum erhöhte Spiegel von p53 und Poly-ADP-Ribosylierung sowie von Kernproteinen stimulieren, die für die DNA-Reparatur wesentlich sind. Die Aktivierung von Proteasen modifiziert eine Reihe von Substraten, einschließlich Aktin und verwandter Proteine, was zur Blasenbildung führt. Ein weiteres wichtiges Substrat ist die Poly(ADP-Ribose)-Polymerase (PARP), die die DNA-Reparatur hemmt. Erhöhte [ca2+]i ist auch mit der Aktivierung einer Reihe von Proteinkinasen wie MAP-Kinase, Calmodulin-Kinase und anderen verbunden. Solche Kinasen sind an der Aktivierung von Transkriptionsfaktoren beteiligt, die die Transkription von Immediate-Early-Genen initiieren, beispielsweise c-fos, c-jun und c-myc, und an der Aktivierung von Phospholipase A2 was zu einer Permeabilisierung der Plasmamembran und von intrazellulären Membranen wie der inneren Membran von Mitochondrien führt.

Onkose

Onkose, abgeleitet vom griechischen Wort Ist s, anschwellen, wird so genannt, weil bei dieser Art von präletaler Veränderung die Zelle fast unmittelbar nach der Verletzung zu schwellen beginnt (Majno und Joris 1995). Der Grund für die Schwellung ist eine Zunahme von Kationen im Wasser innerhalb der Zelle. Das hauptsächlich verantwortliche Kation ist Natrium, das normalerweise reguliert wird, um das Zellvolumen aufrechtzuerhalten. In Abwesenheit von ATP oder wenn die Na-ATPase des Plasmalemmas gehemmt ist, geht jedoch die Volumenkontrolle aufgrund von intrazellulärem Protein verloren, und Natrium im Wasser nimmt weiter zu. Zu den frühen Ereignissen bei Onkosen gehören daher vermehrt [Na+]i was zu Zellschwellung und erhöhtem [Ca2+]i entweder durch Einströmen aus dem extrazellulären Raum oder Freisetzung aus intrazellulären Speichern. Dies führt zu einer Schwellung des Zytosols, einer Schwellung des endoplasmatischen Retikulums und des Golgi-Apparats und zur Bildung wässriger Bläschen um die Zelloberfläche herum. Die Mitochondrien unterliegen zunächst einer Kondensation, zeigen aber später auch eine starke Schwellung aufgrund einer Schädigung der inneren Mitochondrienmembran. Bei dieser Art von präletaler Veränderung wird das Chromatin kondensiert und schließlich abgebaut; das charakteristische Leitermuster der Apoptose ist jedoch nicht zu sehen.

Nekrose

Nekrose bezieht sich auf die Reihe von Veränderungen, die nach dem Zelltod auftreten, wenn die Zelle in Trümmer umgewandelt wird, die typischerweise durch die Entzündungsreaktion entfernt werden. Zwei Typen können unterschieden werden: onkotische Nekrose und apoptotische Nekrose. Onkotische Nekrosen treten typischerweise in großen Zonen auf, zum Beispiel bei einem Myokardinfarkt oder regional in einem Organ nach chemischer Toxizität, wie dem proximalen Nierentubulus nach Verabreichung von HgCl2. Breite Zonen eines Organs sind betroffen und die nekrotischen Zellen lösen schnell eine Entzündungsreaktion aus, zuerst akut und dann chronisch. Falls der Organismus überlebt, folgt in vielen Organen der Nekrose die Abtragung der abgestorbenen Zellen und die Regeneration, beispielsweise in Leber oder Niere nach chemischer Toxizität. Im Gegensatz dazu tritt apoptotische Nekrose typischerweise auf einer Einzelzellbasis auf und die nekrotischen Trümmer werden innerhalb der Fresszellen von Makrophagen oder benachbarten parenchymalen Zellen gebildet. Zu den frühesten Merkmalen nekrotischer Zellen gehören Unterbrechungen in der Kontinuität der Plasmamembran und das Auftreten flockiger Dichten, die denaturierte Proteine ​​innerhalb der mitochondrialen Matrix darstellen. Bei einigen Verletzungsformen, die anfänglich die mitochondriale Kalziumakkumulation nicht stören, können Kalziumphosphatablagerungen innerhalb der Mitochondrien gesehen werden. Andere Membransysteme sind ähnlich fragmentierend, wie das ER, die Lysosomen und der Golgi-Apparat. Letztendlich wird das nukleäre Chromatin einer Lyse unterzogen, die aus dem Angriff durch lysosomale Hydrolasen resultiert. Nach dem Zelltod spielen lysosomale Hydrolasen eine wichtige Rolle bei der Entfernung von Trümmern mit Cathepsinen, Nucleolasen und Lipasen, da diese ein saures pH-Optimum haben und den niedrigen pH-Wert nekrotischer Zellen überleben können, während andere zelluläre Enzyme denaturiert und inaktiviert werden.

Mechanismen

Anfänglicher Reiz

Bei tödlichen Verletzungen sind die häufigsten anfänglichen Wechselwirkungen, die zu einer Verletzung führen, die zum Zelltod führt, Störungen des Energiestoffwechsels, wie Anoxie, Ischämie oder Atemhemmer, und Glykolyse, wie Kaliumcyanid, Kohlenmonoxid, Jodacetat und bald. Wie oben erwähnt, führen hohe Dosen von Verbindungen, die den Energiestoffwechsel hemmen, typischerweise zu einer Onkose. Die andere häufige Art von anfänglicher Verletzung, die zu akutem Zelltod führt, ist die Veränderung der Funktion der Plasmamembran (Trump und Arstila 1971; Trump, Berezesky und Osornio-Vargas 1981). Dies kann entweder eine direkte Schädigung und Permeabilisierung sein, wie im Falle eines Traumas oder einer Aktivierung des C5b-C9-Komplementkomplexes, eine mechanische Schädigung der Zellmembran oder eine Hemmung des Natrium-Kalium (Na+-K+) Pumpe mit Glykosiden wie Ouabain. Calciumionophore wie Ionomycin oder A23187, die schnell [Ca2+] den Gradienten hinunter in die Zelle führen ebenfalls zu akuten tödlichen Verletzungen. In einigen Fällen ist das Muster der präletalen Veränderung Apoptose; in anderen ist es Onkose.

