Bannière GeneralHazard

Catégories Enfants

36. Augmentation de la pression barométrique

36. Pression barométrique augmentée (2)

6 bannière

 

 

36. Augmentation de la pression barométrique

 

Éditeur de chapitre : TJR François

 


Table des matières

Tables

 

Travailler sous une pression barométrique accrue

Éric Kindwall

 

Troubles de décompression

Dees F.Gorman

 

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Instructions pour les travailleurs de l'air comprimé
2. Maladie de décompression : classification révisée

Voir les articles ...
37. Pression barométrique réduite

37. Pression barométrique réduite (4)

6 bannière

 

37. Pression barométrique réduite

Éditeur de chapitre :  Walter Dummer


Table des matières

Figures et tableaux

Acclimatation ventilatoire à la haute altitude
John T. Reeves et John V. Weil

Effets physiologiques de la pression barométrique réduite
Kenneth I. Berger et William N. Rom

Considérations sanitaires pour la gestion du travail à haute altitude
John B. Ouest

Prévention des risques professionnels en haute altitude
Walter Dummer

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

 

BA1020F1BA1020F3BA1020F4BA1020F5BA1030T1BA1030F1BA1030F2

Voir les articles ...
38. Dangers biologiques

38. Dangers biologiques (4)

6 bannière

 

38. Dangers biologiques

Éditeur de chapitre : Zuheir Ibrahim Fakhri


Table des matières

Tables

Risques biologiques sur le lieu de travail
Zuheir I. Fakhri

Animaux aquatiques
D.Zannini

Animaux venimeux terrestres
JA Rioux et B. Juminer

Caractéristiques cliniques de la morsure de serpent
David A. Warrell

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Milieux de travail avec agents biologiques
2. Virus, bactéries, champignons et plantes sur le lieu de travail
3. Les animaux comme source de risques professionnels

Voir les articles ...
39. Catastrophes naturelles et technologiques

39. Catastrophes naturelles et technologiques (12)

6 bannière

 

39. Catastrophes naturelles et technologiques

Éditeur de chapitre : Quai Alberto Bertazzi


Table des matières

Tableaux et figures

Catastrophes et accidents majeurs
Quai Alberto Bertazzi

     Convention de l'OIT concernant la prévention des accidents industriels majeurs, 1993 (n° 174)

Préparation aux catastrophes
Peter J.Baxter

Activités post-catastrophe
Benedetto Terracini et Ursula Ackermann-Liebrich

Problèmes liés aux conditions météorologiques
jean français

Avalanches : dangers et mesures de protection
Gustav Pointtingl

Transport de matières dangereuses : chimiques et radioactives
Donald M.Campbell

Accidents radiologiques
Pierre Verger et Denis Winter

     Étude de cas : Que signifie dose ?

Mesures de santé et de sécurité au travail dans les zones agricoles contaminées par des radionucléides : l'expérience de Tchernobyl
Yuri Kundiev, Leonard Dobrovolsky et VI Chernyuk

Étude de cas : L'incendie de l'usine de jouets Kader
Subvention Casey Cavanaugh

Impacts des catastrophes : leçons d'un point de vue médical
José Luis Zeballos
 

 

 

 

Tables

 

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

 

1. Définitions des types de catastrophes
2. Nombre moyen de victimes sur 25 ans par type et région-déclencheur naturel
3. Nombre moyen de victimes sur 25 ans par type et région - déclencheur non naturel
4. Nombre moyen de victimes sur 25 ans par type de déclencheur naturel (1969-1993)
5. Nombre moyen de victimes sur 25 ans par type de déclencheur non naturel (1969-1993)
6. Déclencheur naturel de 1969 à 1993 : événements sur 25 ans
7. Déclencheur non naturel de 1969 à 1993 : événements sur 25 ans
8. Déclencheur naturel : Nombre par région mondiale et type en 1994
9. Déclencheur non naturel : nombre par région du monde et type en 1994
10. Exemples d'explosions industrielles
11. Exemples d'incendies majeurs
12. Exemples de rejets toxiques majeurs
13. Rôle de la gestion des installations à risques majeurs dans la maîtrise des risques
14. Méthodes de travail pour l'évaluation des dangers
15. Critères de la directive CE pour les installations à risques majeurs
16. Produits chimiques prioritaires utilisés pour identifier les installations à risques majeurs
17. Risques professionnels liés aux conditions météorologiques
18. Radionucléides typiques, avec leurs demi-vies radioactives
19. Comparaison de différents accidents nucléaires
20. Contamination en Ukraine, Biélorussie et Russie après Tchernobyl
21. Contamination strontium-90 après l'accident de Khyshtym (Oural 1957)
22. Sources radioactives impliquant le grand public
23. Principaux accidents impliquant des irradiateurs industriels
24. Registre des accidents radiologiques d'Oak Ridge (États-Unis) (mondial, 1944-88)
25. Schéma d'exposition professionnelle aux rayonnements ionisants dans le monde
26. Effets déterministes : seuils pour certains organes
27. Patients atteints du syndrome d'irradiation aiguë (AIS) après Tchernobyl
28. Études épidémiologiques sur le cancer de l'irradiation externe à haute dose
29. Cancers de la thyroïde chez les enfants en Biélorussie, en Ukraine et en Russie, 1981-94
30. Échelle internationale des incidents nucléaires
31. Mesures de protection génériques pour la population générale
32. Critères pour les zones de contamination
33. Catastrophes majeures en Amérique latine et dans les Caraïbes, 1970-93
34. Pertes dues à six catastrophes naturelles
35. Hôpitaux et lits d'hôpitaux endommagés/détruits par 3 catastrophes majeures
36. Victimes dans 2 hôpitaux effondrés par le tremblement de terre de 1985 au Mexique
37. Lits d'hôpitaux perdus à la suite du tremblement de terre chilien de mars 1985
38. Facteurs de risque de dommages sismiques aux infrastructures hospitalières

 

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

 

 

 

 

DIS010F2DIS010F1DIS010T2DIS020F1DIS080F1DIS080F2DIS080F3DIS080F4DIS080F5DIS080F6DIS080F7DIS090T2DIS095F1DIS095F2

 


 

Cliquez pour revenir en haut de la page

 

Voir les articles ...
40. Électricité

40. Électricité (3)

6 bannière

 

40. Électricité

Éditeur de chapitre :  Dominique Folliot

 


 

Table des matières 

Figures et tableaux

Électricité—Effets physiologiques
Dominique Folliot

Électricité statique
Claude Menguy

Prévention et normes
Renzo Comini

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Estimations du taux d'électrocution-1988
2. Relations de base en électrostatique-Collection d'équations
3. Affinités électroniques de polymères sélectionnés
4. Limites inférieures d'inflammabilité typiques
5. Redevance spécifique associée à certaines opérations industrielles
6. Exemples d'équipements sensibles aux décharges électrostatiques

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

ELE030F1ELE030F2ELE040F1

Voir les articles ...
41. Feu

41. Incendie (6)

6 bannière

 

41. Feu

Éditeur de chapitre :  Casey C.Grant


 

Table des matières 

Figures et tableaux

Concepts de base
Dougal Drysdale

Sources de risques d'incendie
Tamás Banky

Mesures de prévention des incendies
Peter F.Johnson

Mesures passives de protection contre l'incendie
Yngve Anderberg

Mesures actives de protection contre l'incendie
Gary Taylor

Organisation pour la protection contre les incendies
S. Dheri

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Limites inférieure et supérieure d'inflammabilité dans l'air
2. Points d'éclair et points de feu des combustibles liquides et solides
3. Sources d'allumage
4. Comparaison des concentrations des différents gaz nécessaires à l'inertage

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

FIR010F1FIR010F2FIR020F1FIR040F1FIR040F2FIR040F3FIR050F4FIR050F1FIR050F2FIR050F3FIR060F3

Voir les articles ...
42. Chaleur et froid

42. Chaleur et froid (12)

6 bannière

 

42. Chaleur et froid

Éditeur de chapitre :  Jean-Jacques Vogt


 

Table des matières 

Figures et tableaux

Réponses physiologiques à l'environnement thermique
W.Larry Kenney

Effets du stress thermique et du travail dans la chaleur
Bodil Nielsen

Troubles liés à la chaleur
Tokuo Ogawa

Prévention du stress thermique
Sarah A. Nunneley

La base physique du travail dans la chaleur
Jacques Malchaire

Évaluation du stress thermique et des indices de stress thermique
Kenneth C.Parsons

     Étude de cas : Indices de chaleur : formules et définitions

Échange de chaleur à travers les vêtements
Wouter A.Lotens

     Formules et définitions

Environnements froids et travail à froid
Ingvar Holmer, Per-Ola Granberg et Goran Dahlstrom

Prévention du stress dû au froid dans des conditions extérieures extrêmes
Jacques Bittel et Gustave Savourey

Indices et normes de froid
Ingvar Holmer

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Concentration d'électrolytes dans le plasma sanguin et la sueur
2. Indice de stress thermique et durées d'exposition admissibles : calculs
3. Interprétation des valeurs de l'indice de stress thermique
4. Valeurs de référence pour les critères de contrainte thermique et de déformation
5. Modèle utilisant la fréquence cardiaque pour évaluer le stress thermique
6. Valeurs de référence WBGT
7. Pratiques de travail pour les environnements chauds
8. Calcul de l'indice SWreq & méthode d'évaluation : équations
9. Description des termes utilisés dans l'ISO 7933 (1989b)
10. Valeurs WBGT pour quatre phases de travail
11. Données de base pour l'évaluation analytique selon ISO 7933
12. Évaluation analytique selon ISO 7933
13. Températures de l'air de divers environnements professionnels froids
14. Durée du stress dû au froid non compensé et réactions associées
15. Indication des effets anticipés d'une exposition au froid léger et sévère
16. Température des tissus corporels et performances physiques humaines
17. Réponses humaines au refroidissement : réactions indicatives à l'hypothermie
18. Recommandations sanitaires pour le personnel exposé au stress du froid
19. Programmes de conditionnement pour les travailleurs exposés au froid
20. Prévention et atténuation du stress dû au froid : stratégies
21. Stratégies et mesures liées à des facteurs et équipements spécifiques
22. Mécanismes généraux d'adaptation au froid
23. Nombre de jours où la température de l'eau est inférieure à 15 ºC
24. Températures de l'air de divers environnements professionnels froids
25. Classification schématique du travail à froid
26. Classification des niveaux de taux métabolique
27. Exemples de valeurs d'isolation de base des vêtements
28. Classification de la résistance thermique au refroidissement des gants
29. Classification de la résistance thermique de contact des gants
30. Indice de refroidissement éolien, température et temps de congélation de la chair exposée
31. Pouvoir refroidissant du vent sur la chair exposée

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

HEA030F1HEA050F1HEA010F1HEA080F1HEA080F2HEA080F3HEA020F1HEA020F2HEA020F3HEA020F4HEA020F5HEA020F6HEA020F7HEA090F1HEA090F2HEA090F3HEA090T4HEA090F4HEA090T8HEA090F5HEA110F1HEA110F2HEA110F3HEA110F4HEA110F5HEA110F6


Cliquez pour revenir en haut de la page

Voir les articles ...
43. Heures de travail

43. Heures de travail (1)

6 bannière

 

43. Heures de travail

Éditeur de chapitre :  Pierre Knauth


 

Table des matières 

Heures de travail
Pierre Knauth

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Intervalles de temps depuis le début du travail posté jusqu'à trois maladies
2. Travail posté et incidence des troubles cardiovasculaires

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

HOU010F1HOU010T3HOU010F2HOU10F2BHOU010F3HOU010F4HOU010F5HOU010F6HOU010F7

Voir les articles ...
44. Qualité de l'air intérieur

44. Qualité de l'air intérieur (8)

6 bannière

 

44. Qualité de l'air intérieur

Éditeur de chapitre :  Xavier Guardino Sola


 

