Bannière GeneralHazard

Catégories Enfants

36. Augmentation de la pression barométrique

36. Pression barométrique augmentée (2)

6 bannière

 

 

36. Augmentation de la pression barométrique

 

Éditeur de chapitre : TJR François

 


Table des matières

Tables

 

Travailler sous une pression barométrique accrue

Éric Kindwall

 

Troubles de décompression

Dees F.Gorman

 

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Instructions pour les travailleurs de l'air comprimé
2. Maladie de décompression : classification révisée

Voir les articles ...
37. Pression barométrique réduite

37. Pression barométrique réduite (4)

6 bannière

 

37. Pression barométrique réduite

Éditeur de chapitre :  Walter Dummer


Table des matières

Figures et tableaux

Acclimatation ventilatoire à la haute altitude
John T. Reeves et John V. Weil

Effets physiologiques de la pression barométrique réduite
Kenneth I. Berger et William N. Rom

Considérations sanitaires pour la gestion du travail à haute altitude
John B. Ouest

Prévention des risques professionnels en haute altitude
Walter Dummer

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

 

BA1020F1BA1020F3BA1020F4BA1020F5BA1030T1BA1030F1BA1030F2

Voir les articles ...
38. Dangers biologiques

38. Dangers biologiques (4)

6 bannière

 

38. Dangers biologiques

Éditeur de chapitre : Zuheir Ibrahim Fakhri


Table des matières

Tables

Risques biologiques sur le lieu de travail
Zuheir I. Fakhri

Animaux aquatiques
D.Zannini

Animaux venimeux terrestres
JA Rioux et B. Juminer

Caractéristiques cliniques de la morsure de serpent
David A. Warrell

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Milieux de travail avec agents biologiques
2. Virus, bactéries, champignons et plantes sur le lieu de travail
3. Les animaux comme source de risques professionnels

Voir les articles ...
39. Catastrophes naturelles et technologiques

39. Catastrophes naturelles et technologiques (12)

6 bannière

 

39. Catastrophes naturelles et technologiques

Éditeur de chapitre : Quai Alberto Bertazzi


Table des matières

Tableaux et figures

Catastrophes et accidents majeurs
Quai Alberto Bertazzi

     Convention de l'OIT concernant la prévention des accidents industriels majeurs, 1993 (n° 174)

Préparation aux catastrophes
Peter J.Baxter

Activités post-catastrophe
Benedetto Terracini et Ursula Ackermann-Liebrich

Problèmes liés aux conditions météorologiques
jean français

Avalanches : dangers et mesures de protection
Gustav Pointtingl

Transport de matières dangereuses : chimiques et radioactives
Donald M.Campbell

Accidents radiologiques
Pierre Verger et Denis Winter

     Étude de cas : Que signifie dose ?

Mesures de santé et de sécurité au travail dans les zones agricoles contaminées par des radionucléides : l'expérience de Tchernobyl
Yuri Kundiev, Leonard Dobrovolsky et VI Chernyuk

Étude de cas : L'incendie de l'usine de jouets Kader
Subvention Casey Cavanaugh

Impacts des catastrophes : leçons d'un point de vue médical
José Luis Zeballos
 

 

 

 

Tables

 

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

 

1. Définitions des types de catastrophes
2. Nombre moyen de victimes sur 25 ans par type et région-déclencheur naturel
3. Nombre moyen de victimes sur 25 ans par type et région - déclencheur non naturel
4. Nombre moyen de victimes sur 25 ans par type de déclencheur naturel (1969-1993)
5. Nombre moyen de victimes sur 25 ans par type de déclencheur non naturel (1969-1993)
6. Déclencheur naturel de 1969 à 1993 : événements sur 25 ans
7. Déclencheur non naturel de 1969 à 1993 : événements sur 25 ans
8. Déclencheur naturel : Nombre par région mondiale et type en 1994
9. Déclencheur non naturel : nombre par région du monde et type en 1994
10. Exemples d'explosions industrielles
11. Exemples d'incendies majeurs
12. Exemples de rejets toxiques majeurs
13. Rôle de la gestion des installations à risques majeurs dans la maîtrise des risques
14. Méthodes de travail pour l'évaluation des dangers
15. Critères de la directive CE pour les installations à risques majeurs
16. Produits chimiques prioritaires utilisés pour identifier les installations à risques majeurs
17. Risques professionnels liés aux conditions météorologiques
18. Radionucléides typiques, avec leurs demi-vies radioactives
19. Comparaison de différents accidents nucléaires
20. Contamination en Ukraine, Biélorussie et Russie après Tchernobyl
21. Contamination strontium-90 après l'accident de Khyshtym (Oural 1957)
22. Sources radioactives impliquant le grand public
23. Principaux accidents impliquant des irradiateurs industriels
24. Registre des accidents radiologiques d'Oak Ridge (États-Unis) (mondial, 1944-88)
25. Schéma d'exposition professionnelle aux rayonnements ionisants dans le monde
26. Effets déterministes : seuils pour certains organes
27. Patients atteints du syndrome d'irradiation aiguë (AIS) après Tchernobyl
28. Études épidémiologiques sur le cancer de l'irradiation externe à haute dose
29. Cancers de la thyroïde chez les enfants en Biélorussie, en Ukraine et en Russie, 1981-94
30. Échelle internationale des incidents nucléaires
31. Mesures de protection génériques pour la population générale
32. Critères pour les zones de contamination
33. Catastrophes majeures en Amérique latine et dans les Caraïbes, 1970-93
34. Pertes dues à six catastrophes naturelles
35. Hôpitaux et lits d'hôpitaux endommagés/détruits par 3 catastrophes majeures
36. Victimes dans 2 hôpitaux effondrés par le tremblement de terre de 1985 au Mexique
37. Lits d'hôpitaux perdus à la suite du tremblement de terre chilien de mars 1985
38. Facteurs de risque de dommages sismiques aux infrastructures hospitalières

 

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

 

 

 

 

DIS010F2DIS010F1DIS010T2DIS020F1DIS080F1DIS080F2DIS080F3DIS080F4DIS080F5DIS080F6DIS080F7DIS090T2DIS095F1DIS095F2

 


 

Cliquez pour revenir en haut de la page

 

Voir les articles ...
40. Électricité

40. Électricité (3)

6 bannière

 

40. Électricité

Éditeur de chapitre :  Dominique Folliot

 


 

Table des matières 

Figures et tableaux

Électricité—Effets physiologiques
Dominique Folliot

Électricité statique
Claude Menguy

Prévention et normes
Renzo Comini

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Estimations du taux d'électrocution-1988
2. Relations de base en électrostatique-Collection d'équations
3. Affinités électroniques de polymères sélectionnés
4. Limites inférieures d'inflammabilité typiques
5. Redevance spécifique associée à certaines opérations industrielles
6. Exemples d'équipements sensibles aux décharges électrostatiques

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

ELE030F1ELE030F2ELE040F1

Voir les articles ...
41. Feu

41. Incendie (6)

6 bannière

 

41. Feu

Éditeur de chapitre :  Casey C.Grant


 

Table des matières 

Figures et tableaux

Concepts de base
Dougal Drysdale

Sources de risques d'incendie
Tamás Banky

Mesures de prévention des incendies
Peter F.Johnson

Mesures passives de protection contre l'incendie
Yngve Anderberg

Mesures actives de protection contre l'incendie
Gary Taylor

Organisation pour la protection contre les incendies
S. Dheri

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Limites inférieure et supérieure d'inflammabilité dans l'air
2. Points d'éclair et points de feu des combustibles liquides et solides
3. Sources d'allumage
4. Comparaison des concentrations des différents gaz nécessaires à l'inertage

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

FIR010F1FIR010F2FIR020F1FIR040F1FIR040F2FIR040F3FIR050F4FIR050F1FIR050F2FIR050F3FIR060F3

Voir les articles ...
42. Chaleur et froid

42. Chaleur et froid (12)

6 bannière

 

42. Chaleur et froid

Éditeur de chapitre :  Jean-Jacques Vogt


 

Table des matières 

Figures et tableaux

Réponses physiologiques à l'environnement thermique
W.Larry Kenney

Effets du stress thermique et du travail dans la chaleur
Bodil Nielsen

Troubles liés à la chaleur
Tokuo Ogawa

Prévention du stress thermique
Sarah A. Nunneley

La base physique du travail dans la chaleur
Jacques Malchaire

Évaluation du stress thermique et des indices de stress thermique
Kenneth C.Parsons

     Étude de cas : Indices de chaleur : formules et définitions

Échange de chaleur à travers les vêtements
Wouter A.Lotens

     Formules et définitions

Environnements froids et travail à froid
Ingvar Holmer, Per-Ola Granberg et Goran Dahlstrom

Prévention du stress dû au froid dans des conditions extérieures extrêmes
Jacques Bittel et Gustave Savourey

Indices et normes de froid
Ingvar Holmer

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Concentration d'électrolytes dans le plasma sanguin et la sueur
2. Indice de stress thermique et durées d'exposition admissibles : calculs
3. Interprétation des valeurs de l'indice de stress thermique
4. Valeurs de référence pour les critères de contrainte thermique et de déformation
5. Modèle utilisant la fréquence cardiaque pour évaluer le stress thermique
6. Valeurs de référence WBGT
7. Pratiques de travail pour les environnements chauds
8. Calcul de l'indice SWreq & méthode d'évaluation : équations
9. Description des termes utilisés dans l'ISO 7933 (1989b)
10. Valeurs WBGT pour quatre phases de travail
11. Données de base pour l'évaluation analytique selon ISO 7933
12. Évaluation analytique selon ISO 7933
13. Températures de l'air de divers environnements professionnels froids
14. Durée du stress dû au froid non compensé et réactions associées
15. Indication des effets anticipés d'une exposition au froid léger et sévère
16. Température des tissus corporels et performances physiques humaines
17. Réponses humaines au refroidissement : réactions indicatives à l'hypothermie
18. Recommandations sanitaires pour le personnel exposé au stress du froid
19. Programmes de conditionnement pour les travailleurs exposés au froid
20. Prévention et atténuation du stress dû au froid : stratégies
21. Stratégies et mesures liées à des facteurs et équipements spécifiques
22. Mécanismes généraux d'adaptation au froid
23. Nombre de jours où la température de l'eau est inférieure à 15 ºC
24. Températures de l'air de divers environnements professionnels froids
25. Classification schématique du travail à froid
26. Classification des niveaux de taux métabolique
27. Exemples de valeurs d'isolation de base des vêtements
28. Classification de la résistance thermique au refroidissement des gants
29. Classification de la résistance thermique de contact des gants
30. Indice de refroidissement éolien, température et temps de congélation de la chair exposée
31. Pouvoir refroidissant du vent sur la chair exposée

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

HEA030F1HEA050F1HEA010F1HEA080F1HEA080F2HEA080F3HEA020F1HEA020F2HEA020F3HEA020F4HEA020F5HEA020F6HEA020F7HEA090F1HEA090F2HEA090F3HEA090T4HEA090F4HEA090T8HEA090F5HEA110F1HEA110F2HEA110F3HEA110F4HEA110F5HEA110F6


Cliquez pour revenir en haut de la page

Voir les articles ...
43. Heures de travail

43. Heures de travail (1)

6 bannière

 

43. Heures de travail

Éditeur de chapitre :  Pierre Knauth


 

Table des matières 

Heures de travail
Pierre Knauth

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Intervalles de temps depuis le début du travail posté jusqu'à trois maladies
2. Travail posté et incidence des troubles cardiovasculaires

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

HOU010F1HOU010T3HOU010F2HOU10F2BHOU010F3HOU010F4HOU010F5HOU010F6HOU010F7

Voir les articles ...
44. Qualité de l'air intérieur

44. Qualité de l'air intérieur (8)

6 bannière

 

44. Qualité de l'air intérieur

Éditeur de chapitre :  Xavier Guardino Sola


 

Table des matières 

Figures et tableaux

Qualité de l'air intérieur : introduction
Xavier Guardino Sola

Nature et sources des contaminants chimiques intérieurs
Derrick Crump

Radon
Maria José Berenguer

Fumée de tabac
Dietrich Hoffmann et Ernst L. Wynder

Règlement sur le tabagisme
Xavier Guardino Sola

Mesure et évaluation des polluants chimiques
M. Gracia Rosell Farras

Contamination biologique
Brian Flannigan

Règlements, recommandations, lignes directrices et normes
Maria José Berenguer

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Classification des polluants organiques intérieurs
2. Émission de formaldéhyde à partir d'une variété de matériaux
3. Tttl. composés organiques volatils concs, revêtements de mur/sol
4. Produits de consommation et autres sources de composés organiques volatils
5. Principaux types et concentrations dans le Royaume-Uni urbain
6. Mesures sur le terrain des oxydes d'azote et du monoxyde de carbone
7. Agents toxiques et tumorigènes dans la fumée secondaire de cigarette
8. Agents toxiques et tumorigènes de la fumée de tabac
9. Cotinine urinaire chez les non-fumeurs
10. Méthodologie de prélèvement des échantillons
11. Méthodes de détection des gaz dans l'air intérieur
12. Méthodes utilisées pour l'analyse des polluants chimiques
13. Limites de détection inférieures pour certains gaz
14. Types de champignons pouvant causer une rhinite et/ou de l'asthme
15. Micro-organismes et alvéolite allergique extrinsèque
16. Micro-organismes dans l'air intérieur non industriel et la poussière
17. Normes de qualité de l'air établies par l'US EPA
18. Directives de l'OMS pour les nuisances non cancéreuses et non olfactives
19. Valeurs guides de l'OMS basées sur les effets sensoriels ou la gêne
20. Valeurs de référence pour le radon de trois organisations

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

AIR010T1AIR010F1AIR030T7AIR035F1AIR050T1


Cliquez pour revenir en haut de la page

Voir les articles ...
45. Contrôle de l'environnement intérieur

45. Contrôle de l'environnement intérieur (6)

6 bannière

 

45. Contrôle de l'environnement intérieur

Éditeur de chapitre :  Juan Guasch Farras

 


 

Table des matières 

Figures et tableaux

Contrôle des environnements intérieurs : principes généraux
A. Hernández Calleja

Air intérieur : méthodes de contrôle et de nettoyage
E. Adán Liébana et A. Hernández Calleja

Objectifs et principes de la ventilation générale et par dilution
Emilio Castejon

Critères de ventilation pour les bâtiments non industriels
A. Hernández Calleja

Systèmes de chauffage et de climatisation
F. Ramos Pérez et J. Guasch Farrás

Air intérieur : Ionisation
E. Adán Liébana et J. Guasch Farrás

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Les polluants intérieurs les plus courants et leurs sources
2. Exigences de base-système de ventilation à dilution
3. Mesures de contrôle et leurs effets
4. Ajustements à l'environnement de travail et aux effets
5. Efficacité des filtres (norme ASHRAE 52-76)
6. Réactifs utilisés comme absorbants pour les contaminants
7. Niveaux de qualité de l'air intérieur
8. Contamination due aux occupants d'un bâtiment
9. Degré d'occupation des différents bâtiments
10. Contamination due au bâtiment
11. Niveaux de qualité de l'air extérieur
12. Normes proposées pour les facteurs environnementaux
13. Températures de confort thermique (basées sur Fanger)
14. Caractéristiques des ions

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

IEN010F1IEN010F2IEN010F3IEN030F1IEN030F2IEN040F1IEN040F2IEN040F3IEN040F4IEN050F1IEN050F3IEN050F7IEN050F8


Cliquez pour revenir en haut de la page

Voir les articles ...
47. bruit

47. Bruit (5)

6 bannière

 

47. bruit

Éditeur de chapitre :  Alice H.Suter


 

Table des matières 

Figures et tableaux

La nature et les effets du bruit
Alice H.Suter

Mesure du bruit et évaluation de l'exposition
Eduard I. Denisov et German A. Suvorov

Contrôle du bruit d'ingénierie
Dennis P. Driscoll

Programmes de préservation de l'ouïe
Larry H.Royster et Julia Doswell Royster

Normes et réglementations
Alice H.Suter

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Limites d'exposition admissibles (PEL) pour l'exposition au bruit, par pays

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

NOI010T1NOI050F6NOI050F7NOI060F1NOI060F2NOI060F3NOI060F4NOI070F1NOI070T1

Voir les articles ...
48. Rayonnement : Ionisant

48. Rayonnement : Ionisant (6)

6 bannière

 

48. Rayonnement : Ionisant

Éditeur de chapitre : Robert N. Cherry, Jr.


 

Table des matières

Introduction
Robert N. Cherry, Jr.

Biologie des rayonnements et effets biologiques
Arthur C.Upton

Sources de rayonnement ionisant
Robert N. Cherry, Jr.

Conception du lieu de travail pour la radioprotection
Gordon M.Lodde

Radioprotection
Robert N. Cherry, Jr.

Planification et gestion des accidents radiologiques
Sydney W. Porter, Jr.

Voir les articles ...
49. Rayonnement, non ionisant

49. Rayonnement, non ionisant (9)

6 bannière

 

49. Rayonnement, non ionisant

Éditeur de chapitre :  Bengt Knave


 

Table des matières 

Tableaux et figures

Champs électriques et magnétiques et résultats pour la santé
Bengt Knave

Le spectre électromagnétique : caractéristiques physiques de base
Kjell Hansson Doux

Rayonnement ultraviolet
David H.Sliney

Rayonnement infrarouge
R.Matthes

Rayonnement lumineux et infrarouge
David H.Sliney

Lasers
David H.Sliney

Champs radiofréquences et micro-ondes
Kjell Hansson Doux

Champs électriques et magnétiques VLF et ELF
Michael H. Repacholi

Champs électriques et magnétiques statiques
Martino Grandolfo

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Sources et expositions aux IR
2. Fonction de risque thermique rétinien
3. Limites d'exposition pour les lasers typiques
4. Applications d'équipement utilisant la gamme > 0 à 30 kHz
5. Sources professionnelles d'exposition aux champs magnétiques
6. Effets des courants traversant le corps humain
7. Effets biologiques de diverses plages de densité de courant
8. Limites d'exposition professionnelle - champs électriques/magnétiques
9. Études sur des animaux exposés à des champs électriques statiques
10. Technologies majeures et grands champs magnétiques statiques
11. Recommandations de l'ICNIRP pour les champs magnétiques statiques

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

ELF010F1ELF010F2ELF020T1ELF040F1ELF040F2ELF040F3ELF060F1ELF060F2


Cliquez pour revenir en haut de la page

Voir les articles ...
52. Unités d'affichage visuel

52. Unités d'affichage visuel (11)

6 bannière

 

52. Unités d'affichage visuel

Éditeur de chapitre :  Diane Berthelette


 

Table des matières 

Tableaux et figures

Vue d’ensemble
Diane Berthelette

Caractéristiques des postes de travail à affichage visuel
Ahmet Çakir

Problèmes oculaires et visuels
Paule Rey et Jean Jacques Meyer

Dangers pour la reproduction - Données expérimentales
Ulf Bergqvist

Effets sur la reproduction - Preuve humaine
Claire Infante-Rivard

     Étude de cas : résumé des études sur les résultats de la reproduction

Troubles musculo-squelettiques
Gabrielle Bammer

Problèmes de peau
Mats Berg et Sture Lidén

Aspects psychosociaux du travail sur écran
Michael J. Smith et Pascale Carayon

Aspects ergonomiques de l'interaction homme-ordinateur
Jean Marc Robert

Normes d'ergonomie
Tom FM Stewart

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Distribution d'ordinateurs dans diverses régions
2. Fréquence & importance des éléments d'équipement
3. Prévalence des symptômes oculaires
4. Etudes tératologiques chez le rat ou la souris
5. Etudes tératologiques chez le rat ou la souris
6. L'utilisation d'écrans de visualisation comme facteur d'issue défavorable de la grossesse
7. Analyses pour étudier les causes des problèmes musculo-squelettiques
8. Facteurs supposés causer des problèmes musculo-squelettiques

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

Écran VDU020F1Écran VDU020F2Écran VDU020F3Écran VDU020F4Écran VDU020F5Écran VDU020F6Écran VDU030F1

Écran VDU040F1Écran VDU080F1Écran VDU080F2Écran VDU100F1Écran VDU100F2


Cliquez pour revenir en haut de la page

Voir les articles ...
Vendredi, Février 25 2011 16: 57

Avalanches : dangers et mesures de protection

Depuis que les gens ont commencé à s'installer dans les régions montagneuses, ils ont été exposés aux risques spécifiques liés à la vie en montagne. Parmi les dangers les plus redoutables figurent les avalanches et les glissements de terrain, qui ont fait des victimes jusqu'à nos jours.

Lorsque les montagnes sont recouvertes de plusieurs pieds de neige en hiver, sous certaines conditions, une masse de neige couchée comme une épaisse couverture sur les pentes abruptes ou les sommets des montagnes peut se détacher du sol en dessous et glisser vers le bas sous son propre poids. Cela peut entraîner d'énormes quantités de neige dévalant la route la plus directe et se déposant dans les vallées en contrebas. L'énergie cinétique ainsi libérée produit de dangereuses avalanches, qui emportent, écrasent ou enfouissent tout sur leur passage.

Les avalanches peuvent être divisées en deux catégories selon le type et l'état de la neige en cause : les avalanches de neige sèche ou de « poussière » et les avalanches de neige mouillée ou de « sol ». Les premiers sont dangereux à cause des ondes de choc qu'ils déclenchent, les seconds à cause de leur volume, dû à l'humidité ajoutée dans la neige mouillée, aplatissant tout au fur et à mesure que l'avalanche dévale, souvent à grande vitesse, et emportant parfois des sections du sous-sol.

Des situations particulièrement dangereuses peuvent survenir lorsque la neige sur de grandes pentes exposées du côté au vent de la montagne est compactée par le vent. Il forme alors souvent un couvercle, maintenu en surface seulement, comme un rideau suspendu par le haut, et reposant sur une base qui peut produire l'effet de roulements à billes. Si une «coupe» est faite dans une telle couverture (par exemple, si un skieur quitte une piste en travers de la pente), ou si pour une raison quelconque, cette couverture très mince est déchirée (par exemple, par son propre poids), alors l'ensemble une étendue de neige peut glisser vers le bas comme une planche, se transformant généralement en avalanche au fur et à mesure de sa progression.

A l'intérieur de l'avalanche, une énorme pression peut se former, qui peut emporter, briser ou écraser des locomotives ou des bâtiments entiers comme s'il s'agissait de jouets. Que les êtres humains aient très peu de chances de survivre dans un tel enfer est évident, sachant que quiconque n'est pas écrasé à mort est susceptible de mourir d'étouffement ou de froid. Il n'est donc pas surprenant, dans les cas où des personnes ont été ensevelies dans des avalanches, que, même si elles sont retrouvées immédiatement, environ 20 % d'entre elles soient déjà mortes.

La topographie et la végétation de la région obligeront les masses de neige à suivre des itinéraires établis en descendant vers la vallée. Les habitants de la région le savent par observation et par tradition, et se tiennent donc à l'écart de ces zones dangereuses en hiver.

Autrefois, le seul moyen d'échapper à ces dangers était d'éviter de s'y exposer. Des fermes et des colonies ont été construites dans des endroits où les conditions topographiques étaient telles qu'aucune avalanche ne pouvait se produire, ou dont des années d'expérience avaient montré qu'elles étaient très éloignées de tout couloir d'avalanche connu. Les gens évitaient même complètement les zones de montagne pendant la période de danger.

Les forêts du haut des versants offrent également une protection considérable contre de telles catastrophes naturelles, car elles supportent les masses de neige dans les zones menacées et peuvent freiner, arrêter ou détourner les avalanches déjà déclenchées, à condition qu'elles n'aient pas pris trop d'élan.

Néanmoins, l'histoire des pays montagneux est rythmée par des catastrophes à répétition provoquées par des avalanches, qui ont prélevé et prélèvent encore un lourd tribut en vies humaines et en biens. D'une part, la vitesse et l'élan de l'avalanche sont souvent sous-estimés. D'autre part, les avalanches suivront parfois des trajectoires qui, sur la base de siècles d'expérience, n'ont pas été considérées auparavant comme des trajectoires d'avalanche. Certaines conditions météorologiques défavorables, associées à une qualité particulière de la neige et à l'état du sol sous-jacent (par exemple, végétation endommagée ou érosion ou relâchement du sol à la suite de fortes pluies) produisent des circonstances qui peuvent conduire à l'un de ces "désastres". du siècle ».

Le fait qu'une zone soit particulièrement exposée à la menace d'avalanche dépend non seulement des conditions météorologiques, mais encore plus de la stabilité de la couverture neigeuse et du fait que la zone en question se situe ou non dans l'un des couloirs d'avalanche habituels. ou points de vente. Il existe des cartes spéciales montrant les zones où des avalanches sont connues pour s'être produites ou sont susceptibles de se produire en raison de caractéristiques topographiques, en particulier les trajectoires et les débouchés des avalanches fréquentes. La construction est interdite dans les zones à risques.

Cependant, ces mesures de précaution ne suffisent plus aujourd'hui car, malgré l'interdiction de construire dans certaines zones et toutes les informations disponibles sur les dangers, un nombre croissant de personnes sont toujours attirées par les régions montagneuses pittoresques, provoquant de plus en plus de constructions même dans zones connues pour être dangereuses. Outre ce non-respect ou contournement des interdictions de construire, l'une des manifestations de la société moderne des loisirs est que des milliers de touristes se rendent en montagne pour faire du sport et des loisirs en hiver, et là même où les avalanches sont quasiment préprogrammées. La piste de ski idéale est raide, libre d'obstacles et doit avoir un tapis de neige suffisamment épais, conditions idéales pour le skieur, mais aussi pour que la neige descende dans la vallée.

Si, toutefois, les risques ne peuvent être évités ou sont, dans une certaine mesure, consciemment acceptés comme un "effet secondaire" indésirable du plaisir tiré du sport, il devient alors nécessaire de développer des voies et moyens pour faire face à ces dangers d'une autre manière.

Pour améliorer les chances de survie des personnes ensevelies dans les avalanches, il est essentiel de prévoir des services de secours bien organisés, des téléphones d'urgence à proximité des localités à risque et des informations à jour pour les autorités et les touristes sur la situation qui prévaut dans les zones dangereuses. . Des systèmes d'alerte précoce et une excellente organisation des services de secours avec le meilleur équipement possible peuvent augmenter considérablement les chances de survie des personnes ensevelies dans les avalanches, tout en réduisant l'étendue des dégâts.

Mesures protectives

Diverses méthodes de protection contre les avalanches ont été développées et testées dans le monde entier, telles que les services d'alerte transfrontaliers, les barrières ou encore le déclenchement artificiel d'avalanches par dynamitage ou tir au canon au-dessus des champs de neige.

La stabilité de la couverture de neige est essentiellement déterminée par le rapport entre la contrainte mécanique et la densité. Cette stabilité peut varier considérablement selon le type de contrainte (par exemple, pression, tension, cisaillement) dans une région géographique (par exemple, la partie du champ de neige où une avalanche pourrait se déclencher). Les contours, l'ensoleillement, les vents, la température et les perturbations locales de la structure de la couverture de neige - résultant de rochers, de skieurs, de chasse-neige ou d'autres véhicules - peuvent également affecter la stabilité. La stabilité peut donc être réduite par une intervention locale délibérée telle que le dynamitage, ou augmentée par l'installation de supports ou de barrières supplémentaires. Ces mesures, qui peuvent être permanentes ou temporaires, sont les deux principaux moyens de protection contre les avalanches.

Les mesures permanentes comprennent des structures efficaces et durables, des barrières de soutien dans les zones où l'avalanche pourrait se déclencher, des barrières de déviation ou de freinage sur le couloir d'avalanche et des barrières de blocage dans la zone de sortie des avalanches. Les mesures de protection temporaires ont pour but de sécuriser et de stabiliser les zones où une avalanche pourrait se déclencher en déclenchant délibérément des avalanches plus petites et limitées pour enlever les quantités dangereuses de neige par tronçons.

Les barrières de soutien augmentent artificiellement la stabilité du manteau neigeux dans les zones potentielles d'avalanche. Les barrières anti-dérive, qui empêchent la neige supplémentaire d'être transportée par le vent vers la zone d'avalanche, peuvent renforcer l'effet des barrières de soutien. Des barrières de déviation et de freinage sur le couloir d'avalanche et des barrières de blocage dans la zone de sortie d'avalanche peuvent dévier ou ralentir la masse de neige descendante et raccourcir la distance d'écoulement devant la zone à protéger. Les barrières de soutènement sont des structures fixées dans le sol, plus ou moins perpendiculaires à la pente, qui offrent une résistance suffisante à la masse de neige descendante. Ils doivent former des supports atteignant la surface de la neige. Les barrières de soutènement sont généralement disposées en plusieurs rangées et doivent recouvrir toutes les parties du terrain à partir desquelles des avalanches pourraient, sous diverses conditions météorologiques possibles, menacer la localité à protéger. Des années d'observation et de mesure de la neige dans la région sont nécessaires afin d'établir un positionnement, une structure et des dimensions corrects.