Signalwege

Bei vielen Arten von Verletzungen werden die mitochondriale Atmung und die oxidative Phosphorylierung schnell beeinträchtigt. Dies stimuliert in einigen Zellen die anaerobe Glykolyse, die in der Lage ist, ATP aufrechtzuerhalten, aber bei vielen Verletzungen wird dies gehemmt. Der Mangel an ATP führt dazu, dass eine Reihe wichtiger homöostatischer Prozesse nicht aktiviert werden, insbesondere die Kontrolle der intrazellulären Ionenhomöostase (Trump und Berezesky 1992; Trump, Berezesky und Osornio-Vargas 1981). Dies führt zu schnellen Anstiegen von [Ca2+]i, und erhöhte [Na+] und [Cl-] führt zu einer Zellschwellung. Erhöhungen von [Ca2+]i führen zur Aktivierung einer Reihe anderer unten diskutierter Signalmechanismen, einschließlich einer Reihe von Kinasen, die zu einer erhöhten unmittelbaren frühen Gentranskription führen können. Erhöhte [ca2+]i modifiziert auch die Zytoskelettfunktion, was teilweise zur Bildung von Bläschen und zur Aktivierung von Endonukleasen, Proteasen und Phospholipasen führt. Diese scheinen viele der oben diskutierten wichtigen Wirkungen auszulösen, wie z. B. Membranschäden durch Protease- und Lipaseaktivierung, direkten Abbau von DNA durch Endonukleaseaktivierung und Aktivierung von Kinasen wie MAP-Kinase und Calmodulin-Kinase, die als Transkriptionsfaktoren wirken.

Durch umfangreiche Entwicklungsarbeit bei Wirbellosen C. elegans und Drosophilasowie in menschlichen und tierischen Zellen wurde eine Reihe von Protodesgenen identifiziert. Es wurde festgestellt, dass einige dieser Wirbellosen-Gene Säugetier-Gegenstücke haben. Zum Beispiel das ced-3-Gen, das für den programmierten Zelltod essentiell ist C. elegans, besitzt Protease-Aktivität und eine starke Homologie mit dem Säuger-Interleukin-Converting-Enzym (ICE). Ein nahe verwandtes Gen namens Apopain oder prICE wurde kürzlich mit noch engerer Homologie identifiziert (Nicholson et al. 1995). In Drosophilascheint das Reaper-Gen an einem Signal beteiligt zu sein, das zum programmierten Zelltod führt. Zu den weiteren Protodesgenen gehören das Fas-Membranprotein und das wichtige Tumorsuppressor-Gen p53, das weitgehend konserviert ist. p53 wird nach einer DNA-Schädigung auf Proteinebene induziert und fungiert, wenn es phosphoryliert wird, als Transkriptionsfaktor für andere Gene wie gadd45 und waf-1, die an der Zelltodsignalisierung beteiligt sind. Andere unmittelbar frühe Gene wie c-fos, c-jun und c-myc scheinen ebenfalls an einigen Systemen beteiligt zu sein.

Gleichzeitig gibt es Anti-Todes-Gene, die den Pro-Todes-Genen entgegenzuwirken scheinen. Das erste davon, das identifiziert werden konnte, war ced-9 from C. elegans, das beim Menschen zu bcl-2 homolog ist. Diese Gene wirken auf eine noch unbekannte Weise, um das Abtöten von Zellen durch genetische oder chemische Toxine zu verhindern. Einige neuere Beweise deuten darauf hin, dass bcl-2 als Antioxidans wirken kann. Derzeit wird intensiv daran gearbeitet, ein Verständnis für die beteiligten Gene zu entwickeln und Möglichkeiten zu entwickeln, diese Gene je nach Situation zu aktivieren oder zu hemmen.

 

Zurück

Forscher können sich glücklich schätzen, wenn ihnen eine detaillierte Chronologie der Arbeitserfahrung von Arbeitnehmern zur Verfügung steht, die einen historischen Rückblick auf ihre Jobs im Laufe der Zeit bietet. Für diese Arbeitnehmer a Job-Exposure-Matrix kann dann so eingerichtet werden, dass jeder einzelne Arbeitsplatzwechsel, den ein Arbeitnehmer durchlaufen hat, mit spezifischen Expositionsinformationen verknüpft werden kann.

Detaillierte Expositionsgeschichten müssen zu Analysezwecken zusammengefasst werden, um festzustellen, ob Muster erkennbar sind, die mit Gesundheits- und Sicherheitsproblemen am Arbeitsplatz zusammenhängen könnten. Wir können eine Liste von beispielsweise 20 Stellenwechseln visualisieren, die ein Arbeitnehmer in seinem oder ihrem Arbeitsleben erlebt hat. Es gibt dann mehrere alternative Möglichkeiten, wie die Expositionsdetails (für jeden der 20 Arbeitsplatzwechsel in diesem Beispiel) unter Berücksichtigung von Dauer und/oder Konzentration/Dosis/Grad der Exposition zusammengefasst werden können.

Es ist jedoch zu beachten, dass je nach gewählter Methode unterschiedliche Schlussfolgerungen aus einer Studie gezogen werden können (Suarez-Almazor et al. 1992). Ein Beispiel für fünf zusammenfassende Expositionsmessungen während des Arbeitslebens ist in Tabelle 1 dargestellt.