Table des matières 

Figures et tableaux

Qualité de l'air intérieur : introduction
Xavier Guardino Sola

Nature et sources des contaminants chimiques intérieurs
Derrick Crump

Radon
Maria José Berenguer

Fumée de tabac
Dietrich Hoffmann et Ernst L. Wynder

Règlement sur le tabagisme
Xavier Guardino Sola

Mesure et évaluation des polluants chimiques
M. Gracia Rosell Farras

Contamination biologique
Brian Flannigan

Règlements, recommandations, lignes directrices et normes
Maria José Berenguer

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Classification des polluants organiques intérieurs
2. Émission de formaldéhyde à partir d'une variété de matériaux
3. Tttl. composés organiques volatils concs, revêtements de mur/sol
4. Produits de consommation et autres sources de composés organiques volatils
5. Principaux types et concentrations dans le Royaume-Uni urbain
6. Mesures sur le terrain des oxydes d'azote et du monoxyde de carbone
7. Agents toxiques et tumorigènes dans la fumée secondaire de cigarette
8. Agents toxiques et tumorigènes de la fumée de tabac
9. Cotinine urinaire chez les non-fumeurs
10. Méthodologie de prélèvement des échantillons
11. Méthodes de détection des gaz dans l'air intérieur
12. Méthodes utilisées pour l'analyse des polluants chimiques
13. Limites de détection inférieures pour certains gaz
14. Types de champignons pouvant causer une rhinite et/ou de l'asthme
15. Micro-organismes et alvéolite allergique extrinsèque
16. Micro-organismes dans l'air intérieur non industriel et la poussière
17. Normes de qualité de l'air établies par l'US EPA
18. Directives de l'OMS pour les nuisances non cancéreuses et non olfactives
19. Valeurs guides de l'OMS basées sur les effets sensoriels ou la gêne
20. Valeurs de référence pour le radon de trois organisations

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

AIR010T1AIR010F1AIR030T7AIR035F1AIR050T1


Cliquez pour revenir en haut de la page

Voir les articles ...
45. Contrôle de l'environnement intérieur

45. Contrôle de l'environnement intérieur (6)

6 bannière

 

45. Contrôle de l'environnement intérieur

Éditeur de chapitre :  Juan Guasch Farras

 


 

Table des matières 

Figures et tableaux

Contrôle des environnements intérieurs : principes généraux
A. Hernández Calleja

Air intérieur : méthodes de contrôle et de nettoyage
E. Adán Liébana et A. Hernández Calleja

Objectifs et principes de la ventilation générale et par dilution
Emilio Castejon

Critères de ventilation pour les bâtiments non industriels
A. Hernández Calleja

Systèmes de chauffage et de climatisation
F. Ramos Pérez et J. Guasch Farrás

Air intérieur : Ionisation
E. Adán Liébana et J. Guasch Farrás

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Les polluants intérieurs les plus courants et leurs sources
2. Exigences de base-système de ventilation à dilution
3. Mesures de contrôle et leurs effets
4. Ajustements à l'environnement de travail et aux effets
5. Efficacité des filtres (norme ASHRAE 52-76)
6. Réactifs utilisés comme absorbants pour les contaminants
7. Niveaux de qualité de l'air intérieur
8. Contamination due aux occupants d'un bâtiment
9. Degré d'occupation des différents bâtiments
10. Contamination due au bâtiment
11. Niveaux de qualité de l'air extérieur
12. Normes proposées pour les facteurs environnementaux
13. Températures de confort thermique (basées sur Fanger)
14. Caractéristiques des ions

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

IEN010F1IEN010F2IEN010F3IEN030F1IEN030F2IEN040F1IEN040F2IEN040F3IEN040F4IEN050F1IEN050F3IEN050F7IEN050F8


Cliquez pour revenir en haut de la page

Voir les articles ...
47. bruit

47. Bruit (5)

6 bannière

 

47. bruit

Éditeur de chapitre :  Alice H.Suter


 

Table des matières 

Figures et tableaux

La nature et les effets du bruit
Alice H.Suter

Mesure du bruit et évaluation de l'exposition
Eduard I. Denisov et German A. Suvorov

Contrôle du bruit d'ingénierie
Dennis P. Driscoll

Programmes de préservation de l'ouïe
Larry H.Royster et Julia Doswell Royster

Normes et réglementations
Alice H.Suter

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Limites d'exposition admissibles (PEL) pour l'exposition au bruit, par pays

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

NOI010T1NOI050F6NOI050F7NOI060F1NOI060F2NOI060F3NOI060F4NOI070F1NOI070T1

Voir les articles ...
48. Rayonnement : Ionisant

48. Rayonnement : Ionisant (6)

6 bannière

 

48. Rayonnement : Ionisant

Éditeur de chapitre : Robert N. Cherry, Jr.


 

Table des matières

Introduction
Robert N. Cherry, Jr.

Biologie des rayonnements et effets biologiques
Arthur C.Upton

Sources de rayonnement ionisant
Robert N. Cherry, Jr.

Conception du lieu de travail pour la radioprotection
Gordon M.Lodde

Radioprotection
Robert N. Cherry, Jr.

Planification et gestion des accidents radiologiques
Sydney W. Porter, Jr.

Voir les articles ...
49. Rayonnement, non ionisant

49. Rayonnement, non ionisant (9)

6 bannière

 

49. Rayonnement, non ionisant

Éditeur de chapitre :  Bengt Knave


 

Table des matières 

Tableaux et figures

Champs électriques et magnétiques et résultats pour la santé
Bengt Knave

Le spectre électromagnétique : caractéristiques physiques de base
Kjell Hansson Doux

Rayonnement ultraviolet
David H.Sliney

Rayonnement infrarouge
R.Matthes

Rayonnement lumineux et infrarouge
David H.Sliney

Lasers
David H.Sliney

Champs radiofréquences et micro-ondes
Kjell Hansson Doux

Champs électriques et magnétiques VLF et ELF
Michael H. Repacholi

Champs électriques et magnétiques statiques
Martino Grandolfo

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Sources et expositions aux IR
2. Fonction de risque thermique rétinien
3. Limites d'exposition pour les lasers typiques
4. Applications d'équipement utilisant la gamme > 0 à 30 kHz
5. Sources professionnelles d'exposition aux champs magnétiques
6. Effets des courants traversant le corps humain
7. Effets biologiques de diverses plages de densité de courant
8. Limites d'exposition professionnelle - champs électriques/magnétiques
9. Études sur des animaux exposés à des champs électriques statiques
10. Technologies majeures et grands champs magnétiques statiques
11. Recommandations de l'ICNIRP pour les champs magnétiques statiques

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

ELF010F1ELF010F2ELF020T1ELF040F1ELF040F2ELF040F3ELF060F1ELF060F2


Cliquez pour revenir en haut de la page

Voir les articles ...
52. Unités d'affichage visuel

52. Unités d'affichage visuel (11)

6 bannière

 

52. Unités d'affichage visuel

Éditeur de chapitre :  Diane Berthelette


 

Table des matières 

Tableaux et figures

Vue d’ensemble
Diane Berthelette

Caractéristiques des postes de travail à affichage visuel
Ahmet Çakir

Problèmes oculaires et visuels
Paule Rey et Jean Jacques Meyer

Dangers pour la reproduction - Données expérimentales
Ulf Bergqvist

Effets sur la reproduction - Preuve humaine
Claire Infante-Rivard

     Étude de cas : résumé des études sur les résultats de la reproduction

Troubles musculo-squelettiques
Gabrielle Bammer

Problèmes de peau
Mats Berg et Sture Lidén

Aspects psychosociaux du travail sur écran
Michael J. Smith et Pascale Carayon

Aspects ergonomiques de l'interaction homme-ordinateur
Jean Marc Robert

Normes d'ergonomie
Tom FM Stewart

Tables

Cliquez sur un lien ci-dessous pour afficher le tableau dans le contexte de l'article.

1. Distribution d'ordinateurs dans diverses régions
2. Fréquence & importance des éléments d'équipement
3. Prévalence des symptômes oculaires
4. Etudes tératologiques chez le rat ou la souris
5. Etudes tératologiques chez le rat ou la souris
6. L'utilisation d'écrans de visualisation comme facteur d'issue défavorable de la grossesse
7. Analyses pour étudier les causes des problèmes musculo-squelettiques
8. Facteurs supposés causer des problèmes musculo-squelettiques

Figures

Pointez sur une vignette pour voir la légende de la figure, cliquez pour voir la figure dans le contexte de l'article.

Écran VDU020F1Écran VDU020F2Écran VDU020F3Écran VDU020F4Écran VDU020F5Écran VDU020F6Écran VDU030F1

Écran VDU040F1Écran VDU080F1Écran VDU080F2Écran VDU100F1Écran VDU100F2


Cliquez pour revenir en haut de la page

Voir les articles ...

Confinement des feux par compartimentage

Planification du bâtiment et du site

Les travaux d'ingénierie de sécurité incendie doivent commencer tôt dans la phase de conception car les exigences de sécurité incendie influencent considérablement l'aménagement et la conception du bâtiment. De cette façon, le concepteur peut incorporer des dispositifs de sécurité incendie dans le bâtiment de manière beaucoup plus efficace et plus économique. L'approche globale tient compte à la fois des fonctions et de l'aménagement intérieurs du bâtiment, ainsi que de l'aménagement extérieur du site. Les exigences normatives des codes sont de plus en plus remplacées par des exigences fonctionnelles, ce qui signifie qu'il existe une demande accrue d'experts dans ce domaine. Dès le début du projet de construction, le concepteur du bâtiment doit donc contacter des experts en incendie pour élucider les actions suivantes :

  • décrire la problématique incendie propre au bâtiment
  • décrire différentes alternatives pour obtenir le niveau de sécurité incendie requis
  • analyser le choix du système en termes de solutions techniques et d'économie
  • créer des présomptions pour des choix de systèmes optimisés sur le plan technique.

 

L'architecte doit utiliser un site donné dans la conception du bâtiment et adapter les considérations fonctionnelles et techniques aux conditions particulières du site qui sont présentes. De la même manière, l'architecte doit tenir compte des caractéristiques du site pour prendre des décisions sur la protection contre les incendies. Un ensemble particulier de caractéristiques du site peut influencer de manière significative le type de protection active et passive suggéré par le consultant en incendie. Les caractéristiques de conception doivent tenir compte des ressources locales de lutte contre l'incendie disponibles et du temps nécessaire pour atteindre le bâtiment. Le service d'incendie ne peut pas et ne devrait pas être tenu de fournir une protection complète aux occupants et aux biens du bâtiment ; il doit être assisté par des défenses anti-incendie actives et passives du bâtiment, afin de fournir une protection raisonnable contre les effets du feu. En bref, les opérations peuvent être regroupées en gros comme le sauvetage, la lutte contre les incendies et la conservation des biens. La première priorité de toute opération de lutte contre l'incendie est de s'assurer que tous les occupants sont sortis du bâtiment avant que des conditions critiques ne se produisent.

Conception structurelle basée sur la classification ou le calcul

Un moyen bien établi de codifier les exigences de protection contre l'incendie et de sécurité incendie pour les bâtiments consiste à les classer par types de construction, en fonction des matériaux utilisés pour les éléments structuraux et du degré de résistance au feu offert par chaque élément. La classification peut être basée sur des essais au four conformément à la norme ISO 834 (l'exposition au feu est caractérisée par la courbe température-temps standard), une combinaison d'essais et de calculs ou par calcul. Ces procédures identifieront la résistance au feu standard (capacité à remplir les fonctions requises pendant 30, 60, 90 minutes, etc.) d'un élément structurel porteur et/ou de séparation. La classification (en particulier lorsqu'elle est basée sur des essais) est une méthode simplifiée et conservatrice et est de plus en plus remplacée par des méthodes de calcul à base fonctionnelle prenant en compte l'effet des incendies naturels pleinement développés. Cependant, des essais au feu seront toujours nécessaires, mais ils peuvent être conçus de manière plus optimale et être combinés avec des simulations informatiques. Dans cette procédure, le nombre de tests peut être considérablement réduit. Habituellement, dans les procédures d'essai au feu, les éléments structurels porteurs sont chargés à 100 % de la charge de conception, mais dans la réalité, le facteur d'utilisation de la charge est le plus souvent inférieur à cela. Les critères d'acceptation sont spécifiques à la construction ou à l'élément testé. La résistance au feu standard est le temps mesuré pendant lequel l'élément peut résister au feu sans défaillance.