Les barrières doivent avoir une certaine perméabilité pour permettre aux avalanches mineures et aux glissements de terrain de surface de traverser un certain nombre de rangées de barrières sans grossir ni causer de dommages. Si la perméabilité n'est pas suffisante, il y a un risque que la neige s'accumule derrière les barrières et que les avalanches suivantes glissent dessus sans entrave, emportant avec elles d'autres masses de neige.

Des mesures temporaires, contrairement aux barrières, peuvent également permettre de réduire le danger pendant un certain temps. Ces mesures sont basées sur l'idée de déclencher des avalanches par des moyens artificiels. Les masses de neige menaçantes sont évacuées de la zone d'avalanche potentielle par un certain nombre de petites avalanches délibérément déclenchées sous surveillance à des moments choisis et prédéterminés. Cela augmente considérablement la stabilité de la couverture de neige restant sur le site d'avalanche, en réduisant au moins le risque d'avalanches supplémentaires et plus dangereuses pendant une période de temps limitée lorsque la menace d'avalanches est aiguë.

Cependant, la taille de ces avalanches produites artificiellement ne peut pas être déterminée à l'avance avec une grande précision. Par conséquent, afin de maintenir le risque d'accident le plus bas possible, pendant la mise en œuvre de ces mesures temporaires, toute la zone affectée par l'avalanche artificielle, depuis son point de départ jusqu'à son arrêt définitif, doit être évacués, fermés et contrôlés au préalable.

Les applications possibles des deux méthodes de réduction des risques sont fondamentalement différentes. En général, il est préférable d'utiliser des méthodes permanentes pour protéger les zones impossibles ou difficiles à évacuer ou à fermer, ou où les habitations ou les forêts pourraient être menacées même par des avalanches contrôlées. D'autre part, les routes, les pistes de ski et les pentes de ski, faciles à fermer pour de courtes périodes, sont des exemples typiques de zones dans lesquelles des mesures de protection temporaires peuvent être appliquées.

Les différentes méthodes de déclenchement artificiel d'avalanches impliquent un certain nombre d'opérations qui comportent également certains risques et, surtout, nécessitent des mesures de protection supplémentaires pour les personnes affectées à l'exécution de ces travaux. L'essentiel est de provoquer des ruptures initiales en déclenchant des tremblements artificiels (blasts). Ceux-ci réduiront suffisamment la stabilité de la couche de neige pour produire un glissement de neige.

Le dynamitage est particulièrement adapté pour déclencher des avalanches sur des pentes raides. Il est généralement possible de détacher de petites sections de neige à intervalles réguliers et d'éviter ainsi les grosses avalanches, qui prennent une longue distance pour suivre leur cours et peuvent être extrêmement destructrices. Cependant, il est essentiel que les opérations de dynamitage soient effectuées à toute heure de la journée et par tous les temps, ce qui n'est pas toujours possible. Les méthodes de production artificielle d'avalanches par dynamitage diffèrent considérablement selon les moyens utilisés pour atteindre la zone où le dynamitage doit avoir lieu.

Les zones où des avalanches sont susceptibles de se déclencher peuvent être bombardées avec des grenades ou des roquettes à partir de positions sûres, mais cela ne réussit (c'est-à-dire produit l'avalanche) que dans 20 à 30 % des cas, car il est pratiquement impossible de déterminer et de frapper le plus point cible efficace avec n'importe quelle précision à distance, et aussi parce que la couverture de neige absorbe le choc de l'explosion. De plus, les obus peuvent ne pas exploser.

Le dynamitage avec des explosifs commerciaux directement dans la zone où les avalanches sont susceptibles de commencer est généralement plus efficace. Les méthodes les plus efficaces sont celles où l'explosif est transporté sur des piquets ou des câbles au-dessus de la partie du champ de neige où l'avalanche doit commencer, et déclenché à une hauteur de 1.5 à 3 m au-dessus du manteau neigeux.

Outre le bombardement des pentes, trois méthodes différentes ont été développées pour amener l'explosif pour la production artificielle d'avalanches à l'endroit même où l'avalanche doit commencer :

  • téléphériques à dynamite
  • dynamitage à la main
  • lancer ou abaisser la charge explosive des hélicoptères.

 

Le téléphérique est le moyen le plus sûr et en même temps le plus sûr. À l'aide d'un petit téléphérique spécial, le téléphérique à dynamite, la charge explosive est transportée sur une corde enroulée au-dessus du site de dynamitage dans la zone de couverture de neige dans laquelle l'avalanche doit commencer. Avec un bon contrôle de la corde et à l'aide de signaux et de marquages, il est possible de se diriger avec précision vers les endroits connus par expérience comme étant les plus efficaces et de faire exploser la charge directement au-dessus d'eux. Les meilleurs résultats en matière de déclenchement d'avalanches sont obtenus lorsque la charge est déclenchée à la bonne hauteur au-dessus du manteau neigeux. Comme le téléphérique passe à une plus grande hauteur au-dessus du sol, cela nécessite l'utilisation de dispositifs d'abaissement. La charge explosive est suspendue à une ficelle enroulée autour du dispositif d'abaissement. La charge est abaissée à la bonne hauteur au-dessus du site choisi pour l'explosion à l'aide d'un moteur qui déroule la ficelle. L'utilisation de téléphériques à dynamite permet d'effectuer le dynamitage depuis un poste sûr, même par mauvaise visibilité, de jour comme de nuit.

En raison des bons résultats obtenus et des coûts de production relativement faibles, cette méthode de déclenchement d'avalanches est largement utilisée dans toute la région alpine, une licence étant requise pour exploiter les téléphériques à dynamite dans la plupart des pays alpins. En 1988, un échange intensif d'expériences dans ce domaine a eu lieu entre les fabricants, les utilisateurs et les représentants gouvernementaux des régions alpines autrichiennes, bavaroises et suisses. Les informations tirées de cet échange d'expériences ont été résumées dans des brochures et des réglementations juridiquement contraignantes. Ces documents contiennent essentiellement les normes techniques de sécurité des matériels et installations, ainsi que les consignes permettant de réaliser ces opérations en toute sécurité. Lors de la préparation de la charge explosive et de l'utilisation de l'équipement, l'équipe de minage doit pouvoir se déplacer le plus librement possible autour des différentes commandes et appareils du téléphérique. Il doit y avoir des trottoirs sûrs et facilement accessibles pour permettre à l'équipage de quitter le site rapidement en cas d'urgence. Il doit y avoir des voies d'accès sûres jusqu'aux supports et stations du téléphérique. Afin d'éviter un échec d'explosion, deux mèches et deux détonateurs doivent être utilisés pour chaque charge.

Dans le cas du dynamitage à la main, une deuxième méthode pour produire artificiellement des avalanches, qui était fréquemment pratiquée autrefois, le dynamiteur devait monter jusqu'à la partie du manteau neigeux où l'avalanche devait se déclencher. La charge explosive peut être placée sur des piquets plantés dans la neige, mais plus généralement lancée sur la pente vers un point cible connu par expérience pour être particulièrement efficace. Il est généralement impératif que les aides fixent le dynamiteur avec une corde tout au long de l'opération. Néanmoins, quelle que soit la prudence avec laquelle l'équipe de dynamitage procède, le danger de chute ou de rencontrer des avalanches sur le chemin du site de dynamitage ne peut être éliminé, car ces activités impliquent souvent de longues ascensions, parfois dans des conditions météorologiques défavorables. En raison de ces risques, cette méthode, qui est également soumise à des règles de sécurité, est aujourd'hui peu utilisée.

L'utilisation d'hélicoptères, une troisième méthode, est pratiquée depuis de nombreuses années dans les régions alpines et autres pour les opérations de déclenchement d'avalanches. Compte tenu des risques dangereux pour les personnes à bord, cette procédure n'est utilisée dans la plupart des pays alpins et autres pays montagneux que lorsqu'elle est nécessaire d'urgence pour éviter un danger aigu, lorsque d'autres procédures ne peuvent pas être utilisées ou impliqueraient des risques encore plus grands. Compte tenu de la situation juridique particulière résultant de l'utilisation d'aéronefs à de telles fins et des risques encourus, des directives spécifiques sur le déclenchement d'avalanches par hélicoptère ont été élaborées dans les pays alpins, avec la collaboration des autorités aéronautiques, des institutions et des autorités responsable de la santé et de la sécurité au travail et des experts dans le domaine. Ces directives traitent non seulement des questions relatives aux lois et règlements sur les explosifs et aux dispositions de sécurité, mais concernent également les qualifications physiques et techniques requises des personnes chargées de ces opérations.

Les avalanches sont déclenchées à partir d'hélicoptères soit en abaissant la charge sur une corde et en la faisant exploser au-dessus de la couverture de neige, soit en lâchant une charge avec sa mèche déjà allumée. Les hélicoptères utilisés doivent être spécialement adaptés et autorisés pour de telles opérations. En ce qui concerne l'exécution sécuritaire des opérations à bord, il doit y avoir une répartition stricte des responsabilités entre le pilote et le technicien de minage. La charge doit être correctement préparée et la longueur de fusible choisie selon qu'elle doit être abaissée ou lâchée. Pour des raisons de sécurité, deux détonateurs et deux fusées doivent être utilisés, comme dans le cas des autres méthodes. En règle générale, les charges individuelles contiennent entre 5 et 10 kg d'explosif. Plusieurs charges peuvent être abaissées ou abandonnées les unes après les autres au cours d'un vol opérationnel. Les détonations doivent être observées visuellement afin de vérifier qu'aucune n'a manqué de se déclencher.

Tous ces procédés de sautage nécessitent l'utilisation d'explosifs spéciaux, efficaces à froid et insensibles aux influences mécaniques. Les personnes affectées à l'exécution de ces opérations doivent être spécialement qualifiées et avoir l'expérience pertinente.

Les mesures de protection temporaires et permanentes contre les avalanches ont été conçues à l'origine pour des domaines d'application nettement différents. Les barrières permanentes coûteuses ont été principalement construites pour protéger les villages et les bâtiments en particulier contre les avalanches majeures. Les mesures de protection temporaires se limitaient à l'origine presque exclusivement à la protection des routes, des stations de ski et des équipements qui pouvaient être facilement fermés. De nos jours, la tendance est d'appliquer une combinaison des deux méthodes. Pour élaborer le programme de sécurité le plus efficace pour une zone donnée, il est nécessaire d'analyser en détail la situation qui prévaut afin de déterminer la méthode qui assurera la meilleure protection possible.

 

Noir

Les industries et les économies des nations dépendent, en partie, du grand nombre de matières dangereuses transportées du fournisseur à l'utilisateur et, finalement, à l'éliminateur de déchets. Les matières dangereuses sont transportées par route, rail, eau, air et pipeline. La grande majorité atteint leur destination en toute sécurité et sans incident. L'ampleur et l'étendue du problème sont illustrées par l'industrie pétrolière. Au Royaume-Uni, elle distribue environ 100 millions de tonnes de produits chaque année par pipeline, rail, route et eau. Environ 10 % des personnes employées par l'industrie chimique britannique travaillent dans la distribution (c'est-à-dire le transport et l'entreposage).

Une matière dangereuse peut être définie comme « une substance ou une matière jugée capable de présenter un risque déraisonnable pour la santé, la sécurité ou les biens lors de son transport ». Le « risque déraisonnable » couvre un large éventail de considérations liées à la santé, aux incendies et à l'environnement. Ces substances comprennent les explosifs, les gaz inflammables, les gaz toxiques, les liquides hautement inflammables, les liquides inflammables, les solides inflammables, les substances qui deviennent dangereuses lorsqu'elles sont mouillées, les substances oxydantes et les liquides toxiques.

Les risques découlent directement d'un rejet, d'une inflammation, etc., de la ou des substances dangereuses transportées. Les menaces routières et ferroviaires sont celles qui pourraient donner lieu à des accidents majeurs « qui pourraient toucher à la fois les salariés et les personnes du public ». Ces dangers peuvent survenir lorsque les matériaux sont chargés ou déchargés ou sont en route. La population à risque comprend les personnes vivant à proximité de la route ou de la voie ferrée et les personnes à bord d'autres véhicules routiers ou trains qui pourraient être impliquées dans un accident majeur. Les zones à risque comprennent les points d'arrêt temporaires tels que les gares de triage ferroviaires et les aires de stationnement des camions aux points de service autoroutiers. Les risques maritimes sont ceux liés aux navires entrant ou sortant des ports et y chargeant ou déchargeant des cargaisons ; les risques découlent également du trafic côtier et des détroits et des voies navigables intérieures.

La gamme d'incidents qui peuvent survenir en association avec le transport à la fois pendant le transit et dans les installations fixes comprend la surchauffe chimique, le déversement, la fuite, l'échappement de vapeur ou de gaz, l'incendie et l'explosion. Deux des principaux événements causant des incidents sont les collisions et les incendies. Pour les camions-citernes, d'autres causes de rejet peuvent être des fuites au niveau des vannes et un remplissage excessif. En règle générale, pour les véhicules routiers et ferroviaires, les incendies sans collision sont beaucoup plus fréquents que les incendies avec collision. Ces incidents liés au transport peuvent se produire dans les zones rurales, urbaines industrielles et résidentielles urbaines, et peuvent impliquer à la fois des véhicules ou des trains avec et sans surveillance. Ce n'est que dans une minorité de cas qu'un accident est la cause principale de l'incident.

Le personnel d'urgence doit être conscient de la possibilité d'exposition humaine et de contamination par une substance dangereuse lors d'accidents impliquant des voies ferrées et des gares de triage, des routes et des terminaux de fret, des navires (à la fois maritimes et terrestres) et des entrepôts riverains associés. Les pipelines (à la fois les systèmes de distribution longue distance et locaux) peuvent constituer un danger en cas de dommages ou de fuites, isolément ou en association avec d'autres incidents. Les incidents de transport sont souvent plus dangereux que ceux qui surviennent dans des installations fixes. Les matériaux impliqués peuvent être inconnus, les panneaux d'avertissement peuvent être obscurcis par le renversement, la fumée ou les débris, et des agents bien informés peuvent être absents ou victimes de l'événement. Le nombre de personnes exposées dépend de la densité de la population, de jour comme de nuit, des proportions à l'intérieur et à l'extérieur, et de la proportion qui peut être considérée comme particulièrement vulnérable. En plus de la population qui se trouve normalement dans la zone, le personnel des services d'urgence qui assiste à l'accident est également à risque. Il n'est pas rare, lors d'un incident impliquant le transport de matières dangereuses, qu'une proportion importante des victimes fassent partie de ce personnel.

Au cours de la période de 20 ans allant de 1971 à 1990, environ 15 personnes ont été tuées sur les routes du Royaume-Uni à cause de produits chimiques dangereux, contre une moyenne annuelle de 5,000 XNUMX personnes dans des accidents de la route. Cependant, de petites quantités de marchandises dangereuses peuvent causer des dommages importants. Les exemples internationaux incluent:

  • Un avion s'est écrasé près de Boston, aux États-Unis, à cause d'une fuite d'acide nitrique.
  • Plus de 200 personnes ont été tuées lorsqu'un camion-citerne de propylène a explosé au-dessus d'un camping en Espagne.
  • Dans un accident ferroviaire impliquant 22 wagons de produits chimiques à Mississauga, au Canada, un camion-citerne contenant 90 tonnes de chlore s'est rompu et il y a eu une explosion et un grand incendie. Il n'y a pas eu de morts, mais 250,000 XNUMX personnes ont été évacuées.
  • Une collision ferroviaire le long de l'autoroute à Eccles, au Royaume-Uni, a fait trois morts et 68 blessés, mais aucun des graves incendies résultant des produits pétroliers transportés.
  • Un pétrolier est devenu incontrôlable à Herrborn, en Allemagne, incendiant une grande partie de la ville.
  • À Peterborough, au Royaume-Uni, un véhicule transportant des explosifs a tué une personne et a failli détruire un centre industriel.
  • Un pétrolier a explosé à Bangkok, en Thaïlande, tuant un grand nombre de personnes.

 

Le plus grand nombre d'incidents graves sont survenus avec des gaz ou des liquides inflammables (partiellement liés aux volumes déplacés), avec quelques incidents dus à des gaz toxiques et à des fumées toxiques (y compris des produits de combustion).

Des études au Royaume-Uni ont montré ce qui suit pour le transport routier :

  • fréquence d'accident lors du transport de matières dangereuses : 0.12 x 10-6/ km
  • fréquence de dégagement lors du transport de matières dangereuses : 0.027 x 10-6/ km
  • probabilité d'un rejet compte tenu d'un accident de la circulation : 3.3 %.

 

Ces événements ne sont pas synonymes d'incidents impliquant des matières dangereuses impliquant des véhicules et peuvent ne constituer qu'une faible proportion de ces derniers. Il y a aussi l'individualité des accidents impliquant le transport routier de matières dangereuses.

Les accords internationaux couvrant le transport de matières potentiellement dangereuses comprennent :

Réglementation pour la sécurité du transport des matières radioactives 1985 (telle que modifiée en 1990): Agence internationale de l'énergie atomique, Vienne, 1990 (STI/PUB/866). Leur but est d'établir des normes de sûreté qui assurent un niveau acceptable de contrôle des risques radiologiques pour les personnes, les biens et l'environnement associés au transport de matières radioactives.

La Convention internationale pour la sauvegarde de la vie humaine en mer 1974 (SOLAS74). Celle-ci établit des normes de sécurité de base pour tous les navires à passagers et cargos, y compris les navires transportant des cargaisons en vrac dangereuses.

La Convention internationale pour la prévention de la pollution par les navires de 1973, telle que modifiée par le Protocole de 1978 (MARPOL 73/78). Celui-ci prévoit des réglementations pour la prévention de la pollution par les hydrocarbures, les substances liquides nocives en vrac, les polluants emballés ou dans des conteneurs de fret, les citernes mobiles ou les wagons routiers et ferroviaires, les eaux usées et les ordures. Les exigences réglementaires sont amplifiées dans le Code maritime international des marchandises dangereuses.

Il existe un ensemble important de réglementations internationales sur le transport de substances nocives par voie aérienne, ferroviaire, routière et maritime (converties en législation nationale dans de nombreux pays). La plupart sont basés sur des normes parrainées par les Nations Unies et couvrent les principes d'identification, d'étiquetage, de prévention et d'atténuation. Le Comité d'experts des Nations Unies sur le transport des marchandises dangereuses a produit Recommandations sur le transport de marchandises dangereuses. Elles s'adressent aux gouvernements et aux organisations internationales concernées par la réglementation du transport des marchandises dangereuses. Entre autres aspects, les recommandations portent sur les principes de classification et les définitions des classes, la liste du contenu des marchandises dangereuses, les exigences générales d'emballage, les procédures d'essai, la fabrication, l'étiquetage ou le placardage et les documents de transport. Ces recommandations – le « Livre orange » – n'ont pas force de loi, mais sont à la base de toutes les réglementations internationales. Ces réglementations sont générées par différents organismes :

  • l'Organisation de l'aviation civile internationale : Instructions techniques pour un transport sûr des marchandises dangereuses par voie aérienne (C'est)
  • l'Organisation maritime internationale : Code maritime international des marchandises dangereuses (Code IMDG)
  • la Communauté économique européenne : L'Accord européen relatif au transport international des marchandises dangereuses par route (ADR)
  • l'Office des Transports Ferroviaires Internationaux : Règlement concernant le transport international ferroviaire des marchandises dangereuses (DÉBARRASSER).

 

L'élaboration de plans d'urgence majeurs pour faire face et atténuer les effets d'un accident majeur mettant en cause des matières dangereuses est autant nécessaire dans le domaine des transports que pour les installations fixes. La tâche de planification est rendue plus difficile dans la mesure où l'emplacement d'un incident ne sera pas connu à l'avance, ce qui nécessite une planification flexible. Les substances impliquées dans un accident de transport ne sont pas prévisibles. En raison de la nature de l'incident, un certain nombre de produits peuvent être mélangés sur les lieux, causant des problèmes considérables aux services d'urgence. L'incident peut se produire dans une zone fortement urbanisée, éloignée et rurale, fortement industrialisée ou commercialisée. Un facteur supplémentaire est la population de passage qui peut être impliquée sans le savoir dans un événement parce que l'accident a causé un arriéré de véhicules sur la voie publique ou là où des trains de voyageurs sont arrêtés en réponse à un incident ferroviaire.

Il est donc nécessaire d'élaborer des plans locaux et nationaux pour répondre à de tels événements. Celles-ci doivent être simples, flexibles et facilement compréhensibles. Comme des accidents de transport majeurs peuvent se produire dans une multiplicité d'endroits, le plan doit être adapté à toutes les scènes potentielles. Pour que le plan fonctionne efficacement à tout moment, et dans les zones rurales éloignées et urbaines fortement peuplées, toutes les organisations contribuant à la réponse doivent avoir la capacité de maintenir une flexibilité tout en se conformant aux principes de base de la stratégie globale.

Les premiers intervenants doivent obtenir autant d'informations que possible pour tenter d'identifier le danger en cause. Que l'incident soit un déversement, un incendie, un rejet toxique ou une combinaison de ceux-ci déterminera les réponses. Les systèmes de marquage nationaux et internationaux utilisés pour identifier les véhicules transportant des substances dangereuses et transportant des colis dangereux doivent être connus des services d'urgence, qui doivent avoir accès à l'une des nombreuses bases de données nationales et internationales qui peuvent aider à identifier le danger et les problèmes associés avec ça.

Un contrôle rapide de l'incident est vital. La chaîne de commandement doit être clairement identifiée. Cela peut changer au cours de l'événement, des services d'urgence à la police en passant par le gouvernement civil de la zone touchée. Le plan doit être en mesure de reconnaître l'effet sur la population, à la fois ceux qui travaillent ou résident dans la zone potentiellement touchée et ceux qui peuvent être de passage. Des sources d'expertise sur les questions de santé publique doivent être mobilisées pour donner des conseils à la fois sur la gestion immédiate de l'incident et sur le potentiel d'effets directs à plus long terme sur la santé et indirects tout au long de la chaîne alimentaire. Des points de contact pour obtenir des conseils sur la pollution environnementale des cours d'eau, etc., et l'effet des conditions météorologiques sur le mouvement des nuages ​​de gaz doivent être identifiés. Les plans doivent identifier la possibilité d'évacuation comme l'une des mesures d'intervention.

Cependant, les propositions doivent être flexibles, car il peut y avoir une gamme de coûts et d'avantages, tant en termes de gestion des incidents qu'en termes de santé publique, qui devront être pris en compte. Les dispositions doivent décrire clairement la politique relative à l'information complète des médias et les mesures prises pour en atténuer les effets. Les informations doivent être exactes et opportunes, le porte-parole connaissant la réponse globale et ayant accès à des experts pour répondre aux demandes spécialisées. De mauvaises relations avec les médias peuvent perturber la gestion de l'événement et entraîner des commentaires défavorables et parfois injustifiés sur le traitement global de l'épisode. Tout plan doit inclure des simulations d'exercices adéquates en cas de catastrophe. Ceux-ci permettent aux intervenants et aux gestionnaires d'un incident de connaître les forces et les faiblesses personnelles et organisationnelles de chacun. Des exercices sur table et physiques sont nécessaires.

Bien que la littérature traitant des déversements de produits chimiques soit abondante, seule une partie mineure décrit les conséquences écologiques. La plupart concernent des études de cas. Les descriptions de déversements réels se sont concentrées sur les problèmes de santé et de sécurité humaines, les conséquences écologiques n'étant décrites qu'en termes généraux. Les produits chimiques pénètrent dans l'environnement principalement par la phase liquide. Dans quelques cas seulement, les accidents ayant des conséquences écologiques ont également affecté les êtres humains immédiatement, et les effets sur l'environnement n'ont pas été causés par des produits chimiques identiques ou par des voies de rejet identiques.

Les contrôles visant à prévenir les risques pour la santé et la vie humaines liés au transport de matières dangereuses comprennent les quantités transportées, la direction et le contrôle des moyens de transport, l'itinéraire, ainsi que l'autorité sur les points d'échange et de concentration et les développements à proximité de ces zones. Des recherches supplémentaires sont nécessaires sur les critères de risque, la quantification du risque et l'équivalence du risque. Le Health and Safety Executive du Royaume-Uni a mis au point un service de données sur les incidents majeurs (MHIDAS) en tant que base de données des incidents chimiques majeurs dans le monde. Il détient actuellement des informations sur plus de 6,000 XNUMX incidents.


Étude de cas : Transport de matières dangereuses

Un camion-citerne articulé transportant environ 22,000 XNUMX litres de toluène circulait sur une artère principale qui traverse Cleveland, au Royaume-Uni. Une voiture s'est arrêtée sur la trajectoire du véhicule et, alors que le chauffeur du camion prenait des mesures d'évitement, le camion-citerne s'est renversé. Les couvercles d'homme des cinq compartiments se sont ouverts et du toluène s'est répandu sur la chaussée et s'est enflammé, provoquant un feu de nappe. Cinq voitures circulant sur la chaussée opposée ont été impliquées dans l'incendie mais tous les occupants se sont échappés.

Les pompiers sont arrivés cinq minutes après avoir été appelés. Du liquide brûlant avait pénétré dans les égouts et des incendies d'égouts étaient évidents à environ 400 m de l'incident principal. Le plan d'urgence du comté a été mis en œuvre, les services sociaux et les transports publics étant mis en alerte en cas d'évacuation. L'action initiale des pompiers s'est concentrée sur l'extinction des feux de voitures et la recherche des occupants. La tâche suivante consistait à identifier un approvisionnement en eau adéquat. Un membre de l'équipe de sécurité de l'entreprise chimique est arrivé pour se coordonner avec la police et les pompiers. Étaient également présents le personnel du service d'ambulance et des offices de la santé environnementale et de l'eau. Après consultation, il a été décidé de laisser brûler le toluène qui s'échappait plutôt que d'éteindre l'incendie et de laisser le produit chimique émettre des vapeurs. La police a diffusé des avertissements sur une période de quatre heures en utilisant la radio nationale et locale, conseillant aux gens de rester à l'intérieur et de fermer leurs fenêtres. La route a été fermée pendant huit heures. Lorsque le toluène est tombé sous le niveau des couvercles d'homme, l'incendie a été éteint et le toluène restant a été retiré de la citerne. L'incident s'est terminé environ 13 heures après l'accident.

Des dommages potentiels aux humains existaient à cause du rayonnement thermique; à l'environnement, de la pollution de l'air, du sol et de l'eau ; et à l'économie, des perturbations du trafic. Le plan de l'entreprise qui existait pour un tel incident de transport a été activé en 15 minutes, avec cinq personnes présentes. Un plan départemental hors site existait et a été mis en place avec la mise en place d'un centre de contrôle impliquant la police et les pompiers. La mesure de la concentration mais pas la prédiction de la dispersion a été effectuée. L'intervention des sapeurs-pompiers a impliqué plus de 50 personnes et une dizaine d'appareils, dont les principales actions ont été la lutte contre l'incendie, le lavage et la rétention des déversements. Plus de 40 policiers ont été commis dans le sens de la circulation, avertissant le public, la sécurité et le contrôle de la presse. L'intervention des services de santé comprenait deux ambulances et deux membres du personnel médical sur place. La réaction du gouvernement local concernait la santé environnementale, les transports et les services sociaux. Le public a été informé de l'incident par haut-parleurs, radio et bouche à oreille. Les informations portaient sur ce qu'il fallait faire, en particulier sur la mise à l'abri à l'intérieur.

Le résultat pour les humains a été deux admissions dans un seul hôpital, un membre du public et un employé de l'entreprise, tous deux blessés dans l'accident. Il y avait une pollution de l'air notable, mais seulement une légère contamination du sol et de l'eau. D'un point de vue économique, il y a eu des dommages importants à la route et d'importants retards de circulation, mais aucune perte de récoltes, de bétail ou de production. Les leçons apprises comprenaient la valeur de la récupération rapide des informations du système Chemdata et la présence d'un expert technique de l'entreprise permettant de prendre des mesures immédiates correctes. L'importance des communiqués de presse conjoints des intervenants a été soulignée. Il faut tenir compte de l'impact environnemental de la lutte contre les incendies. Si l'incendie avait été combattu dans les phases initiales, une quantité considérable de liquide contaminé (eau d'incendie et toluène) aurait potentiellement pu pénétrer dans les égouts, les réserves d'eau et le sol.


 

 

 

Noir

Vendredi, Février 25 2011 17: 12

Accidents radiologiques

Description, sources, mécanismes

Outre le transport de matières radioactives, il existe trois contextes dans lesquels des accidents radiologiques peuvent survenir :

  • utilisation de réactions nucléaires pour produire de l'énergie ou des armes, ou à des fins de recherche
  • applications industrielles des rayonnements (radiographie gamma, irradiation)
  • recherche et médecine nucléaire (diagnostic ou thérapie).