Tabelle 1. Formeln und Dimensionen oder Einheiten der fünf ausgewählten zusammenfassenden Maße der Exposition während des Arbeitslebens

Belichtungsmaß

Formel

Abmessungen/Einheiten

Kumulativer Expositionsindex (CEI)

Σ (Grad x Belichtungszeit)

Klasse und Zeit

Durchschnittsnote (MG)

Σ (Grad x Expositionszeit)/Gesamtzeit der Exposition

Klasse

Bestnote aller Zeiten (HG)

höchste Klasse, der ≥ 7 Tage ausgesetzt waren

Klasse

Zeitgewichteter Durchschnitt (TWA) Note

Σ (Grad x Expositionszeit)/Gesamtbeschäftigungszeit

Klasse

Gesamtzeit ausgesetzt (TTE)

Σ Zeit ausgesetzt

Zeit

Adaptiert von Suarez-Almazor et al. 1992.

Kumulativer Expositionsindex. Der kumulative Expositionsindex (CEI) entspricht in toxikologischen Studien der „Dosis“ und stellt die Summe der Produkte aus Expositionsgrad und Expositionsdauer für jede aufeinanderfolgende Berufsbezeichnung über ein Arbeitsleben dar. Es enthält die Zeit in seinen Einheiten.

Mittlere Note. Die mittlere Note (MG) kumuliert die Produkte aus Expositionsnote und Expositionsdauer für jede aufeinanderfolgende Berufsbezeichnung (dh den CEI) und dividiert durch die Gesamtzeit, die bei einer Note größer als null verbracht wurde. MG ist in seinen Einheiten zeitunabhängig; Die zusammenfassende Maßnahme für eine Person, die über einen langen Zeitraum einer hohen Konzentration ausgesetzt ist, ist ähnlich wie die für eine Person, die über einen kurzen Zeitraum einer hohen Konzentration ausgesetzt ist. Innerhalb jedes Matched Sets in einem Fall-Kontroll-Design ist MG ein durchschnittlicher Expositionsgrad pro exponierter Zeiteinheit. Es handelt sich um eine Durchschnittsnote für die tatsächliche Expositionszeit gegenüber dem betrachteten Mittel.

Höchste Note aller Zeiten. Die Bestnote aller Zeiten (HG) wird ermittelt, indem der Arbeitsverlauf nach der höchsten Notenaufgabe im Beobachtungszeitraum gescannt wird, der der Arbeitnehmer mindestens sieben Tage lang ausgesetzt war. Das HG könnte die berufliche Exposition einer Person falsch darstellen, da es seiner Formulierung nach auf einem Maximierungs- und nicht auf einem Mittelungsverfahren basiert und daher in seinen Einheiten unabhängig von der Expositionsdauer ist.

Zeitgewichteter Notendurchschnitt. Die zeitgewichtete Durchschnittsnote (TWA) ist der kumulative Expositionsindex (CEI) dividiert durch die Gesamtbeschäftigungszeit. Innerhalb jedes Matched Sets in einem Fall-Kontroll-Design ergibt sich der TWA-Grad als Durchschnitt über die gesamte aufgewendete Zeit. Sie unterscheidet sich von MG, die nur über die tatsächlich exponierte Gesamtzeit mittelt. Somit kann die TWA-Klasse unabhängig von der Exposition als durchschnittliche Exposition pro Zeiteinheit während der gesamten Beschäftigungsdauer angesehen werden an sich.

Gesamtzeit ausgesetzt. Die Total Time Exposure (TTE) summiert alle mit der Exposition verbundenen Zeiträume in Zeiteinheiten. TTE besticht durch seine Einfachheit. Es ist jedoch allgemein anerkannt, dass gesundheitliche Auswirkungen nicht nur von der Dauer der Exposition gegenüber Chemikalien, sondern auch von der Intensität dieser Exposition (dh der Konzentration oder dem Grad) abhängen müssen.

Die Nützlichkeit eines zusammenfassenden Expositionsmaßes wird eindeutig durch das jeweilige Gewicht bestimmt, das es entweder der Dauer oder der Konzentration der Exposition oder beiden beimisst. Daher können unterschiedliche Maßnahmen zu unterschiedlichen Ergebnissen führen (Walker und Blettner 1985). Idealerweise sollte das ausgewählte zusammenfassende Maß auf einer Reihe von vertretbaren Annahmen bezüglich des postulierten biologischen Mechanismus für den untersuchten Erreger oder Krankheitsverband beruhen (Smith 1987). Dieses Verfahren ist jedoch nicht immer möglich. Sehr oft ist die biologische Wirkung der Expositionsdauer oder der Konzentration des untersuchten Agens unbekannt. In diesem Zusammenhang kann die Verwendung verschiedener Expositionsmaße nützlich sein, um einen Mechanismus vorzuschlagen, durch den die Exposition ihre Wirkung entfaltet.

Es wird empfohlen, dass in Ermangelung bewährter Modelle zur Bewertung der Exposition eine Vielzahl von zusammenfassenden Expositionsmessungen im Berufsleben zur Risikoabschätzung verwendet werden. Dieser Ansatz würde den Vergleich von Ergebnissen über Studien hinweg erleichtern.

 

Zurück

Dienstag, 08 März 2011 21: 13

Körperhaltungen bei der Arbeit

Die Haltung einer Person bei der Arbeit – die gemeinsame Organisation von Rumpf, Kopf und Extremitäten – kann aus mehreren Blickwinkeln analysiert und verstanden werden. Körperhaltungen zielen darauf ab, die Arbeit voranzubringen; daher haben sie eine Endgültigkeit, die ihre Natur, ihre zeitliche Beziehung und ihre (physiologischen oder sonstigen) Kosten für die betreffende Person beeinflusst. Es besteht eine enge Wechselwirkung zwischen den physiologischen Fähigkeiten und Eigenschaften des Körpers und den Anforderungen der Arbeit.