Une conception optimale de l'ingénierie incendie, équilibrée par rapport à la gravité prévue de l'incendie, est l'objectif des exigences structurelles et de protection contre l'incendie dans les codes modernes basés sur les performances. Celles-ci ont ouvert la voie à la conception d'ingénierie incendie par calcul avec prédiction de la température et de l'effet structurel dus à un processus d'incendie complet (le chauffage et le refroidissement ultérieur sont pris en compte) dans un compartiment. Les calculs basés sur les incendies naturels signifient que les éléments structurels (importants pour la stabilité du bâtiment) et l'ensemble de la structure ne peuvent pas s'effondrer pendant tout le processus d'incendie, y compris le refroidissement.

Des recherches approfondies ont été effectuées au cours des 30 dernières années. Différents modèles informatiques ont été développés. Ces modèles utilisent la recherche fondamentale sur les propriétés mécaniques et thermiques des matériaux à des températures élevées. Certains modèles informatiques sont validés par rapport à un grand nombre de données expérimentales, et une bonne prédiction du comportement structurel au feu est obtenue.

Compartimentation

Un compartiment coupe-feu est un espace à l'intérieur d'un bâtiment s'étendant sur un ou plusieurs étages qui est fermé par des éléments de séparation de telle sorte que la propagation du feu au-delà du compartiment est empêchée pendant l'exposition au feu correspondante. Le compartimentage est important pour empêcher le feu de se propager dans des espaces trop grands ou dans tout le bâtiment. Les personnes et les biens à l'extérieur du compartiment coupe-feu peuvent être protégés par le fait que le feu s'éteint ou brûle de lui-même ou par l'effet retardateur des éléments de séparation sur la propagation du feu et de la fumée jusqu'à ce que les occupants soient secourus vers un lieu sûr.

La résistance au feu requise par un compartiment dépend de sa destination et de l'incendie attendu. Soit les éléments de séparation entourant le compartiment doivent résister à l'incendie maximal prévu, soit contenir l'incendie jusqu'à ce que les occupants soient évacués. Les éléments porteurs du compartiment doivent toujours résister au processus d'incendie complet ou être classés à une certaine résistance mesurée en termes de durées, égale ou supérieure à l'exigence des éléments de séparation.

Intégrité structurale lors d'un incendie

L'exigence pour maintenir l'intégrité structurelle pendant un incendie est d'éviter l'effondrement structurel et la capacité des éléments de séparation à empêcher l'inflammation et la propagation des flammes dans les espaces adjacents. Il existe différentes approches pour fournir la conception de la résistance au feu. Il s'agit de classifications basées sur un essai standard de résistance au feu comme dans la norme ISO 834, une combinaison d'essais et de calculs ou uniquement un calcul et la prédiction informatique de la procédure basée sur les performances basée sur une exposition réelle au feu.

Finition intérieure

La finition intérieure est le matériau qui forme la surface intérieure exposée des murs, des plafonds et du sol. Il existe de nombreux types de matériaux de finition intérieure tels que le plâtre, le gypse, le bois et les plastiques. Ils remplissent plusieurs fonctions. Certaines fonctions du matériau intérieur sont acoustiques et isolantes, ainsi que protectrices contre l'usure et l'abrasion.

La finition intérieure est liée au feu de quatre manières différentes. Il peut affecter la vitesse d'accumulation du feu jusqu'aux conditions de contournement, contribuer à l'extension du feu par la propagation des flammes, augmenter le dégagement de chaleur en ajoutant du combustible et produire de la fumée et des gaz toxiques. Les matériaux qui présentent des taux élevés de propagation des flammes, contribuent à alimenter un incendie ou produisent des quantités dangereuses de fumée et de gaz toxiques ne seraient pas souhaitables.

Mouvement de fumée

Dans les incendies de bâtiments, la fumée se déplace souvent vers des endroits éloignés de l'espace d'incendie. Les cages d'escalier et les cages d'ascenseur peuvent devenir enfumées, bloquant ainsi l'évacuation et inhibant la lutte contre l'incendie. Aujourd'hui, la fumée est reconnue comme le principal tueur en cas d'incendie (voir figure 1).

Figure 1. La production de fumée d'un incendie.

FIR040F1

Les forces motrices du mouvement de la fumée comprennent l'effet de cheminée naturel, la flottabilité des gaz de combustion, l'effet du vent, les systèmes de ventilation alimentés par ventilateur et l'effet de piston d'ascenseur.

Lorsqu'il fait froid à l'extérieur, il y a un mouvement ascendant de l'air dans les gaines des bâtiments. L'air dans le bâtiment a une force flottante car il est plus chaud et donc moins dense que l'air extérieur. La force de flottabilité fait monter l'air dans les puits des bâtiments. Ce phénomène est connu sous le nom de l'effet de tirage. La différence de pression entre le puits et l'extérieur, qui provoque le mouvement de la fumée, est illustrée ci-dessous :

De

= la différence de pression de l'arbre vers l'extérieur

g = accélération de la pesanteur

= pression atmosphérique absolue

R = constante des gaz de l'air

= température absolue de l'air extérieur

= température absolue de l'air à l'intérieur de la gaine

z = élévation

La fumée à haute température d'un incendie a une force de flottabilité en raison de sa densité réduite. L'équation de la flottabilité des gaz de combustion est similaire à l'équation de l'effet de cheminée.

En plus de la flottabilité, l'énergie libérée par un incendie peut provoquer un mouvement de fumée dû à l'expansion. L'air circulera dans le compartiment coupe-feu et de la fumée chaude sera distribuée dans le compartiment. En négligeant la masse ajoutée du combustible, le rapport des débits volumétriques peut simplement être exprimé comme un rapport de température absolue.

Le vent a un effet prononcé sur le mouvement de la fumée. L'effet de piston de profondeur ne doit pas être négligé. Lorsqu'une cabine d'ascenseur se déplace dans une gaine, des pressions transitoires sont produites.

Les systèmes de chauffage, de ventilation et de climatisation (CVC) transportent la fumée pendant les incendies de bâtiments. Lorsqu'un incendie se déclare dans une partie inoccupée d'un bâtiment, le système CVC peut transporter la fumée vers un autre espace occupé. Le système CVC doit être conçu de manière à ce que les ventilateurs soient arrêtés ou que le système passe en mode de fonctionnement spécial de contrôle des fumées.

Le mouvement de la fumée peut être géré par l'utilisation d'un ou plusieurs des mécanismes suivants : compartimentation, dilution, circulation d'air, pressurisation ou flottabilité.

Évacuation des occupants

Conception de sortie

La conception de l'évacuation doit être basée sur une évaluation de l'ensemble du système de protection contre l'incendie d'un bâtiment (voir figure 2).

Figure 2. Principes de sécurité de sortie.

FIR040F2

Les personnes qui évacuent un bâtiment en feu sont influencées par un certain nombre d'impressions lors de leur fuite. Les occupants doivent prendre plusieurs décisions lors de l'évasion afin de faire les bons choix dans chaque situation. Ces réactions peuvent varier considérablement, selon les capacités physiques et mentales et les conditions des occupants du bâtiment.

Le bâtiment influencera également les décisions prises par les occupants par ses voies d'évacuation, ses panneaux de signalisation et les autres systèmes de sécurité installés. La propagation du feu et de la fumée aura le plus fort impact sur la façon dont les occupants prennent leurs décisions. La fumée limitera la visibilité dans le bâtiment et créera un environnement intenable pour les personnes évacuées. Le rayonnement du feu et des flammes crée de grands espaces qui ne peuvent pas être utilisés pour l'évacuation, ce qui augmente le risque.

Lors de la conception des moyens d'évacuation, il faut d'abord se familiariser avec la réaction des personnes en cas d'incendie. Les schémas de déplacement des personnes doivent être compris.

Les trois étapes du temps d'évacuation sont le temps de notification, le temps de réaction et le temps d'évacuation. Le délai de notification dépend de la présence ou non d'un système d'alarme incendie dans le bâtiment ou de la capacité de l'occupant à comprendre la situation ou la manière dont le bâtiment est divisé en compartiments. Le temps de réaction dépend de la capacité de l'occupant à prendre des décisions, des propriétés de l'incendie (comme la quantité de chaleur et de fumée) et de la façon dont le système d'évacuation du bâtiment est prévu. Enfin, le temps d'évacuation dépend de l'endroit où se forment les foules dans le bâtiment et de la façon dont les gens se déplacent dans diverses situations.

Dans des bâtiments spécifiques avec des occupants mobiles, par exemple, des études ont montré certaines caractéristiques reproductibles des flux de personnes sortant des bâtiments. Ces caractéristiques d'écoulement prévisibles ont favorisé les simulations et la modélisation informatiques pour faciliter le processus de conception de l'évacuation.

Les distances de parcours d'évacuation sont liées au risque d'incendie du contenu. Plus le danger est élevé, plus la distance à parcourir jusqu'à une sortie est courte.

Une sortie sûre d'un bâtiment nécessite un chemin d'évacuation sûr de l'environnement de l'incendie. Par conséquent, il doit y avoir un certain nombre de moyens d'évacuation bien conçus et d'une capacité adéquate. Il devrait y avoir au moins un autre moyen d'évacuation étant donné que le feu, la fumée et les caractéristiques des occupants, etc., peuvent empêcher l'utilisation d'un moyen d'évacuation. Les moyens d'évacuation doivent être protégés contre le feu, la chaleur et la fumée pendant le temps d'évacuation. Ainsi, il est nécessaire d'avoir des codes de construction qui tiennent compte de la protection passive, en fonction de l'évacuation et bien sûr de la protection incendie. Un bâtiment doit gérer les situations critiques, qui sont données dans les codes concernant l'évacuation. Par exemple, dans les codes du bâtiment suédois, la couche de fumée ne doit pas descendre en dessous

1.6 + 0.1H (H est la hauteur totale du compartiment), rayonnement maximum 10 kW/m2 de courte durée et la température de l'air respirable ne doit pas dépasser 80 °C.

Une évacuation efficace peut avoir lieu si un incendie est découvert tôt et que les occupants sont alertés rapidement avec un système de détection et d'alarme. Une marque appropriée des moyens de sortie facilite sûrement l'évacuation. Il y a aussi un besoin d'organisation et d'exercice des procédures d'évacuation.

Comportement humain pendant les incendies

La façon dont on réagit lors d'un incendie est liée au rôle assumé, à l'expérience antérieure, à l'éducation et à la personnalité; la menace perçue de la situation d'incendie ; les caractéristiques physiques et les moyens d'évacuation disponibles à l'intérieur de la structure ; et les actions des autres qui partagent l'expérience. Des entretiens détaillés et des études sur 30 ans ont établi que les cas de comportement non adaptatif ou de panique sont des événements rares qui se produisent dans des conditions spécifiques. La plupart des comportements lors d'incendies sont déterminés par l'analyse de l'information, ce qui entraîne des actions coopératives et altruistes.

On constate que le comportement humain passe par un certain nombre d'étapes identifiées, avec la possibilité de divers itinéraires d'une étape à la suivante. En résumé, le feu est considéré comme ayant trois étapes générales :

  1. L'individu reçoit des signaux initiaux et enquête ou interprète mal ces signaux initiaux.
  2. Une fois l'incendie apparent, l'individu tentera d'obtenir de plus amples informations, contactera d'autres personnes ou partira.
  3. L'individu devra ensuite faire face au feu, interagir avec les autres ou s'échapper.

 

L'activité avant le feu est un facteur important. Si une personne est engagée dans une activité bien connue, par exemple prendre un repas au restaurant, les implications sur le comportement ultérieur sont considérables.