 

Les accidents radiologiques peuvent être classés en deux groupes selon qu'il y a ou non émission ou dispersion de radionucléides dans l'environnement ; chacun de ces types d'accidents touche des populations différentes.

L'importance et la durée du risque d'exposition pour la population générale dépendent de la quantité et des caractéristiques (demi-vie, propriétés physiques et chimiques) des radionucléides émis dans l'environnement (tableau 1). Ce type de contamination survient lors de la rupture des barrières de confinement des centrales nucléaires ou des sites industriels ou médicaux qui séparent les matières radioactives de l'environnement. En l'absence d'émissions dans l'environnement, seuls les travailleurs présents sur le site ou manipulant des équipements ou des matières radioactives sont exposés.

Tableau 1. Radionucléides typiques, avec leurs demi-vies radioactives

radionucléides

Symbole

Rayonnement émis

Demi-vie physique*

Demi-vie biologique
après constitution
*

Baryum-133

Ba-133

γ

10.7 an(s)

65 d

Cérium-144

Ce 144

β, γ

284 d

263 d

Césium-137

CS-137

β, γ

30 an(s)

109 d

Cobalt-60

Co-60

β, γ

5.3 an(s)

1.6 an(s)

Iode-131

I-131

β, γ

8 d

7.5 d

Plutonium-239

Pu-239

α, γ

24,065 an(s)

50 an(s)

Polonium-210

Po-210

α

138 d

27 d

Strontium-90

Sr-90

β

29.1 an(s)

18 an(s)

Tritium

H-3

β

12.3 ans

10 j

* y = années ; j = jours.

L'exposition aux rayonnements ionisants peut se faire par trois voies, que la population cible soit composée de travailleurs ou du grand public : irradiation externe, irradiation interne et contamination de la peau et des plaies.

L'irradiation externe se produit lorsque des individus sont exposés à une source de rayonnement extracorporelle, ponctuelle (radiothérapie, irradiateurs) ou diffuse (nuages ​​radioactifs et retombées accidentelles, figure 1). L'irradiation peut être locale, n'impliquant qu'une partie du corps ou tout le corps.

Figure 1. Voies d'exposition aux rayonnements ionisants après un rejet accidentel de radioactivité dans l'environnement

DIS080F1

Le rayonnement interne se produit suite à l'incorporation de substances radioactives dans le corps (figure 1) soit par l'inhalation de particules radioactives en suspension dans l'air (par exemple, le césium-137 et l'iode-131, présents dans le nuage de Tchernobyl) soit par l'ingestion de matières radioactives dans la chaîne alimentaire (par exemple , iode-131 dans le lait). L'irradiation interne peut affecter tout le corps ou seulement certains organes, selon les caractéristiques des radionucléides : le césium 137 se répartit de manière homogène dans tout l'organisme, tandis que l'iode 131 et le strontium 90 se concentrent respectivement dans la thyroïde et les os.

Enfin, l'exposition peut également se produire par contact direct de matières radioactives avec la peau et les plaies.

Accidents impliquant des centrales nucléaires

Les sites inclus dans cette catégorie comprennent les centrales électriques, les réacteurs expérimentaux, les installations de production et de traitement ou de retraitement du combustible nucléaire et les laboratoires de recherche. Les sites militaires comprennent des réacteurs surgénérateurs au plutonium et des réacteurs situés à bord de navires et de sous-marins.

Centrales nucléaires

La capture de l'énergie thermique émise par la fission atomique est à la base de la production d'électricité à partir de l'énergie nucléaire. Schématiquement, les centrales nucléaires peuvent être considérées comme comprenant : (1) un cœur, contenant la matière fissile (pour les réacteurs à eau sous pression, 80 à 120 tonnes d'oxyde d'uranium) ; (2) équipements de transfert de chaleur incorporant des fluides caloporteurs; (3) des équipements capables de transformer l'énergie thermique en électricité, similaires à ceux que l'on trouve dans les centrales non nucléaires.

Les surtensions fortes et soudaines susceptibles de provoquer la fusion du cœur avec émission de produits radioactifs sont les principaux dangers de ces installations. Trois accidents avec fusion du cœur du réacteur se sont produits : à Three Mile Island (1979, Pennsylvanie, États-Unis), à Tchernobyl (1986, Ukraine) et à Fukushima (2011, Japon) [édité, 2011].

L'accident de Tchernobyl a été ce qu'on appelle un accident de criticité- c'est-à-dire une augmentation soudaine (en l'espace de quelques secondes) de la fission entraînant une perte de contrôle du processus. Dans ce cas, le cœur du réacteur a été complètement détruit et des quantités massives de matières radioactives ont été émises (tableau 2). Les émissions ont atteint une hauteur de 2 km, favorisant leur dispersion sur de longues distances (en fait, tout l'hémisphère Nord). Le comportement du nuage radioactif s'est avéré difficile à analyser, en raison des changements météorologiques au cours de la période d'émission (figure 2) (IAEA 1991).

Tableau 2. Comparaison des différents accidents nucléaires

Accident

Type d'établissement

Accident
mécanisme

Total émis
radioactivité (GBq)

Durée
d'émission

Principal émis
radionucléides

Collective
dose (hSv)

Khychtym 1957

Stockage de haute-
scission d'activité
Annonces

Explosion chimique

Assistance 6

Presque
instantané

Strontium-90

2,500

Échelle de vent 1957

Plutonium-
production
réacteur

Incendie

Assistance 6

Environ
23 heures

Iode-131, polonium-210,
césium-137

2,000

Three Mile Island
1979

REP industriel
réacteur

Panne de liquide de refroidissement

555

?

Iode-131

16-50

Tchernobyl 1986

RBMK industriel 
réacteur

Critiquement

Assistance 6

Plus de 10 jours

Iode-131, iode-132, 
césium-137, césium-134, 
strontium-89, strontium-90

600,000

Fukushima 2011

 

Le rapport final de la Fukushima Assessment Task Force sera soumis en 2013.

 

 

 

 

 

Source : UNSCEAR 1993.

Figure 2. Trajectoire des émissions de l'accident de Tchernobyl, 26 avril-6 mai 1986

DIS080F2

Des cartes de contamination ont été établies à partir des mesures environnementales du césium 137, l'un des principaux produits d'émission radioactifs (tableau 1 et tableau 2). Des régions d'Ukraine, de Biélorussie (Biélorussie) et de Russie ont été fortement contaminées, tandis que les retombées dans le reste de l'Europe ont été moins importantes (figure 3 et figure 4 (UNSCEAR 1988). Le tableau 3 présente des données sur la superficie des zones contaminées, les caractéristiques des populations exposées et voies d'exposition.

Figure 3. Dépôt de césium 137 en Biélorussie, Russie et Ukraine suite à l'accident de Tchernobyl.

DIS080F3

Figure 4. Retombées de césium 137 (kBq/km2) en Europe suite à l'accident de Tchernobyl

 DIS080F4

Tableau 3. Superficie des zones contaminées, types de populations exposées et modes d'exposition en Ukraine, Biélorussie et Russie suite à l'accident de Tchernobyl

Type de population

Superficie ( km2 )

Taille de la population (000)

Principaux modes d'exposition

Populations professionnellement exposées :

Employés sur place à
le temps de la
accident
Sapeurs pompiers
(PREMIERS SECOURS)





Nettoyage et secours
ouvriers*


 

≈0.44


≈0.12






600-800



Irradiation externe,
inhalation, peau
Contamination
des endommagés
réacteur, fragments
du réacteur
dispersés à travers
le site, radioactif
vapeurs et poussières

Irradiation externe,
inhalation, peau
Contamination

Tarif normal : XNUMX€ (avant le XNUMX avril) - XNUMX€ (après le XNUMX avril).

Évacué du
zone interdite dans
les premiers jours



Les résidents de 
souillé**
zones
( Mbq/m2 ) - ( Ci/km2 )
>1.5 (>40)
0.6–1.5 (15–40)
0.2–0.6 (5–15)
0.04–0.2 (1–5)
Résidents des autres zones <0.04mbq/m2











3,100
7,200
17,600
103,000

115









33
216
584
3,100
280,000

Irradiation externe par
le nuage, inhalation
de radioactif
éléments présents
dans le nuage

Rayonnement externe de
retombées, ingestion de
souillé
Annonces




Irradiation externe
par retombées, ingestion
de contaminés
Annonces

* Individus participant au nettoyage dans un rayon de 30 km autour du site. Il s'agit notamment des pompiers, militaires, techniciens et ingénieurs intervenus les premières semaines, ainsi que des médecins et chercheurs actifs ultérieurement.

** Contamination au césium 137.

Source : UNSCEAR 1988 ; AIEA 1991.

 

L'accident de Three Mile Island est classé comme un accident thermique sans emballement du réacteur et résulte d'une défaillance du caloporteur du cœur du réacteur de plusieurs heures. L'enveloppe de confinement a permis de n'émettre dans l'environnement qu'une quantité limitée de matières radioactives, malgré la destruction partielle du cœur du réacteur (tableau 2). Bien qu'aucun ordre d'évacuation n'ait été émis, 200,000 XNUMX habitants ont volontairement évacué la zone.

Enfin, un accident impliquant un réacteur de production de plutonium s'est produit sur la côte ouest de l'Angleterre en 1957 (Windscale, tableau 2). Cet accident a été causé par un incendie dans le cœur du réacteur et a entraîné des émissions dans l'environnement à partir d'une cheminée de 120 mètres de haut.

Installations de traitement du combustible

Les installations de production de combustible sont situées « en amont » des réacteurs nucléaires et sont le lieu d'extraction du minerai et de transformation physique et chimique de l'uranium en matière fissile utilisable dans les réacteurs (figure 5). Les principaux risques d'accident présents dans ces installations sont de nature chimique et liés à la présence d'hexafluorure d'uranium (UF6), un composé gazeux de l'uranium qui peut se décomposer au contact de l'air pour produire de l'acide fluorhydrique (HF), un gaz très corrosif.

Figure 5. Cycle de traitement du combustible nucléaire.

DIS080F5

Les installations « en aval » comprennent les usines de stockage et de retraitement du combustible. Quatre accidents de criticité se sont produits lors du retraitement chimique d'uranium enrichi ou de plutonium (Rodrigues 1987). Contrairement aux accidents survenus dans les centrales nucléaires, ces accidents impliquaient de petites quantités de matières radioactives - des dizaines de kilogrammes tout au plus - et n'entraînaient que des effets mécaniques négligeables et aucune émission de radioactivité dans l'environnement. L'exposition était limitée à une très forte dose et à très court terme (de l'ordre de quelques minutes) aux rayons gamma externes et à l'irradiation neutronique des travailleurs.

En 1957, un réservoir contenant des déchets hautement radioactifs a explosé dans la première installation de production de plutonium de qualité militaire de Russie, située à Khyshtym, dans le sud des montagnes de l'Oural. Plus de 16,000 XNUMX km2 ont été contaminés et 740 PBq (20 MCi) ont été émis dans l'atmosphère (tableau 2 et tableau 4).

Tableau 4. Superficie des zones contaminées et taille de la population exposée après l'accident de Khyshtym (Oural 1957), par contamination au strontium-90

Contamination (kBq/m2 )

( IC/km2 )

Superficie ( km2 )

d'habitants

≥ 37,000

≥ 1,000

20

1,240

≥ 3,700

≥ 100

120

1,500

≥ 74

≥ 2

1,000

10,000

≥ 3.7

≥ 0.1

15,000

270,000

 

Réacteurs de recherche

Les risques dans ces installations sont similaires à ceux présents dans les centrales nucléaires, mais sont moins graves, compte tenu de la production d'électricité plus faible. Plusieurs accidents de criticité impliquant une irradiation importante du personnel se sont produits (Rodrigues 1987).

Accidents liés à l'utilisation de sources radioactives dans l'industrie et la médecine (hors centrales nucléaires) (Zerbib 1993)

L'accident de ce type le plus courant est la perte de sources radioactives issues de la radiographie gamma industrielle, utilisée par exemple pour le contrôle radiographique des joints et des soudures. Cependant, des sources radioactives peuvent également être perdues à partir de sources médicales (tableau 5). Dans les deux cas, deux scénarios sont possibles : la source peut être ramassée et conservée par une personne pendant plusieurs heures (par exemple, dans une poche), puis signalée et restituée, ou elle peut être récupérée et ramenée à la maison. Alors que le premier scénario provoque des brûlures locales, le second peut entraîner une irradiation à long terme de plusieurs membres du grand public.

Tableau 5. Accidents impliquant la perte de sources radioactives et ayant entraîné une exposition du grand public

Pays (année)

nombre de
exposé
individus

nombre de
exposé
individus
recevoir haut
doses
*

Nombre de morts**

Matière radioactive impliquée

Mexique (1962)

?

5

4

Cobalt-60

Chine (1963)

?

6

2

Cobalt 60

Algérie (1978)

22

5

1

Iridium-192

Maroc (1984)

?

11

8

Iridium-192

Mexique
(Juárez, 1984)

≈4,000

5

0

Cobalt-60

Brasil
(Goiania, 1987)

249

50

4

Césium-137

Chine
(Xinhou, 1992)

≈90

12

3

Cobalt-60

États-Unis
(Indiana, 1992)

≈90

1

1

Iridium-192

* Personnes exposées à des doses capables de provoquer des effets aigus ou à long terme ou la mort.
** Chez les personnes recevant de fortes doses.

Source : Nénot 1993.

 

La récupération des sources radioactives des équipements de radiothérapie a entraîné plusieurs accidents impliquant l'exposition de ferrailleurs. Dans deux cas, les accidents de Juarez et de Goiânia, le grand public a également été exposé (voir tableau 5 et encadré ci-dessous).


L'accident de Goiânia, 1987

Entre le 21 septembre et le 28 septembre 1987, plusieurs personnes souffrant de vomissements, de diarrhées, de vertiges et de lésions cutanées à divers endroits du corps ont été admises à l'hôpital spécialisé dans les maladies tropicales de Goiânia, une ville d'un million d'habitants dans l'État brésilien de Goias . Ces problèmes ont été attribués à une maladie parasitaire courante au Brésil. Le 28 septembre, le médecin responsable de la surveillance sanitaire de la ville a vu une femme qui lui présentait un sac contenant des débris d'un appareil récupéré dans une clinique abandonnée, et une poudre qui émettait, selon la femme "une lumière bleue". Pensant que l'appareil était probablement un appareil à rayons X, le médecin a contacté ses collègues de l'hôpital des maladies tropicales. Le département de l'environnement de Goias a été averti et le lendemain, un physicien a pris des mesures dans la cour du département de l'hygiène, où le sac a été stocké pendant la nuit. Des niveaux de radioactivité très élevés ont été trouvés. Lors d'enquêtes ultérieures, la source de radioactivité a été identifiée comme étant une source de césium 137 (activité totale : environ 50 TBq (1,375 1985 Ci)) qui avait été contenue dans un équipement de radiothérapie utilisé dans une clinique abandonnée depuis 10. Le boîtier de protection entourant le césium avait été démonté le 1987 septembre 100,000 par deux ouvriers de la casse et la source de césium, sous forme de poudre, retirée. Tant le césium que les fragments d'habitations contaminés se sont progressivement dispersés dans toute la ville. Plusieurs personnes qui avaient transporté ou manipulé le matériel, ou qui étaient simplement venues le voir (dont des parents, des amis et des voisins) ont été contaminées. Au total, plus de 129 50 personnes ont été examinées, dont 14 très gravement contaminées ; 4 ont été hospitalisés (6 pour insuffisance médullaire), et 1, dont une fillette de 1000 ans, sont décédés. L'accident a eu des conséquences économiques et sociales dramatiques pour toute la ville de Goiânia et l'État de Goias : XNUMX/XNUMX de la superficie de la ville a été contaminée et les prix des produits agricoles, des loyers, de l'immobilier et des terres ont tous chuté. Les habitants de tout l'État ont subi une véritable discrimination.

Source : AIEA 1989a


L'accident de Juarez a été découvert par hasard (AIEA 1989b). Le 16 janvier 1984, un camion entrant dans le laboratoire scientifique de Los Alamos (Nouveau-Mexique, États-Unis) chargé de barres d'acier déclenche un détecteur de rayonnement. L'enquête a révélé la présence de cobalt-60 dans les barres et a retracé le cobalt-60 jusqu'à une fonderie mexicaine. Le 21 janvier, une casse fortement contaminée à Juarez a été identifiée comme la source des matières radioactives. La surveillance systématique des routes et autoroutes par des détecteurs a permis d'identifier un camion fortement contaminé. La source de rayonnement ultime a été déterminée comme étant un appareil de radiothérapie stocké dans un centre médical jusqu'en décembre 1983, date à laquelle il a été démonté et transporté à la casse. A la casse, le boîtier de protection entourant le cobalt 60 a été brisé, libérant les pastilles de cobalt. Une partie des granulés tombe dans le camion servant au transport de la ferraille, d'autres se dispersent dans la casse lors des opérations ultérieures, se mélangeant aux autres ferrailles.

Des accidents impliquant l'entrée de travailleurs dans des irradiateurs industriels actifs (par exemple, ceux utilisés pour conserver les aliments, stériliser les produits médicaux ou polymériser les produits chimiques) se sont produits. Dans tous les cas, ceux-ci ont été dus au non-respect des procédures de sécurité ou à des systèmes de sécurité et des alarmes déconnectés ou défectueux. Les niveaux de dose d'irradiation externe auxquels les travailleurs impliqués dans ces accidents ont été exposés étaient suffisamment élevés pour entraîner la mort. Les doses ont été reçues en quelques secondes ou minutes (tableau 6).

Tableau 6. Principaux accidents impliquant des irradiateurs industriels

Lieu, date

Équipement*

nombre de
victimes

Niveau d'exposition
et durée

Organes affectés
et tissus

Dose reçue (Gy),
site

Effets médicaux

Forbach, août 1991

EA

2

plusieurs déciGies/
seconde

Mains, tête, tronc

40, peau

Brûlures affectant 25 à 60 % des
zone du corps

Maryland, décembre 1991

EA

1

?

Mains

55, mains

Amputation bilatérale des doigts

Vietnam, novembre 1992

EA

1

1,000 XNUMX Gy/minute

Mains

1.5, corps entier

Amputation de la main droite et d'un doigt de la main gauche

Italie, mai 1975

CI

1

Plusieurs minutes

Tête, corps entier

8, moelle osseuse

Décès

San Salvador, février 1989

CI

3

?

Corps entier, jambes,
pieds

3–8, corps entier

2 amputations de jambe, 1 décès

Israël, juin 1990

CI

1

1 minute

Tête, corps entier

10-20

Décès

Bélarus, octobre 1991

CI

1

Plusieurs minutes

Tout le corps

10

Décès

* EA : accélérateur d'électrons CI : irradiateur au cobalt 60.

Source : Zerbib 1993 ; Nénot 1993.

 

Enfin, le personnel médical et scientifique préparant ou manipulant des sources radioactives peut être exposé par contamination de la peau et des plaies ou par inhalation ou ingestion de matières radioactives. Il convient de noter que ce type d'accident est également possible dans les centrales nucléaires.

Aspects de santé publique du problème

Modèles temporels

Le United States Radiation Accident Registry (Oak Ridge, États-Unis) est un registre mondial des accidents radiologiques impliquant des êtres humains depuis 1944. Pour être inclus dans le registre, un accident doit avoir fait l'objet d'un rapport publié et avoir entraîné des dommages au corps entier. exposition supérieure à 0.25 Sievert (Sv), ou exposition cutanée supérieure à 6 Sv ou exposition d'autres tissus et organes supérieure à 0.75 Sv (voir "Étude de cas : que signifie dose ?" pour une définition de dose). Les accidents qui présentent un intérêt du point de vue de la santé publique mais qui ont entraîné des expositions moindres sont ainsi exclus (voir ci-dessous pour une discussion sur les conséquences de l'exposition).

L'analyse des données du registre de 1944 à 1988 révèle une nette augmentation à la fois de la fréquence des accidents radiologiques et du nombre de personnes exposées à partir de 1980 (tableau 7). L'augmentation du nombre d'individus exposés s'explique probablement par l'accident de Tchernobyl, en particulier les quelque 135,000 30 individus résidant initialement dans la zone interdite à moins de 5 km du lieu de l'accident. Les accidents de Goiânia (Brésil) et de Juarez (Mexique) se sont également produits durant cette période et ont entraîné une exposition importante de nombreuses personnes (tableau XNUMX).

Tableau 7. Accidents radiologiques répertoriés dans le registre des accidents d'Oak Ridge (États-Unis) (monde entier, 1944-88)

 

1944-79

1980-88

1944-88

Nombre total d'accidents

98

198

296

Nombre de personnes impliquées

562

136,053

136,615

Nombre de personnes exposées à des doses dépassant
critères d'exposition*

306

24,547

24,853

Nombre de décès (effets aigus)

16

53

69

* 0.25 Sv pour l'exposition du corps entier, 6 Sv pour l'exposition cutanée, 0.75 Sv pour les autres tissus et organes.

 

Populations potentiellement exposées

Du point de vue de l'exposition aux rayonnements ionisants, il existe deux populations d'intérêt : les populations exposées professionnellement et le grand public. Le Comité scientifique des Nations Unies sur les effets des rayonnements ionisants (UNSCEAR 1993) estime que 4 millions de travailleurs dans le monde ont été professionnellement exposés aux rayonnements ionisants au cours de la période 1985-1989; parmi ceux-ci, environ 20 % étaient employés dans la production, l'utilisation et le traitement du combustible nucléaire (tableau 8). On estime que les pays membres de l'AIEA possédaient 760 irradiateurs en 1992, dont 600 accélérateurs d'électrons et 160 irradiateurs gamma.

Tableau 8. Profil temporel de l'exposition professionnelle aux rayonnements ionisants dans le monde (en milliers)

Activités

1975-79

1980-84

1985-89

Traitement du combustible nucléaire*

560

800

880

Applications militaires**

310

350

380

Applications industrielles

530

690

560

Les applications médicales

1,280

1,890

2,220

Total

2,680

3,730

4,040

* Production et retraitement de combustible : 40,000 430,000 ; fonctionnement du réacteur : XNUMX XNUMX.
** dont 190,000 XNUMX membres du personnel de bord.

Source : UNSCEAR 1993.

 

Le nombre de sites nucléaires par pays est un bon indicateur du potentiel d'exposition du grand public (figure 6).

Figure 6. Répartition des réacteurs de production d'électricité et des usines de retraitement du combustible dans le monde, 1989-90

DIS080F6

Effets sur la santé

Effets directs sur la santé des rayonnements ionisants

En général, les effets des rayonnements ionisants sur la santé sont bien connus et dépendent du niveau de dose reçu et du débit de dose (dose reçue par unité de temps (voir « Étude de cas : que signifie dose ? »).

Effets déterministes

Celles-ci surviennent lorsque la dose dépasse un seuil donné et que le débit de dose est élevé. La sévérité des effets est proportionnelle à la dose, bien que le seuil de dose soit spécifique à l'organe (tableau 9).

Tableau 9. Effets déterministes : seuils pour certains organes

Tissu ou effet

Dose unique équivalente
reçu à l'orgue (Sv)

Testicules :

Stérilité temporaire

0.15

Stérilité permanente

3.5-6.0

Ovaires:

Stérilité

2.5-6.0

Des vers crystallins:

Opacités détectables

0.5-2.0

Troubles visuels (cataractes)

5.0

Moelle:

Dépression de l'hémopoïèse

0.5

Source : CIPR 1991.

Dans les accidents tels que ceux évoqués ci-dessus, des effets déterministes peuvent être causés par une irradiation locale intense, telle que celle provoquée par une irradiation externe, un contact direct avec une source (par exemple, une source mal placée ramassée et empochée) ou une contamination cutanée. Tout cela entraîne des brûlures radiologiques. Si la dose locale est de l'ordre de 20 à 25 Gy (tableau 6, « Étude de cas : que signifie dose ? ») une nécrose tissulaire peut s'ensuivre. Un syndrome connu sous le nom de syndrome d'irradiation aiguë, caractérisée par des troubles digestifs (nausées, vomissements, diarrhées) et une aplasie médullaire de sévérité variable, peut être induite lorsque la dose moyenne d'irradiation corps entier dépasse 0.5 Gy. Il convient de rappeler que l'irradiation du corps entier et l'irradiation locale peuvent se produire simultanément.

Neuf des 60 travailleurs exposés lors d'accidents de criticité dans des usines de traitement de combustible nucléaire ou des réacteurs de recherche sont décédés (Rodrigues 1987). Les personnes décédées ont reçu de 3 à 45 Gy, tandis que les survivants ont reçu de 0.1 à 7 Gy. Les effets suivants ont été observés chez les survivants : syndrome aigu d'irradiation (effets gastro-intestinaux et hématologiques), cataractes bilatérales et nécrose des membres, nécessitant une amputation.

À Tchernobyl, le personnel de la centrale électrique, ainsi que le personnel d'intervention d'urgence n'utilisant pas d'équipement de protection spécial, ont été fortement exposés aux rayonnements bêta et gamma dans les premières heures ou les premiers jours suivant l'accident. Cinq cents personnes ont dû être hospitalisées; 237 personnes ayant reçu une irradiation du corps entier ont présenté un syndrome d'irradiation aiguë et 28 personnes sont décédées malgré le traitement (tableau 10) (UNSCEAR 1988). D'autres ont reçu une irradiation locale des membres, affectant dans certains cas plus de 50 % de la surface corporelle et continuent de souffrir, de nombreuses années plus tard, de multiples affections cutanées (Peter, Braun-Falco et Birioukov 1994).

Tableau 10. Répartition des patients présentant un syndrome aigu d'irradiation (AIS) après l'accident de Tchernobyl, selon la gravité de l'état

Gravité de l'AIS

Dose équivalente
(Gy)

nombre de
sujets

nombre de
décès (%)

Survie moyenne
période (jours)

I

1-2

140

-

-

II

2-4

55

1 (1.8)

96

III

4-6

21

7 (33.3)

29.7

IV

>6

21

20 (95.2)

26.6

Source : UNSCEAR 1988.

Effets stochastiques

Ceux-ci sont de nature probabiliste (c'est-à-dire que leur fréquence augmente avec la dose reçue), mais leur gravité est indépendante de la dose. Les principaux effets stochastiques sont :

  • Mutation. Cela a été observé dans des expérimentations animales, mais a été difficile à documenter chez l'homme.
  • Cancer. L'effet de l'irradiation sur le risque de développer un cancer a été étudié chez des patients recevant une radiothérapie et chez des survivants des bombardements d'Hiroshima et de Nagasaki. L'UNSCEAR (1988, 1994) résume régulièrement les résultats de ces études épidémiologiques. La durée de la période de latence est généralement de 5 à 15 ans à compter de la date d'exposition selon l'organe et le tissu. Le tableau 11 liste les cancers pour lesquels une association avec les rayonnements ionisants a été établie. Des excès significatifs de cancer ont été démontrés chez les survivants des bombardements d'Hiroshima et de Nagasaki avec des expositions supérieures à 0.2 Sv.
  • Tumeurs bénignes sélectionnées. Adénomes thyroïdiens bénins.

 

Tableau 11. Résultats des études épidémiologiques de l'effet d'un haut débit de dose d'irradiation externe sur le cancer

Siège cancéreux

Hiroshima/Nagasaki

D'autres études
Nbre positif/
nombre total
1

 

Mortalité

Incidence

 

Système hématopoïétique

     

Leucémie

+*

+*

6/11

Lymphome (non spécifié)

+

 

0/3

Lymphome non hodgkinien

 

+*

1/1

Myélome

+

+

1/4

Cavité buccale

+

+

0/1

Glandes salivaires

 

+*

1/3

Système digestif

     

Œsophage

+*

+

2/3

Estomac

+*

+*

2/4

Intestin grêle

   

1/2

Côlon

+*

+*

0/4

Rectum

+

+

3/4

Foie

+*

+*

0/3

Vésicule biliaire

   

0/2

Pancréas

   

3/4

Système respiratoire

     

Larynx

   

0/1

Trachée, bronches, poumons

+*

+*

1/3

Peau

     

Non spécifié

   

1/3

Mélanome

   

0/1

Autres cancers

 

+*

0/1

Poitrine (femmes)

+*

+*

9/14

Système reproductif

     

Utérus (non spécifique)

+

+

2/3

Corps utérin

   

1/1

Ovaires

+*

+*

2/3

D'autres femmes)

   

2/3

Prostate

+

+

2/2

Système urinaire

     

Vessie

+*

+*

3/4

Reins

   

0/3

Autre

   

0/1

Système nerveux central

+

+

2/4

Thyroïde

 

+*

4/7

Greffe Osseuse

   

2/6

Tissu conjonctif

   

0/4

Tous les cancers, hors leucémies

   

1/2

+ Sites de cancer étudiés chez les survivants d'Hiroshima et de Nagasaki.
* Association positive avec les rayonnements ionisants.
1 Études de cohorte (incidence ou mortalité) ou cas-témoins.