Muskel-Skelett-Belastung ist ein notwendiges Element der Körperfunktionen und unverzichtbar für das Wohlbefinden. Aus gestalterischer Sicht geht es darum, die optimale Balance zwischen Notwendigem und Überflüssigem zu finden.

Körperhaltungen interessieren Forscher und Praktiker zumindest aus den folgenden Gründen:

    1. Eine Körperhaltung ist die Quelle der muskuloskelettalen Belastung. Außer beim entspannten Stehen, Sitzen und Liegen in der Waagerechten müssen Muskeln Kräfte aufbringen, um die Körperhaltung auszugleichen und/oder Bewegungen zu kontrollieren. Bei klassischen schweren Aufgaben, zum Beispiel in der Bauindustrie oder bei der manuellen Handhabung schwerer Materialien, kommen externe Kräfte, sowohl dynamische als auch statische, zu den inneren Kräften im Körper hinzu und erzeugen manchmal hohe Belastungen, die die Kapazität des Gewebes übersteigen können. (Siehe Abbildung 1) Selbst in entspannter Haltung, wenn die Muskelarbeit gegen Null geht, können Sehnen und Gelenke belastet werden und Ermüdungserscheinungen zeigen. Eine Tätigkeit mit geringer scheinbarer Belastung – beispielsweise die eines Mikroskopikers – kann ermüdend und anstrengend werden, wenn sie über einen längeren Zeitraum ausgeübt wird.
    2. Die Körperhaltung ist eng mit Gleichgewicht und Stabilität verbunden. Tatsächlich wird die Körperhaltung durch mehrere neurale Reflexe gesteuert, bei denen der Input von taktilen Empfindungen und visuellen Hinweisen aus der Umgebung eine wichtige Rolle spielen. Einige Körperhaltungen, wie das Greifen nach Objekten aus der Ferne, sind von Natur aus instabil. Gleichgewichtsverlust ist eine häufige unmittelbare Ursache für Arbeitsunfälle. Einige Arbeitsaufgaben werden in einer Umgebung ausgeführt, in der die Stabilität nicht immer gewährleistet werden kann, beispielsweise in der Bauindustrie.
    3. Die Körperhaltung ist die Grundlage für geschickte Bewegungen und visuelle Beobachtung. Viele Aufgaben erfordern feine, geschickte Handbewegungen und eine genaue Beobachtung des Arbeitsgegenstands. In solchen Fällen wird die Körperhaltung zur Plattform dieser Aktionen. Die Aufmerksamkeit wird auf die Aufgabe gelenkt und die Haltungselemente werden zur Unterstützung der Aufgaben herangezogen: Die Haltung wird bewegungslos, die muskuläre Belastung steigt und wird statischer. Eine französische Forschungsgruppe zeigte in ihrer klassischen Studie, dass Immobilität und Muskel-Skelett-Belastung zunahmen, wenn das Arbeitspensum zunahm (Teiger, Laville und Duraffourg 1974).
    4. Haltung ist eine Informationsquelle über die Ereignisse, die bei der Arbeit stattfinden. Die Beobachtungshaltung kann beabsichtigt oder unbewusst sein. Geschickte Vorgesetzte und Arbeiter sind dafür bekannt, Haltungsbeobachtungen als Indikatoren für den Arbeitsprozess zu verwenden. Oft ist das Beobachten von Haltungsinformationen nicht bewusst. Beispielsweise wurden auf einem Ölbohrturm Haltungshinweise verwendet, um Nachrichten zwischen Teammitgliedern während verschiedener Phasen einer Aufgabe zu kommunizieren. Dies geschieht unter Bedingungen, bei denen andere Kommunikationsmittel nicht möglich sind.

     

    Abbildung 1. Zu hohe Handpositionen oder Vorwärtsbeugen gehören zu den häufigsten Arten, eine „statische“ Belastung zu erzeugen

    ERG080F1

          Sicherheit, Gesundheit und Arbeitshaltung

          Aus Sicht der Sicherheit und Gesundheit können alle oben beschriebenen Aspekte der Körperhaltung wichtig sein. Die größte Aufmerksamkeit haben jedoch Körperhaltungen als Ursache für Muskel-Skelett-Erkrankungen wie Erkrankungen des unteren Rückens auf sich gezogen. Muskel-Skelett-Probleme im Zusammenhang mit sich wiederholender Arbeit sind auch mit Körperhaltungen verbunden.

          Schmerzen im unteren Rückenbereich (LBP) ist ein Oberbegriff für verschiedene Erkrankungen des unteren Rückens. Es hat viele Ursachen und die Körperhaltung ist ein mögliches ursächliches Element. Epidemiologische Studien haben gezeigt, dass körperlich schwere Arbeit Kreuzschmerzen begünstigt und dass Körperhaltungen ein Element in diesem Prozess sind. Es gibt mehrere mögliche Mechanismen, die erklären, warum bestimmte Körperhaltungen LBP verursachen können. Vorgebeugte Haltungen erhöhen die Belastung der Wirbelsäule und der Bänder, die besonders anfällig für Belastungen in einer verdrehten Haltung sind. Äußere Belastungen, insbesondere dynamische, wie z. B. durch Stöße und Rutschen, können die Belastungen des Rückens um ein Vielfaches erhöhen.

          Aus Sicherheits- und Gesundheitsgründen ist es wichtig, Fehlhaltungen und andere Haltungselemente im Rahmen der Sicherheits- und Gesundheitsanalyse der Arbeit im Allgemeinen zu identifizieren.