La réception du signal peut être fonction de l'activité avant l'incendie. Il y a une tendance aux différences entre les sexes, les femmes étant plus susceptibles d'être les destinataires des bruits et des odeurs, bien que l'effet ne soit que léger. Il existe des différences de rôle dans les réponses initiales au signal. Dans les incendies domestiques, si la femelle reçoit le signal et enquête, le mâle, lorsqu'on le lui dit, est susceptible de "jeter un coup d'œil" et de retarder d'autres actions. Dans les grands établissements, le signal peut être un avertissement d'alarme. Les informations peuvent provenir d'autres personnes et se sont révélées inadéquates pour un comportement efficace.

Les individus peuvent ou non se rendre compte qu'il y a un incendie. La compréhension de leur comportement doit tenir compte du fait qu'ils ont correctement défini leur situation.

Lorsque le feu a été défini, l'étape de « préparation » a lieu. Le type particulier d'occupation est susceptible d'avoir une grande influence sur la manière exacte dont cette étape se développe. L'étape « préparer » comprend dans l'ordre chronologique « instruire », « explorer » et « retirer ».

L'étape « acte », qui est l'étape finale, dépend du rôle, de l'occupation, du comportement et de l'expérience antérieurs. Il peut être possible d'effectuer une évacuation précoce ou une lutte efficace contre l'incendie.

Construire des systèmes de transport

Les systèmes de transport du bâtiment doivent être pris en compte lors de la phase de conception et doivent être intégrés à l'ensemble du système de protection contre les incendies du bâtiment. Les dangers associés à ces systèmes doivent être inclus dans toute étude de planification et de protection contre les incendies avant un incendie.

Les systèmes de transport des bâtiments, tels que les ascenseurs et les escaliers mécaniques, rendent les immeubles de grande hauteur réalisables. Les cages d'ascenseur peuvent contribuer à la propagation de la fumée et du feu. D'autre part, un ascenseur est un outil nécessaire pour les opérations de lutte contre l'incendie dans les immeubles de grande hauteur.

Les systèmes de transport peuvent contribuer à des problèmes de sécurité incendie dangereux et compliqués car une cage d'ascenseur fermée agit comme une cheminée ou un conduit de fumée en raison de l'effet de cheminée de la fumée chaude et des gaz du feu. Cela entraîne généralement le mouvement de la fumée et des produits de combustion des niveaux inférieurs vers les niveaux supérieurs du bâtiment.

Les immeubles de grande hauteur présentent des problèmes nouveaux et différents pour les forces de lutte contre les incendies, notamment l'utilisation des ascenseurs en cas d'urgence. Les ascenseurs ne sont pas sécuritaires en cas d'incendie pour plusieurs raisons :

  1. Les personnes peuvent appuyer sur un bouton de couloir et devoir attendre un ascenseur qui peut ne jamais répondre, perdant ainsi un temps d'évacuation précieux.
  2. Les ascenseurs ne donnent pas la priorité aux appels de cabine et de couloir, et l'un des appels peut être au niveau de l'incendie.
  3. Les ascenseurs ne peuvent pas démarrer tant que les portes de l'ascenseur et de la gaine ne sont pas fermées, et la panique pourrait entraîner l'encombrement d'un ascenseur et le blocage des portes, ce qui empêcherait ainsi la fermeture.
  4. La puissance peut échouer pendant un incendie à tout moment, entraînant ainsi un piégeage. (Voir figure 3)

 

Figure 3. Exemple de message d'avertissement pictographique pour l'utilisation d'un ascenseur.

FIR040F3

Exercices d'incendie et formation des occupants

Un marquage approprié des moyens d'évacuation facilite l'évacuation, mais n'assure pas la sécurité des personnes en cas d'incendie. Des exercices de sortie sont nécessaires pour effectuer une évasion ordonnée. Ils sont particulièrement nécessaires dans les écoles, les établissements de conseil et de soins et les industries à haut risque. Des exercices pour les employés sont nécessaires, par exemple, dans les hôtels et les grandes entreprises. Des exercices de sortie doivent être effectués pour éviter toute confusion et assurer l'évacuation de tous les occupants.

Tous les employés doivent être chargés de vérifier la disponibilité, de compter les occupants lorsqu'ils sont à l'extérieur de la zone d'incendie, de rechercher les traînards et de contrôler la rentrée. Ils doivent également reconnaître le signal d'évacuation et connaître l'itinéraire de sortie qu'ils doivent suivre. Des itinéraires principaux et alternatifs doivent être établis et tous les employés doivent être formés pour utiliser l'un ou l'autre itinéraire. Après chaque exercice de sortie, une réunion des gestionnaires responsables doit être organisée pour évaluer le succès de l'exercice et résoudre tout type de problème qui aurait pu survenir.

 

Noir

Sécurité des personnes et protection des biens

Étant donné que l'importance primordiale de toute mesure de protection contre l'incendie est de fournir un degré acceptable de sécurité des personnes aux habitants d'une structure, dans la plupart des pays, les exigences légales applicables à la protection contre l'incendie sont basées sur des préoccupations de sécurité des personnes. Les dispositifs de protection des biens visent à limiter les dommages physiques. Dans de nombreux cas, ces objectifs sont complémentaires. Lorsqu'il existe des inquiétudes quant à la perte d'un bien, de sa fonction ou de son contenu, un propriétaire peut choisir de mettre en œuvre des mesures au-delà du minimum requis pour répondre aux problèmes de sécurité des personnes.

Systèmes de détection et d'alarme incendie

Un système de détection et d'alarme incendie fournit un moyen de détecter automatiquement un incendie et d'avertir les occupants du bâtiment de la menace d'incendie. C'est l'alarme sonore ou visuelle fournie par un système de détection d'incendie qui est le signal pour commencer l'évacuation des occupants des locaux. Ceci est particulièrement important dans les bâtiments de grande taille ou à plusieurs étages où les occupants ne seraient pas conscients qu'un incendie était en cours dans la structure et où il serait peu probable ou impossible qu'un avertissement soit fourni par un autre habitant.

Éléments de base d'un système de détection et d'alarme incendie

Un système de détection et d'alarme incendie peut comprendre tout ou partie des éléments suivants :

  1. une unité de contrôle du système
  2. une alimentation électrique primaire ou principale
  3. une alimentation secondaire (de secours), généralement fournie par des batteries ou un générateur de secours
  4. dispositifs de déclenchement d'alarme tels que des détecteurs d'incendie automatiques, des postes manuels et/ou des dispositifs de débit du système de gicleurs, connectés aux "circuits de déclenchement" de l'unité de commande du système
  5. dispositifs d'indication d'alarme, tels que des cloches ou des lumières, connectés aux «circuits d'indication» de l'unité de commande du système
  6. commandes auxiliaires telles que les fonctions d'arrêt de la ventilation, connectées aux circuits de sortie de l'unité de commande du système
  7. indication d'alarme à distance à un emplacement d'intervention externe, tel que le service d'incendie
  8. circuits de commande pour activer un système de protection incendie ou un système de désenfumage.

 

Systèmes de contrôle de la fumée

Pour réduire la menace que la fumée ne pénètre dans les voies de sortie lors de l'évacuation d'une structure, des systèmes de contrôle de la fumée peuvent être utilisés. Généralement, des systèmes de ventilation mécanique sont utilisés pour fournir de l'air frais au chemin de sortie. Cette méthode est le plus souvent utilisée pour pressuriser les escaliers ou les atriums. Il s'agit d'une fonction destinée à améliorer la sécurité des personnes.

Extincteurs portatifs et dévidoirs

Des extincteurs portatifs et des dévidoirs à eau sont souvent fournis aux occupants du bâtiment pour lutter contre les petits incendies (voir figure 1). Les occupants du bâtiment ne doivent pas être encouragés à utiliser un extincteur portatif ou un dévidoir à moins qu'ils n'aient été formés à leur utilisation. Dans tous les cas, les opérateurs doivent être très prudents pour éviter de se placer dans une position où la sortie sécurisée est bloquée. Pour tout incendie, aussi petit soit-il, la première action doit toujours être d'informer les autres occupants du bâtiment de la menace d'incendie et de demander l'aide des pompiers professionnels.

Figure 1. Extincteurs portatifs.

FIR050F4

Systèmes de gicleurs d'eau

Les systèmes de gicleurs à eau se composent d'une alimentation en eau, de vannes de distribution et de conduites reliées à des têtes de gicleurs automatiques (voir figure 2). Alors que les systèmes de gicleurs actuels sont principalement destinés à contrôler la propagation du feu, de nombreux systèmes ont permis une extinction complète.

Figure 2. Une installation de gicleurs typique montrant toutes les alimentations en eau courantes, les bouches d'incendie extérieures et la tuyauterie souterraine.

FIR050F1

Une idée fausse courante est que toutes les têtes de gicleurs automatiques s'ouvrent en cas d'incendie. En fait, chaque tête de gicleur est conçue pour s'ouvrir uniquement lorsqu'une chaleur suffisante est présente pour indiquer un incendie. L'eau ne s'écoule alors que de la ou des têtes de sprinkler qui se sont ouvertes à la suite d'un incendie dans leur voisinage immédiat. Cette caractéristique de conception permet une utilisation efficace de l'eau pour la lutte contre l'incendie et limite les dégâts d'eau.

 

 

Approvisionnement en eau

L'eau d'un système de gicleurs automatiques doit être disponible en quantité suffisante et à un volume et une pression suffisants à tout moment pour assurer un fonctionnement fiable en cas d'incendie. Lorsqu'un approvisionnement en eau municipal ne peut pas répondre à cette exigence, un réservoir ou un dispositif de pompage doit être fourni pour fournir un approvisionnement en eau sûr.

Vannes de contrôle

Les vannes de régulation doivent être maintenues en position ouverte en tout temps. Souvent, la surveillance des vannes de contrôle peut être effectuée par le système d'alarme incendie automatique en fournissant des interrupteurs de sabotage de vanne qui déclencheront un signal de panne ou de supervision au panneau de commande d'alarme incendie pour indiquer une vanne fermée. Si ce type de surveillance ne peut être assuré, les vannes doivent être verrouillées en position ouverte.

Tuyauterie

L'eau s'écoule à travers un réseau de canalisations, généralement suspendu au plafond, les têtes de gicleurs étant suspendues à intervalles le long des canalisations. La tuyauterie utilisée dans les systèmes de gicleurs doit être d'un type capable de résister à une pression de service d'au moins 1,200 XNUMX kPa. Pour les systèmes de tuyauterie exposés, les raccords doivent être de type vissé, à bride, à joint mécanique ou brasé.

Têtes d'arrosage

Une tête de gicleur se compose d'un orifice, normalement maintenu fermé par un élément de déclenchement sensible à la température, et d'un déflecteur de pulvérisation. Le schéma d'évacuation de l'eau et les exigences d'espacement pour les têtes de gicleurs individuelles sont utilisés par les concepteurs de gicleurs pour assurer une couverture complète du risque protégé.

Systèmes d'extinction spéciaux

Des systèmes d'extinction spéciaux sont utilisés dans les cas où les gicleurs d'eau ne fourniraient pas une protection adéquate ou lorsque le risque de dommages causés par l'eau serait inacceptable. Dans de nombreux cas où les dégâts d'eau sont préoccupants, des systèmes d'extinction spéciaux peuvent être utilisés en conjonction avec des systèmes de gicleurs d'eau, le système d'extinction spécial étant conçu pour réagir à un stade précoce du développement de l'incendie.

Systèmes d'extinction spéciaux à eau et à additif d'eau

Systèmes de pulvérisation d'eau

Les systèmes de pulvérisation d'eau augmentent l'efficacité de l'eau en produisant des gouttelettes d'eau plus petites, et donc une plus grande surface d'eau est exposée au feu, avec une augmentation relative de la capacité d'absorption de chaleur. Ce type de système est souvent choisi comme moyen de maintenir au frais de grands récipients sous pression, tels que des sphères de butane, lorsqu'il existe un risque d'incendie d'exposition provenant d'une zone adjacente. Le système est similaire à un système de gicleurs ; cependant, toutes les têtes sont ouvertes et un système de détection séparé ou une action manuelle est utilisé pour ouvrir les vannes de régulation. Cela permet à l'eau de s'écouler à travers le réseau de tuyauterie vers tous les dispositifs de pulvérisation qui servent de sorties du système de tuyauterie.