Source : UNSCEAR 1994.

 

Deux points importants concernant les effets des rayonnements ionisants restent controversés.

Premièrement, quels sont les effets des irradiations à faible dose (inférieures à 0.2 Sv) et des faibles débits de dose ? La plupart des études épidémiologiques ont examiné des survivants des attentats d'Hiroshima et de Nagasaki ou des patients recevant une radiothérapie - populations exposées sur de très courtes périodes à des doses relativement élevées - et les estimations du risque de développer un cancer à la suite d'une exposition à de faibles doses et débits de dose dépendent essentiellement sur des extrapolations à partir de ces populations. Plusieurs études sur des travailleurs de centrales nucléaires, exposés à de faibles doses pendant plusieurs années, ont rapporté des risques de cancer pour la leucémie et d'autres cancers qui sont compatibles avec des extrapolations à partir de groupes fortement exposés, mais ces résultats restent non confirmés (UNSCEAR 1994 ; Cardis, Gilbert et Carpenter 1995).

Deuxièmement, y a-t-il une dose seuil (c'est-à-dire une dose en dessous de laquelle il n'y a pas d'effet) ? Ceci est actuellement inconnu. Des études expérimentales ont démontré que les dommages au matériel génétique (ADN) causés par des erreurs spontanées ou des facteurs environnementaux sont constamment réparés. Cependant, cette réparation n'est pas toujours efficace et peut entraîner une transformation maligne des cellules (UNSCEAR 1994).

Autres effets

Enfin, il faut noter la possibilité d'effets tératogènes dus à l'irradiation pendant la grossesse. Une microcéphalie et un retard mental ont été observés chez des enfants nés de femmes survivantes des bombardements d'Hiroshima et de Nagasaki qui ont reçu une irradiation d'au moins 0.1 Gy au cours du premier trimestre (Otake, Schull et Yoshimura 1989 ; Otake et Schull 1992). On ne sait pas si ces effets sont déterministes ou stochastiques, bien que les données suggèrent l'existence d'un seuil.

Effets observés suite à l'accident de Tchernobyl

L'accident de Tchernobyl est l'accident nucléaire le plus grave survenu à ce jour. Pourtant, aujourd'hui encore, dix ans après les faits, tous les effets sur la santé des populations les plus exposées n'ont pas été correctement évalués. Il y a plusieurs raisons à cela:

  • Certains effets n'apparaissent que plusieurs années après la date d'exposition : par exemple, les cancers des tissus solides mettent généralement 10 à 15 ans à apparaître.
  • Étant donné qu'un certain temps s'est écoulé entre l'accident et le début des études épidémiologiques, certains effets survenus dans la période initiale suivant l'accident peuvent ne pas avoir été détectés.
  • Les données utiles pour la quantification du risque de cancer n'étaient pas toujours recueillies en temps opportun. Ceci est particulièrement vrai pour les données nécessaires à l'estimation de l'exposition de la glande thyroïde aux iodures radioactifs émis lors de l'incident (tellure-132, iode-133) (Williams et al. 1993).
  • Enfin, de nombreux individus initialement exposés ont ensuite quitté les zones contaminées et ont probablement été perdus de vue.

 

Travailleurs. Actuellement, aucune information complète n'est disponible pour tous les travailleurs qui ont été fortement irradiés dans les premiers jours suivant l'accident. Des études sur le risque pour les agents de nettoyage et de secours de développer des leucémies et des cancers des tissus solides sont en cours (voir tableau 3). Ces études se heurtent à de nombreux obstacles. Le suivi régulier de l'état de santé des agents de nettoyage et de secours est fortement entravé par le fait que nombre d'entre eux viennent de différentes parties de l'ex-URSS et ont été réexpédiés après avoir travaillé sur le site de Tchernobyl. De plus, la dose reçue doit être estimée rétrospectivement, car il n'y a pas de données fiables pour cette période.

Population générale. Le seul effet vraisemblablement associé aux rayonnements ionisants dans cette population à ce jour est une augmentation, à partir de 1989, de l'incidence du cancer de la thyroïde chez les enfants de moins de 15 ans. Cela a été détecté en Biélorussie (Biélorussie) en 1989, seulement trois ans après l'incident, et a été confirmé par plusieurs groupes d'experts (Williams et al. 1993). L'augmentation a été particulièrement notable dans les zones les plus fortement contaminées du Bélarus, en particulier la région de Gomel. Alors que le cancer de la thyroïde était normalement rare chez les enfants de moins de 15 ans (taux d'incidence annuel de 1 à 3 par million), son incidence a décuplé à l'échelle nationale et vingt fois dans la région de Gomel (tableau 12, figure 7), (Stsjazhko et al. 1995). Une multiplication par dix de l'incidence du cancer de la thyroïde a ensuite été signalée dans les cinq zones les plus contaminées d'Ukraine, et une augmentation du cancer de la thyroïde a également été signalée dans la région de Bryansk (Russie) (tableau 12). Une augmentation chez les adultes est suspectée mais n'a pas été confirmée. Des programmes de dépistage systématique entrepris dans les régions contaminées ont permis de détecter les cancers latents présents avant l'accident ; les programmes échographiques capables de détecter des cancers de la thyroïde aussi petits que quelques millimètres ont été particulièrement utiles à cet égard. L'ampleur de l'augmentation de l'incidence chez les enfants, conjuguée à l'agressivité des tumeurs et à leur développement rapide, suggère que les augmentations observées des cancers de la glande thyroïde sont en partie dues à l'accident.

Tableau 12. Schéma temporel de l'incidence et du nombre total de cancers de la thyroïde chez les enfants au Bélarus, en Ukraine et en Russie, 1981-94

 

Incidence* (/100,000 XNUMX)

Nombre de cas

 

1981-85

1991-94

1981-85

1991-94

La Biélorussie

Le pays entier

0.3

3.06

3

333

Région de Gomel

0.5

9.64

1

164

Ukraine

Le pays entier

0.05

0.34

25

209

Cinq plus lourdement
zones contaminées

0.01

1.15

1

118

Russie

Le pays entier

?

?

?

?

Briansk et
Régions de Kalouga

0

1.00

0

20

* Incidence : rapport du nombre de nouveaux cas d'une maladie au cours d'une période donnée à la taille de la population étudiée au cours de la même période.

Source : Stsjazhko et al. 1995.

 

Figure 7. Incidence du cancer de la thyroïde chez les enfants de moins de 15 ans au Bélarus

DIS080F7

Dans les zones les plus contaminées (par exemple, la région de Gomel), les doses à la thyroïde étaient élevées, en particulier chez les enfants (Williams et al. 1993). Ceci est cohérent avec les importantes émissions d'iode associées à l'accident et le fait que l'iode radioactif, en l'absence de mesures préventives, se concentrera préférentiellement dans la glande thyroïde.

L'exposition aux radiations est un facteur de risque bien documenté du cancer de la thyroïde. Des augmentations nettes de l'incidence du cancer de la thyroïde ont été observées dans une douzaine d'études portant sur des enfants recevant une radiothérapie à la tête et au cou. Dans la plupart des cas, l'augmentation était nette 15 à 131 ans après l'exposition, mais était détectable dans certains cas dans les 1992 à XNUMX ans. En revanche, les effets chez les enfants de l'irradiation interne par l'iode XNUMX et par les isotopes de l'iode à demi-vie courte ne sont pas bien établis (Shore XNUMX).

L'ampleur et le schéma précis de l'augmentation dans les années à venir de l'incidence du cancer de la thyroïde dans les populations les plus exposées doivent être étudiés. Des études épidémiologiques actuellement en cours devraient permettre de quantifier l'association entre la dose reçue par la glande thyroïde et le risque de développer un cancer de la thyroïde, et d'identifier le rôle d'autres facteurs de risque génétiques et environnementaux. Il convient de noter que la carence en iode est très répandue dans les régions touchées.

Une augmentation de l'incidence des leucémies, en particulier des leucémies juvéniles (car les enfants sont plus sensibles aux effets des rayonnements ionisants), est à prévoir parmi les populations les plus exposées dans les cinq à dix ans suivant l'accident. Bien qu'une telle augmentation n'ait pas encore été constatée, les faiblesses méthodologiques des études menées à ce jour empêchent de tirer des conclusions définitives.

Effets psychosociaux

La survenue de troubles psychologiques chroniques plus ou moins sévères suite à un traumatisme psychologique est bien établie et a été étudiée principalement dans les populations confrontées à des catastrophes environnementales telles que les inondations, les éruptions volcaniques et les tremblements de terre. Le stress post-traumatique est une condition grave, durable et invalidante (APA 1994).

La plupart de nos connaissances sur l'effet des accidents radiologiques sur les problèmes psychologiques et le stress proviennent d'études menées à la suite de l'accident de Three Mile Island. Dans l'année suivant l'accident, des effets psychologiques immédiats ont été observés dans la population exposée, et les mères de jeunes enfants en particulier ont manifesté une sensibilité accrue, de l'anxiété et de la dépression (Bromet et al. 1982). De plus, une augmentation de la dépression et des problèmes liés à l'anxiété a été observée chez les travailleurs d'une centrale, comparativement aux travailleurs d'une autre centrale (Bromet et al. 1982). Dans les années suivantes (c'est-à-dire après la réouverture de la centrale), environ un quart de la population enquêtée a présenté des problèmes psychologiques relativement importants. Il n'y avait pas de différence dans la fréquence des problèmes psychologiques dans le reste de la population de l'enquête, par rapport aux populations témoins (Dew et Bromet 1993). Les problèmes psychologiques étaient plus fréquents chez les personnes vivant à proximité de la centrale qui n'avaient pas de réseau de soutien social, avaient des antécédents de problèmes psychiatriques ou avaient évacué leur domicile au moment de l'accident (Baum, Cohen et Hall 1993).

Des études sont également en cours auprès des populations exposées lors de l'accident de Tchernobyl et pour lesquelles le stress apparaît comme un enjeu de santé publique important (ex : agents de dépollution et de secours et individus vivant en zone contaminée). Cependant, il n'existe pas pour le moment de données fiables sur la nature, la gravité, la fréquence et la répartition des problèmes psychologiques dans les populations cibles. Parmi les facteurs à prendre en compte pour évaluer les conséquences psychologiques et sociales de l'accident sur les habitants des zones contaminées figurent la situation sociale et économique difficile, la diversité des systèmes d'indemnisation disponibles, les effets de l'évacuation et de la réinstallation (environ 100,000 XNUMX habitants supplémentaires personnes ont été réinstallées dans les années qui ont suivi l'accident) et les effets des limitations du mode de vie (par exemple, modification de l'alimentation).

Principes de prévention et lignes directrices

Principes et directives de sécurité

Utilisation industrielle et médicale des sources radioactives

S'il est vrai que les accidents radiologiques majeurs signalés se sont tous produits dans des centrales nucléaires, l'utilisation de sources radioactives dans d'autres contextes a néanmoins entraîné des accidents aux conséquences graves pour les travailleurs ou le grand public. La prévention de tels accidents est essentielle, notamment au regard du pronostic décevant en cas d'exposition à fortes doses. La prévention dépend de la formation appropriée des travailleurs et de la tenue d'un inventaire complet du cycle de vie des sources radioactives, qui comprend des informations sur la nature et l'emplacement des sources. L'AIEA a établi une série de lignes directrices et de recommandations de sûreté pour l'utilisation de sources radioactives dans l'industrie, la médecine et la recherche (Safety Series No. 102). Les principes en question sont similaires à ceux présentés ci-dessous pour les centrales nucléaires.

Sûreté dans les centrales nucléaires (IAEA Safety Series No. 75, INSAG-3)

L'objectif ici est de protéger à la fois les humains et l'environnement contre l'émission de matières radioactives en toutes circonstances. À cette fin, il est nécessaire d'appliquer diverses mesures tout au long de la conception, de la construction, de l'exploitation et du démantèlement des centrales nucléaires.

La sûreté des centrales nucléaires dépend fondamentalement du principe de « défense en profondeur », c'est-à-dire de la redondance des systèmes et dispositifs destinés à compenser les erreurs et déficiences techniques ou humaines. Concrètement, les matières radioactives sont séparées de l'environnement par une série de barrières successives. Dans les réacteurs de production d'énergie nucléaire, la dernière de ces barrières est la structure de confinement (absente sur le site de Tchernobyl mais présente à Three Mile Island). Pour éviter la rupture de ces barrières et limiter les conséquences des pannes, les trois mesures de sûreté suivantes doivent être pratiquées tout au long de la vie opérationnelle de la centrale : contrôle de la réaction nucléaire, refroidissement du combustible et confinement des matières radioactives.

Un autre principe de sécurité essentiel est « l'analyse de l'expérience d'exploitation », c'est-à-dire l'utilisation d'informations tirées d'événements, même mineurs, survenus sur d'autres sites pour accroître la sécurité d'un site existant. Ainsi, l'analyse des accidents de Three Mile Island et de Tchernobyl a conduit à la mise en œuvre de modifications visant à éviter que des accidents similaires ne se reproduisent ailleurs.

Enfin, notons que des efforts importants ont été déployés pour promouvoir une culture de sécurité, c'est-à-dire une culture toujours à l'écoute des préoccupations de sécurité liées à l'organisation, aux activités et aux pratiques de l'usine, ainsi qu'aux comportements individuels. Pour accroître la visibilité des incidents et accidents impliquant les centrales nucléaires, une échelle internationale des événements nucléaires (INES), identique dans son principe aux échelles utilisées pour mesurer la gravité des phénomènes naturels tels que les tremblements de terre et le vent, a été élaborée (tableau 12). Cette échelle n'est cependant pas adaptée à l'évaluation de la sûreté d'un site ou à la réalisation de comparaisons internationales.

Tableau 13. Échelle internationale des accidents nucléaires

Niveau

Offsite

Sur place

Structure de protection

7—Accident majeur

Émission majeure,
vaste santé
et de l'environnement
les effets

   

6—Accident grave

Émission importante,
peut nécessiter l'application de toutes les contre-mesures.

   

5—Accident

Émission limitée,
peut nécessiter
l'application de
quelques contre-
les mesures.

Dommages graves à
réacteurs et structures de protection

 

4—Accident

Faible émission, public
exposition approchant les limites d'exposition

Dommages aux réacteurs
et protecteur
structures, mortelles
exposition des travailleurs

 

3—Incident grave

Très faible émission,
exposition publique
inférieur aux limites d'exposition

Grave
niveau de contamination, effets graves sur
santé des travailleurs

Accident de peu évité

2—Incident

 

Contamination grave
niveau, surexposition des travailleurs

Manquements graves aux mesures de sécurité

1—Anomalie

   

Anomalie au-delà
limites fonctionnelles normales

0—Disparité

Aucune signification de
le point de vue de la sécurité

 

 

Principes de la protection du grand public contre l'exposition aux rayonnements

Dans les cas impliquant une exposition potentielle du grand public, il peut être nécessaire d'appliquer des mesures de protection destinées à prévenir ou à limiter l'exposition aux rayonnements ionisants ; ceci est particulièrement important si l'on veut éviter les effets déterministes. Les premières mesures à appliquer en cas d'urgence sont l'évacuation, la mise à l'abri et l'administration d'iode stable. L'iode stable doit être distribué aux populations exposées, car cela saturera la thyroïde et inhibera son absorption d'iode radioactif. Cependant, pour être efficace, la saturation de la thyroïde doit se produire avant ou peu après le début de l'exposition. Enfin, la réinstallation temporaire ou permanente, la décontamination et le contrôle de l'agriculture et de l'alimentation peuvent éventuellement être nécessaires.

Chacune de ces contre-mesures a son propre « niveau d'action » (tableau 14), à ne pas confondre avec les limites de dose de la CIPR pour les travailleurs et le grand public, élaborées pour assurer une protection adéquate en cas d'exposition non accidentelle (ICRP 1991).

Tableau 14. Exemples de niveaux d'intervention génériques pour les mesures de protection pour la population générale

Mesure de protection

Niveau d'intervention (dose évitée)

Urgence Dentaire

CONFINEMENT

10 mSv

Évacuation

50 mSv

Distribution d'iode stable

100 mGy

différé

Réinstallation temporaire

30 mSv en 30 jours ; 10 mSv dans les 30 prochains jours

Réinstallation permanente

1 Sv durée de vie

Source : AIEA 1994.

Besoins de recherche et tendances futures

Les recherches actuelles en matière de sûreté se concentrent sur l'amélioration de la conception des réacteurs électronucléaires, plus précisément sur la réduction du risque et des effets de la fusion du cœur.

L'expérience acquise lors d'accidents antérieurs devrait permettre d'améliorer la prise en charge thérapeutique des personnes gravement irradiées. Actuellement, l'utilisation de facteurs de croissance des cellules de la moelle osseuse (facteurs de croissance hématopoïétiques) dans le traitement de l'aplasie médullaire radio-induite (défaillance du développement) est à l'étude (Thierry et al. 1995).

Les effets des faibles doses et débits de dose des rayonnements ionisants restent flous et doivent être clarifiés, tant d'un point de vue purement scientifique qu'aux fins d'établir des limites de dose pour le grand public et pour les travailleurs. Des recherches biologiques sont nécessaires pour élucider les mécanismes cancérigènes impliqués. Les résultats d'études épidémiologiques à grande échelle, notamment celles actuellement en cours sur les travailleurs des centrales nucléaires, devraient s'avérer utiles pour améliorer la précision des estimations du risque de cancer pour les populations exposées à de faibles doses ou débits de dose. Des études sur des populations qui sont ou ont été exposées à des rayonnements ionisants en raison d'accidents devraient permettre de mieux comprendre les effets de doses plus élevées, souvent délivrées à de faibles débits de dose.

L'infrastructure (organisation, équipement et outils) nécessaire à la collecte en temps voulu des données essentielles à l'évaluation des effets sanitaires des accidents radiologiques doit être en place bien avant l'accident.

Enfin, des recherches approfondies sont nécessaires pour clarifier les effets psychologiques et sociaux des accidents radiologiques (par exemple, la nature, la fréquence et les facteurs de risque des réactions psychologiques post-traumatiques pathologiques et non pathologiques). Ces recherches sont essentielles pour améliorer la prise en charge des populations exposées professionnellement et non professionnellement.

 

Noir

La contamination massive des terres agricoles par les radionucléides se produit, en règle générale, en raison d'accidents importants dans les entreprises de l'industrie nucléaire ou les centrales nucléaires. De tels accidents se sont produits à Windscale (Angleterre) et au sud de l'Oural (Russie). Le plus grand accident s'est produit en avril 1986 à la centrale nucléaire de Tchernobyl. Cette dernière a entraîné une contamination intensive des sols sur plusieurs milliers de kilomètres carrés.

Les principaux facteurs contribuant aux effets des rayonnements dans les zones agricoles sont les suivants :

  • si le rayonnement provient d'une exposition unique ou à long terme
  • quantité totale de substances radioactives pénétrant dans l'environnement
  • rapport des radionucléides dans les retombées
  • distance entre la source de rayonnement et les terres agricoles et les établissements
  • les caractéristiques hydrogéologiques et pédologiques des terres agricoles et le but de leur utilisation
  • particularités du travail de la population rurale; alimentation, approvisionnement en eau
  • temps écoulé depuis l'accident radiologique.

 

À la suite de l'accident de Tchernobyl, plus de 50 millions de curies (Ci) de radionucléides principalement volatils ont pénétré dans l'environnement. Lors de la première étape, qui a duré 2.5 mois (la « période de l'iode »), l'iode 131 a produit le plus grand danger biologique, avec des doses importantes de rayonnement gamma de haute énergie.

Les travaux sur les terres agricoles pendant la période iodée doivent être strictement réglementés. L'iode-131 s'accumule dans la glande thyroïde et l'endommage. Après l'accident de Tchernobyl, une zone de très forte intensité de rayonnement, où personne n'était autorisé à vivre ou à travailler, a été définie par un rayon de 30 km autour de la centrale.

En dehors de cette zone interdite, quatre zones présentant différents taux de rayonnement gamma sur les sols ont été distinguées selon les types de travaux agricoles pouvant être effectués ; pendant la période de l'iode, les quatre zones avaient les niveaux de rayonnement suivants mesurés en roentgen (R):

  • zone 1—moins de 0.1 mR/h
  • zone 2—0.1 à 1 mR/h
  • zone 3—1.0 à 5 mR/h
  • zone 4—5 mR/h et plus.

 

En effet, du fait de la contamination « ponctuelle » par les radionucléides sur la période iodée, les travaux agricoles dans ces zones ont été réalisés à des niveaux d'irradiation gamma de 0.2 à 25 mR/h. Outre une contamination inégale, la variation des niveaux de rayonnement gamma était causée par différentes concentrations de radionucléides dans différentes cultures. Les cultures fourragères en particulier sont exposées à des niveaux élevés d'émetteurs gamma pendant la récolte, le transport, l'ensilage et lorsqu'elles sont utilisées comme fourrage.

Après la désintégration de l'iode-131, le principal danger pour les travailleurs agricoles est présenté par les nucléides à longue durée de vie césium-137 et strontium-90. Le césium-137, un émetteur gamma, est un analogue chimique du potassium ; son absorption par les humains ou les animaux se traduit par une distribution uniforme dans tout le corps et il est excrété relativement rapidement avec l'urine et les fèces. Ainsi, le fumier des zones contaminées est une source supplémentaire de rayonnement et il doit être évacué au plus vite des élevages et stocké dans des sites adaptés.

Le strontium-90, un émetteur bêta, est un analogue chimique du calcium ; il est déposé dans la moelle osseuse chez les humains et les animaux. Le strontium-90 et le césium-137 peuvent pénétrer dans le corps humain par le lait, la viande ou les légumes contaminés.

Le découpage des terres agricoles en zones après la désintégration des radionucléides à vie courte s'effectue selon un principe différent. Ici, ce n'est pas le niveau de rayonnement gamma, mais la quantité de contamination du sol par le césium-137, le strontium-90 et le plutonium-239 qui sont pris en compte.

En cas de contamination particulièrement sévère, la population est évacuée de ces zones et les travaux agricoles sont effectués selon un rythme de rotation de 2 semaines. Les critères de délimitation des zones dans les zones contaminées sont donnés dans le tableau 1.

Tableau 1. Critères pour les zones de contamination

Zones contaminées

Limites de contamination des sols

Limites de dosage

Type d'action

1. Zone de 30 km

-

-

Habitant de
population et
travaux agricoles
sont interdits.

2. Inconditionnel
réinstallation

15 (Ci)/km2
césium- 137
3 Ci/km2
strontium-90
0.1 Ci/km2 plutonium

0.5 cSv/an

Les travaux agricoles sont effectués avec un horaire de rotation de 2 semaines sous contrôle radiologique strict.

3. Volontaire
réinstallation

5 à 15 Ci/km2
césium-137
0.15 à 3.0 Ci/km2
strontium-90
0.01 à 0.1 Ci/km2
plutonium

0.01-0.5
cSv/an

Des mesures sont prises pour réduire
pollution de
couche supérieure du sol;
travaux agricoles
est réalisée sous contrôle radiologique strict
.

4. Radio- écologique
Stack monitoring

1 à 5 Ci/km2
césium-137
0.02 à 0.15 Ci/km2
strontium-90
0.05 à 0.01 Ci/km2
plutonium

0.01 cSv/an

Le travail agricole est
effectué de manière habituelle mais sous
contrôle radiologique.

 

Lorsque des personnes travaillent sur des terres agricoles contaminées par des radionucléides, l'absorption de radionucléides par l'organisme par la respiration et le contact avec le sol et les poussières végétales peut se produire. Ici, les émetteurs bêta (strontium-90) et les émetteurs alpha sont extrêmement dangereux.

À la suite d'accidents dans les centrales nucléaires, une partie des matières radioactives qui pénètrent dans l'environnement sont des particules faiblement dispersées et très actives du combustible du réacteur, les « particules chaudes ».

Des quantités considérables de poussières contenant des particules chaudes sont générées lors des travaux agricoles et en période de vent. Cela a été confirmé par les résultats d'enquêtes sur des filtres à air de tracteur prélevés sur des machines qui opéraient sur les terrains contaminés.

L'évaluation des charges de dose sur les poumons des travailleurs agricoles exposés aux particules chaudes a révélé qu'en dehors de la zone de 30 km les doses s'élevaient à plusieurs millisieverts (Loshchilov et al. 1993).

Selon les données de Bruk et al. (1989) l'activité totale du césium-137 et du césium-134 dans la poussière inspirée chez les opérateurs de machines s'élevait à 0.005 à 1.5 nCi/m3. Selon leurs calculs, sur la durée totale des travaux sur le terrain, la dose efficace aux poumons variait de 2 à
70 cSv.

La relation entre la quantité de contamination du sol par le césium 137 et la radioactivité de l'air de la zone de travail a été établie. Selon les données de l'Institut de santé au travail de Kiev, il a été constaté que lorsque la contamination du sol par le césium 137 s'élevait à 7.0 à 30.0 Ci/km2 la radioactivité de l'air de la zone respiratoire a atteint 13.0 Bq/m3. Dans la zone témoin, où la densité de contamination s'élevait à 0.23 à 0.61 Ci/km3, la radioactivité de l'air de la zone de travail variait de 0.1 à 1.0 Bq/m3 (Krasnyuk, Chernyuk et Stezhka 1993).

Les examens médicaux des conducteurs de machines agricoles dans les zones « claires » et contaminées ont révélé une augmentation des maladies cardiovasculaires chez les travailleurs des zones contaminées, sous forme de cardiopathies ischémiques et de dystonies neurocirculatoires. Parmi les autres troubles, une dysplasie de la glande thyroïde et une augmentation du taux de monocytes dans le sang ont été enregistrées plus fréquemment.

Exigences hygiéniques

Horaires de travail

Après de grands accidents dans les centrales nucléaires, des réglementations temporaires pour la population sont généralement adoptées. Après l'accident de Tchernobyl, une réglementation provisoire d'une durée d'un an a été adoptée, avec une TLV de 10 cSv. On suppose que les travailleurs reçoivent 50 % de leur dose due au rayonnement externe pendant le travail. Ici, le seuil d'intensité de la dose de rayonnement au cours de la journée de travail de huit heures ne doit pas dépasser 2.1 mR/h.

Lors des travaux agricoles, les niveaux de rayonnement sur les lieux de travail peuvent fluctuer de manière importante, en fonction des concentrations de substances radioactives dans les sols et les végétaux ; elles fluctuent également au cours des transformations technologiques (ensilage, préparation de fourrages secs, etc.). Afin de réduire les doses aux travailleurs, des réglementations sur les délais de travail agricole sont introduites. La figure 1 montre les réglementations introduites après l'accident de Tchernobyl.

Figure 1. Limites de temps pour les travaux agricoles en fonction de l'intensité du rayonnement gamma sur les lieux de travail.

DIS090T2

Agrotechnologies

Lors de travaux agricoles dans des conditions de forte contamination des sols et des plantes, il est nécessaire de respecter strictement les mesures visant à prévenir la contamination par la poussière. Le chargement et le déchargement des substances sèches et poussiéreuses doivent être mécanisés ; le col du tube transporteur doit être recouvert de tissu. Des mesures visant à réduire le dégagement de poussière doivent être prises pour tous les types de travaux sur le terrain.

Les travaux avec des engins agricoles doivent être effectués en tenant compte de la pressurisation de la cabine et du choix du bon sens de marche, le vent latéral étant préférable. Si possible, il est souhaitable d'arroser d'abord les zones cultivées. L'utilisation généralisée des technologies industrielles est recommandée afin d'éliminer autant que possible le travail manuel dans les champs.

Il convient d'appliquer sur les sols des substances susceptibles de favoriser l'absorption et la fixation des radionucléides, en les transformant en composés insolubles et en empêchant ainsi le transfert des radionucléides dans les végétaux.

Machines agricoles

L'un des risques majeurs pour les travailleurs est la contamination des machines agricoles par des radionucléides. Le temps de travail autorisé sur les machines dépend de l'intensité du rayonnement gamma émis par les surfaces de la cabine. Non seulement la pressurisation complète des cabines est requise, mais également un contrôle approprié des systèmes de ventilation et de climatisation. Après le travail, un nettoyage humide des cabines et le remplacement des filtres doivent être effectués.

Lors de l'entretien et de la réparation des machines après les procédures de décontamination, l'intensité du rayonnement gamma sur les surfaces extérieures ne doit pas dépasser 0.3 mR/h.

Bâtiments

Un nettoyage humide de routine doit être effectué à l'intérieur et à l'extérieur des bâtiments. Les bâtiments doivent être équipés de douches. Lors de la préparation de fourrage contenant des composants poussiéreux, il est nécessaire de respecter les procédures visant à prévenir l'absorption de poussière par les travailleurs, ainsi qu'à maintenir la poussière hors du sol, de l'équipement, etc.

La pressurisation de l'équipement doit être maîtrisée. Les lieux de travail doivent être équipés d'une ventilation générale efficace.