          Erfassung und Messung der Arbeitshaltung

          Körperhaltungen können durch visuelle Beobachtung oder mehr oder weniger ausgefeilte Messtechniken erfasst und objektiv gemessen werden. Sie können auch mithilfe von Selbstbewertungsschemata erfasst werden. Die meisten Methoden betrachten die Körperhaltung als eines der Elemente in einem größeren Kontext, beispielsweise als Teil des Arbeitsinhalts – ebenso wie die von AET und Renault Les Profile des Posts (Landau und Rohmert 1981; RNUR 1976) – oder als Ausgangspunkt für biomechanische Berechnungen, die auch andere Komponenten berücksichtigen.

          Trotz der Fortschritte in der Messtechnik bleibt die visuelle Beobachtung unter Feldbedingungen das einzig praktikable Mittel zur systematischen Erfassung von Körperhaltungen. Die Genauigkeit solcher Messungen bleibt jedoch gering. Trotzdem können Haltungsbeobachtungen eine reichhaltige Informationsquelle für die Arbeit im Allgemeinen sein.

          Die folgende kurze Liste von Messmethoden und -techniken stellt ausgewählte Beispiele vor:

            1. Fragebögen zur Selbstauskunft und Tagebücher. Fragebögen zur Selbstauskunft und Tagebücher sind ein kostengünstiges Mittel zur Erfassung von Haltungsdaten. Die Selbstauskunft basiert auf der Wahrnehmung des Probanden und weicht meist stark von „objektiv“ beobachteten Körperhaltungen ab, kann aber dennoch wichtige Informationen über die Ermüdung der Arbeit vermitteln.
            2. Beobachtung von Körperhaltungen. Die Haltungsbeobachtung umfasst die rein visuelle Erfassung der Haltungen und ihrer Bestandteile sowie Methoden, bei denen ein Interview die Informationen vervollständigt. Für diese Methoden steht in der Regel eine Computerunterstützung zur Verfügung. Für visuelle Beobachtungen stehen viele Methoden zur Verfügung. Die Methode kann einfach einen Aktionskatalog enthalten, einschließlich Haltungen des Rumpfes und der Gliedmaßen (z. B. Keyserling 1986; Van der Beek, Van Gaalen und Frings-Dresen 1992). Die OWAS-Methode schlägt ein strukturiertes Schema für die Analyse, Bewertung und Bewertung vor von Rumpf- und Gliedmaßenhaltungen für Feldbedingungen (Karhu, Kansi und Kuorinka 1977). Die Aufzeichnungs- und Analysemethode kann Notationsschemata enthalten, von denen einige sehr detailliert sind (wie bei der Posture Targeting-Methode von Corlett und Bishop 1976), und sie können eine Notation für die Position vieler anatomischer Elemente für jedes Element der Aufgabe bereitstellen ( Drurry 1987).
            3. Computergestützte Haltungsanalysen. Computer haben Haltungsanalysen in vielerlei Hinsicht unterstützt. Tragbare Computer und spezielle Programme ermöglichen eine einfache Aufzeichnung und schnelle Analyse von Körperhaltungen. Persson und Kilbom (1983) haben das Programm VIRA zur Untersuchung der oberen Extremitäten entwickelt; Kerguelen (1986) hat ein komplettes Aufzeichnungs- und Analysepaket für Arbeitsaufgaben produziert; Kivi und Mattila (1991) haben eine computergestützte OWAS-Version für Aufzeichnung und Analyse entworfen.

                 

                Video ist normalerweise ein integraler Bestandteil des Aufnahme- und Analyseprozesses. Das US National Institute for Occupational Safety and Health (NIOSH) hat Richtlinien für den Einsatz von Videomethoden in der Gefahrenanalyse vorgelegt (NIOSH 1990).

                Biomechanische und anthropometrische Computerprogramme bieten spezialisierte Werkzeuge zur Analyse einiger posturaler Elemente in der Arbeitstätigkeit und im Labor (z. B. Chaffin 1969).

                Faktoren, die die Arbeitshaltung beeinflussen

                Arbeitshaltungen dienen einem Ziel, einer Endgültigkeit außerhalb ihrer selbst. Deshalb beziehen sie sich auf äußere Arbeitsbedingungen. Haltungsanalysen, die das Arbeitsumfeld und die Aufgabe selbst nicht berücksichtigen, sind für Ergonomen nur von begrenztem Interesse.

                Die dimensionalen Eigenschaften des Arbeitsplatzes bestimmen weitgehend die Haltungen (wie bei einer sitzenden Tätigkeit), auch bei dynamischen Tätigkeiten (z. B. Materialhandhabung auf engstem Raum). Die zu handhabenden Lasten zwingen den Körper ebenso wie das Gewicht und die Beschaffenheit des Arbeitsgerätes in eine bestimmte Körperhaltung. Einige Aufgaben erfordern, dass das Körpergewicht verwendet wird, um ein Werkzeug zu stützen oder Kraft auf das Arbeitsobjekt auszuüben, wie beispielsweise in Abbildung 2 gezeigt.

                Abbildung 2. Ergonomische Aspekte des Stehens

                ERG080F4

                Individuelle Unterschiede, Alter und Geschlecht beeinflussen die Körperhaltung. Tatsächlich hat sich herausgestellt, dass eine „typische“ oder „beste“ Körperhaltung, beispielsweise bei der manuellen Handhabung, weitgehend Fiktion ist. Für jede Person und jede Arbeitssituation gibt es eine Reihe alternativer „bester“ Körperhaltungen nach unterschiedlichen Kriterien.

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                 

                Arbeitshilfen und Stützen für Arbeitshaltungen

                Gurte, Lordosenstützen und Orthesen werden für Aufgaben empfohlen, bei denen das Risiko von Rückenschmerzen oder Verletzungen des Bewegungsapparates der oberen Extremitäten besteht. Es wurde angenommen, dass diese Geräte die Muskeln unterstützen, indem sie zum Beispiel den intraabdominalen Druck oder Handbewegungen kontrollieren. Es wird auch erwartet, dass sie den Bewegungsbereich des Ellbogens, des Handgelenks oder der Finger einschränken. Es gibt keine Hinweise darauf, dass die Veränderung von Haltungselementen mit diesen Geräten helfen würde, Muskel-Skelett-Probleme zu vermeiden.