Systèmes de mousse

Dans un système à mousse, un concentré liquide est injecté dans l'alimentation en eau avant la vanne de régulation. L'émulseur et l'air sont mélangés, soit par l'action mécanique de la décharge, soit par aspiration d'air dans le dispositif de décharge. L'air entraîné dans la solution de mousse crée une mousse expansée. Comme la mousse expansée est moins dense que la plupart des hydrocarbures, la mousse expansée forme une couverture au-dessus du liquide inflammable. Cette couverture en mousse réduit la propagation des vapeurs de carburant. L'eau, qui représente jusqu'à 97 % de la solution de mousse, fournit un effet de refroidissement pour réduire davantage la propagation de la vapeur et pour refroidir les objets chauds qui pourraient servir de source de rallumage.

Systèmes d'extinction à gaz

Systèmes de dioxyde de carbone

Les systèmes de dioxyde de carbone consistent en une alimentation en dioxyde de carbone, stocké sous forme de gaz comprimé liquéfié dans des récipients sous pression (voir figures 3 et 4). Le dioxyde de carbone est retenu dans le récipient sous pression au moyen d'une vanne automatique qui s'ouvre en cas d'incendie au moyen d'un système de détection séparé ou par une opération manuelle. Une fois libéré, le dioxyde de carbone est livré au feu au moyen d'un agencement de tuyauterie et de buse de décharge. Le dioxyde de carbone éteint le feu en déplaçant l'oxygène disponible pour le feu. Les systèmes au dioxyde de carbone peuvent être conçus pour être utilisés dans des espaces ouverts tels que des presses à imprimer ou des volumes fermés tels que des espaces de machines de navires. Le dioxyde de carbone, à des concentrations d'extinction d'incendie, est toxique pour les personnes et des mesures spéciales doivent être prises pour s'assurer que les personnes se trouvant dans la zone protégée sont évacuées avant que la décharge ne se produise. Les alarmes de pré-décharge et autres mesures de sécurité doivent être soigneusement intégrées dans la conception du système pour assurer une sécurité adéquate pour les personnes travaillant dans la zone protégée. Le dioxyde de carbone est considéré comme un extincteur propre car il ne cause pas de dommages collatéraux et est électriquement non conducteur.

Figure 3. Schéma d'un système de dioxyde de carbone à haute pression pour une inondation totale.

FIR050F2

 

Figure 4. Un système d'inondation totale installé dans une pièce avec un plancher surélevé.

FIR050F3

Systèmes de gaz inerte

Les systèmes à gaz inerte utilisent généralement un mélange d'azote et d'argon comme moyen d'extinction. Dans certains cas, un faible pourcentage de dioxyde de carbone est également fourni dans le mélange gazeux. Les mélanges de gaz inertes éteignent les incendies en réduisant la concentration d'oxygène dans un volume protégé. Ils conviennent à une utilisation dans des espaces clos uniquement. La caractéristique unique offerte par les mélanges de gaz inertes est qu'ils réduisent l'oxygène à une concentration suffisamment faible pour éteindre de nombreux types d'incendies ; cependant, les niveaux d'oxygène ne sont pas suffisamment abaissés pour constituer une menace immédiate pour les occupants de l'espace protégé. Les gaz inertes sont comprimés et stockés dans des récipients sous pression. Le fonctionnement du système est similaire à un système au dioxyde de carbone. Les gaz inertes ne pouvant être liquéfiés par compression, le nombre d'enceintes de stockage nécessaires à la protection d'un volume clos protégé donné est supérieur à celui du dioxyde de carbone.

Les systèmes au halon

Les halons 1301, 1211 et 2402 ont été identifiés comme substances appauvrissant la couche d'ozone. La production de ces agents extincteurs a cessé en 1994, comme l'exige le Protocole de Montréal, un accord international visant à protéger la couche d'ozone terrestre. Le halon 1301 était le plus souvent utilisé dans les systèmes fixes de protection contre l'incendie. Le halon 1301 était stocké sous forme de gaz comprimé liquéfié dans des récipients sous pression dans un agencement similaire à celui utilisé pour le dioxyde de carbone. L'avantage offert par le halon 1301 était que les pressions de stockage étaient plus faibles et que de très faibles concentrations offraient une capacité d'extinction efficace. Les systèmes au halon 1301 ont été utilisés avec succès pour des dangers totalement fermés où la concentration d'extinction obtenue pouvait être maintenue pendant une durée suffisante pour que l'extinction se produise. Pour la plupart des risques, les concentrations utilisées ne représentaient pas une menace immédiate pour les occupants. Le halon 1301 est encore utilisé pour plusieurs applications importantes où des alternatives acceptables doivent encore être développées. Les exemples incluent l'utilisation à bord d'aéronefs commerciaux et militaires et dans certains cas particuliers où des concentrations d'inertage sont nécessaires pour prévenir les explosions dans des zones où des occupants pourraient être présents. Le halon dans les systèmes au halon existants qui ne sont plus nécessaires devrait être mis à la disposition d'autres utilisateurs pour des applications critiques. Cela militera contre la nécessité de produire davantage de ces extincteurs écologiquement sensibles et contribuera à protéger la couche d'ozone.

Systèmes aux halocarbures

Les agents halocarbures ont été développés à la suite des préoccupations environnementales associées aux halons. Ces agents diffèrent considérablement en termes de toxicité, d'impact sur l'environnement, d'exigences de poids et de volume de stockage, de coût et de disponibilité du matériel système approuvé. Ils peuvent tous être stockés sous forme de gaz comprimés liquéfiés dans des récipients sous pression. La configuration du système est similaire à un système au dioxyde de carbone.

Conception, installation et maintenance de systèmes de protection active contre l'incendie

Seules les personnes qualifiées dans ce travail sont compétentes pour concevoir, installer et entretenir cet équipement. Il peut être nécessaire pour de nombreuses personnes chargées d'acheter, d'installer, d'inspecter, de tester, d'approuver et d'entretenir cet équipement de consulter un spécialiste de la protection contre les incendies expérimenté et compétent pour s'acquitter efficacement de leurs tâches.

Informations complémentaires

Cette section du Encyclopédie présente un aperçu très bref et limité du choix disponible de systèmes de protection active contre l'incendie. Les lecteurs peuvent souvent obtenir plus d'informations en contactant une association nationale de protection contre les incendies, leur assureur ou le service de prévention des incendies de leur service d'incendie local.

 

Noir

Organisation d'urgence privée

Le profit est l'objectif principal de toute industrie. Pour atteindre cet objectif, une gestion efficace et alerte et la continuité de la production sont essentielles. Toute interruption de la production, pour quelque raison que ce soit, affectera négativement les bénéfices. Si l'interruption est la conséquence d'un incendie ou d'une explosion, elle peut être longue et paralyser l'industrie.

Très souvent, on plaide que la propriété est assurée et que les pertes dues à un incendie, le cas échéant, seront indemnisées par la compagnie d'assurance. Il faut comprendre que l'assurance n'est qu'un moyen de répandre l'effet de la destruction provoquée par un incendie ou une explosion sur le plus grand nombre de personnes possible. Il ne peut pas réparer la perte nationale. De plus, l'assurance ne garantit pas la continuité de la production et l'élimination ou la minimisation des pertes consécutives.

Il est donc indiqué que la direction doit recueillir des informations complètes sur le risque d'incendie et d'explosion, évaluer le potentiel de perte et mettre en œuvre des mesures appropriées pour contrôler le danger, en vue d'éliminer ou de minimiser l'incidence d'incendie et d'explosion. Cela implique la mise en place d'une organisation privée d'urgence.

Planification d'urgence

Une telle organisation doit, dans la mesure du possible, être envisagée dès la phase de planification elle-même, et mise en place progressivement depuis le choix du site jusqu'au démarrage de la production, puis poursuivie par la suite.

Le succès de toute organisation d'urgence dépend dans une large mesure de la participation globale de tous les travailleurs et des différents échelons de la direction. Ce fait doit être pris en compte lors de la planification de l'organisation d'urgence.

Les divers aspects de la planification d'urgence sont mentionnés ci-dessous. Pour plus de détails, une référence peut être faite à la US National Fire Protection Association (NFPA) Manuel de protection contre les incendies ou tout autre ouvrage standard sur le sujet (Cote 1991).

Étape 1

Lancez le plan d'urgence en procédant comme suit :

  1. Identifier et évaluer les risques d'incendie et d'explosion associés au transport, à la manutention et au stockage de chaque matière première, des produits intermédiaires et finis et de chaque processus industriel, ainsi qu'élaborer des mesures préventives détaillées pour contrer les risques en vue de les éliminer ou de les minimiser.
  2. Élaborez les exigences des installations et équipements de protection contre les incendies et déterminez les étapes auxquelles chacun doit être fourni.
  3. Préparer les spécifications pour l'installation et l'équipement de protection contre les incendies.

 

Étape 2

Déterminez ce qui suit :

  1. disponibilité d'un approvisionnement en eau adéquat pour la protection contre les incendies en plus des exigences pour le traitement et l'utilisation domestique
  2. sensibilité du site et des risques naturels, tels que les inondations, les tremblements de terre, les fortes pluies, etc.
  3. les environnements, c'est-à-dire la nature et l'étendue de la propriété environnante et le risque d'exposition en cas d'incendie ou d'explosion
  4. existence de pompiers privés (ouvrages) ou publics, la distance à laquelle se trouve (sont) ces pompiers et l'adéquation des appareils disponibles avec eux pour le risque à protéger et s'ils peuvent être appelés pour aider en cas d'urgence
  5. réponse du ou des pompiers assistant(s) avec une référence particulière aux obstacles, tels que les passages à niveau, les ferries, la résistance et (ou) la largeur inadéquates des ponts par rapport aux engins d'incendie, la circulation difficile, etc.
  6. l'environnement socio-politique, c'est-à-dire l'incidence de la criminalité et les activités politiques menant à des problèmes d'ordre public.

 

Étape 3

Préparer les plans d'aménagement et de construction, ainsi que les spécifications des matériaux de construction. Effectuez les tâches suivantes :

  1. Limitez la surface au sol de chaque magasin, lieu de travail, etc. en prévoyant des murs coupe-feu, des portes coupe-feu, etc.
  2. Spécifier l'utilisation de matériaux résistants au feu pour la construction d'un bâtiment ou d'une structure.
  3. Assurez-vous que les colonnes en acier et les autres éléments structuraux ne sont pas exposés.
  4. Assurer une séparation adéquate entre le bâtiment, les structures et l'usine.
  5. Prévoir l'installation de bouches d'incendie, de gicleurs, etc. si nécessaire.
  6. Veiller à prévoir des voies d'accès adéquates dans le plan d'aménagement pour permettre aux appareils d'incendie d'atteindre toutes les parties des locaux et toutes les sources d'eau pour la lutte contre l'incendie.

 

Étape 4

Pendant la construction, procédez comme suit :

  1. Familiarisez l'entrepreneur et ses employés avec les politiques de gestion des risques d'incendie et faites-les respecter.
  2. Testez soigneusement toutes les installations et tous les équipements de protection contre les incendies avant leur acceptation.

 

Étape 5

Si la taille de l'industrie, ses dangers ou son emplacement éloigné sont tels qu'une brigade de pompiers à temps plein doit être disponible sur les lieux, alors organisez, équipez et formez le personnel à temps plein requis. Nommer également un pompier à temps plein.

Étape 6

Pour assurer la pleine participation de tous les employés, procédez comme suit :

  1. Former tout le personnel au respect des mesures de précaution dans leur travail quotidien et aux actions requises de leur part en cas d'incendie ou d'explosion. La formation doit comprendre le fonctionnement du matériel de lutte contre l'incendie.
  2. Veiller au strict respect des précautions contre les incendies par tout le personnel concerné grâce à des examens périodiques.
  3. Assurer une inspection et un entretien réguliers de tous les systèmes et équipements de protection contre les incendies. Tous les défauts doivent être corrigés rapidement.