Utilisation de pesticides et d'engrais minéraux

L'épandage de pesticides en poudre et granulés et d'engrais minéraux, ainsi que la pulvérisation à partir d'avions, devraient être limités. La pulvérisation mécanique et l'application de produits chimiques granulaires ainsi que d'engrais mixtes liquides sont préférables. Les engrais minéraux pulvérulents doivent être stockés et transportés uniquement dans des conteneurs hermétiquement fermés.

Les travaux de chargement et de déchargement, la préparation des solutions de pesticides et les autres activités doivent être effectués en utilisant un maximum d'équipements de protection individuelle (combinaisons, casques, lunettes, respirateurs, gants et bottes en caoutchouc).

Approvisionnement en eau et alimentation

Il devrait y avoir des locaux spéciaux fermés ou des fourgonnettes sans courants d'air où les travailleurs puissent prendre leurs repas. Avant de prendre leurs repas, les travailleurs doivent nettoyer leurs vêtements et se laver soigneusement les mains et le visage avec du savon et de l'eau courante. Pendant les périodes estivales, les travailleurs sur le terrain doivent être approvisionnés en eau potable. L'eau doit être conservée dans des récipients fermés. La poussière ne doit pas pénétrer dans les récipients lors du remplissage avec de l'eau.

Examens médicaux préventifs des travailleurs

Des examens médicaux périodiques doivent être effectués par un médecin; l'analyse en laboratoire du sang, l'ECG et les tests de la fonction respiratoire sont obligatoires. Lorsque les niveaux de rayonnement ne dépassent pas les limites autorisées, la fréquence des examens médicaux ne devrait pas être inférieure à une fois tous les 12 mois. Lorsque les niveaux de rayonnement ionisant sont plus élevés, les examens doivent être effectués plus fréquemment (après semis, récolte, etc.) en tenant dûment compte de l'intensité du rayonnement sur les lieux de travail et de la dose totale absorbée.

Organisation du contrôle radiologique des zones agricoles

Les principaux indices caractérisant la situation radiologique après les retombées sont l'intensité du rayonnement gamma dans la zone, la contamination des terres agricoles par les radionucléides sélectionnés et la teneur en radionucléides des produits agricoles.

La détermination des niveaux de rayonnement gamma dans les zones permet de tracer les limites des zones fortement contaminées, d'estimer les doses de rayonnement externe aux personnes engagées dans les travaux agricoles et d'établir des programmes correspondants prévoyant la sécurité radiologique.

Les fonctions de surveillance radiologique en agriculture sont généralement du ressort des laboratoires radiologiques du service sanitaire ainsi que des laboratoires radiologiques vétérinaires et agrochimiques. La formation et l'éducation du personnel affecté au contrôle dosimétrique et aux consultations de la population rurale sont assurées par ces laboratoires.

 

Noir

Un incendie industriel tragique en Thaïlande a attiré l'attention du monde entier sur la nécessité d'adopter et d'appliquer des codes et des normes de pointe dans les établissements industriels.

Le 10 mai 1993, un incendie majeur à l'usine Kader Industrial (Thailand) Co. Ltd. située dans la province de Nakhon Pathom en Thaïlande a tué 188 travailleurs (Grant et Klem 1994). Cette catastrophe est le pire incendie accidentel au monde dans un bâtiment industriel de l'histoire récente, une distinction détenue pendant 82 ans par l'incendie de l'usine Triangle Shirtwaist qui a tué 146 travailleurs à New York (Grant 1993). Malgré les années entre ces deux catastrophes, elles partagent des similitudes frappantes.

Divers organismes nationaux et internationaux se sont concentrés sur cet incident après son apparition. En ce qui concerne les problèmes de protection contre les incendies, la National Fire Protection Association (NFPA) a coopéré avec l'Organisation internationale du travail (OIT) et avec les pompiers de la police de Bangkok pour documenter cet incendie.

Questions pour une économie mondiale

En Thaïlande, l'incendie de Kader a suscité beaucoup d'intérêt pour les mesures de sécurité incendie du pays, en particulier les exigences de conception du code du bâtiment et les politiques d'application. Le Premier ministre thaïlandais Chuan Leekpai, qui s'est rendu sur les lieux le soir de l'incendie, a promis que le gouvernement réglerait les problèmes de sécurité incendie. Selon le Wall Street Journal (1993), Leekpai a appelé à des mesures sévères contre ceux qui violent les lois sur la sécurité. Le ministre thaïlandais de l'Industrie, Sanan Kachornprasart, aurait déclaré que "ces usines sans système de prévention des incendies recevront l'ordre d'en installer un, sinon nous les fermerons".

Les Wall Street Journal poursuit en déclarant que les dirigeants syndicaux, les experts en sécurité et les responsables affirment que l'incendie de Kader pourrait contribuer à resserrer les codes du bâtiment et les réglementations en matière de sécurité, mais ils craignent que des progrès durables soient encore loin, car les employeurs bafouent les règles et les gouvernements permettent à la croissance économique de prendre le pas sur les travailleurs sécurité.

Étant donné que la majorité des actions de Kader Industrial (Thailand) Co. Ltd. sont détenues par des intérêts étrangers, l'incendie a également alimenté le débat international sur les responsabilités des investisseurs étrangers pour assurer la sécurité des travailleurs dans leur pays parrain. Vingt pour cent des actionnaires de Kader sont originaires de Taïwan et 79.96 % de Hong Kong. A peine 0.04% de Kader appartient à des ressortissants thaïlandais.

L'entrée dans une économie mondiale implique que les produits soient fabriqués à un endroit et utilisés à d'autres endroits dans le monde. La volonté de compétitivité sur ce nouveau marché ne doit pas conduire à transiger sur les dispositions fondamentales de la sécurité incendie industrielle. Il existe une obligation morale de fournir aux travailleurs un niveau adéquat de protection contre l'incendie, peu importe où ils se trouvent.

La facilité

L'usine de Kader, qui fabriquait des peluches et des poupées en plastique principalement destinées à l'exportation vers les États-Unis et d'autres pays développés, est située dans le district de Sam Phran de la province de Nakhon Pathom. Ce n'est pas tout à fait à mi-chemin entre Bangkok et la ville voisine de Kanchanaburi, site du tristement célèbre pont ferroviaire de la Seconde Guerre mondiale sur la rivière Kwai.

Les structures qui ont été détruites dans l'incendie étaient toutes détenues et exploitées directement par Kader, propriétaire du site. Kader a deux sociétés sœurs qui opèrent également sur le site dans le cadre d'un contrat de location.

La Kader Industrial (Thailand) Co. Ltd. a été enregistrée pour la première fois le 27 janvier 1989, mais la licence de l'entreprise a été suspendue le 21 novembre 1989, après qu'un incendie le 16 août 1989 a détruit la nouvelle usine. Cet incendie a été attribué à l'inflammation de tissus en polyester utilisés dans la fabrication de poupées dans une machine à filer. Après la reconstruction de l'usine, le ministère de l'Industrie a autorisé sa réouverture le 4 juillet 1990.

Entre le moment où l'usine a rouvert et l'incendie de mai 1993, l'installation a connu plusieurs autres incendies plus petits. L'un d'eux, survenu en février 1993, a causé des dommages considérables au bâtiment trois, qui était encore en réparation au moment de l'incendie de mai 1993. L'incendie de février s'est produit tard dans la nuit dans une zone de stockage et impliquait des matériaux en polyester et en coton. Quelques jours après cet incendie, un inspecteur du travail s'est rendu sur le site et a émis une alerte signalant le besoin de l'usine d'agents de sécurité, d'équipements de sécurité et d'un plan d'urgence.

Les rapports initiaux après l'incendie de mai 1993 indiquaient qu'il y avait quatre bâtiments sur le site de Kader, dont trois ont été détruits par l'incendie. Dans un sens, c'est vrai, mais les trois bâtiments étaient en fait une seule structure en forme de E (voir figure 1), dont les trois parties principales étaient désignées Bâtiments Un, Deux et Trois. A proximité se trouvaient un atelier d'un étage et une autre structure de quatre étages appelée Bâtiment Quatre.

Figure 1. Plan du site de l'usine de jouets Kader

DIS095F1

Le bâtiment en forme de E était une structure de quatre étages composée de dalles de béton soutenues par une charpente en acier. Il y avait des fenêtres autour du périmètre de chaque étage et le toit était un arrangement en pente douce et pointu. Chaque partie du bâtiment avait un monte-charge et deux cages d'escalier de 1.5 mètre (3.3 pieds) de largeur chacune. Les monte-charges étaient des assemblages en cage.

Chaque bâtiment de l'usine était équipé d'un système d'alarme incendie. Aucun des bâtiments ne disposait de gicleurs automatiques, mais des extincteurs portatifs et des stations d'arrosage étaient installés sur les murs extérieurs et dans les cages d'escalier de chaque bâtiment. Aucune des structures en acier du bâtiment n'était ignifugée.

Il existe des informations contradictoires sur le nombre total de travailleurs sur le site. La Fédération des industries thaïlandaises s'était engagée à aider 2,500 1,146 employés de l'usine déplacés par l'incendie, mais on ne sait pas combien d'employés se trouvaient sur le site à un moment donné. Lorsque l'incendie s'est déclaré, il a été signalé qu'il y avait 10 500 travailleurs dans le bâtiment un. Trente-six étaient au premier étage, 600 au deuxième, 405 au troisième et 5 au quatrième. Il y avait 300 travailleurs dans le bâtiment deux. Soixante d'entre eux se trouvaient au premier étage, 40 au deuxième, XNUMX au troisième et XNUMX au quatrième. On ne sait pas combien de travailleurs se trouvaient dans le bâtiment trois, car une partie de celui-ci était encore en cours de rénovation. La plupart des travailleurs de l'usine étaient des femmes.

Le feu

Le lundi 10 mai était une journée de travail normale à l'usine de Kader. Vers 4 h 00, alors que la fin de l'équipe de jour approchait, quelqu'un a découvert un petit incendie au premier étage près de l'extrémité sud du bâtiment un. Cette partie du bâtiment servait au conditionnement et au stockage des produits finis, elle contenait donc une charge de combustible considérable (voir figure 2). Chaque bâtiment de l'installation avait une charge de combustible composée de tissus, de plastiques et de matériaux utilisés pour le rembourrage, ainsi que d'autres matériaux de travail normaux.

Figure 2. Disposition intérieure des bâtiments un, deux et trois

DIS095F2

Les gardes de sécurité à proximité de l'incendie ont tenté en vain d'éteindre les flammes avant d'appeler les pompiers de la police locale à 4h21. Les autorités ont reçu deux autres appels, à 4h30 et 4h31. L'installation de Kader est juste au-delà du limites juridictionnelles de Bangkok, mais les appareils d'incendie de Bangkok, ainsi que les appareils de la province de Nakhon Pathom, ont répondu.

Alors que les ouvriers et les agents de sécurité tentaient en vain d'éteindre le feu, le bâtiment a commencé à se remplir de fumée et d'autres produits de combustion. Les survivants ont rapporté que l'alarme incendie n'a jamais retenti dans le bâtiment un, mais de nombreux travailleurs se sont inquiétés lorsqu'ils ont vu de la fumée aux étages supérieurs. Malgré la fumée, des agents de sécurité auraient dit à certains travailleurs de rester à leur poste car il s'agissait d'un petit incendie qui serait bientôt maîtrisé.

Le feu s'est propagé rapidement dans tout le bâtiment 1,100 et les étages supérieurs sont rapidement devenus intenables. L'incendie a bloqué la cage d'escalier à l'extrémité sud du bâtiment, de sorte que la plupart des travailleurs se sont précipités vers la cage d'escalier nord. Cela signifiait qu'environ XNUMX XNUMX personnes tentaient de quitter les troisième et quatrième étages par une seule cage d'escalier.

Les premiers engins de lutte contre l'incendie sont arrivés à 4h40, leur temps de réponse ayant été prolongé en raison de l'emplacement relativement éloigné de l'installation et des conditions d'embouteillage typiques du trafic de Bangkok. Les pompiers arrivés ont trouvé le bâtiment XNUMX fortement impliqué dans les flammes et commençant déjà à s'effondrer, des personnes sautant des troisième et quatrième étages.

Malgré les efforts des pompiers, le bâtiment 5 s'effondre complètement vers 14h5. Attisé par des vents violents soufflant vers le nord, l'incendie se propage rapidement aux bâtiments 30 et 6 avant que les pompiers ne puissent les défendre efficacement. Le bâtiment deux se serait effondré à 05 h 7 et le bâtiment trois à 45 h 50. Les pompiers ont réussi à empêcher le feu d'entrer dans le bâtiment quatre et le plus petit atelier d'un étage à proximité, et les pompiers ont maîtrisé l'incendie en XNUMX h XNUMX Environ XNUMX pièces d'engins de pompiers sont impliquées dans la bataille.

Les alarmes incendie dans les bâtiments deux et trois auraient fonctionné correctement et tous les travailleurs de ces deux bâtiments se sont échappés. Les ouvriers du bâtiment 469 n'ont pas eu cette chance. Un grand nombre d'entre eux ont sauté des étages supérieurs. Au total, 20 travailleurs ont été transportés à l'hôpital, où 188 sont décédés. Les autres morts ont été retrouvés lors de la recherche après l'incendie de ce qui avait été la cage d'escalier nord du bâtiment. Beaucoup d'entre eux ont apparemment succombé aux produits mortels de la combustion avant ou pendant l'effondrement du bâtiment. Selon les dernières informations disponibles, XNUMX personnes, en majorité des femmes, sont décédées des suites de cet incendie.

Même avec l'aide de six grandes grues hydrauliques qui ont été déplacées sur le site pour faciliter la recherche des victimes, il a fallu plusieurs jours avant que tous les corps puissent être retirés des décombres. Il n'y a eu aucun mort parmi les pompiers, bien qu'il y ait eu un blessé.

La circulation aux alentours, normalement congestionnée, a rendu difficile le transport des victimes vers les hôpitaux. Près de 300 travailleurs blessés ont été emmenés à l'hôpital Sriwichai II voisin, bien que beaucoup d'entre eux aient été transférés vers d'autres installations médicales lorsque le nombre de victimes a dépassé la capacité de l'hôpital à les traiter.

Le lendemain de l'incendie, l'hôpital Sriwichai II a signalé qu'il avait gardé 111 victimes de l'incendie. L'hôpital Kasemrat en a reçu 120 ; Sriwichai Pattanana en a reçu 60 ; Sriwichai j'en ai reçu 50; Ratanathibet j'en ai reçu 36; Siriraj en a reçu 22; et Bang Phai en a reçu 17. Les 53 autres travailleurs blessés ont été envoyés dans divers autres établissements médicaux de la région. Au total, 22 hôpitaux à travers Bangkok et la province de Nakhon Pathom ont participé au traitement des victimes de la catastrophe.

L'hôpital Sriwichai II a signalé que 80% de ses 111 victimes avaient subi des blessures graves et que 30% avaient nécessité une intervention chirurgicale. La moitié des patients ne souffraient que d'inhalation de fumée, tandis que les autres souffraient également de brûlures et de fractures allant de chevilles cassées à des crânes fracturés. Au moins 10% des travailleurs blessés de Kader admis à l'hôpital Sriwichai II risquent une paralysie permanente.

Déterminer la cause de cet incendie est devenu un défi car la partie de l'installation dans laquelle il a commencé a été totalement détruite et les survivants ont fourni des informations contradictoires. Comme l'incendie s'est déclaré près d'un grand panneau de commande électrique, les enquêteurs ont d'abord pensé que des problèmes avec le système électrique pourraient en être la cause. Ils ont également envisagé un incendie criminel. À l'heure actuelle, cependant, les autorités thaïlandaises estiment qu'une cigarette jetée négligemment peut avoir été la source d'inflammation.

Analyser le feu

Depuis 82 ans, le monde a reconnu l'incendie de l'usine Triangle Shirtwaist de 1911 à New York comme le pire incendie industriel mortel accidentel dans lequel les décès se limitaient au bâtiment d'origine de l'incendie. Avec 188 morts, l'incendie de l'usine Kader remplace désormais l'incendie du Triangle dans le livre des records.

Lors de l'analyse de l'incendie de Kader, une comparaison directe avec l'incendie du Triangle fournit une référence utile. Les deux bâtiments étaient similaires à bien des égards. La disposition des issues était mauvaise, les systèmes fixes de protection contre l'incendie étaient insuffisants ou inefficaces, le combustible initial était facilement inflammable et les séparations coupe-feu horizontales et verticales étaient inadéquates. De plus, aucune des deux entreprises n'avait fourni à ses travailleurs une formation adéquate en matière de sécurité incendie. Cependant, il existe une différence distincte entre ces deux incendies : le bâtiment de l'usine Triangle Shirtwaist ne s'est pas effondré et les bâtiments Kader l'ont fait.

Des dispositions de sortie inadéquates ont peut-être été le facteur le plus important dans le nombre élevé de pertes de vies humaines lors des incendies de Kader et du Triangle. Si les dispositions existantes de la NFPA 101, le Code de sécurité des personnes, qui a été établie comme conséquence directe de l'incendie du Triangle, a été appliquée à l'installation de Kader, beaucoup moins de vies auraient été perdues (NFPA 101, 1994).

Plusieurs exigences fondamentales de la Code de sécurité des personnes concernent directement l'incendie de Kader. Par exemple, le Code exige que tout bâtiment ou structure soit construit, aménagé et exploité de manière à ce que ses occupants ne soient pas exposés à un danger injustifié par le feu, la fumée, les émanations ou la panique pouvant survenir lors d'une évacuation ou pendant le temps qu'il faut pour défendre le occupants en place.

Les Code exige également que chaque bâtiment ait suffisamment de sorties et d'autres protections de taille appropriée et aux emplacements appropriés pour fournir une voie d'évacuation à chaque occupant d'un bâtiment. Ces issues devraient être adaptées à chaque bâtiment ou structure, en tenant compte du caractère de l'occupation, des capacités des occupants, du nombre d'occupants, de la protection contre l'incendie disponible, de la hauteur et du type de construction du bâtiment et de tout autre facteur nécessaire pour assurer à tous les occupants un degré raisonnable de sécurité. Ce n'était évidemment pas le cas dans l'installation de Kader, où l'incendie a bloqué l'une des deux cages d'escalier du bâtiment 1,100, forçant environ XNUMX XNUMX personnes à fuir les troisième et quatrième étages par une seule cage d'escalier.

De plus, les sorties doivent être disposées et entretenues de manière à permettre une sortie libre et sans obstruction de toutes les parties d'un bâtiment chaque fois qu'il est occupé. Chacune de ces issues doit être clairement visible, ou l'itinéraire menant à chaque issue doit être balisé de manière à ce que chaque occupant du bâtiment physiquement et mentalement capable connaisse facilement la direction d'évacuation à partir de n'importe quel point.

Chaque sortie ou ouverture verticale entre les étages d'un bâtiment devrait être fermée ou protégée selon les besoins pour assurer une sécurité raisonnable des occupants pendant leur sortie et pour empêcher le feu, la fumée et les émanations de se propager d'un étage à l'autre avant que les occupants n'aient eu la possibilité d'utiliser les sorties.

Les résultats des incendies du Triangle et de Kader ont été considérablement affectés par le manque de séparations coupe-feu horizontales et verticales adéquates. Les deux installations ont été aménagées et construites de manière à ce qu'un incendie à un étage inférieur puisse se propager rapidement aux étages supérieurs, piégeant ainsi un grand nombre de travailleurs.

Les grands espaces de travail ouverts sont typiques des installations industrielles, et des planchers et des murs coupe-feu doivent être installés et entretenus pour ralentir la propagation du feu d'une zone à une autre. Le feu doit également être empêché de se propager de l'extérieur des fenêtres d'un étage à celles d'un autre étage, comme ce fut le cas lors de l'incendie du Triangle.

Le moyen le plus efficace de limiter la propagation verticale du feu est d'enfermer les cages d'escalier, les ascenseurs et les autres ouvertures verticales entre les étages. Les rapports sur des caractéristiques telles que les monte-charges en cage à l'usine de Kader soulèvent des questions importantes sur la capacité des caractéristiques de protection passive contre l'incendie des bâtiments à empêcher la propagation verticale du feu et de la fumée.

Formation en sécurité incendie et autres facteurs

Un autre facteur qui a contribué aux pertes humaines importantes dans les incendies du Triangle et de Kader était le manque de formation adéquate en matière de sécurité incendie et les procédures de sécurité rigides des deux sociétés.

Après l'incendie de l'installation de Kader, les survivants ont signalé que les exercices d'incendie et la formation à la sécurité incendie étaient minimes, bien que les agents de sécurité aient apparemment reçu une formation naissante en matière d'incendie. L'usine Triangle Shirtwaist n'avait pas de plan d'évacuation et les exercices d'incendie n'ont pas été mis en œuvre. De plus, les rapports post-incendie des survivants de Triangle indiquent qu'ils ont été régulièrement arrêtés alors qu'ils quittaient le bâtiment à la fin de la journée de travail pour des raisons de sécurité. Diverses accusations post-incendie par des survivants de Kader impliquent également que les mesures de sécurité ont ralenti leur sortie, bien que ces accusations fassent toujours l'objet d'une enquête. Quoi qu'il en soit, l'absence d'un plan d'évacuation bien compris semble avoir été un facteur important dans les nombreuses pertes de vies humaines subies lors de l'incendie de Kader. Chapitre 31 de la Code de sécurité des personnes aborde les exercices d'incendie et la formation à l'évacuation.

L'absence de systèmes fixes automatiques de protection contre l'incendie a également affecté l'issue des incendies du Triangle et de Kader. Aucune des deux installations n'était équipée de gicleurs automatiques, bien que les bâtiments Kader disposaient d'un système d'alarme incendie. Selon le Code de sécurité des personnes, des avertisseurs d'incendie devraient être installés dans les bâtiments dont la taille, la disposition ou l'occupation rendent peu probable que les occupants eux-mêmes remarquent immédiatement un incendie. Malheureusement, les alarmes n'auraient jamais fonctionné dans le bâtiment XNUMX, ce qui a entraîné un retard important dans l'évacuation. Il n'y a eu aucun décès dans les bâtiments deux et trois, où le système d'alarme incendie a fonctionné comme prévu.

Les systèmes d'alarme incendie doivent être conçus, installés et entretenus conformément à des documents tels que NFPA 72, le National Fire Alarm Code (NFPA 72, 1993). Les systèmes de gicleurs doivent être conçus et installés conformément à des documents tels que NFPA 13, Installation de systèmes de gicleurs, et entretenu conformément à la norme NFPA 25, Inspection, essai et entretien des systèmes de protection contre les incendies à base d'eau (NFPA 13, 1994; NFPA 25, 1995).

Les paquets de combustible initiaux dans les incendies du Triangle et de Kader étaient similaires. L'incendie du Triangle a commencé dans des poubelles à chiffons et s'est rapidement propagé aux vêtements et vêtements combustibles avant d'impliquer des meubles en bois, dont certains étaient imprégnés d'huile de machine. Le paquet de carburant initial de l'usine de Kader était composé de tissus en polyester et en coton, de divers plastiques et d'autres matériaux utilisés pour fabriquer des jouets en peluche, des poupées en plastique et d'autres produits connexes. Ce sont des matériaux qui peuvent généralement s'enflammer facilement, peuvent contribuer à la croissance et à la propagation rapides du feu et ont un taux de dégagement de chaleur élevé.

L'industrie manipulera probablement toujours des matériaux qui présentent des caractéristiques de protection contre les incendies difficiles, mais les fabricants doivent reconnaître ces caractéristiques et prendre les précautions nécessaires pour minimiser les risques associés.

L'intégrité structurelle du bâtiment

La différence la plus notable entre les incendies du Triangle et de Kader est probablement l'effet qu'ils ont eu sur l'intégrité structurelle des bâtiments impliqués. Même si l'incendie du Triangle a ravagé les trois derniers étages du bâtiment de l'usine de dix étages, le bâtiment est resté structurellement intact. Les bâtiments Kader, en revanche, se sont effondrés relativement tôt dans l'incendie car leurs supports en acier de construction manquaient de l'ignifugation qui leur aurait permis de conserver leur résistance lorsqu'ils étaient exposés à des températures élevées. Un examen après incendie des débris sur le site de Kader n'a montré aucune indication que l'un des éléments en acier avait été ignifugé.

De toute évidence, l'effondrement d'un bâtiment lors d'un incendie représente une grande menace tant pour les occupants du bâtiment que pour les pompiers impliqués dans la maîtrise de l'incendie. Cependant, on ne sait pas si l'effondrement du bâtiment Kader a eu un effet direct sur le nombre de morts, car les victimes ont peut-être déjà succombé aux effets de la chaleur et des produits de combustion au moment où le bâtiment s'est effondré. Si les travailleurs des étages supérieurs du bâtiment XNUMX avaient été protégés des produits de combustion et de la chaleur pendant qu'ils tentaient de s'échapper, l'effondrement du bâtiment aurait été un facteur plus direct de perte de vie.

Attention focalisée sur les principes de protection contre les incendies

Parmi les principes de protection incendie sur lesquels l'incendie de Kader a attiré l'attention figurent la conception des issues, la formation des occupants à la sécurité incendie, les systèmes de détection et d'extinction automatiques, les séparations coupe-feu et l'intégrité structurelle. Ces leçons ne sont pas nouvelles. Ils ont été enseignés pour la première fois il y a plus de 80 ans lors de l'incendie de Triangle Shirtwaist et à nouveau, plus récemment, dans un certain nombre d'autres incendies mortels sur le lieu de travail, y compris ceux de l'usine de transformation de poulet de Hamlet, en Caroline du Nord, aux États-Unis, qui ont tué 25 travailleurs. dans une fabrique de poupées à Kuiyong, en Chine, qui a tué 81 ouvriers ; et à la centrale électrique de Newark, New Jersey, États-Unis, qui a tué les 3 travailleurs de l'usine (Grant et Klem 1994 ; Klem 1992 ; Klem et Grant 1993).

Les incendies en Caroline du Nord et au New Jersey, en particulier, démontrent que la simple disponibilité de codes et de normes à la pointe de la technologie, comme la NFPA Code de sécurité des personnes, ne peut empêcher des pertes tragiques. Ces codes et normes doivent également être adoptés et rigoureusement appliqués pour qu'ils aient un effet.

Les autorités publiques nationales, étatiques et locales devraient examiner la manière dont elles appliquent leurs codes du bâtiment et d'incendie pour déterminer si de nouveaux codes sont nécessaires ou si les codes existants doivent être mis à jour. Cet examen devrait également déterminer si un processus d'examen et d'inspection du plan du bâtiment est en place pour s'assurer que les codes appropriés sont respectés. Enfin, des dispositions doivent être prises pour des inspections périodiques de suivi des bâtiments existants afin de s'assurer que les niveaux les plus élevés de protection contre l'incendie sont maintenus pendant toute la durée de vie du bâtiment.

Les propriétaires et exploitants d'immeubles doivent également être conscients qu'ils sont responsables de s'assurer que l'environnement de travail de leurs employés est sécuritaire. À tout le moins, la conception de pointe en matière de protection contre les incendies reflétée dans les codes et les normes de prévention des incendies doit être en place pour minimiser la possibilité d'un incendie catastrophique.

Si les bâtiments de Kader avaient été équipés de gicleurs et d'alarmes incendie fonctionnelles, les pertes de vie n'auraient peut-être pas été aussi élevées. Si les sorties du bâtiment XNUMX avaient été mieux conçues, des centaines de personnes n'auraient peut-être pas été blessées en sautant des troisième et quatrième étages. Si des séparations verticales et horizontales avaient été en place, le feu ne se serait peut-être pas propagé aussi rapidement dans tout le bâtiment. Si les éléments de charpente en acier des bâtiments avaient été ignifugés, les bâtiments ne se seraient peut-être pas effondrés.

Le philosophe George Santayana a écrit : "Ceux qui oublient le passé sont condamnés à le répéter". L'incendie de Kader de 1993 était malheureusement, à bien des égards, une répétition de l'incendie de Triangle Shirtwaist de 1911. Alors que nous nous tournons vers l'avenir, nous devons reconnaître tout ce que nous devons faire, en tant que société mondiale, pour empêcher l'histoire de se répéter. lui-même.

 

Noir

Cet article a été adapté, avec permission, de Zeballos 1993b.

L'Amérique latine et les Caraïbes n'ont pas été épargnées par leur part de catastrophes naturelles. Presque chaque année, des événements catastrophiques causent des morts, des blessés et d'énormes dommages économiques. Au total, on estime que les catastrophes naturelles majeures des deux dernières décennies dans cette région ont causé des pertes matérielles affectant près de 8 millions de personnes, quelque 500,000 150,000 blessés et 1.5 6,000 morts. Ces chiffres reposent en grande partie sur des sources officielles. (Il est assez difficile d'obtenir des informations précises sur les catastrophes soudaines, car il existe de multiples sources d'information et aucun système d'information standardisé.) La Commission économique pour l'Amérique latine et les Caraïbes (CEPALC) estime qu'au cours d'une année moyenne, les catastrophes en Amérique latine L'Amérique et les Caraïbes coûtent 1991 milliard de dollars américains et font XNUMX XNUMX morts (Jovel XNUMX).