                Zur Linderung von Haltungsbelastungen und Schmerzen können Haltungshilfen am Arbeitsplatz und an Maschinen wie Haltegriffe, Stützpolster zum Knien und Sitzhilfen hilfreich sein.

                Sicherheits- und Gesundheitsvorschriften für Haltungselemente

                Körperhaltungen oder Haltungselemente waren nicht Gegenstand regulatorischer Aktivitäten an sich. Einige Dokumente enthalten jedoch entweder haltungsrelevante Aussagen oder nehmen die Frage der Körperhaltung als integralen Bestandteil einer Verordnung auf. Ein vollständiges Bild des bestehenden Regulierungsmaterials ist nicht verfügbar. Die folgenden Referenzen werden als Beispiele präsentiert.

                  1. Die Internationale Arbeitsorganisation veröffentlichte 1967 eine Empfehlung zu maximal zu handhabenden Lasten. Obwohl die Empfehlung die Haltungselemente als solche nicht regelt, hat sie einen erheblichen Einfluss auf die Haltungsbelastung. Die Empfehlung ist inzwischen veraltet, hat aber einen wichtigen Zweck erfüllt, indem sie die Aufmerksamkeit auf Probleme bei der manuellen Materialhandhabung gelenkt hat.
                  2. Die NIOSH Lifting Guidelines (NIOSH 1981) als solche sind ebenfalls keine Vorschriften, haben aber diesen Status erlangt. Die Richtlinien leiten Gewichtsgrenzen für Belastungen ab, indem sie den Ort der Belastung – ein Haltungselement – ​​zugrunde legen.
                  3. Sowohl in der Internationalen Organisation für Normung als auch in der Europäischen Gemeinschaft existieren Ergonomie-Normen und -Richtlinien, die sich auf Haltungselemente beziehen (CEN 1990 und 1991).

                   

                  Zurück

                  Sonntag, Januar 16 2011 16: 34

                  Genetische Toxikologie

                  Die genetische Toxikologie ist per Definition die Untersuchung, wie chemische oder physikalische Wirkstoffe den komplizierten Prozess der Vererbung beeinflussen. Genotoxische Chemikalien werden als Verbindungen definiert, die in der Lage sind, das Erbmaterial lebender Zellen zu verändern. Die Wahrscheinlichkeit, dass eine bestimmte Chemikalie genetische Schäden verursacht, hängt zwangsläufig von mehreren Variablen ab, einschließlich der Exposition des Organismus gegenüber der Chemikalie, der Verteilung und Retention der Chemikalie, sobald sie in den Körper gelangt, der Effizienz der Stoffwechselaktivierung und/oder der Entgiftungssysteme Zielgewebe und die Reaktivität der Chemikalie oder ihrer Metaboliten mit kritischen Makromolekülen in Zellen. Die Wahrscheinlichkeit, dass ein genetischer Schaden eine Krankheit verursacht, hängt letztendlich von der Art des Schadens, der Fähigkeit der Zelle, den genetischen Schaden zu reparieren oder zu verstärken, der Möglichkeit, die hervorgerufene Veränderung auszudrücken, und der Fähigkeit des Körpers ab, die Vermehrung zu erkennen und zu unterdrücken abweichende Zellen.

                  In höheren Organismen ist die Erbinformation in Chromosomen organisiert. Chromosomen bestehen aus eng kondensierten Strängen proteinassoziierter DNA. Innerhalb eines einzelnen Chromosoms existiert jedes DNA-Molekül als Paar langer, unverzweigter Ketten von Nukleotid-Untereinheiten, die durch Phosphodiester-Bindungen miteinander verbunden sind, die das 5-Kohlenstoffatom einer Desoxyribose-Einheit mit dem 3-Kohlenstoffatom des nächsten verbinden (Abbildung 1). Außerdem hängt an jeder Desoxyribose-Untereinheit eine von vier verschiedenen Nukleotidbasen (Adenin, Cytosin, Guanin oder Thymin) wie Perlen an einer Schnur. Dreidimensional bildet jedes Paar DNA-Stränge eine Doppelhelix, wobei alle Basen zum Inneren der Spirale ausgerichtet sind. Innerhalb der Helix ist jede Base mit ihrer komplementären Base auf dem gegenüberliegenden DNA-Strang verbunden; Wasserstoffbrückenbindungen diktieren eine starke, nichtkovalente Paarung von Adenin mit Thymin und Guanin mit Cytosin (Abbildung 1). Da die Sequenz der Nukleotidbasen über die gesamte Länge des Duplex-DNA-Moleküls komplementär ist, tragen beide Stränge im Wesentlichen die gleiche genetische Information. Tatsächlich dient während der DNA-Replikation jeder Strang als Matrize für die Produktion eines neuen Partnerstrangs.

                  Abbildung 1. Die (a) primäre, (b) sekundäre und (c) tertiäre Organisation menschlicher Erbinformationen

                  TOX090F1Unter Verwendung von RNA und einer Reihe verschiedener Proteine ​​entschlüsselt die Zelle letztendlich die Informationen, die durch die lineare Abfolge von Basen innerhalb spezifischer DNA-Regionen (Gene) codiert sind, und produziert Proteine, die für das grundlegende Überleben der Zelle sowie für normales Wachstum und Differenzierung unerlässlich sind. Im Wesentlichen funktionieren die Nukleotide wie ein biologisches Alphabet, das zur Codierung von Aminosäuren, den Bausteinen von Proteinen, verwendet wird.