 

Gérer l'urgence

Pour éviter toute confusion au moment d'une urgence réelle, il est essentiel que chacun dans l'organisation sache le rôle précis que lui (elle) et les autres sont censés jouer pendant l'urgence. Un plan d'urgence bien pensé doit être préparé et promulgué à cet effet, et tout le personnel concerné doit en être pleinement familiarisé. Le plan doit définir clairement et sans ambiguïté les responsabilités de toutes les parties concernées et également spécifier une chaîne de commandement. Au minimum, le plan d'urgence doit inclure les éléments suivants :

1. nom de l'industrie

2. adresse du local, avec numéro de téléphone et plan de situation

3. objet et objectif du plan d'urgence et date effective de son entrée en vigueur

4. superficie couverte, y compris un plan du site

5. organisation d'urgence, indiquant la chaîne de commandement du chef de travail vers le bas

6. systèmes de protection contre l'incendie, appareils mobiles et équipements portatifs, avec détails

7. détails de la disponibilité de l'assistance

8. installations d'alarme incendie et de communication

9. mesures à prendre en cas d'urgence. Inclure séparément et sans ambiguïté les mesures à prendre par :

  • la personne découvrant le feu
  • les sapeurs-pompiers privés sur place
  • chef de la section impliquée dans l'urgence
  • les chefs d'autres sections qui ne sont pas réellement impliqués dans l'urgence
  • l'organisme de sécurité
  • le pompier, le cas échéant
  • le directeur des travaux
  • autres

       10. chaîne de commandement sur les lieux de l'incident. Envisagez toutes les situations possibles et indiquez clairement qui doit assumer le commandement dans chaque cas, y compris les circonstances dans lesquelles une autre organisation doit être appelée en renfort.

11. action après un incendie. Indiquez la responsabilité de :

  • remise en service ou réapprovisionnement de tous les systèmes, équipements et sources d'eau de protection contre les incendies
  • rechercher la cause d'un incendie ou d'une explosion
  • préparation et soumission de rapports
  • prendre des mesures correctives pour empêcher la réapparition d'une situation d'urgence similaire.

 

Lorsqu'un plan d'assistance mutuelle est en vigueur, des copies du plan d'urgence doivent être fournies à toutes les unités participantes en échange de plans similaires de leurs locaux respectifs.

Protocoles d'évacuation

Une situation nécessitant l'exécution du plan d'urgence peut survenir à la suite soit d'une explosion, soit d'un incendie.

L'explosion peut ou non être suivie d'un incendie, mais dans presque tous les cas, elle produit un effet d'éclatement, qui peut blesser ou tuer le personnel présent à proximité et/ou causer des dommages physiques aux biens, selon les circonstances de chaque cas. Cela peut également provoquer un choc et une confusion et peut nécessiter l'arrêt immédiat des processus de fabrication ou d'une partie de ceux-ci, ainsi que le déplacement soudain d'un grand nombre de personnes. Si la situation n'est pas contrôlée et guidée de manière ordonnée immédiatement, elle peut conduire à la panique et à d'autres pertes de vie et de biens.

La fumée dégagée par les matériaux en combustion lors d'un incendie peut impliquer d'autres parties de la propriété et/ou piéger des personnes, nécessitant une opération de sauvetage/évacuation intensive et à grande échelle. Dans certains cas, une évacuation à grande échelle peut être nécessaire lorsque des personnes sont susceptibles d'être piégées ou touchées par un incendie.

Dans tous les cas où il s'agit de mouvements brusques de personnel à grande échelle, des problèmes de circulation sont également créés, en particulier si des routes, des rues ou des zones publiques doivent être utilisées pour ce mouvement. Si de tels problèmes ne sont pas anticipés et qu'une action appropriée n'est pas planifiée à l'avance, il en résulte des goulots d'étranglement du trafic, qui entravent et retardent les efforts d'extinction d'incendie et de sauvetage.

L'évacuation d'un grand nombre de personnes, en particulier des immeubles de grande hauteur, peut également poser des problèmes. Pour une évacuation réussie, il est non seulement nécessaire que des moyens d'évacuation adéquats et appropriés soient disponibles, mais aussi que l'évacuation soit effectuée rapidement. Une attention particulière doit être accordée aux besoins d'évacuation des personnes handicapées.

Des procédures d'évacuation détaillées doivent donc être incluses dans le plan d'urgence. Ceux-ci doivent être fréquemment testés lors de la conduite d'exercices d'incendie et d'évacuation, qui peuvent également impliquer des problèmes de circulation. Toutes les organisations et agences participantes et concernées doivent également être impliquées dans ces exercices, au moins périodiquement. Après chaque exercice, une séance de débriefing doit avoir lieu, au cours de laquelle toutes les erreurs sont signalées et expliquées. Des mesures doivent également être prises pour éviter la répétition des mêmes erreurs lors d'exercices futurs et d'incidents réels en supprimant toutes les difficultés et en révisant le plan d'urgence si nécessaire.

Des registres appropriés doivent être conservés pour tous les exercices et exercices d'évacuation.

Services médicaux d'urgence

Les victimes d'un incendie ou d'une explosion doivent recevoir une aide médicale immédiate ou être transportées rapidement à l'hôpital après avoir reçu les premiers soins.

Il est indispensable que la direction prévoie un ou plusieurs poste(s) de secours et, le cas échéant en raison de l'importance et de la dangerosité du secteur, un ou plusieurs appareils paramédicaux mobiles. Tous les postes de premiers secours et appareils paramédicaux doivent être dotés en permanence de personnel paramédical dûment formé.

Selon la taille de l'industrie et le nombre de travailleurs, une ou plusieurs ambulances doivent également être fournies et dotées de personnel sur les lieux pour le transport des blessés vers les hôpitaux. En outre, des dispositions doivent être prises pour s'assurer que des installations d'ambulance supplémentaires sont disponibles à court terme en cas de besoin.

Lorsque la taille de l'industrie ou du lieu de travail l'exige, un médecin à plein temps devrait également être disponible à tout moment pour toute situation d'urgence.

Des arrangements préalables doivent être pris avec un hôpital ou des hôpitaux désignés où la priorité est donnée aux blessés évacués après un incendie ou une explosion. Ces hôpitaux doivent être répertoriés dans le plan d'urgence avec leurs numéros de téléphone, et le plan d'urgence doit comporter des dispositions appropriées pour garantir qu'une personne responsable les alertera pour recevoir les blessés dès qu'une urgence survient.

Restauration des installations

Il est important que toutes les installations de protection contre les incendies et d'urgence soient remises en mode « prêt » peu après la fin de l'urgence. À cette fin, la responsabilité doit être attribuée à une personne ou à une section de l'industrie, et cela doit être inclus dans le plan d'urgence. Un système de contrôle pour s'assurer que cela est fait doit également être mis en place.

Relations avec le service public d'incendie

Il n'est pas possible pour une direction de prévoir et de prévoir toutes les éventualités possibles. Il n'est pas non plus économiquement faisable de le faire. Malgré l'adoption de la méthode la plus moderne de gestion des risques d'incendie, il arrive toujours que les installations de protection contre l'incendie fournies sur les lieux ne répondent pas aux besoins réels. Pour de telles occasions, il est souhaitable de planifier à l'avance un programme d'entraide avec le service public d'incendie. Une bonne liaison avec ce département est nécessaire pour que la direction sache quelle aide cette unité peut fournir lors d'une urgence dans ses locaux. De plus, le service public d'incendie doit se familiariser avec le risque et ce à quoi il peut s'attendre en cas d'urgence. Une interaction fréquente avec le service public d'incendie est nécessaire à cette fin.

Manipulation de matières dangereuses

Les dangers des matériaux utilisés dans l'industrie peuvent ne pas être connus des pompiers lors d'un déversement, et une décharge accidentelle et une utilisation ou un stockage inappropriés de matériaux dangereux peuvent conduire à des situations dangereuses qui peuvent gravement mettre leur santé en danger ou entraîner un incendie ou une explosion grave. . Il n'est pas possible de se souvenir des dangers de tous les matériaux. Des moyens d'identification rapide des dangers ont donc été mis au point, grâce auxquels les diverses substances sont identifiées par des étiquettes ou des marquages ​​distincts.

Identification des matières dangereuses

Chaque pays suit ses propres règles concernant l'étiquetage des matières dangereuses à des fins de stockage, de manutention et de transport, et différents services peuvent être impliqués. Bien que le respect des réglementations locales soit essentiel, il est souhaitable qu'un système internationalement reconnu d'identification des matières dangereuses soit mis au point pour une application universelle. Aux États-Unis, la NFPA a développé un système à cet effet. Dans ce système, des étiquettes distinctes sont attachées ou apposées de manière visible sur les conteneurs de matières dangereuses. Ces étiquettes indiquent la nature et le degré de danger pour la santé, l'inflammabilité et le caractère réactif du matériau. De plus, les dangers spéciaux possibles pour les pompiers peuvent également être indiqués sur ces étiquettes. Pour une explication du degré de danger, reportez-vous à la norme NFPA 704, Système standard d'identification des risques d'incendie des matériaux (1990a). Dans ce système, les dangers sont classés comme dangers pour la santé, risques d'inflammabilitéet risques de réactivité (instabilité).

Dangers pour la santé

Celles-ci incluent toutes les possibilités qu'un matériau cause des blessures corporelles par contact ou absorption dans le corps humain. Un danger pour la santé peut découler des propriétés inhérentes du matériau ou des produits toxiques de la combustion ou de la décomposition du matériau. Le degré de danger est attribué sur la base du plus grand danger pouvant résulter d'un incendie ou d'autres conditions d'urgence. Il indique aux pompiers s'ils peuvent travailler en toute sécurité uniquement avec des vêtements de protection spéciaux ou avec un équipement de protection respiratoire approprié ou avec des vêtements ordinaires.

Le degré de danger pour la santé est mesuré sur une échelle de 4 à 0, 4 indiquant le danger le plus grave et 0 indiquant un faible danger ou aucun danger.

Dangers d'inflammabilité

Ceux-ci indiquent la sensibilité du matériau à la combustion. Il est reconnu que les matériaux se comportent différemment en ce qui concerne cette propriété dans des circonstances variables (par exemple, les matériaux qui peuvent brûler dans un ensemble de conditions peuvent ne pas brûler si les conditions sont modifiées). La forme et les propriétés intrinsèques des matériaux influencent le degré de danger, qui est attribué sur la même base que pour le danger pour la santé.

Dangers de réactivité (instabilité)

Les matériaux capables de libérer de l'énergie par eux-mêmes (c'est-à-dire par auto-réaction ou polymérisation) et les substances pouvant subir une éruption violente ou des réactions explosives au contact de l'eau, d'autres agents extincteurs ou de certains autres matériaux sont réputés présenter un risque de réactivité.

La violence de la réaction peut augmenter lorsque de la chaleur ou de la pression est appliquée ou lorsque la substance entre en contact avec certains autres matériaux pour former une combinaison combustible-oxydant, ou lorsqu'elle entre en contact avec des substances incompatibles, des contaminants sensibilisants ou des catalyseurs.

Le degré de risque de réactivité est déterminé et exprimé en termes de facilité, de vitesse et de quantité d'énergie libérée. Des informations supplémentaires, telles que le risque de radioactivité ou l'interdiction d'utiliser de l'eau ou un autre moyen d'extinction pour la lutte contre l'incendie, peuvent également être données au même niveau.

L'étiquette d'avertissement d'une matière dangereuse est un carré placé en diagonale avec quatre petits carrés (voir figure 1).

Figure 1. Le diamant NFPA 704.

FIR060F3

Le carré du haut indique le danger pour la santé, celui de gauche indique le danger d'inflammabilité, celui de droite indique le danger de réactivité et le carré du bas indique d'autres dangers particuliers, tels que la radioactivité ou une réactivité inhabituelle avec l'eau.

Pour compléter la disposition mentionnée ci-dessus, un code couleur peut également être utilisé. La couleur est utilisée comme arrière-plan ou le chiffre indiquant le danger peut être codé en couleur. Les codes sont danger pour la santé (bleu), danger d'inflammabilité (rouge), danger de réactivité (jaune) et danger spécial (fond blanc).