Le tableau 1 énumère les principales catastrophes naturelles qui ont frappé les pays de la région au cours de la période 1970-93. Il convient de noter que les catastrophes à évolution lente, telles que les sécheresses et les inondations, ne sont pas incluses.

Tableau 1. Catastrophes majeures en Amérique latine et dans les Caraïbes, 1970-93

Année

Pays

Type de
catastrophe

Nombre de décès
rapporté

Est. non. de
personnes touchées

1970

Pérou

Tremblement de terre

66,679

3,139,000

1972

Nicaragua

Tremblement de terre

10,000

400,000

1976

Guatemala

Tremblement de terre

23,000

1,200,000

1980

Haïti

Ouragan (Allen)

220

330,000

1982

Mexique

Éruption volcanique

3,000

60,000

1985

Mexique

Tremblement de terre

10,000

60,000

1985

Colombie

Éruption volcanique

23,000

200,000

1986

El Salvador

Tremblement de terre

1,100

500,000

1988

Jamaïque

Ouragan (Gilbert)

45

500,000

1988

Mexique

Ouragan (Gilbert)

250

200,000

1988

Nicaragua

Ouragan (Jeanne)

116

185,000

1989

Montserrat,
Dominique

Ouragan (Hugo)

56

220,000

1990

Pérou

Tremblement de terre

21

130,000

1991

Costa Rica

Tremblement de terre

51

19,700

1992

Nicaragua

Tsunami

116

13,500

1993

Honduras

Tempête tropicale

103

11,000

Source : OPS 1989 ; OFDA (USAID), 1989 ; UNDRO 1990.

Impact économique

Au cours des dernières décennies, la CEPALC a mené des recherches approfondies sur les impacts sociaux et économiques des catastrophes. Cela a clairement démontré que les catastrophes ont des répercussions négatives sur le développement social et économique des pays en développement. En effet, les pertes monétaires causées par une catastrophe majeure dépassent souvent le revenu brut annuel total du pays touché. Sans surprise, de tels événements peuvent paralyser les pays touchés et favoriser des troubles politiques et sociaux généralisés.

Essentiellement, les catastrophes ont trois types d'impacts économiques :

  • impacts directs sur les biens de la population affectée
  • impacts indirects causés par la perte de production économique et de services
  • les impacts secondaires qui deviennent apparents après la catastrophe, tels que la réduction du revenu national, l'augmentation de l'inflation, les problèmes de commerce extérieur, l'augmentation des dépenses financières, le déficit budgétaire qui en résulte, la diminution des réserves monétaires, etc. (Jovel 1991).

 

Le tableau 2 montre les pertes estimées causées par six catastrophes naturelles majeures. Bien que de telles pertes puissent ne pas sembler particulièrement dévastatrices pour les pays développés dotés d'économies fortes, elles peuvent avoir un impact grave et durable sur les économies faibles et vulnérables des pays en développement (PAHO 1989).

Tableau 2. Pertes dues à six catastrophes naturelles

Catastrophe

Localisation

Ans)

Pertes totales
(Millions de dollars)

Tremblement de terre

Mexique

1985

4,337

Tremblement de terre

El Salvador

1986

937

Tremblement de terre

Équateur

1987

1,001

Éruption volcanique (Nevado del Ruiz)

Colombie

1985

224

Inondations, sécheresse (« El Niño »)

Pérou, Equateur, Bolivie

1982-83

3,970

Ouragan (Jeanne)

Nicaragua

1988

870

Source : OPS 1989 ; CEPALC.

L'infrastructure sanitaire

Dans toute urgence majeure liée à une catastrophe, la première priorité est de sauver des vies et de fournir des soins d'urgence immédiats aux blessés. Parmi les services médicaux d'urgence mobilisés à ces fins, les hôpitaux jouent un rôle clé. En effet, dans les pays dotés d'un système d'intervention d'urgence standardisé (un système où le concept de «services médicaux d'urgence» englobe la fourniture de soins d'urgence par la coordination de sous-systèmes indépendants impliquant des ambulanciers paramédicaux, des pompiers et des équipes de secours), les hôpitaux constituent la principale composante de ce système. (OPS 1989).

Les hôpitaux et autres établissements de soins de santé sont densément occupés. Ils hébergent des patients, du personnel et des visiteurs et fonctionnent 24 heures sur 60,000. Les patients peuvent être entourés d'équipements spéciaux ou connectés à des systèmes de survie dépendant de l'alimentation électrique. Selon les documents de projet disponibles auprès de la Banque interaméricaine de développement (BID) (communication personnelle, Tomas Engler, BID), le coût estimé d'un lit d'hôpital dans un hôpital spécialisé varie d'un pays à l'autre, mais la moyenne va de 80,000 XNUMX $ US à XNUMX XNUMX USD et est supérieur pour les installations hautement spécialisées.

Aux États-Unis, en particulier en Californie, avec sa vaste expérience en ingénierie parasismique, le coût d'un lit d'hôpital peut dépasser 110,000 1984 $ US. En résumé, les hôpitaux modernes sont des installations très complexes combinant les fonctions d'hôtels, de bureaux, de laboratoires et d'entrepôts (Peisert et al. 1990 ; FEMA XNUMX).

Ces établissements de santé sont très vulnérables aux ouragans et aux tremblements de terre. Cela a été amplement démontré par l'expérience passée en Amérique latine et dans les Caraïbes. Par exemple, comme le montre le tableau 3, seules trois catastrophes des années 1980 ont endommagé 39 hôpitaux et détruit quelque 11,332 4 lits d'hôpitaux au Salvador, en Jamaïque et au Mexique. Outre les dommages causés à ces usines physiques à des moments critiques, la perte de vies humaines (y compris la mort de professionnels locaux hautement qualifiés avec un avenir prometteur) doit être prise en compte (voir tableau 5 et tableau XNUMX).

Tableau 3. Nombre d'hôpitaux et de lits d'hôpitaux endommagés ou détruits par trois catastrophes naturelles majeures

Type de sinistre

Nombre d'hôpitaux
endommagé ou détruit

Nombre de lits perdus

Tremblement de terre, Mexique (District fédéral, septembre 1985)

13

4,387

Tremblement de terre, El Salvador (San Salvador, octobre 1986)

4

1,860

Ouragan Gilbert (Jamaïque, septembre 1988)

23

5,085

Total

40

11,332

Source : OPS 1989 ; OFDA (USAID) 1989 ; CEPALC.

Tableau 4. Victimes dans deux hôpitaux effondrés par le tremblement de terre de 1985 au Mexique

 

Hôpitaux effondrés

 

Hôpital général

Hôpital de Juárez

 

Numéro

%

Numéro

%

Victimes

295

62.6

561

75.8

Sauvé

129

27.4

179

24.2

Manquant

47

10.0

-

-

Total

471

100.0

740

100.0

Source : OPS 1987.

Tableau 5. Lits d'hôpitaux perdus à la suite du séisme chilien de mars 1985

Région

Nombre d'hôpitaux existants

Nbre de lits

Lits perdus dans la région

     

No.

%

Zone métropolitaine
(Saint-Jacques)

26

11,464

2,373

20.7

Région 5 (Viña del Mar, Valparaíso,
San Antonio)

23

4,573

622

13.6

Région 6 (Rancagua)

15

1,413

212

15.0

Région 7 (Ralca, Meula)

15

2,286

64

2.8

Total

79

19,736

3,271

16.6

Source : Wyllie et Durkin 1986.

À l'heure actuelle, la capacité de nombreux hôpitaux latino-américains à survivre aux tremblements de terre est incertaine. Beaucoup de ces hôpitaux sont installés dans d'anciennes structures, certaines datant de l'époque coloniale espagnole ; et tandis que beaucoup d'autres occupent des bâtiments contemporains de conception architecturale attrayante, l'application laxiste des codes du bâtiment rend leur capacité à résister aux tremblements de terre discutable.

Facteurs de risque dans les tremblements de terre

Parmi les différents types de catastrophes naturelles soudaines, les tremblements de terre sont de loin les plus dommageables pour les hôpitaux. Bien entendu, chaque séisme a ses propres caractéristiques liées à son épicentre, au type d'ondes sismiques, à la nature géologique du sol traversé par les ondes, etc. Néanmoins, des études ont révélé certains facteurs communs qui tendent à causer des décès et des blessures et certains autres qui tendent à les prévenir. Ces facteurs comprennent les caractéristiques structurelles liées à la défaillance du bâtiment, divers facteurs liés au comportement humain et certaines caractéristiques de l'équipement non structurel, du mobilier et d'autres éléments à l'intérieur des bâtiments.

Ces dernières années, les universitaires et les planificateurs ont accordé une attention particulière à l'identification des facteurs de risque affectant les hôpitaux, dans l'espoir d'élaborer de meilleures recommandations et normes pour régir la construction et l'organisation des hôpitaux dans les zones hautement vulnérables. Une brève liste des facteurs de risque pertinents est présentée dans le tableau 6. Ces facteurs de risque, en particulier ceux liés aux aspects structurels, ont été observés comme influençant les modèles de destruction lors d'un tremblement de terre de décembre 1988 en Arménie qui a tué quelque 25,000 1,100,000 personnes, touché 377 560 324 et détruit ou gravement endommagé 1989 écoles, XNUMX établissements de santé et XNUMX centres communautaires et culturels (USAID XNUMX).


Tableau 6. Facteurs de risque associés aux dégâts sismiques sur les infrastructures hospitalières

 Structural

 Non structurel

 Comportementale

 Conception

 Équipement médical

 Information publique

 Qualité de construction    

 Équipement de laboratoire

 motivation

 

 Équipement de bureau

 Plans

 Matériaux

 Armoires, étagères

 Programmes éducatifs      

 Conditions du sol

 Poêles, réfrigérateurs, radiateurs    

 Formation du personnel soignant

 Caractéristiques sismiques

 Machines à rayons X

 

 Heure de l'événement

 Matériaux réactifs

 

 Densité de population

 

 


Des dégâts d'une ampleur similaire se sont produits en juin 1990, lorsqu'un tremblement de terre en Iran a tué environ 40,000 60,000 personnes, blessé 500,000 60 autres, laissé 90 1990 sans-abri et détruit XNUMX à XNUMX % des bâtiments dans les zones touchées (UNDRO XNUMX).

Pour faire face à ces catastrophes et à d'autres calamités similaires, un séminaire international s'est tenu à Lima, au Pérou, en 1989 sur la planification, la conception, la réparation et la gestion des hôpitaux dans les zones sujettes aux tremblements de terre. Le séminaire, parrainé par l'OPS, l'Université nationale d'ingénierie du Pérou et le Centre péruvien-japonais de recherche sismique (CISMID), a réuni des architectes, des ingénieurs et des administrateurs d'hôpitaux pour étudier les problèmes liés aux établissements de santé situés dans ces zones. Le séminaire a approuvé un noyau de recommandations techniques et d'engagements visant à effectuer des analyses de vulnérabilité des infrastructures hospitalières, à améliorer la conception de nouvelles installations et à établir des mesures de sécurité pour les hôpitaux existants, en mettant l'accent sur ceux situés dans des zones à haut risque sismique (CISMID 1989).

Recommandations sur la préparation des hôpitaux

Comme le suggère ce qui précède, la préparation des hôpitaux aux catastrophes constitue une composante importante du Bureau de la préparation aux situations d'urgence et des secours en cas de catastrophe de l'OPS. Au cours des dix dernières années, les pays membres ont été encouragés à poursuivre des activités à cette fin, notamment :

  • classer les hôpitaux en fonction de leurs facteurs de risque et de leurs vulnérabilités
  • élaborer des plans d'intervention hospitaliers internes et externes et former le personnel
  • élaborer des plans d'urgence et établir des mesures de sécurité pour le personnel professionnel et technique de l'hôpital
  • renforcer les systèmes de sauvegarde de la ligne de vie qui aident les hôpitaux à fonctionner pendant les situations d'urgence.

 

Plus généralement, l'un des principaux objectifs de l'actuelle Décennie internationale de la prévention des catastrophes naturelles (IDNDR) est d'attirer, de motiver et d'engager les autorités sanitaires nationales et les décideurs du monde entier, les encourageant ainsi à renforcer les services de santé destinés à faire face aux catastrophes et à réduire la vulnérabilité de ces services dans le monde en développement.

Problèmes liés aux accidents technologiques

Au cours des deux dernières décennies, les pays en développement sont entrés dans une compétition intense pour parvenir au développement industriel. Les principales raisons de ce concours sont les suivantes :

  • pour attirer les investissements en capital et créer des emplois
  • satisfaire la demande intérieure de produits à moindre coût et réduire la dépendance vis-à-vis du marché international
  • concurrencer les marchés internationaux et sous-régionaux
  • établir les bases du développement.

 

Malheureusement, les efforts déployés n'ont pas toujours abouti à l'obtention des objectifs visés. En effet, la flexibilité pour attirer les investissements en capital, le manque de réglementation solide en matière de sécurité industrielle et de protection de l'environnement, la négligence dans l'exploitation des installations industrielles, l'utilisation de technologies obsolètes et d'autres aspects ont contribué à augmenter le risque d'accidents technologiques dans certains domaines. .

En outre, l'absence de réglementation concernant l'établissement d'établissements humains à proximité ou autour d'installations industrielles est un facteur de risque supplémentaire. Dans les grandes villes d'Amérique latine, il est courant de voir des établissements humains entourer pratiquement des complexes industriels, et les habitants de ces établissements ignorent les risques potentiels (Zeballos 1993a).

Afin d'éviter des accidents tels que ceux survenus à Guadalajara (Mexique) en 1992, les lignes directrices suivantes sont suggérées pour l'établissement d'industries chimiques, afin de protéger les travailleurs industriels et la population en général :

  • sélection de la technologie appropriée et étude des alternatives
  • emplacement approprié des installations industrielles
  • régulation des établissements humains au voisinage des installations industrielles
  • considérations de sécurité pour le transfert de technologie
  • inspection de routine des installations industrielles par les autorités locales
  • expertise apportée par des agences spécialisées
  • rôle des travailleurs dans le respect des règles de sécurité
  • législation rigide
  • classification des matières toxiques et surveillance étroite de leur utilisation
  • éducation publique et formation des travailleurs
  • mise en place de mécanismes de réponse en cas d'urgence
  • formation des agents de santé aux plans d'urgence en cas d'accident technologique.

 

Noir

OIT 80e session, 2 juin 1993

OIT 80e session, 2 juin 1993

PARTIE I. CHAMP D'APPLICATION ET DÉFINITIONS

Article 1

1. La présente Convention a pour objet la prévention des accidents majeurs impliquant des substances dangereuses et la limitation des conséquences de ces accidents.…

Article 3

Aux fins de la présente Convention :

a) l'expression "substance dangereuse" désigne une substance ou un mélange de substances qui, en raison de propriétés chimiques, physiques ou toxicologiques, seules ou combinées, constitue un danger ;

b) l'expression «quantité seuil» désigne, pour une substance ou une catégorie de substances dangereuses donnée, la quantité, prescrite dans les lois et réglementations nationales par référence à des conditions spécifiques, qui, si elle est dépassée, identifie une installation à risque majeur;

c) l'expression "installation à risques majeurs" désigne une installation qui produit, transforme, manipule, utilise, élimine ou stocke, de manière permanente ou temporaire, une ou plusieurs substances ou catégories de substances dangereuses en quantités supérieures à la quantité seuil ;

d) le terme "accident majeur" désigne un événement soudain, tel qu'une émission, un incendie ou une explosion majeurs, au cours d'une activité au sein d'une installation à risques majeurs, impliquant une ou plusieurs substances dangereuses et entraînant un danger grave pour les travailleurs , le public ou l'environnement, qu'ils soient immédiats ou différés ;

e) le terme «rapport de sûreté» désigne une présentation écrite des informations techniques, de gestion et d'exploitation couvrant les dangers et les risques d'une installation à risques majeurs et leur maîtrise et justifiant les mesures prises pour la sûreté de l'installation;

(f) le terme « quasi-accident » désigne tout événement soudain impliquant une ou plusieurs substances dangereuses qui, sans les effets, actions ou systèmes d'atténuation, auraient pu dégénérer en un accident majeur.

PARTIE II. PRINCIPES GÉNÉRAUX

Article 4

1. A la lumière des lois et réglementations, conditions et pratiques nationales, et en consultation avec les organisations d'employeurs et de travailleurs les plus représentatives et avec les autres parties intéressées susceptibles d'être affectées, chaque Membre devra formuler, mettre en œuvre et réviser périodiquement une politique nationale cohérente. concernant la protection des travailleurs, du public et de l'environnement contre les risques d'accidents majeurs.

2. La présente politique est mise en œuvre par des mesures de prévention et de protection des installations à risques majeurs et, dans la mesure du possible, encourage l'utilisation des meilleures technologies de sécurité disponibles.

Article 5

1. L'autorité compétente, ou un organisme agréé ou reconnu par l'autorité compétente, établit, après consultation des organisations les plus représentatives d'employeurs et de travailleurs et des autres parties intéressées susceptibles d'être concernées, un système d'identification des installations à risques majeurs telles que définies à l'article 3, point c), sur la base d'une liste de substances dangereuses ou de catégories de substances dangereuses ou des deux, ainsi que de leurs quantités seuils respectives, conformément aux lois et réglementations nationales ou aux normes internationales.

2. Le système mentionné au paragraphe 1 ci-dessus est régulièrement révisé et mis à jour.

Article 6

L'autorité compétente, après consultation des organisations représentatives d'employeurs et de travailleurs concernées, prend des dispositions particulières pour protéger les informations confidentielles qui lui sont transmises ou mises à sa disposition conformément aux articles 8, 12, 13 ou 14 et dont la divulgation serait susceptible de porter préjudice à l'entreprise d'un employeur, tant que cette disposition n'entraîne pas de risque grave pour les travailleurs, le public ou l'environnement.

PARTIE III. RESPONSABILITÉS DES EMPLOYEURS IDENTIFICATION

Article 7

Les employeurs identifient toute installation à risques majeurs sous leur contrôle sur la base du système visé à l'article 5.

NOTIFICATION

Article 8

1. Les employeurs notifient à l'autorité compétente toute installation à risques majeurs qu'ils ont identifiée :

a) dans un délai déterminé pour une installation existante ;

b) avant sa mise en service dans le cas d'une nouvelle installation.

2. Les employeurs informent également l'autorité compétente avant toute fermeture définitive d'une installation à risques majeurs.

Article 9

En ce qui concerne chaque installation à risques majeurs, les employeurs doivent établir et maintenir un système documenté de contrôle des risques majeurs qui comprend des dispositions pour :

a) l'identification et l'analyse des dangers et l'évaluation des risques, y compris la prise en compte des interactions possibles entre les substances;

b) les mesures techniques, y compris la conception, les systèmes de sécurité, la construction, le choix des produits chimiques, l'exploitation, l'entretien et l'inspection systématique de l'installation ;

c) des mesures organisationnelles, y compris la formation et l'instruction du personnel, la fourniture d'équipements pour assurer leur sécurité, les effectifs, les horaires de travail, la définition des responsabilités et les contrôles des sous-traitants extérieurs et des travailleurs temporaires sur le site de l'installation ;

(d) les plans et procédures d'urgence, y compris :

(i) la préparation de plans et de procédures d'urgence efficaces sur le site, y compris
procédures médicales d'urgence, à appliquer en cas d'accident majeur ou de menace
de ceux-ci, avec des tests périodiques et une évaluation de leur efficacité et une révision en tant que
nécessaire;

(ii) la fourniture d'informations sur les accidents potentiels et les plans d'urgence du site pour
autorités et organismes chargés de l'élaboration des plans d'urgence et
procédures de protection du public et de l'environnement en dehors du site de
l'installation;

(iii) toute consultation nécessaire avec ces autorités et organismes ;

e) les mesures visant à limiter les conséquences d'un accident majeur ;

f) consultation des travailleurs et de leurs représentants;

g) amélioration du système, y compris des mesures de collecte d'informations et d'analyse des accidents et des quasi-accidents. Les enseignements ainsi tirés doivent être discutés avec les travailleurs et leurs représentants et consignés conformément à la législation et à la pratique nationales.…

* * *

PARTIE IV. RESPONSABILITÉS DES AUTORITÉS COMPÉTENTES

PRÉPARATION AUX URGENCES HORS SITE

Article 15

Compte tenu des informations fournies par l'employeur, l'autorité compétente veille à ce que des plans et procédures d'urgence contenant des dispositions relatives à la protection du public et de l'environnement en dehors du site de chaque installation à risques majeurs soient établis, mis à jour à des intervalles appropriés et coordonnés avec le autorités et organismes compétents.

Article 16

L'autorité compétente veille à ce que:

a) que des informations sur les mesures de sécurité et les bons comportements à adopter en cas d'accident majeur soient diffusées aux personnes susceptibles d'être affectées par un accident majeur sans qu'elles aient à en faire la demande et que ces informations soient mises à jour et rediffusées sur intervalles appropriés;

(b) un avertissement est donné dès que possible en cas d'accident majeur;

(c) lorsqu'un accident majeur est susceptible d'avoir des effets transfrontières, les informations requises aux points (a) et (b) ci-dessus sont fournies aux États concernés, pour faciliter les accords de coopération et de coordination.

Article 17

L'autorité compétente doit établir une politique globale d'implantation prévoyant la séparation appropriée des installations à risques majeurs proposées des zones de travail et d'habitation et des installations publiques, ainsi que des mesures appropriées pour les installations existantes. Cette politique doit refléter les principes généraux énoncés dans la partie II de la convention.

INSPECTION

Article 18

1. L'autorité compétente doit disposer d'un personnel dûment qualifié et formé, doté des compétences appropriées et d'un soutien technique et professionnel suffisant, pour inspecter, enquêter, évaluer et donner des conseils sur les questions traitées dans la présente convention et pour assurer le respect des lois et réglementations nationales. .

2. Des représentants de l'employeur et des représentants des travailleurs d'une installation à risques majeurs doivent avoir la possibilité d'accompagner les inspecteurs chargés de contrôler l'application des mesures prescrites en application de la présente convention, à moins que les inspecteurs n'estiment, au vu des instructions générales de la l'autorité compétente, que cela peut être préjudiciable à l'exercice de leurs fonctions.

Article 19

L'autorité compétente a le droit de suspendre toute opération présentant une menace imminente d'accident majeur.

PARTIE V. DROITS ET DEVOIRS DES TRAVAILLEURS ET DE LEURS REPRÉSENTANTS

Article 20

Les travailleurs et leurs représentants dans une installation à risques majeurs doivent être consultés par le biais de mécanismes de coopération appropriés afin d'assurer un système de travail sûr. En particulier, les travailleurs et leurs représentants doivent :

a) être informé de manière adéquate et appropriée des dangers associés à l'installation à risques majeurs et de leurs conséquences probables;

(b) être informé de tous ordres, instructions ou recommandations émis par l'autorité compétente;

(c) être consultés lors de la préparation des documents suivants et y avoir accès :

(i) le rapport de sécurité;

(ii) les plans et procédures d'urgence ;

(iii) rapports d'accidents;

d) être régulièrement instruit et formé aux pratiques et procédures de prévention des accidents majeurs et de maîtrise des évolutions susceptibles de conduire à un accident majeur ainsi qu'aux procédures d'urgence à suivre en cas d'accident majeur;

e) dans le cadre de leur travail, et sans être pénalisés, prendre des mesures correctives et, si nécessaire, interrompre l'activité lorsque, compte tenu de leur formation et de leur expérience, ils ont des motifs raisonnables de croire qu'il existe un danger imminent d'un accident majeur et aviser son superviseur ou donner l'alerte, selon le cas, avant ou dès que possible après avoir pris une telle mesure ;

f) discuter avec l'employeur de tout danger potentiel qu'il considère comme susceptible de générer un accident majeur et avoir le droit d'informer l'autorité compétente de ces dangers.

Article 21

Les travailleurs employés sur le site d'une installation à risques majeurs doivent :

a) respecter toutes les pratiques et procédures relatives à la prévention des accidents majeurs et à la maîtrise des aménagements susceptibles de conduire à un accident majeur au sein de l'installation à risques majeurs ;

(b) se conformer à toutes les procédures d'urgence en cas d'accident majeur.

PARTIE VI. RESPONSABILITÉ DES ÉTATS EXPORTATEURS

Article 22

Lorsque, dans un État membre exportateur, l'utilisation de substances, de technologies ou de procédés dangereux est interdite en tant que source potentielle d'accident majeur, l'information sur cette interdiction et les motifs de celle-ci doit être mise à la disposition par l'État membre exportateur de tout importateur de campagne.

Source : Extraits, Convention n° 174 (OIT 1993).

 

Noir

Jeudi, 27 Octobre 2011 19: 36

Étude de cas : Que signifie dose ?

Il existe plusieurs façons de définir une dose de rayonnement ionisant, chacune appropriée à des fins différentes.

Dose absorbée

La dose absorbée ressemble le plus à la dose pharmacologique. Alors que la dose pharmacologique est la quantité de substance administrée à un sujet par unité de poids ou de surface, la dose radiologique absorbée est la quantité d'énergie transmise par les rayonnements ionisants par unité de masse. La dose absorbée est mesurée en Grays (1 Gray = 1 joule/kg).

Lorsque les individus sont exposés de manière homogène, par exemple par irradiation externe par des rayons cosmiques et terrestres ou par irradiation interne par le potassium 40 présent dans l'organisme, tous les organes et tissus reçoivent la même dose. Dans ces circonstances, il convient de parler de tout le corps dose. Il est cependant possible que l'exposition ne soit pas homogène, auquel cas certains organes et tissus recevront des doses significativement plus élevées que d'autres. Dans ce cas, il est plus pertinent de penser en termes de dose d'organe. Par exemple, l'inhalation de produits de filiation du radon n'expose essentiellement que les poumons, et l'incorporation d'iode radioactif entraîne une irradiation de la glande thyroïde. Dans ces cas, on peut parler de dose pulmonaire et de dose thyroïdienne.

Cependant, d'autres unités de dose qui tiennent compte des différences dans les effets des différents types de rayonnement et des différentes sensibilités aux rayonnements des tissus et des organes ont également été développées.

Dose équivalente

Le développement d'effets biologiques (par exemple, inhibition de la croissance cellulaire, mort cellulaire, azoospermie) dépend non seulement de la dose absorbée, mais également du type spécifique de rayonnement. Le rayonnement alpha a un plus grand potentiel ionisant que le rayonnement bêta ou gamma. La dose équivalente tient compte de cette différence en appliquant des facteurs de pondération spécifiques au rayonnement. Le facteur de pondération des rayonnements gamma et bêta (faible potentiel ionisant) est égal à 1, tandis que celui des particules alpha (haut potentiel ionisant) est de 20 (ICRP 60). La dose équivalente est mesurée en Sieverts (Sv).

Dose efficace

Dans les cas impliquant une irradiation non homogène (par exemple, l'exposition de divers organes à différents radionucléides), il peut être utile de calculer une dose globale qui intègre les doses reçues par tous les organes et tissus. Cela nécessite de prendre en compte la radiosensibilité de chaque tissu et organe, calculée à partir des résultats des études épidémiologiques des cancers radio-induits. La dose efficace est mesurée en Sieverts (Sv) (ICRP 1991). La dose efficace a été élaborée à des fins de radioprotection (c'est-à-dire de gestion des risques) et ne convient donc pas aux études épidémiologiques sur les effets des rayonnements ionisants.

Dose collective

La dose collective reflète l'exposition d'un groupe ou d'une population et non d'un individu, et est utile pour évaluer les conséquences de l'exposition aux rayonnements ionisants au niveau de la population ou du groupe. Elle est calculée en additionnant les doses individuelles reçues, ou en multipliant la dose individuelle moyenne par le nombre d'individus exposés dans les groupes ou populations considérés. La dose collective est mesurée en hommes-Sieverts (homme Sv).

 

Noir

Lundi, Février 28 2011 19: 19

Électricité-effets physiologiques

L'étude des risques, de l'électrophysiologie et de la prévention des accidents électriques nécessite la compréhension de plusieurs notions techniques et médicales.

Les définitions suivantes des termes électrobiologiques sont tirées du chapitre 891 du Vocabulaire électrotechnique international (électrobiologie) (Commission électrotechnique internationale) (CEI) (1979).

An choc électrique est l'effet physiopathologique résultant du passage direct ou indirect d'un courant électrique externe à travers le corps. Il comprend les contacts directs et indirects et les courants unipolaires et bipolaires.

Les individus – vivants ou décédés – ayant subi des décharges électriques auraient subi électrification; le terme électrocution doit être réservé aux cas où la mort s'ensuit. La foudre sont des décharges électriques mortelles dues à la foudre (Gourbiere et al. 1994).