                  Wenn falsche Nukleotide eingefügt werden oder Nukleotide verloren gehen oder wenn während der DNA-Synthese unnötige Nukleotide hinzugefügt werden, wird der Fehler als Mutation bezeichnet. Es wurde geschätzt, dass weniger als eine Mutation auf 10 auftritt9 Nukleotide, die während der normalen Replikation von Zellen eingebaut werden. Obwohl Mutationen nicht unbedingt schädlich sind, können Veränderungen, die eine Inaktivierung oder Überexpression wichtiger Gene verursachen, zu einer Vielzahl von Erkrankungen führen, darunter Krebs, Erbkrankheiten, Entwicklungsstörungen, Unfruchtbarkeit und embryonaler oder perinataler Tod. Sehr selten kann eine Mutation zu einem verbesserten Überleben führen; Solche Vorkommnisse sind die Grundlage der natürlichen Auslese.

                  Obwohl einige Chemikalien direkt mit DNA reagieren, erfordern die meisten eine metabolische Aktivierung. Im letzteren Fall sind letztlich elektrophile Zwischenprodukte wie Epoxide oder Carboniumionen für die Induktion von Läsionen an verschiedenen nukleophilen Stellen innerhalb des genetischen Materials verantwortlich (Abbildung 2). In anderen Fällen wird die Genotoxizität durch Nebenprodukte der Wechselwirkung von Verbindungen mit intrazellulären Lipiden, Proteinen oder Sauerstoff vermittelt.

                  Abbildung 2. Bioaktivierung von: a) Benzo(a)pyren; und b) N-Nitrosodimethylamin

                  TOX090F2

                  Aufgrund ihrer relativen Häufigkeit in Zellen sind Proteine ​​das häufigste Ziel von toxischen Wechselwirkungen. Die Modifikation der DNA ist jedoch aufgrund der zentralen Rolle dieses Moleküls bei der Regulierung des Wachstums und der Differenzierung über mehrere Generationen von Zellen von größerer Bedeutung.

                  Auf molekularer Ebene neigen elektrophile Verbindungen dazu, Sauerstoff und Stickstoff in der DNA anzugreifen. Die Stellen, die am anfälligsten für Modifikationen sind, sind in Abbildung 3 dargestellt. Obwohl Sauerstoffatome innerhalb von Phosphatgruppen im DNA-Rückgrat ebenfalls Ziele für chemische Modifikationen sind, wird angenommen, dass eine Schädigung von Basen biologisch relevanter ist, da diese Gruppen als die primäre Informationsquelle angesehen werden Elemente im DNA-Molekül.

                  Abbildung 3. Primärstellen chemisch induzierter DNA-Schäden

                  TOX090F3

                  Verbindungen, die eine elektrophile Einheit enthalten, üben typischerweise Genotoxizität aus, indem sie Monoaddukte in DNA erzeugen. In ähnlicher Weise können Verbindungen, die zwei oder mehr reaktive Einheiten enthalten, mit zwei verschiedenen nukleophilen Zentren reagieren und dadurch intra- oder intermolekulare Vernetzungen im genetischen Material erzeugen (Abbildung 4). DNA-DNA- und DNA-Protein-Crosslinks zwischen den Strängen können besonders zytotoxisch sein, da sie vollständige Blöcke für die DNA-Replikation bilden können. Aus offensichtlichen Gründen eliminiert der Tod einer Zelle die Möglichkeit, dass sie mutiert oder neoplastisch transformiert wird. Genotoxische Mittel können auch wirken, indem sie Brüche im Phosphodiester-Rückgrat oder zwischen Basen und Zuckern (die abasische Stellen erzeugen) in der DNA induzieren. Solche Brüche können ein direktes Ergebnis chemischer Reaktivität an der Schadensstelle sein oder können während der Reparatur einer der oben erwähnten Arten von DNA-Läsion auftreten.

                  Abbildung 4. Verschiedene Arten von Schäden am Protein-DNA-Komplex

                  TOX090F4

                  In den letzten dreißig bis vierzig Jahren wurde eine Vielzahl von Techniken entwickelt, um die Art der genetischen Schädigung zu überwachen, die durch verschiedene Chemikalien hervorgerufen wird. Solche Assays werden an anderer Stelle in diesem Kapitel und ausführlich beschrieben Enzyklopädie.

                  Die Fehlreplikation von „Mikroläsionen“ wie Monoaddukten, abasischen Stellen oder Einzelstrangbrüchen kann letztendlich zu Nukleotidbasenpaarsubstitutionen oder der Insertion oder Deletion kurzer Polynukleotidfragmente in chromosomaler DNA führen. Im Gegensatz dazu können „Makroläsionen“ wie sperrige Addukte, Quervernetzungen oder Doppelstrangbrüche den Gewinn, Verlust oder die Neuanordnung relativ großer Chromosomenstücke auslösen. In jedem Fall können die Folgen für den Organismus verheerend sein, da jedes dieser Ereignisse zu Zelltod, Funktionsverlust oder bösartiger Transformation von Zellen führen kann. Wie genau DNA-Schäden Krebs verursachen, ist weitgehend unbekannt. Es wird derzeit angenommen, dass der Prozess eine unangemessene Aktivierung von Proto-Onkogenen beinhalten kann, wie z myc und rasund/oder Inaktivierung kürzlich identifizierter Tumorsuppressorgene wie p53. Eine anormale Expression beider Gentypen setzt normale zelluläre Mechanismen zur Kontrolle der Zellproliferation und/oder -differenzierung außer Kraft.

                  Die überwiegende Anzahl experimenteller Beweise weist darauf hin, dass die Entwicklung von Krebs nach Exposition gegenüber elektrophilen Verbindungen ein relativ seltenes Ereignis ist. Dies kann teilweise durch die intrinsische Fähigkeit der Zelle erklärt werden, beschädigte DNA zu erkennen und zu reparieren, oder durch das Versagen von Zellen mit beschädigter DNA zu überleben. Während der Reparatur wird die beschädigte Base, das Nukleotid oder der kurze Nukleotidabschnitt, der die beschädigte Stelle umgibt, entfernt und (unter Verwendung des gegenüberliegenden Strangs als Vorlage) wird ein neues DNA-Stück synthetisiert und an Ort und Stelle gespleißt. Um effektiv zu sein, muss die DNA-Reparatur mit großer Genauigkeit vor der Zellteilung erfolgen, bevor Gelegenheiten für die Ausbreitung von Mutationen bestehen.