 

 

 

 

Gestion de la réponse aux matières dangereuses

Selon la nature de la matière dangereuse dans l'industrie, il est nécessaire de prévoir des équipements de protection et des agents d'extinction spéciaux, y compris les équipements de protection nécessaires pour distribuer les agents d'extinction spéciaux.

Tous les travailleurs doivent être formés aux précautions qu'ils doivent prendre et aux procédures qu'ils doivent adopter pour faire face à chaque incident dans la manipulation des divers types de matières dangereuses. Ils doivent également connaître la signification des différents signes d'identification.

Tous les pompiers et autres travailleurs doivent être formés à l'utilisation correcte des vêtements de protection, des équipements respiratoires de protection et des techniques spéciales de lutte contre l'incendie. Tout le personnel concerné doit être tenu en alerte et prêt à faire face à toute situation par le biais d'exercices et d'exercices fréquents, dont des enregistrements appropriés doivent être conservés.

Pour faire face aux risques médicaux graves et aux effets de ces risques sur les pompiers, un médecin compétent doit être disponible pour prendre des précautions immédiates lorsqu'un individu est exposé à une contamination dangereuse inévitable. Toutes les personnes concernées doivent recevoir des soins médicaux immédiats.

Des dispositions appropriées doivent également être prises pour mettre en place un centre de décontamination sur les lieux si nécessaire, et des procédures de décontamination correctes doivent être établies et suivies.

Contrôle des déchets

Des déchets considérables sont générés par l'industrie ou à cause d'accidents lors de la manutention, du transport et du stockage des marchandises. Ces déchets peuvent être inflammables, toxiques, corrosifs, pyrophoriques, chimiquement réactifs ou radioactifs, selon l'industrie dans laquelle ils sont générés ou la nature des marchandises concernées. Dans la plupart des cas, à moins que des précautions appropriées ne soient prises pour une élimination sûre de ces déchets, ils peuvent mettre en danger la vie animale et humaine, polluer l'environnement ou provoquer des incendies et des explosions susceptibles de mettre en danger les biens. Une connaissance approfondie des propriétés physiques et chimiques des déchets et des avantages ou des limites des diverses méthodes d'élimination est donc nécessaire pour assurer l'économie et la sécurité.

Les propriétés des déchets industriels sont brièvement résumées ci-dessous :

  1. La plupart des déchets industriels sont dangereux et peuvent avoir une importance inattendue pendant et après leur élimination. La nature et les caractéristiques comportementales de tous les déchets doivent donc être soigneusement examinées pour leur impact à court et à long terme et la méthode d'élimination doit être déterminée en conséquence.
  2. Le mélange de deux substances rejetées apparemment inoffensives peut créer un danger inattendu en raison de leur interaction chimique ou physique.
  3. Lorsque des liquides inflammables sont impliqués, leurs dangers peuvent être évalués en tenant compte de leurs points d'éclair respectifs, de leur température d'inflammation, de leurs limites d'inflammabilité et de l'énergie d'inflammation nécessaire pour amorcer la combustion. Dans le cas des solides, la taille des particules est un facteur supplémentaire qui doit être pris en compte.
  4. La plupart des vapeurs inflammables sont plus lourdes que l'air. Ces vapeurs et ces gaz inflammables plus lourds que l'air qui peuvent être libérés accidentellement lors de la collecte ou de l'élimination ou lors de la manipulation et du transport peuvent parcourir des distances considérables avec le vent ou vers une pente plus faible. En entrant en contact avec une source d'inflammation, ils retournent à la source. Les déversements majeurs de liquides inflammables sont particulièrement dangereux à cet égard et peuvent nécessiter une évacuation pour sauver des vies.
  5. Les matériaux pyrophoriques, tels que les alkylaluminiums, s'enflamment spontanément lorsqu'ils sont exposés à l'air. Des précautions particulières doivent donc être prises lors de la manipulation, du transport, du stockage et de l'élimination de ces matériaux, de préférence effectués sous atmosphère d'azote.
  6. Certains matériaux, tels que les alkyls de potassium, de sodium et d'aluminium, réagissent violemment avec l'eau ou l'humidité et brûlent violemment. La poudre de bronze génère une chaleur considérable en présence d'humidité.
  7. La présence d'oxydants puissants avec des matières organiques peut provoquer une combustion rapide ou même une explosion. Les chiffons et autres matériaux imbibés d'huiles végétales ou de terpènes présentent un risque de combustion spontanée en raison de l'oxydation des huiles et de l'accumulation subséquente de chaleur jusqu'à la température d'inflammation.
  8. Plusieurs substances sont corrosives et peuvent causer de graves dommages ou brûlures à la peau ou à d'autres tissus vivants, ou peuvent corroder les matériaux de construction, en particulier les métaux, affaiblissant ainsi la structure dans laquelle ces matériaux peuvent avoir été utilisés.
  9. Certaines substances sont toxiques et peuvent empoisonner les humains ou les animaux par contact avec la peau, inhalation ou contamination des aliments ou de l'eau. Leur capacité à le faire peut être de courte durée ou s'étendre sur une longue période. Ces substances, si elles sont éliminées par déversement ou combustion, peuvent contaminer les sources d'eau ou entrer en contact avec des animaux ou des travailleurs.
  10. Les substances toxiques qui sont déversées pendant le traitement industriel, le transport (y compris les accidents), la manipulation ou le stockage, et les gaz toxiques qui sont rejetés dans l'atmosphère peuvent affecter le personnel d'urgence et d'autres personnes, y compris le public. Le danger est d'autant plus grave si la ou les substances déversées sont vaporisées à température ambiante, car les vapeurs peuvent être transportées sur de longues distances en raison de la dérive du vent ou du ruissellement.
  11. Certaines substances peuvent dégager une odeur forte, piquante ou désagréable, soit par elles-mêmes, soit lorsqu'elles sont brûlées à l'air libre. Dans les deux cas, ces substances sont une nuisance publique, même si elles ne sont pas toxiques, et elles doivent être éliminées par incinération appropriée, à moins qu'il soit possible de les collecter et de les recycler. Tout comme les substances odorantes ne sont pas nécessairement toxiques, les substances inodores et certaines substances à odeur agréable peuvent produire des effets physiologiques nocifs.
  12. Certaines substances, telles que les explosifs, les feux d'artifice, les peroxydes organiques et certains autres produits chimiques, sont sensibles à la chaleur ou aux chocs et peuvent exploser avec un effet dévastateur si elles ne sont pas manipulées avec précaution ou mélangées à d'autres substances. Ces substances doivent donc être soigneusement séparées et détruites sous une surveillance appropriée.
  13. Les déchets contaminés par la radioactivité peuvent être aussi dangereux que les matières radioactives elles-mêmes. Leur élimination nécessite des connaissances spécialisées. Des conseils appropriés pour l'élimination de ces déchets peuvent être obtenus auprès de l'organisation de l'énergie nucléaire d'un pays.

 

Certaines des méthodes qui peuvent être employées pour éliminer les déchets industriels et d'urgence sont biodégradation, enterrement, incinération, décharge, paillage, combustion ouverte, pyrolyse ainsi que élimination par l'intermédiaire d'un entrepreneur. Ceux-ci sont brièvement expliqués ci-dessous.

Biodégradation

De nombreux produits chimiques sont complètement détruits en 24 à 15 mois lorsqu'ils sont mélangés aux XNUMX premiers centimètres de sol. Ce phénomène est connu sous le nom de biodégradation et est dû à l'action des bactéries du sol. Cependant, toutes les substances ne se comportent pas de cette manière.

Enterrement

Les déchets, en particulier les déchets chimiques, sont souvent éliminés par enfouissement. Il s'agit d'une pratique dangereuse en ce qui concerne les produits chimiques actifs, car, avec le temps, la substance enfouie peut être exposée ou lessivée par la pluie dans les ressources en eau. La substance exposée ou le matériel contaminé peut avoir des effets physiologiques néfastes lorsqu'il entre en contact avec de l'eau bue par des humains ou des animaux. Des cas sont enregistrés dans lesquels l'eau a été contaminée 40 ans après l'enfouissement de certains produits chimiques nocifs.

Incinération

C'est l'une des méthodes d'élimination des déchets les plus sûres et les plus satisfaisantes si les déchets sont brûlés dans un incinérateur correctement conçu dans des conditions contrôlées. Il faut cependant veiller à ce que les substances contenues dans les déchets puissent être incinérées en toute sécurité sans poser de problème de fonctionnement ou de danger particulier. Presque tous les incinérateurs industriels nécessitent l'installation d'équipements de dépollution de l'air, qui doivent être soigneusement sélectionnés et installés après avoir pris en considération la composition de l'effluent de stockage émis par l'incinérateur lors de la combustion des déchets industriels.

Des précautions doivent être prises dans le fonctionnement de l'incinérateur pour s'assurer que sa température de fonctionnement n'augmente pas de manière excessive, soit parce qu'une grande quantité de matières volatiles est introduite, soit en raison de la nature des déchets brûlés. Une défaillance structurelle peut se produire en raison d'une température excessive ou, au fil du temps, en raison de la corrosion. L'épurateur doit également être inspecté périodiquement pour des signes de corrosion qui peuvent se produire en raison du contact avec des acides, et le système d'épurateur doit être entretenu régulièrement pour assurer un bon fonctionnement.

Décharge

Les terres basses ou une dépression de terrain sont souvent utilisées comme dépotoir pour les déchets jusqu'à ce qu'elles soient au même niveau que les terres environnantes. Les déchets sont ensuite nivelés, recouverts de terre et roulés dur. Le terrain est ensuite utilisé pour des constructions ou à d'autres fins.

Pour un fonctionnement satisfaisant de la décharge, le site doit être sélectionné en tenant dûment compte de la proximité des pipelines, des conduites d'égout, des lignes électriques, des puits de pétrole et de gaz, des mines et d'autres dangers. Les déchets doivent ensuite être mélangés à de la terre et répartis uniformément dans la dépression ou une large tranchée. Chaque couche doit être mécaniquement compactée avant l'ajout de la couche suivante.

Une couche de terre de 50 cm est généralement posée sur les déchets et compactée, laissant suffisamment d'évents dans le sol pour l'échappement des gaz produits par l'activité biologique dans les déchets. Une attention particulière doit également être accordée au drainage approprié de la zone d'enfouissement.

Selon les différents constituants des déchets, ceux-ci peuvent parfois s'enflammer au sein de la décharge. Chacune de ces zones doit donc être correctement clôturée et une surveillance continue doit être maintenue jusqu'à ce que les risques d'inflammation semblent faibles. Des dispositions doivent également être prises pour éteindre tout incendie qui pourrait se déclarer dans les déchets à l'intérieur de la décharge.

Paillage

Certains essais ont été réalisés pour réutiliser les polymères comme paillis (matériau meuble pour protéger les racines des plantes) en coupant les déchets en petits lambeaux ou granulés. Lorsqu'il est ainsi utilisé, il se dégrade très lentement. Son effet sur le sol est donc purement physique. Cette méthode n'a cependant pas été largement utilisée.

Gravure à ciel ouvert

La combustion à l'air libre des déchets provoque une pollution de l'atmosphère et est dangereuse dans la mesure où il existe un risque que l'incendie devienne incontrôlable et se propage aux propriétés ou aux zones environnantes. En outre, il existe un risque d'explosion à partir de conteneurs et il existe une possibilité d'effets physiologiques nocifs des matières radioactives pouvant être contenues dans les déchets. Cette méthode d'élimination a été interdite dans certains pays. Ce n'est pas une méthode souhaitable et devrait être découragée.

La pyrolyse

La récupération de certains composés, par distillation des produits dégagés lors de la pyrolyse (décomposition par chauffage) des polymères et des substances organiques, est possible mais encore peu répandue.

Élimination par des sous-traitants

C'est probablement la méthode la plus pratique. Il est important que seuls des entrepreneurs fiables, compétents et expérimentés dans l'élimination des déchets industriels et des matières dangereuses soient sélectionnés pour le travail. Les matières dangereuses doivent être soigneusement séparées et éliminées séparément.