Des statistiques internationales sur les accidents électriques ont été compilées par le Bureau international du travail (BIT), l'Union européenne (UE), le Union internationale des producteurs et distributeurs d'énergie électrique (UNIPEDE), l'Association internationale de la sécurité sociale (AISS) et le Comité TC64 de la Commission électrotechnique internationale. L'interprétation de ces statistiques est entravée par les variations dans les techniques de collecte de données, les polices d'assurance et les définitions des accidents mortels d'un pays à l'autre. Néanmoins, les estimations suivantes du taux d'électrocution sont possibles (tableau 1).

Tableau 1. Estimations du taux d'électrocution - 1988

 

Électrocutions
par million d'habitants

Total
décès

États-Unis*

2.9

714

France

2.0

115

Allemagne

1.6

99

Autriche

0.9

11

Japon

0.9

112

Suède

0.6

13

 

* Selon la National Fire Protection Association (Massachusetts, États-Unis), ces statistiques américaines reflètent davantage une collecte de données approfondie et des exigences légales en matière de rapports qu'un environnement plus dangereux. Les statistiques américaines incluent les décès dus à l'exposition aux systèmes de transmission des services publics et aux électrocutions causées par les produits de consommation. En 1988, 290 décès ont été causés par des produits de consommation (1.2 décès par million d'habitants). En 1993, le taux de décès par électrocution toutes causes confondues est tombé à 550 (2.1 décès par million d'habitants) ; 38 % étaient liés à des produits de consommation (0.8 décès par million d'habitants).

 

Le nombre d'électrocutions diminue lentement, à la fois en termes absolus et, plus frappant encore, en fonction de la consommation totale d'électricité. Environ la moitié des accidents électriques sont d'origine professionnelle, l'autre moitié survenant au domicile et lors d'activités de loisirs. En France, le nombre moyen de décès entre 1968 et 1991 était de 151 décès par an, selon le Institut National de la Santé et de la Recherche Médicale (INSERM).

Base physique et physiopathologique de l'électrification

Les spécialistes en électricité divisent les contacts électriques en deux groupes : les contacts directs, impliquant un contact avec des composants sous tension, et les contacts indirects, impliquant des contacts mis à la terre. Chacun d'entre eux nécessite des mesures préventives fondamentalement différentes.

D'un point de vue médical, le cheminement du courant dans l'organisme est le déterminant pronostique et thérapeutique clé. Par exemple, le contact bipolaire de la bouche d'un enfant avec une fiche de rallonge provoque des brûlures extrêmement graves à la bouche, mais pas la mort si l'enfant est bien isolé du sol.

Dans les milieux de travail, où les hautes tensions sont courantes, un arc électrique entre un composant actif transportant une haute tension et des travailleurs qui s'en approchent de trop près est également possible. Des situations de travail spécifiques peuvent également affecter les conséquences des accidents électriques : par exemple, les travailleurs peuvent tomber ou agir de manière inappropriée lorsqu'ils sont surpris par un choc électrique par ailleurs relativement inoffensif.

Les accidents électriques peuvent être causés par toute la gamme des tensions présentes sur les lieux de travail. Chaque secteur industriel a son propre ensemble de conditions capables de provoquer des contacts directs, indirects, unipolaires, bipolaires, d'arc ou induits et, finalement, des accidents. S'il est bien entendu hors du propos de cet article de décrire l'ensemble des activités humaines qui impliquent de l'électricité, il est utile de rappeler au lecteur les grands types de travaux électriques suivants, qui ont fait l'objet de recommandations internationales de prévention décrites dans le chapitre sur la prévention:

  1. les activités impliquant des travaux sous tension (l'application de protocoles extrêmement rigoureux a permis de réduire le nombre d'électrifications lors de ce type de travaux)
  2. les activités impliquant des travaux sur des fils non alimentés, et
  3. les activités réalisées à proximité de fils sous tension (ces activités nécessitent le plus d'attention, car elles sont souvent réalisées par du personnel qui n'est pas électricien).

 

Physiopathologie

Toutes les variables de la loi de Joule du courant continu—

W = V x I x t = RI2t

(la chaleur produite par un courant électrique est proportionnelle à la résistance et au carré du courant) - sont étroitement liés. Dans le cas du courant alternatif, l'effet de la fréquence doit également être pris en compte (Folliot 1982).

Les organismes vivants sont des conducteurs électriques. L'électrification se produit lorsqu'il existe une différence de potentiel entre deux points de l'organisme. Il est important de souligner que le danger d'accident électrique ne provient pas d'un simple contact avec un conducteur sous tension, mais plutôt d'un contact simultané avec un conducteur sous tension et un autre corps à un potentiel différent.

Les tissus et organes le long du trajet du courant peuvent subir une excitation motrice fonctionnelle, dans certains cas irréversible, ou peuvent subir des lésions temporaires ou permanentes, généralement à la suite de brûlures. L'étendue de ces lésions est fonction de l'énergie dégagée ou de la quantité d'électricité qui les traverse. Le temps de transit du courant électrique est donc critique pour déterminer le degré de blessure. (Par exemple, les anguilles et les rayons électriques produisent des décharges extrêmement désagréables, capables d'induire une perte de conscience. Cependant, malgré une tension de 600V, un courant d'environ 1A et une résistance sujette d'environ 600 ohms, ces poissons sont incapables d'induire une choc mortel, car la durée de décharge est trop brève, de l'ordre de quelques dizaines de microsecondes.) Ainsi, à haute tension (>1,000 XNUMX V), la mort est souvent due à l'étendue des brûlures. À des tensions plus basses, la mort est fonction de la quantité d'électricité (Q=je x t), atteignant le cœur, déterminé par le type, l'emplacement et la zone des points de contact.

Les sections suivantes traitent du mécanisme de décès dû aux accidents électriques, des thérapies immédiates les plus efficaces et des facteurs déterminant la gravité de la blessure, à savoir la résistance, l'intensité, la tension, la fréquence et la forme d'onde.

Causes de décès dans les accidents électriques dans l'industrie

Dans de rares cas, l'asphyxie peut être la cause du décès. Cela peut résulter d'un tétanos prolongé du diaphragme, d'une inhibition des centres respiratoires en cas de contact avec la tête, ou de très fortes densités de courant, par exemple à la suite de coups de foudre (Gourbiere et al. 1994). Si les soins peuvent être prodigués dans les trois minutes, la victime peut être réanimée par quelques bouffées de bouche à bouche.

En revanche, le collapsus circulatoire périphérique secondaire à la fibrillation ventriculaire reste la principale cause de décès. Celle-ci se développe invariablement en l'absence de massage cardiaque appliqué simultanément au bouche-à-bouche. Ces interventions, qui devraient être enseignées à tous les électriciens, devraient être maintenues jusqu'à l'arrivée des secours médicaux, ce qui prend presque toujours plus de trois minutes. Un grand nombre d'électropathologistes et d'ingénieurs du monde entier ont étudié les causes de la fibrillation ventriculaire, afin de concevoir de meilleures mesures de protection passives ou actives (International Electrotechnical Commission 1987 ; 1994). La désynchronisation aléatoire du myocarde nécessite un courant électrique soutenu d'une fréquence, d'une intensité et d'un temps de transit spécifiques. Plus important encore, le signal électrique doit arriver au myocarde pendant la soi-disant phase vulnérable du cycle cardiaque, correspondant au début de l'onde T de l'électrocardiogramme.

La Commission électrotechnique internationale (1987 ; 1994) a produit des courbes décrivant l'effet de l'intensité du courant et du temps de transit sur la probabilité (exprimée en pourcentage) de fibrillation et le trajet du courant main-pied chez un homme de 70 kg en bonne santé. Ces outils sont adaptés aux courants industriels dans la gamme de fréquence de 15 à 100 Hz, avec des fréquences plus élevées actuellement à l'étude. Pour des temps de transit inférieurs à 10 ms, l'aire sous la courbe du signal électrique est une approximation raisonnable de l'énergie électrique.

Rôle de divers paramètres électriques

Chacun des paramètres électriques (courant, tension, résistance, temps, fréquence) et la forme d'onde sont des déterminants importants de la blessure, à la fois en eux-mêmes et en vertu de leur interaction.

Des seuils de courant ont été établis pour le courant alternatif, ainsi que pour les autres conditions définies ci-dessus. L'intensité du courant lors de l'électrification est inconnue, car elle est fonction de la résistance des tissus au moment du contact (I = V/R), mais est généralement perceptible à des niveaux d'environ 1 mA. Des courants relativement faibles peuvent provoquer des contractions musculaires qui peuvent empêcher une victime de lâcher un objet sous tension. Le seuil de ce courant est fonction de la condensation, de la surface de contact, de la pression de contact et des variations individuelles. Pratiquement tous les hommes et presque toutes les femmes et les enfants peuvent lâcher prise à des courants allant jusqu'à 6 mA. A 10 mA on a observé que 98.5% des hommes et 60% des femmes et 7.5% des enfants peuvent lâcher prise. Seuls 7.5% des hommes et aucune femme ou enfant ne peuvent lâcher prise à 20mA. Personne ne peut lâcher prise à 30mA et plus.

Des courants d'environ 25 mA peuvent provoquer le tétanos du diaphragme, le muscle respiratoire le plus puissant. Si le contact est maintenu pendant trois minutes, un arrêt cardiaque peut également s'ensuivre.

La fibrillation ventriculaire devient un danger à des niveaux d'environ 45 mA, avec une probabilité chez l'adulte de 5 % après un contact de 5 secondes. Lors d'une chirurgie cardiaque, condition certes particulière, un courant de 20 à 100 × 10-6Un appliqué directement sur le myocarde est suffisant pour induire la fibrillation. Cette sensibilité myocardique est la raison des normes strictes appliquées aux appareils électromédicaux.

Toutes les autres choses (V, R, fréquence) étant égaux, les seuils de courant dépendent également de la forme d'onde, de l'espèce animale, du poids, de la direction du courant dans le cœur, du rapport entre le temps de transit du courant et le cycle cardiaque, du point du cycle cardiaque auquel le courant arrive, et facteurs individuels.

La tension impliquée dans les accidents est généralement connue. En cas de contact direct, la fibrillation ventriculaire et la gravité des brûlures sont directement proportionnelles à la tension, puisque

V = RI ainsi que W = V x I x t

Les brûlures résultant d'un choc électrique à haute tension sont associées à de nombreuses complications, dont seules certaines sont prévisibles. En conséquence, les victimes d'accidents doivent être prises en charge par des spécialistes compétents. Le dégagement de chaleur se produit principalement dans les muscles et les faisceaux neurovasculaires. La fuite de plasma consécutive à une lésion tissulaire provoque un choc, parfois rapide et intense. Pour une surface donnée, les brûlures électrothermiques, c'est-à-dire les brûlures causées par un courant électrique, sont toujours plus graves que les autres types de brûlures. Les brûlures électrothermiques sont à la fois externes et internes et, bien que cela puisse ne pas être apparent au départ, elles peuvent induire des lésions vasculaires avec des effets secondaires graves. Il s'agit notamment de sténoses internes et de thrombi qui, de par la nécrose qu'ils induisent, nécessitent souvent une amputation.

La destruction des tissus est également responsable de la libération de chromoprotéines telles que la myoglobine. Une telle libération est également observée chez les victimes de blessures par écrasement, bien que l'étendue de la libération soit remarquable chez les victimes de brûlures à haute tension. La précipitation de myoglobine dans les tubules rénaux, secondaire à l'acidose provoquée par l'anoxie et l'hyperkaliémie, serait à l'origine de l'anurie. Cette théorie, confirmée expérimentalement mais pas universellement acceptée, est à la base des recommandations pour une thérapie d'alcalinisation immédiate. L'alcalinisation intraveineuse, qui corrige également l'hypovolémie et l'acidose secondaire à la mort cellulaire, est la pratique recommandée.

Dans le cas de contacts indirects, la tension de contact (V) et la limite de tension conventionnelle doivent également être prises en compte.

La tension de contact est la tension à laquelle est soumise une personne en touchant simultanément deux conducteurs entre lesquels existe une différence de tension due à un défaut d'isolation. L'intensité du flux de courant résultant dépend des résistances du corps humain et du circuit externe. Ce courant ne doit pas dépasser les niveaux de sécurité, c'est-à-dire qu'il doit se conformer aux courbes temps-courant de sécurité. La tension de contact la plus élevée pouvant être tolérée indéfiniment sans induire d'effets électropathologiques est appelée la limite de tension conventionnelle ou, plus intuitivement, le tension de sécurité.

La valeur réelle de la résistance lors d'accidents électriques est inconnue. Les variations des résistances en série - par exemple, les vêtements et les chaussures - expliquent une grande partie de la variation observée dans les effets d'accidents électriques ostensiblement similaires, mais exercent peu d'influence sur le résultat des accidents impliquant des contacts bipolaires et des électrifications à haute tension. Dans les cas de courant alternatif, l'effet des phénomènes capacitifs et inductifs doit être ajouté au calcul standard basé sur la tension et le courant (R=V/I).

La résistance du corps humain est la somme de la résistance de la peau (R) aux deux points de contact et la résistance interne du corps (R). La résistance de la peau varie selon les facteurs environnementaux et, comme l'a noté Biegelmeir (Commission électrotechnique internationale 1987; 1994), est en partie fonction de la tension de contact. D'autres facteurs tels que la pression, la zone de contact, l'état de la peau au point de contact et des facteurs individuels influencent également la résistance. Il est donc irréaliste d'essayer de fonder des mesures préventives sur des estimations de la résistance cutanée. La prévention devrait plutôt reposer sur l'adaptation des équipements et des procédures à l'homme, plutôt que l'inverse. Afin de simplifier les choses, la CEI a défini quatre types d'environnement – ​​sec, humide, mouillé et immersion – et a défini des paramètres utiles pour la planification des activités de prévention dans chaque cas.

La fréquence du signal électrique responsable des accidents électriques est généralement connue. En Europe, c'est presque toujours 50 Hz et dans les Amériques, c'est généralement 60 Hz. Dans de rares cas impliquant des chemins de fer dans des pays tels que l'Allemagne, l'Autriche et la Suisse, il peut être de 16 2/3 Hz, fréquence qui représente théoriquement un plus grand risque de tétanisation et de fibrillation ventriculaire. Rappelons que la fibrillation n'est pas une réaction musculaire mais est provoquée par une stimulation répétitive, avec une sensibilité maximale à environ 10 Hz. C'est pourquoi, pour une tension donnée, le courant alternatif extrêmement basse fréquence est considéré comme trois à cinq fois plus dangereux que le courant continu en ce qui concerne les effets autres que les brûlures.

Les seuils décrits précédemment sont directement proportionnels à la fréquence du courant. Ainsi, à 10 kHz, le seuil de détection est dix fois plus élevé. La CEI étudie des courbes révisées de risque de fibrillation pour les fréquences supérieures à 1,000 1994 Hz (Commission électrotechnique internationale XNUMX).

Au-delà d'une certaine fréquence, les lois physiques régissant la pénétration du courant dans l'organisme changent complètement. Les effets thermiques liés à la quantité d'énergie libérée deviennent l'effet principal, les phénomènes capacitifs et inductifs commençant à prédominer.

La forme d'onde du signal électrique responsable d'un accident électrique est généralement connue. Il peut être un déterminant important des blessures dans les accidents impliquant un contact avec des condensateurs ou des semi-conducteurs.

Étude clinique du choc électrique

Classiquement, les électrifications ont été divisées en incidents de basse tension (50 à 1,000 1,000 V) et de haute tension (> XNUMX XNUMX V).

La basse tension est un danger connu, voire omniprésent, et les chocs qui en sont la conséquence se rencontrent aussi bien dans les milieux domestiques, de loisirs, agricoles, hospitaliers que dans l'industrie.

En passant en revue la gamme des décharges électriques à basse tension, des plus anodines aux plus graves, il faut commencer par les décharges électriques simples. Dans ces cas, les victimes sont capables de se retirer d'elles-mêmes, de conserver leur conscience et de maintenir une ventilation normale. Les effets cardiaques se limitent à une simple tachycardie sinusale avec ou sans anomalies électrocardiographiques mineures. Malgré les conséquences relativement mineures de tels accidents, l'électrocardiographie reste une précaution médicale et médico-légale appropriée. L'investigation technique de ces incidents potentiellement graves est indiquée en complément de l'examen clinique (Gilet et Choquet 1990).

Les victimes de chocs impliquant des chocs électriques de contact un peu plus forts et de plus longue durée peuvent souffrir de perturbations ou de perte de conscience, mais se rétablissent complètement plus ou moins rapidement ; le traitement accélère la guérison. L'examen révèle généralement des hypertonies neuromusculaires, des problèmes de ventilation hyperréflexive et une congestion dont la dernière est souvent secondaire à une obstruction oropharyngée. Les troubles cardiovasculaires sont secondaires à l'hypoxie ou à l'anoxie, ou peuvent prendre la forme de tachycardie, d'hypertension et, dans certains cas, même d'infarctus. Les patients atteints de ces conditions nécessitent des soins hospitaliers.

Les victimes occasionnelles qui perdent connaissance quelques secondes après le contact apparaissent pâles ou cyanosées, arrêtent de respirer, ont des pouls à peine perceptibles et présentent une mydriase indiquant une lésion cérébrale aiguë. Bien qu'elle soit généralement due à une fibrillation ventriculaire, la pathogénie précise de cette mort apparente n'est cependant pas pertinente. Le point important est le début rapide d'une thérapie bien définie, car on sait depuis un certain temps que cet état clinique n'entraîne jamais la mort réelle. Le pronostic dans ces cas d'électrocution, dont la guérison totale est possible, dépend de la rapidité et de la qualité des premiers secours. Statistiquement, celle-ci est le plus souvent administrée par du personnel non médical et la formation de tous les électriciens aux interventions de base susceptibles d'assurer la survie est donc indiquée.

En cas de décès apparent, les soins d'urgence doivent être prioritaires. Dans d'autres cas, cependant, il faut faire attention aux traumatismes multiples résultant de tétanos violents, de chutes ou de la projection de la victime dans les airs. Une fois que le danger de mort immédiat a été résolu, les traumatismes et les brûlures, y compris ceux causés par des contacts à basse tension, doivent être pris en charge.

Les accidents impliquant des hautes tensions entraînent des brûlures importantes ainsi que les effets décrits pour les accidents à basse tension. La conversion de l'énergie électrique en chaleur se produit à la fois en interne et en externe. Dans une étude sur les accidents électriques en France réalisée par le service médical de la compagnie d'électricité EDF-GDF, près de 80 % des victimes ont subi des brûlures. Ceux-ci peuvent être classés en quatre groupes :

  1. brûlures à l'arc, impliquant généralement la peau exposée et compliquées dans certains cas par des brûlures causées par des vêtements brûlants
  2. brûlures électrothermiques multiples, étendues et profondes, causées par des contacts à haute tension
  3. les brûlures classiques, causées par la brûlure des vêtements et la projection de matières brûlantes, et
  4. brûlures mixtes, causées par des arcs électriques, des brûlures et le passage du courant.

 

Des examens de suivi et complémentaires sont effectués au besoin, selon les particularités de l'accident. La stratégie utilisée pour établir un pronostic ou à des fins médico-légales est bien entendu déterminée par la nature des complications constatées ou attendues. Dans les électrifications à haute tension (Folliot 1982) et les coups de foudre (Gourbiere et al. 1994), l'enzymologie et l'analyse des chromoprotéines et des paramètres de coagulation sanguine sont obligatoires.

Le cours de la guérison d'un traumatisme électrique peut être compromis par des complications précoces ou tardives, en particulier celles impliquant les systèmes cardiovasculaire, nerveux et rénal. Ces complications à elles seules sont une raison suffisante pour hospitaliser les victimes d'électrifications à haute tension. Certaines complications peuvent laisser des séquelles fonctionnelles ou esthétiques.

Si le trajet du courant est tel qu'un courant important atteint le cœur, des complications cardiovasculaires seront présentes. Les troubles fonctionnels, en présence ou non de corrélats cliniques, sont les plus fréquemment observés et les plus bénins. Les arythmies - tachycardie sinusale, extrasystole, flutter et fibrillation auriculaire (dans cet ordre) - sont les anomalies électrocardiographiques les plus courantes et peuvent laisser des séquelles permanentes. Les troubles de la conduction sont plus rares, et difficilement associables à des accidents électriques en l'absence d'électrocardiogramme préalable.

Des troubles plus graves tels que l'insuffisance cardiaque, les lésions valvulaires et les brûlures du myocarde ont également été signalés, mais sont rares, même chez les victimes d'accidents à haute tension. Des cas clairs d'angine de poitrine et même d'infarctus ont également été signalés.

Des lésions vasculaires périphériques peuvent être observées dans la semaine suivant l'électrification à haute tension. Plusieurs mécanismes pathogéniques ont été proposés : spasme artériel, action du courant électrique sur les couches médiane et musculaire des vaisseaux et modification des paramètres de la coagulation sanguine.

Une grande variété de complications neurologiques est possible. Le premier à apparaître est l'accident vasculaire cérébral, que la victime ait ou non initialement subi une perte de conscience. La physiopathologie de ces complications implique un traumatisme crânien (dont la présence doit être vérifiée), l'effet direct du courant sur la tête, ou la modification du débit sanguin cérébral et l'induction d'un œdème cérébral retardé. De plus, des complications médullaires et périphériques secondaires peuvent être causées par un traumatisme ou l'action directe du courant électrique.

Les troubles sensoriels impliquent l'œil et les systèmes audiovestibulaire ou cochléaire. Il est important d'examiner la cornée, le cristallin et le fond de l'œil dès que possible, et de suivre les victimes d'arc électrique et de contact direct avec la tête pour les effets différés. Les cataractes peuvent se développer après une période sans symptômes de plusieurs mois. Les troubles vestibulaires et la perte auditive sont principalement dus aux effets du souffle et, chez les victimes de coups de foudre transmis par les lignes téléphoniques, à des traumatismes électriques (Gourbiere et al. 1994).

L'amélioration des pratiques mobiles d'urgence a considérablement réduit la fréquence des complications rénales, en particulier l'oligo-anurie, chez les victimes d'électrifications à haute tension. Une réhydratation précoce et soigneuse et une alcalinisation intraveineuse sont le traitement de choix chez les victimes de brûlures graves. Quelques cas d'albuminurie et d'hématurie microscopique persistante ont été rapportés.

Portraits cliniques et problèmes diagnostiques

Le portrait clinique du choc électrique est compliqué par la variété des applications industrielles de l'électricité et la fréquence et la variété croissantes des applications médicales de l'électricité. Cependant, pendant longtemps, les accidents électriques ont été causés uniquement par la foudre (Gourbiere et al. 1994). Les coups de foudre peuvent impliquer des quantités d'électricité tout à fait remarquables : une victime sur trois meurt. Les effets d'un coup de foudre – brûlures et mort apparente – sont comparables à ceux résultant de l'électricité industrielle et sont attribuables au choc électrique, à la transformation de l'énergie électrique en chaleur, aux effets de souffle et aux propriétés électriques de la foudre.

Les coups de foudre sont trois fois plus fréquents chez les hommes que chez les femmes. Cela reflète des modèles de travail avec différents risques d'exposition à la foudre.

Les brûlures résultant du contact avec les surfaces métalliques mises à la terre des scalpels électriques sont les effets les plus fréquemment observés chez les victimes d'électrification iatrogène. L'amplitude des courants de fuite acceptables dans les appareils électromédicaux varie d'un appareil à l'autre. À tout le moins, les spécifications et les recommandations d'utilisation des fabricants doivent être suivies.

Pour conclure cette section, nous aimerions aborder le cas particulier du choc électrique impliquant des femmes enceintes. Cela peut entraîner la mort de la femme, du fœtus ou des deux. Dans un cas remarquable, un fœtus vivant a été accouché avec succès par césarienne 15 minutes après le décès de sa mère à la suite d'une électrocution par un choc de 220 V (Folliot 1982).

Les mécanismes physiopathologiques de l'avortement provoqué par un choc électrique nécessitent une étude plus approfondie. Est-elle causée par des troubles de la conduction dans le tube cardiaque embryonnaire soumis à un gradient de voltage, ou par une déchirure du placenta secondaire à une vasoconstriction ?

La survenue d'accidents électriques comme celui-ci, heureusement rare, est une autre raison d'exiger la notification de tous les cas de blessures résultant de l'électricité.

Diagnostic positif et médico-légal

Les circonstances dans lesquelles un choc électrique se produit sont généralement suffisamment claires pour permettre un diagnostic étiologique sans équivoque. Cependant, ce n'est pas toujours le cas, même en milieu industriel.

Le diagnostic d'insuffisance circulatoire suite à un choc électrique est extrêmement important, car il nécessite que les passants commencent les premiers soins immédiats et de base une fois le courant coupé. L'arrêt respiratoire en l'absence de pouls est une indication absolue pour le début du massage cardiaque et du bouche-à-bouche. Auparavant, ceux-ci n'étaient pratiqués qu'en cas de mydriase (dilatation des pupilles), signe diagnostique d'une lésion cérébrale aiguë. La pratique actuelle est cependant de débuter ces interventions dès que le pouls n'est plus détectable.

Comme la perte de conscience due à la fibrillation ventriculaire peut prendre quelques secondes à se développer, les victimes peuvent être en mesure de s'éloigner de l'équipement responsable de l'accident. Cela peut avoir une certaine importance médico-légale, par exemple lorsqu'une victime d'accident est retrouvée à plusieurs mètres d'une armoire électrique ou d'une autre source de tension sans aucune trace de blessure électrique.

On ne saurait trop insister sur le fait que l'absence de brûlures électriques n'exclut pas la possibilité d'électrocution. Si l'autopsie des sujets trouvés dans des environnements électriques ou à proximité d'équipements capables de développer des tensions dangereuses ne révèle aucune lésion de Jelinek visible et aucun signe apparent de mort, l'électrocution doit être envisagée.

Si le corps est retrouvé à l'extérieur, un diagnostic de coup de foudre est obtenu par le processus d'élimination. Les signes de coup de foudre doivent être recherchés dans un rayon de 50 mètres autour du corps. Le Musée d'électropathologie de Vienne propose une exposition saisissante de ces signes, notamment de la végétation carbonisée et du sable vitrifié. Les objets métalliques portés par la victime peuvent fondre.

Bien que le suicide par voie électrique reste heureusement rare dans l'industrie, la mort par négligence contributive reste une triste réalité. C'est particulièrement vrai sur les chantiers hors normes, notamment ceux impliquant l'installation et l'exploitation d'installations électriques provisoires dans des conditions exigeantes.

Les accidents électriques ne devraient plus jamais se produire, compte tenu de la disponibilité de mesures de prévention efficaces décrites dans l'article « Prévention et normes ».

 

Noir

Lundi, Février 28 2011 19: 25

Électricité statique

Tous les matériaux diffèrent par le degré auquel les charges électriques peuvent les traverser. Chefs laisser couler les charges, tandis que isolateurs entraver le mouvement des charges. L'électrostatique est le domaine consacré à l'étude des charges, ou des corps chargés au repos. Électricité statique se produit lorsque des charges électriques qui ne bougent pas s'accumulent sur des objets. Si les charges circulent, il en résulte un courant et l'électricité n'est plus statique. Le courant qui résulte du déplacement des charges est communément appelé électricité par les profanes et est discuté dans les autres articles de ce chapitre. Électrification statique est le terme utilisé pour désigner tout processus aboutissant à la séparation des charges électriques positives et négatives. La conduction est mesurée avec une propriété appelée conductance, tandis qu'un isolant est caractérisé par sa résistivité. La séparation de charge qui conduit à l'électrification peut se produire à la suite de processus mécaniques, par exemple, le contact entre des objets et le frottement, ou la collision de deux surfaces. Les surfaces peuvent être constituées de deux solides ou d'un solide et d'un liquide. Le processus mécanique peut, moins fréquemment, être la rupture ou la séparation de surfaces solides ou liquides. Cet article se concentre sur le contact et la friction.

Processus d'électrification

Le phénomène de génération d'électricité statique par frottement (triboélectrification) est connu depuis des milliers d'années. Le contact entre deux matériaux est suffisant pour induire l'électrification. La friction est simplement un type d'interaction qui augmente la surface de contact et génère de la chaleur.frottement est le terme général pour décrire le mouvement de deux objets en contact ; la pression exercée, sa vitesse de cisaillement et la chaleur générée sont les premiers déterminants de la charge générée par le frottement. Parfois, la friction entraînera également l'arrachement de particules solides.

Lorsque les deux solides en contact sont des métaux (contact métal-métal), les électrons migrent de l'un vers l'autre. Chaque métal est caractérisé par un potentiel initial différent (potentiel de Fermi), et la nature se dirige toujours vers l'équilibre, c'est-à-dire que les phénomènes naturels agissent pour éliminer les différences de potentiel. Cette migration d'électrons se traduit par la génération d'un potentiel de contact. Parce que les charges d'un métal sont très mobiles (les métaux sont d'excellents conducteurs), les charges se recombinent même au dernier point de contact avant que les deux métaux ne soient séparés. Il est donc impossible de provoquer l'électrification en rapprochant deux métaux puis en les séparant ; les charges circuleront toujours pour éliminer la différence de potentiel.