                  Klinische Studien haben gezeigt, dass Menschen mit angeborenen Defekten in der Fähigkeit, beschädigte DNA zu reparieren, häufig in einem frühen Alter an Krebs und/oder Entwicklungsanomalien erkranken (Tabelle 1). Solche Beispiele liefern starke Beweise dafür, dass die Akkumulation von DNA-Schäden mit menschlichen Krankheiten in Verbindung gebracht wird. In ähnlicher Weise fördern Wirkstoffe, die die Zellproliferation fördern (wie Tetradecanoylphorbolacetat), häufig die Karzinogenese. Bei diesen Verbindungen kann die erhöhte Wahrscheinlichkeit einer neoplastischen Transformation eine direkte Folge einer Verringerung der Zeit sein, die der Zelle zur Durchführung einer angemessenen DNA-Reparatur zur Verfügung steht.

                  Tabelle 1. Erbliche, krebsanfällige Erkrankungen, die Defekte in der DNA-Reparatur zu beinhalten scheinen

                  Syndrom Symptome Zellulärer Phänotyp
                  Ataxie teleangiektasie Neurologische Verschlechterung
                  Immunschwäche
                  Hohe Inzidenz von Lymphomen
                  Überempfindlichkeit gegen ionisierende Strahlung und bestimmte Alkylierungsmittel.
                  Dysregulierte Replikation beschädigter DNA (kann auf eine verkürzte Zeit für die DNA-Reparatur hinweisen)
                  Bloom-Syndrom Entwicklungsstörungen
                  Läsionen auf exponierter Haut
                  Hohe Inzidenz von Tumoren des Immunsystems und des Magen-Darm-Trakts
                  Hohe Häufigkeit von Chromosomenaberrationen
                  Defekte Ligation von Brüchen im Zusammenhang mit der DNA-Reparatur
                  Fanconis Anämie Wachstumsverzögerung
                  Hohe Inzidenz von Leukämie
                  Überempfindlichkeit gegen Vernetzungsmittel
                  Hohe Häufigkeit von Chromosomenaberrationen
                  Defekte Reparatur von Quervernetzungen in DNA
                  Erblicher Dickdarmkrebs ohne Polyposis Hohe Inzidenz von Dickdarmkrebs Defekt in der DNA-Mismatch-Reparatur (wenn während der Replikation ein falsches Nukleotid eingefügt wird)
                  Mondscheinkrankheit Hohe Inzidenz von Epitheliomen auf exponierten Hautbereichen
                  Neurologische Beeinträchtigung (in vielen Fällen)
                  Überempfindlichkeit gegen UV-Licht und viele chemische Karzinogene
                  Defekte bei der Exzisionsreparatur und/oder Replikation beschädigter DNA

                   

                  Die frühesten Theorien darüber, wie Chemikalien mit DNA interagieren, lassen sich auf Studien zurückführen, die während der Entwicklung von Senfgas für den Einsatz in der Kriegsführung durchgeführt wurden. Weiteres Verständnis erwuchs aus den Bemühungen, Antikrebsmittel zu identifizieren, die selektiv die Replikation von sich schnell teilenden Tumorzellen stoppen würden. Die zunehmende Besorgnis der Öffentlichkeit über Gefahren in unserer Umwelt hat zu zusätzlicher Forschung über die Mechanismen und Folgen der chemischen Wechselwirkung mit dem genetischen Material geführt. Beispiele für verschiedene Arten von Chemikalien, die genotoxisch wirken, sind in Tabelle 2 aufgeführt.

                  Tabelle 2. Beispiele für Chemikalien, die in menschlichen Zellen Genotoxizität zeigen

                  Klasse der Chemikalie Beispiel Quelle der Exposition Wahrscheinlich genotoxische Läsion
                  Aflatoxine Aflatoxin B1 Kontaminiertes Essen Sperrige DNA-Addukte
                  Aromatische Amine 2-Acetylaminofluoren Umwelt Sperrige DNA-Addukte
                  Aziridinchinone Mitomycin C Chemotherapie bei Krebs Monoaddukte, Quervernetzungen zwischen den Strängen und Einzelstrangbrüche in der DNA.
                  Chlorierte Kohlenwasserstoffe Vinylchlorid Umwelt Monoaddukte in DNA
                  Metalle und Metallverbindungen Cisplatin Chemotherapie bei Krebs Sowohl Intra- als auch Interstrang-Crosslinks in DNA
                    Nickelverbindungen Umwelt Monoaddukte und Einzelstrangbrüche in der DNA
                  Stickstoffsenf Cyclophosphamid Chemotherapie bei Krebs Monoaddukte und Quervernetzungen zwischen den Strängen in der DNA
                  Nitrosamine N-Nitrosodimethylamin Kontaminiertes Essen Monoaddukte in DNA
                  Polyzyklische aromatische Kohlenwasserstoffe Benzo (a) pyren Umwelt Sperrige DNA-Addukte

                   

                  Zurück

                  Seite 2 von 7

                  HAFTUNGSAUSSCHLUSS: Die ILO übernimmt keine Verantwortung für auf diesem Webportal präsentierte Inhalte, die in einer anderen Sprache als Englisch präsentiert werden, der Sprache, die für die Erstproduktion und Peer-Review von Originalinhalten verwendet wird. Bestimmte Statistiken wurden seitdem nicht aktualisiert die Produktion der 4. Auflage der Encyclopaedia (1998)."

                  Inhalte