Quand un Métal et le isolant entrent en contact presque sans frottement dans le vide, le niveau d'énergie des électrons dans le métal se rapproche de celui de l'isolant. Les impuretés de surface ou en vrac provoquent cela et empêchent également la formation d'arc (la décharge d'électricité entre les deux corps chargés - les électrodes) lors de la séparation. La charge transférée à l'isolant est proportionnelle à l'affinité électronique du métal, et chaque isolant a également une affinité électronique, ou une attraction pour les électrons, qui lui est associée. Ainsi, le transfert d'ions positifs ou négatifs de l'isolant vers le métal est également possible. La charge sur la surface après contact et séparation est décrite par l'équation 1 dans le tableau 1.


Tableau 1. Relations de base en électrostatique - Collection d'équations

Équation 1 : Charge par contact d'un métal et d'un isolant

En général, la densité de charge de surface () après contact et séparation 

peut s'exprimer par :

De

e est la charge d'un électron
NE est la densité d'état d'énergie à la surface de l'isolant
fi est l'affinité électronique de l'isolant, et
fm est l'affinité électronique du métal

Équation 2 : Charge suite au contact entre deux isolateurs

La forme générale suivante de l'équation 1 s'applique au transfert de charge
entre deux isolants d'états énergétiques différents (surfaces parfaitement propres uniquement) :

De NE1 ainsi que NE2 sont les densités d'état d'énergie à la surface des deux isolants, 

ainsi que  Ø1 ainsi que Ø 2 sont les affinités électroniques des deux isolants.

Équation 3 : Densité de charge de surface maximale

La rigidité diélectrique (EG) du gaz environnant impose une limite supérieure à la charge qu'il est
possible de générer sur une surface isolante plane. Dans les airs, EG est d'environ 3 MV/m.
La densité de charge de surface maximale est donnée par :

Équation 4 : Charge maximale sur une particule sphérique

Lorsque des particules nominalement sphériques sont chargées par l'effet corona, le maximum
charge que chaque particule peut acquérir est donnée par la limite de Pauthenier :

De

qmax est la charge maximale
a est le rayon des particules
eI est la permittivité relative et

Équation 5 : Décharges des conducteurs

Le potentiel d'un conducteur isolé portant une charge Q est donné par V = Q/C ainsi que
l'énergie stockée par :

Équation 6 : Évolution dans le temps du potentiel du conducteur chargé

Dans un conducteur chargé par un courant constant (IG), l'évolution temporelle de la
potentiel est décrit par :

De Rf est la résistance de fuite du conducteur

Équation 7 : Potentiel final du conducteur chargé

Pendant longtemps, t >Rf C, cela se réduit à :

et l'énergie stockée est donnée par :

Équation 8 : Énergie stockée du conducteur chargé


Lorsque deux isolants entrent en contact, un transfert de charge se produit en raison des différents états de leur énergie de surface (équation 2, tableau 1). Les charges transférées à la surface d'un isolant peuvent migrer plus profondément dans le matériau. L'humidité et la contamination de surface peuvent grandement modifier le comportement des charges. L'humidité de surface en particulier augmente les densités d'état d'énergie de surface en augmentant la conduction de surface, ce qui favorise la recombinaison de charge et facilite la mobilité ionique. La plupart des gens le reconnaîtront dans leurs expériences de la vie quotidienne par le fait qu'ils ont tendance à être soumis à l'électricité statique dans des conditions sèches. La teneur en eau de certains polymères (plastiques) changera au fur et à mesure qu'ils sont chargés. L'augmentation ou la diminution de la teneur en eau peut même inverser le sens du flux de charge (sa polarité).

La polarité (positivité et négativité relatives) de deux isolants en contact l'un avec l'autre dépend de l'affinité électronique de chaque matériau. Les isolants peuvent être classés en fonction de leurs affinités électroniques, et certaines valeurs illustratives sont répertoriées dans le tableau 2. L'affinité électronique d'un isolant est une considération importante pour les programmes de prévention, qui sont abordés plus loin dans cet article.

Tableau 2. Affinités électroniques des polymères sélectionnés*

Charger

Matières

Affinité électronique (EV)

-

PVC (chlorure de polyvinyle)

4.85

 

Polyamide

4.36

 

Polycarbonate

4.26

 

PTFE (polytétrafluoroéthylène)

4.26

 

PETP (polyéthylène téréphtalate)

4.25

 

polystyrène

4.22

+

Polyamide

4.08

* Un matériau acquiert une charge positive lorsqu'il entre en contact avec un matériau répertorié au-dessus et une charge négative lorsqu'il entre en contact avec un matériau répertorié en dessous. L'affinité électronique d'un isolant est cependant multifactorielle.

 

Bien qu'il y ait eu des tentatives pour établir une série triboélectrique qui classerait les matériaux de sorte que ceux qui acquièrent une charge positive au contact des matériaux apparaissent plus haut dans la série que ceux qui acquièrent une charge négative au contact, aucune série universellement reconnue n'a été établie.

Quand un solide et un liquide se rencontrent (pour former un interface solide-liquide), le transfert de charge se produit en raison de la migration des ions présents dans le liquide. Ces ions proviennent de la dissociation d'impuretés éventuellement présentes ou de réactions électrochimiques d'oxydoréduction. Comme, en pratique, les liquides parfaitement purs n'existent pas, il y aura toujours au moins quelques ions positifs et négatifs dans le liquide disponibles pour se lier à l'interface liquide-solide. Il existe de nombreux types de mécanismes par lesquels cette liaison peut se produire (par exemple, l'adhérence électrostatique aux surfaces métalliques, l'absorption chimique, l'injection électrolytique, la dissociation des groupes polaires et, si la paroi du vaisseau est isolante, les réactions liquide-solide.)

Étant donné que les substances qui se dissolvent (se dissocient) sont électriquement neutres au départ, elles généreront un nombre égal de charges positives et négatives. L'électrification ne se produit que si les charges positives ou négatives adhèrent préférentiellement à la surface du solide. Si cela se produit, une couche très compacte, connue sous le nom de couche de Helmholtz, se forme. Parce que la couche de Helmholtz est chargée, elle attirera les ions de polarité opposée. Ces ions se regrouperont en une couche plus diffuse, connue sous le nom de couche de Gouy, qui repose sur la surface de la couche compacte de Helmholtz. L'épaisseur de la couche de Gouy augmente avec la résistivité du liquide. Les liquides conducteurs forment des couches de Gouy très fines.

Cette double couche se séparera si le liquide s'écoule, la couche de Helmholtz restant liée à l'interface et la couche de Gouy étant entraînée par le liquide qui s'écoule. Le mouvement de ces couches chargées produit une différence de potentiel (le zeta potentiel), et le courant induit par les charges en mouvement est appelé le courant continu. La quantité de charge qui s'accumule dans le liquide dépend de la vitesse à laquelle les ions diffusent vers l'interface et de la résistivité du liquide (r). Le courant d'écoulement est cependant constant dans le temps.

Ni les liquides hautement isolants ni conducteurs ne se chargeront - le premier parce que très peu d'ions sont présents, et le second parce que dans les liquides qui conduisent très bien l'électricité, les ions se recombinent très rapidement. En pratique, l'électrification ne se produit que dans les liquides de résistivité supérieure à 107Ωm ou moins de 1011Ωm, avec les valeurs les plus élevées observées pour r 109 - 1011 Ωm.

Les liquides qui s'écoulent induiront une accumulation de charge dans les surfaces isolantes sur lesquelles ils s'écoulent. La mesure dans laquelle la densité de charge de surface s'accumulera est limitée par (1) la rapidité avec laquelle les ions dans le liquide se recombinent à l'interface liquide-solide, (2) la rapidité avec laquelle les ions dans le liquide sont conduits à travers l'isolant, ou ( 3) si un arc de surface ou de masse à travers l'isolant se produit et la charge est ainsi déchargée. L'écoulement turbulent et l'écoulement sur des surfaces rugueuses favorisent l'électrification.

Lorsqu'une haute tension - disons plusieurs kilovolts - est appliquée à un corps chargé (une électrode) qui a un petit rayon (par exemple, un fil), le champ électrique dans le voisinage immédiat du corps chargé est élevé, mais il diminue rapidement avec distance. S'il y a décharge des charges stockées, la décharge sera limitée à la région où le champ électrique est plus fort que la rigidité diélectrique de l'atmosphère environnante, phénomène appelé effet corona, car l'arc émet également de la lumière. (Les gens peuvent en fait avoir vu de petites étincelles se former lorsqu'ils ont personnellement subi un choc dû à l'électricité statique.)

La densité de charge sur une surface isolante peut également être modifiée par les électrons en mouvement générés par un champ électrique de haute intensité. Ces électrons généreront des ions à partir de toutes les molécules de gaz de l'atmosphère avec lesquelles ils entrent en contact. Lorsque la charge électrique sur le corps est positive, le corps chargé repoussera tous les ions positifs qui ont été créés. Les électrons créés par des objets chargés négativement perdront de l'énergie en s'éloignant de l'électrode, et ils se fixeront aux molécules de gaz dans l'atmosphère, formant ainsi des ions négatifs qui continuent de s'éloigner des points de charge. Ces ions positifs et négatifs peuvent venir se poser sur n'importe quelle surface isolante et vont modifier la densité de charge de la surface. Ce type de charge est beaucoup plus facile à contrôler et plus uniforme que les charges créées par frottement. Il y a des limites à l'étendue des charges qu'il est possible de générer de cette manière. La limite est décrite mathématiquement dans l'équation 3 du tableau 1.

Pour générer des charges plus élevées, il faut augmenter la rigidité diélectrique de l'environnement, soit en créant un vide, soit en métallisant l'autre face du film isolant. Ce dernier stratagème attire le champ électrique dans l'isolant et réduit par conséquent l'intensité du champ dans le gaz environnant.

Lorsqu'un conducteur dans un champ électrique (E) est mis à la terre (voir figure 1), des charges peuvent être produites par induction. Dans ces conditions, le champ électrique induit la polarisation - la séparation des centres de gravité des ions négatifs et positifs du conducteur. Un conducteur temporairement mis à la terre en un seul point portera une charge nette lorsqu'il sera déconnecté de la terre, en raison de la migration des charges à proximité du point. Cela explique pourquoi des particules conductrices situées dans un champ uniforme oscillent entre les électrodes, se chargeant et se déchargeant à chaque contact.

Figure 1. Mécanisme de charge d'un conducteur par induction

ELE030F1

Dangers associés à l'électricité statique

Les effets néfastes causés par l'accumulation d'électricité statique vont de l'inconfort que l'on éprouve en touchant un objet chargé, comme une poignée de porte, aux blessures très graves, voire mortelles, qui peuvent survenir à la suite d'une explosion induite par l'électricité statique. L'effet physiologique des décharges électrostatiques sur l'homme va du picotement inconfortable aux actions réflexes violentes. Ces effets sont produits par le courant de décharge et, surtout, par la densité de courant sur la peau.

Dans cet article, nous décrirons quelques moyens pratiques par lesquels les surfaces et les objets peuvent se charger (électrification). Lorsque le champ électrique induit dépasse la capacité de l'environnement environnant à supporter la charge (c'est-à-dire dépasse la rigidité diélectrique de l'environnement), une décharge se produit. (Dans l'air, la rigidité diélectrique est décrite par la courbe de Paschen et est fonction du produit de la pression et de la distance entre les corps chargés.)

Les rejets perturbateurs peuvent prendre les formes suivantes :

  • étincelles ou arcs qui relient deux corps chargés (deux électrodes métalliques)
  • les décharges partielles, ou en brosse, qui pontent une électrode métallique et un isolant, voire deux isolants ; ces décharges sont dites partielles car le chemin conducteur ne court-circuite pas totalement deux électrodes métalliques, mais est généralement multiple et en brosse
  • les décharges corona, également connues sous le nom d'effets ponctuels, qui se produisent dans le champ électrique fort autour des corps ou des électrodes chargés à petit rayon.

 

Les conducteurs isolés ont une capacité nette C par rapport au sol. Cette relation entre charge et potentiel est exprimée dans l'équation 5 du tableau 1.

Une personne portant des chaussures isolantes est un exemple courant de conducteur isolé. Le corps humain est un conducteur électrostatique, avec une capacité typique par rapport à la terre d'environ 150 pF et un potentiel pouvant atteindre 30 kV. Parce que les gens peuvent être des conducteurs isolants, ils peuvent ressentir des décharges électrostatiques, comme la sensation plus ou moins douloureuse parfois produite lorsqu'une main s'approche d'une poignée de porte ou d'un autre objet métallique. Lorsque le potentiel atteint environ 2 kV, l'équivalent d'une énergie de 0.3 mJ sera ressenti, bien que ce seuil varie d'une personne à l'autre. Des décharges plus fortes peuvent provoquer des mouvements incontrôlables entraînant des chutes. Dans le cas de travailleurs utilisant des outils, les mouvements réflexes involontaires peuvent entraîner des blessures à la victime et à d'autres personnes travaillant à proximité. Les équations 6 à 8 du tableau 1 décrivent l'évolution temporelle du potentiel.

Un véritable arc électrique se produit lorsque la force du champ électrique induit dépasse la rigidité diélectrique de l'air. En raison de la migration rapide des charges dans les conducteurs, pratiquement toutes les charges s'écoulent vers le point de décharge, libérant toute l'énergie stockée dans une étincelle. Cela peut avoir de graves conséquences lorsque vous travaillez avec des substances inflammables ou explosives ou dans des conditions inflammables.

L'approche d'une électrode mise à la terre sur une surface isolante chargée modifie le champ électrique et induit une charge dans l'électrode. Au fur et à mesure que les surfaces se rapprochent, l'intensité du champ augmente, entraînant éventuellement une décharge partielle de la surface isolée chargée. Les charges sur les surfaces isolantes étant peu mobiles, seule une faible proportion de la surface participe à la décharge, et l'énergie dégagée par ce type de décharge est donc beaucoup plus faible que dans les arcs.

La charge et l'énergie transférée semblent être directement proportionnelles au diamètre de l'électrode métallique, jusqu'à environ 20 mm. La polarité initiale de l'isolant influence également la charge et l'énergie transférée. Les décharges partielles des surfaces chargées positivement sont moins énergétiques que celles des surfaces chargées négativement. Il est impossible de déterminer, a priori, l'énergie transférée par une décharge à partir d'une surface isolante, contrairement à la situation impliquant des surfaces conductrices. En effet, la surface isolante n'étant pas équipotentielle, il n'est même pas possible de définir les capacités mises en jeu.

Décharge rampante

On a vu dans l'équation 3 (tableau 1) que la densité de charge surfacique d'une surface isolante dans l'air ne peut excéder 2,660 XNUMX pC/cm2.

Si l'on considère une plaque isolante ou un film d'épaisseur a, reposant sur une électrode métallique ou ayant une face métallique, il est aisé de démontrer que le champ électrique est aspiré dans l'isolant par la charge induite sur l'électrode au fur et à mesure que des charges se déposent sur la face non métallique. De ce fait, le champ électrique dans l'air est très faible, et inférieur à ce qu'il serait si l'une des faces n'était pas métallique. Dans ce cas, la rigidité diélectrique de l'air ne limite pas l'accumulation de charges sur la surface isolante, et il est possible d'atteindre des densités de charges surfaciques très élevées (>2,660 XNUMX pC/cm2). Cette accumulation de charge augmente la conductivité de surface de l'isolant.

Lorsqu'une électrode s'approche d'une surface isolante, il se produit une décharge rampante impliquant une grande partie de la surface chargée devenue conductrice. En raison des grandes surfaces concernées, ce type de décharge libère de grandes quantités d'énergie. Dans le cas des films, le champ d'air est très faible et la distance entre l'électrode et le film ne doit pas dépasser l'épaisseur du film pour qu'une décharge se produise. Une décharge rampante peut également se produire lorsqu'un isolant chargé est séparé de sa sous-couche métallique. Dans ces conditions, le champ d'air augmente brusquement et toute la surface de l'isolant se décharge pour rétablir l'équilibre.

Décharges électrostatiques et risques d'incendie et d'explosion

En atmosphère explosive, des réactions d'oxydation exothermiques violentes, impliquant un transfert d'énergie vers l'atmosphère, peuvent être déclenchées par :

  • flammes nues
  • étincelles électriques
  • étincelles de radiofréquence à proximité d'une source radio puissante
  • étincelles produites par des collisions (par exemple, entre le métal et le béton)
  • décharges électrostatiques.

 

Nous ne nous intéressons ici qu'au dernier cas. Les points d'éclair (température à laquelle les vapeurs liquides s'enflamment au contact d'une flamme nue) de divers liquides et la température d'auto-inflammation de diverses vapeurs sont indiqués dans la section chimique de ce Encyclopédie. Le risque d'incendie lié aux décharges électrostatiques peut être évalué par référence à la limite inférieure d'inflammabilité des gaz, vapeurs et aérosols solides ou liquides. Cette limite peut varier considérablement, comme l'illustre le tableau 3.

Tableau 3. Limites inférieures d'inflammabilité typiques

Décharge

limite

Certaines poudres

Plusieurs joules

Aérosols très fins de soufre et d'aluminium

Plusieurs millijoules

Vapeurs d'hydrocarbures et autres liquides organiques

200 microjoules

Hydrogène et acétylène

20 microjoules

explosifs

1 microjoule

 

Un mélange d'air et de gaz ou de vapeur inflammable ne peut exploser que lorsque la concentration de la substance inflammable se situe entre ses limites supérieure et inférieure d'explosivité. Dans cette plage, l'énergie d'allumage minimale (MIE) - l'énergie qu'une décharge électrostatique doit posséder pour enflammer le mélange - dépend fortement de la concentration. Il a été démontré que l'énergie minimale d'allumage dépend de la vitesse de libération de l'énergie et, par extension, de la durée de décharge. Le rayon de l'électrode est également un facteur :

  • Les électrodes de petit diamètre (de l'ordre de quelques millimètres) provoquent des décharges corona plutôt que des étincelles.
  • Avec des électrodes de plus gros diamètre (de l'ordre de quelques centimètres), la masse d'électrode sert à refroidir les étincelles.

 

En général, les MIE les plus faibles sont obtenus avec des électrodes juste assez grandes pour éviter les décharges corona.

La MIE dépend également de la distance interélectrodes, et est la plus faible à la distance de pincement, distance à laquelle l'énergie produite dans la zone de réaction dépasse les pertes thermiques aux électrodes. Il a été démontré expérimentalement que chaque substance inflammable a une distance maximale de sécurité, correspondant à la distance minimale entre électrodes à laquelle une explosion peut se produire. Pour les hydrocarbures, elle est inférieure à 1 mm.

La probabilité d'explosions de poudre dépend de la concentration, la probabilité la plus élevée étant associée à des concentrations de l'ordre de 200 à 500 g/m3. Le MIE dépend également de la taille des particules, les poudres plus fines explosant plus facilement. Pour les gaz et les aérosols, le MIE diminue avec la température.

Exemples industriels

De nombreux processus couramment utilisés pour la manipulation et le transport de produits chimiques génèrent des charges électrostatiques. Ceux-ci inclus:

  • verser les poudres des sacs
  • dépistage
  • transport en tuyauterie
  • agitation liquide, en particulier en présence de phases multiples, de solides en suspension ou de gouttelettes de liquides non miscibles
  • pulvérisation de liquide ou brumisation.

 

Les conséquences de la génération de charges électrostatiques incluent des problèmes mécaniques, un risque de décharge électrostatique pour les opérateurs et, si des produits contenant des solvants ou des vapeurs inflammables sont utilisés, même une explosion (voir tableau 4).

Tableau 4. Redevance spécifique associée à certaines opérations industrielles

Opération

Frais spécifiques
(q/m) (C/kg)

Tamisage

10-8 -10- 11

Remplissage ou vidange de silo

10-7 -10-9

Transport par vis sans fin

10-6 -10-8

Meulage

10-6 -10-7

Micronisation

10-4 -10-7

Transport pneumatique

10-4 -10-6

 

Les hydrocarbures liquides, tels que le pétrole, le kérosène et de nombreux solvants usuels, ont deux caractéristiques qui les rendent particulièrement sensibles aux problèmes d'électricité statique :

  • haute résistivité, ce qui leur permet d'accumuler des niveaux élevés de charges
  • les vapeurs inflammables, qui augmentent le risque de rejets à faible énergie provoquant des incendies et des explosions.

 

Des charges peuvent être générées pendant le flux de transport (par exemple, via des canalisations, des pompes ou des vannes). Le passage à travers des filtres fins, tels que ceux utilisés lors du remplissage des réservoirs des avions, peut entraîner la génération de densités de charge de plusieurs centaines de microcoulombs par mètre cube. La sédimentation des particules et la génération de brouillards chargés ou de mousses lors du remplissage en continu des réservoirs peuvent également générer des charges.

Entre 1953 et 1971, l'électricité statique a été responsable de 35 incendies et explosions pendant ou après le remplissage de réservoirs de kérosène, et encore plus d'accidents se sont produits lors du remplissage de réservoirs de camions. La présence de filtres ou les éclaboussures lors du remplissage (dues à la génération de mousses ou de brouillards) sont les facteurs de risque les plus fréquemment identifiés. Des accidents se sont également produits à bord de pétroliers, notamment lors du nettoyage des citernes.

Principes de prévention de l'électricité statique

Tous les problèmes liés à l'électricité statique proviennent de :

  • génération de charges électriques
  • accumulation de ces charges sur des isolants ou des conducteurs isolés
  • champ électrique produit par ces charges, qui à son tour se traduit par une force ou une décharge perturbatrice.

 

Les mesures préventives visent à éviter l'accumulation de charges électrostatiques, et la stratégie de choix est d'éviter de générer les charges électriques en premier lieu. Si cela n'est pas possible, des mesures visant à ancrer les charges doivent être mises en œuvre. Enfin, si des décharges sont inévitables, les objets sensibles doivent être protégés des effets des décharges.

Suppression ou réduction de la génération de charges électrostatiques

C'est la première approche de prévention électrostatique qui devrait être entreprise, car c'est la seule mesure préventive qui élimine le problème à sa source. Cependant, comme discuté précédemment, des charges sont générées chaque fois que deux matériaux, dont au moins un est isolant, entrent en contact et sont ensuite séparés. En pratique, la génération de charge peut se produire même lors du contact et de la séparation d'un matériau avec lui-même. En effet, la génération de charges implique les couches superficielles des matériaux. Étant donné que la moindre différence d'humidité de surface ou de contamination de surface entraîne la génération de charges statiques, il est impossible d'éviter complètement la génération de charges.

Pour réduire la quantité de charges générées par les surfaces entrant en contact :

  • Évitez que des matériaux entrent en contact les uns avec les autres s'ils ont des affinités électroniques très différentes, c'est-à-dire s'ils sont très éloignés dans la série triboélectrique. Par exemple, évitez le contact entre le verre et le Téflon (PTFE), ou entre le PVC et le polyamide (nylon) (voir tableau 2).
  • Réduire le débit d'écoulement entre les matériaux. Cela réduit la vitesse de cisaillement entre les matériaux solides. Par exemple, on peut réduire le débit de l'extrusion de films plastiques, du déplacement de matériaux broyés sur un convoyeur, ou de liquides dans une canalisation.

 

Aucune limite de sécurité définitive pour les débits n'a été établie. La norme britannique BS-5958-Part 2  Code de pratique pour le contrôle de l'électricité statique indésirable recommande que le produit de la vitesse (en mètres par seconde) et du diamètre du tuyau (en mètres) soit inférieur à 0.38 pour les liquides de conductivité inférieure à 5 pS/m (en pico-siemens par mètre) et inférieur à 0.5 pour les liquides avec des conductivités supérieures à 5 pS/m. Ce critère n'est valable que pour les liquides monophasiques transportés à des vitesses ne dépassant pas 7 m/s.

Il convient de noter que la réduction du cisaillement ou de la vitesse d'écoulement réduit non seulement la génération de charges, mais aide également à dissiper toutes les charges générées. En effet, des vitesses d'écoulement plus faibles entraînent des temps de séjour supérieurs à ceux associés aux zones de relaxation, où les débits sont réduits par des stratégies telles que l'augmentation du diamètre des conduites. Ceci, à son tour, augmente la mise à la terre.

Mise à la terre de l'électricité statique

La règle de base de la prévention électrostatique est d'éliminer les différences de potentiel entre les objets. Cela peut être fait en les connectant ou en les mettant à la terre. Les conducteurs isolés peuvent cependant accumuler des charges et ainsi se charger par induction, phénomène qui leur est propre. Les décharges des conducteurs peuvent prendre la forme d'étincelles à haute énergie et dangereuses.

Cette règle est conforme aux recommandations relatives à la prévention des chocs électriques, qui imposent également que toutes les parties métalliques accessibles des équipements électriques soient reliées à la terre comme dans la norme française Installations électriques basse tension (NFC 15-100). Pour une sécurité électrostatique maximale, qui nous préoccupe ici, cette règle doit être généralisée à tous les éléments conducteurs. Cela comprend les cadres de table en métal, les poignées de porte, les composants électroniques, les réservoirs utilisés dans les industries chimiques et les châssis des véhicules utilisés pour le transport des hydrocarbures.

Du point de vue de la sécurité électrostatique, le monde idéal serait celui dans lequel tout serait conducteur et serait en permanence mis à la terre, transférant ainsi toutes les charges dans la terre. Dans ces conditions, tout serait en permanence équipotentiel, et le champ électrique - et le risque de décharge - serait par conséquent nul. Cependant, il n'est presque jamais possible d'atteindre cet idéal, pour les raisons suivantes :

  • Tous les produits à manipuler ne sont pas conducteurs et beaucoup ne peuvent pas être rendus conducteurs par l'utilisation d'additifs. Les produits agricoles et pharmaceutiques et les liquides de haute pureté en sont des exemples.
  • Les propriétés souhaitables du produit final, telles que la transparence optique ou la faible conductivité thermique, peuvent empêcher l'utilisation de matériaux conducteurs.
  • Il est impossible de mettre à la terre en permanence des équipements mobiles tels que des chariots métalliques, des outils électroniques sans fil, des véhicules et même des opérateurs humains.

 

Protection contre les décharges électrostatiques

Il convient de garder à l'esprit que cette section ne concerne que la protection des équipements électrostatiquement sensibles contre les décharges inévitables, la réduction de la génération de charges et l'élimination des charges. La capacité de protéger l'équipement n'élimine pas la nécessité fondamentale d'empêcher l'accumulation de charges électrostatiques en premier lieu.

Comme l'illustre la figure 2, tous les problèmes électrostatiques impliquent une source de décharge électrostatique (l'objet initialement chargé), une cible qui reçoit la décharge et l'environnement à travers lequel la décharge se déplace (décharge diélectrique). Il convient de noter que la cible ou l'environnement peuvent être électrostatiquement sensibles. Quelques exemples d'éléments sensibles sont listés dans le tableau 5.

Figure 2. Schéma du problème de décharge électrostatique

ELE030F2

Tableau 6. Exemples d'équipements sensibles aux décharges électrostatiques

Élément sensible

Exemples

Identifier

Un opérateur touchant une poignée de porte ou le châssis d'une voiture A
Composant électronique chargé entrant en contact avec un
objet mis à la terre

Target

Composants électroniques ou matériaux touchant un opérateur chargé

Environment

Un mélange explosif enflammé par une décharge électrostatique

 

Protection des travailleurs

Les travailleurs qui ont des raisons de croire qu'ils sont devenus chargés électriquement (par exemple, lorsqu'ils descendent d'un véhicule par temps sec ou marchent avec certains types de chaussures), peuvent appliquer un certain nombre de mesures de protection, telles que les suivantes :

  • Réduisez la densité de courant au niveau de la peau en touchant un conducteur mis à la terre avec un morceau de métal tel qu'une clé ou un outil.
  • Réduisez la valeur de crête du courant en déchargeant vers un objet dissipateur, s'il y en a un (un dessus de table ou un dispositif spécial tel qu'un bracelet de protection avec résistance série).

 

Protection en atmosphères explosives

Dans les atmosphères explosives, c'est l'environnement lui-même qui est sensible aux décharges électrostatiques, et les décharges peuvent provoquer une inflammation ou une explosion. La protection consiste alors à remplacer l'air, soit par un mélange gazeux dont la teneur en oxygène est inférieure à la limite inférieure d'explosivité, soit par un gaz inerte, tel que l'azote. Le gaz inerte a été utilisé dans les silos et dans les cuves de réaction dans les industries chimiques et pharmaceutiques. Dans ce cas, des précautions adéquates pour s'assurer que les travailleurs reçoivent une alimentation en air adéquate sont nécessaires.

 

Noir

Page 2 de 7

" AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

Table des matières