Classes spécifiques de matériaux

Des exemples spécifiques des types de matières dangereuses que l'on trouve souvent dans l'industrie d'aujourd'hui comprennent : (1) les métaux combustibles et réactifs, tels que le magnésium, le potassium, le lithium, le sodium, le titane et le zirconium ; (2) déchets combustibles; (3) huiles siccatives; (4) les liquides inflammables et les déchets de solvants ; (5) matières oxydantes (liquides et solides); et (6) matières radioactives. Ces matériaux nécessitent une manipulation et des précautions particulières qui doivent être soigneusement étudiées. Pour plus de détails sur l'identification des matières dangereuses et les dangers des matières industrielles, les publications suivantes peuvent être consultées : Manuel de protection contre les incendies (Côté 1991) et Les propriétés dangereuses de Sax pour les matériaux industriels (Lewis 1979).

 

Noir

Les humains vivent toute leur vie dans une plage de températures corporelles internes très restreinte et farouchement protégée. Les limites de tolérance maximales pour les cellules vivantes vont d'environ 0 ºC (formation de cristaux de glace) à environ 45 ºC (coagulation thermique des protéines intracellulaires) ; cependant, les humains ne peuvent tolérer des températures internes inférieures à 35 ºC ou supérieures à 41 ºC que pendant de très brèves périodes. Pour maintenir la température interne dans ces limites, les gens ont développé des réponses physiologiques très efficaces et dans certains cas spécialisées aux contraintes thermiques aiguës. Ces réponses, conçues pour faciliter la conservation, la production ou l'élimination de la chaleur corporelle, impliquent la coordination finement contrôlée de plusieurs systèmes corporels.

Équilibre Thermique Humain

De loin, la plus grande source de chaleur transmise au corps résulte de la production de chaleur métabolique (M). Même au maximum de l'efficacité mécanique, 75 à 80 % de l'énergie impliquée dans le travail musculaire est libérée sous forme de chaleur. Au repos, un taux métabolique de 300 ml O2 par minute crée une charge thermique d'environ 100 watts. Pendant un travail en régime permanent à une consommation d'oxygène de 1 l/min, environ 350 W de chaleur sont générés, moins toute énergie associée au travail externe (W). Même à une intensité de travail aussi légère à modérée, la température centrale du corps augmenterait d'environ un degré centigrade toutes les 15 minutes sans un moyen efficace de dissipation de la chaleur. En fait, des individus très en forme peuvent produire plus de 1,200 1 W de chaleur pendant 3 à 1984 heures sans dommage thermique (Gisolfi et Wenger XNUMX).

La chaleur peut également être obtenue de l'environnement par rayonnement (R) et convection (C) si la température du globe (une mesure de la chaleur rayonnante) et la température de l'air (bulbe sec), respectivement, dépassent la température de la peau. Ces avenues de gain de chaleur sont généralement petites par rapport à M, et deviennent en fait des voies de perte de chaleur lorsque le gradient thermique peau-air est inversé. La dernière voie pour la perte de chaleur : l'évaporation (E)— est aussi typiquement le plus important, puisque la chaleur latente de vaporisation de la sueur est élevée — environ 680 Wh/l de sueur évaporée. Ces relations sont discutées ailleurs dans ce chapitre.

Dans des conditions froides à thermoneutres, le gain de chaleur est équilibré par la perte de chaleur, aucune chaleur n'est stockée et la température corporelle s'équilibre; C'est:

M-W ± R ± C-E = 0

Cependant, en cas d'exposition plus sévère à la chaleur :

M-W ± R ± C >E

et la chaleur est stockée. En particulier, les travaux lourds (dépense énergétique élevée qui augmente M-W), des températures de l'air trop élevées (qui augmentent R+C), humidité élevée (qui limite E) et le port de vêtements épais ou relativement imperméables (qui créent une barrière à une évaporation efficace de la sueur) créent un tel scénario. Enfin, si l'exercice est prolongé ou si l'hydratation est insuffisante, E peut être dépassée par la capacité limitée de l'organisme à sécréter de la sueur (1 à 2 l/h pendant de courtes périodes).

La température corporelle et son contrôle

Aux fins de décrire les réponses physiologiques à la chaleur et au froid, le corps est divisé en deux composants : le « noyau » et la « coque ». Température à cœur (Tc) représente la température corporelle interne ou profonde et peut être mesurée par voie orale, rectale ou, en laboratoire, dans l'œsophage ou sur la membrane tympanique (tympan). La température de la coquille est représentée par la température moyenne de la peau (Tsk). La température moyenne du corps (Tb) à tout moment est un équilibre pondéré entre ces températures, c'est-à-dire

 

Tb = k Tc + (1– k) Tsk

où le facteur de pondération k varie d'environ 0.67 à 0.90.

Confronté aux défis de la neutralité thermique (contraintes de chaleur ou de froid), l'organisme s'efforce de contrôler Tc grâce à des ajustements physiologiques, et Tc fournit la rétroaction principale au cerveau pour coordonner ce contrôle. Alors que la température locale et moyenne de la peau est importante pour fournir une entrée sensorielle, Tsk varie considérablement avec la température ambiante, atteignant en moyenne environ 33 ºC à la thermoneutralité et atteignant 36 à 37 ºC dans des conditions de travail intense à la chaleur. Elle peut chuter considérablement lors d'expositions corporelles et locales au froid ; la sensibilité tactile se situe entre 15 et 20 ºC, alors que la température critique pour la dextérité manuelle se situe entre 12 et 16 ºC. Les valeurs de seuil de douleur supérieur et inférieur pour Tsk sont d'environ 43 ºC et 10 ºC, respectivement.

Des études de cartographie précises ont localisé le site du plus grand contrôle thermorégulateur dans une zone du cerveau connue sous le nom d'hypothalamus préoptique/antérieur (POAH). Dans cette région se trouvent des cellules nerveuses qui répondent à la fois au chauffage (neurones sensibles au chaud) et au refroidissement (neurones sensibles au froid). Cette zone domine le contrôle de la température corporelle en recevant des informations sensorielles afférentes sur la température corporelle et en envoyant des signaux efférents à la peau, aux muscles et aux autres organes impliqués dans la régulation de la température, via le système nerveux autonome. D'autres zones du système nerveux central (hypothalamus postérieur, formation réticulaire, pons, medulla et moelle épinière) forment des connexions ascendantes et descendantes avec le POAH et remplissent diverses fonctions facilitatrices.

Le système de contrôle du corps est analogue au contrôle thermostatique de la température dans une maison avec à la fois des capacités de chauffage et de refroidissement. Lorsque la température corporelle s'élève au-dessus d'une certaine température de "point de consigne" théorique, les réponses effectrices associées au refroidissement (transpiration, augmentation du flux sanguin cutané) sont activées. Lorsque la température corporelle tombe en dessous du point de consigne, des réactions de gain de chaleur (diminution du flux sanguin cutané, frissons) sont déclenchées. Cependant, contrairement aux systèmes de chauffage/refroidissement domestiques, le système de contrôle de la thermorégulation humaine ne fonctionne pas comme un simple système marche-arrêt, mais possède également des caractéristiques de contrôle proportionnel et de contrôle du taux de variation. Il convient de noter qu'une "température de consigne" n'existe qu'en théorie et qu'elle est donc utile pour visualiser ces concepts. Beaucoup de travail reste à faire pour comprendre pleinement les mécanismes associés au point de consigne thermorégulateur.

Quelle que soit sa base, la consigne est relativement stable et n'est pas affectée par le travail ou la température ambiante. En fait, la seule perturbation aiguë connue pour déplacer le point de consigne est le groupe de pyrogènes endogènes impliqués dans la réponse fébrile. Les réponses effectrices employées par le corps pour maintenir l'équilibre thermique sont initiées et contrôlées en réponse à une "erreur de charge", c'est-à-dire une température corporelle qui est transitoirement supérieure ou inférieure au point de consigne (figure 1). Une température à cœur inférieure au point de consigne crée une erreur de charge négative, entraînant l'initiation d'un gain de chaleur (frisson, vasoconstriction de la peau). Une température à cœur supérieure au point de consigne crée une erreur de charge positive, entraînant l'activation des effecteurs de perte de chaleur (vasodilatation cutanée, transpiration). Dans chaque cas, le transfert de chaleur qui en résulte diminue l'erreur de charge et aide à ramener la température corporelle à un état stable.

Figure 1. Un modèle de thermorégulation dans le corps humain.

HEA030F1

Régulation de la température dans la chaleur

Comme mentionné ci-dessus, les humains perdent de la chaleur dans l'environnement principalement par une combinaison de moyens secs (rayonnement et convection) et d'évaporation. Pour faciliter cet échange, deux systèmes effecteurs principaux sont activés et régulés : la vasodilatation cutanée et la transpiration. Alors que la vasodilatation cutanée entraîne souvent de petites augmentations de la perte de chaleur sèche (radiative et convective), elle fonctionne principalement pour transférer la chaleur du noyau vers la peau (transfert de chaleur interne), tandis que l'évaporation de la sueur fournit un moyen extrêmement efficace de refroidir le sang avant à son retour vers les tissus profonds de l'organisme (transfert de chaleur externe).

Vasodilatation cutanée

La quantité de chaleur transférée du cœur à la peau est fonction du flux sanguin cutané (SkBF), du gradient de température entre le cœur et la peau, et de la chaleur spécifique du sang (un peu moins de 4 kJ/°C par litre de du sang). Au repos dans un environnement thermoneutre, la peau reçoit environ 200 à 500 ml/min de flux sanguin, ce qui ne représente que 5 à 10 % du sang total pompé par le cœur (débit cardiaque). En raison du gradient de 4 °C entre Tc (environ 37ºC) et Tsk (environ 33 °C dans de telles conditions), la chaleur métabolique produite par le corps pour maintenir la vie est constamment convectée vers la peau pour être dissipée. En revanche, dans des conditions d'hyperthermie sévère telles qu'un travail de haute intensité dans des conditions chaudes, le gradient thermique noyau-peau est plus petit et le transfert de chaleur nécessaire est réalisé par de fortes augmentations de SkBF. Sous un stress thermique maximal, SkBF peut atteindre 7 à 8 l/min, soit environ un tiers du débit cardiaque (Rowell 1983). Ce débit sanguin élevé est obtenu grâce à un mécanisme mal compris unique à l'homme qui a été appelé le « système vasodilatateur actif ». La vasodilatation active implique des signaux nerveux sympathiques de l'hypothalamus aux artérioles cutanées, mais le neurotransmetteur n'a pas été déterminé.

Comme mentionné ci-dessus, SkBF est principalement sensible aux augmentations de Tc et, dans une moindre mesure, Tsk. Tc augmente lorsque le travail musculaire est initié et que la production de chaleur métabolique commence, et une fois qu'un certain seuil Tc est atteint, SkBF commence également à augmenter de façon spectaculaire. Cette relation thermorégulatrice de base est également influencée par des facteurs non thermiques. Ce deuxième niveau de contrôle est essentiel en ce qu'il modifie SkBF lorsque la stabilité cardiovasculaire globale est menacée. Les veines de la peau sont très compliantes et une partie importante du volume circulant se concentre dans ces vaisseaux. Cela facilite l'échange de chaleur en ralentissant la circulation capillaire pour augmenter le temps de transit; cependant, cette mise en commun, associée aux pertes de liquide dues à la transpiration, peut également diminuer le taux de retour du sang vers le cœur. Parmi les facteurs non thermiques dont il a été démontré qu'ils influencent SkBF pendant le travail, on trouve la posture droite, la déshydratation et la respiration à pression positive (utilisation d'un respirateur). Ceux-ci agissent par des réflexes qui sont activés lorsque la pression de remplissage cardiaque est diminuée et que les récepteurs d'étirement situés dans les grosses veines et l'oreillette droite sont déchargés, et sont donc plus évidents lors d'un travail aérobie prolongé en position debout. Ces réflexes ont pour fonction de maintenir la pression artérielle et, dans le cas du travail, de maintenir un flux sanguin adéquat vers les muscles actifs. Ainsi, le niveau de SkBF à un moment donné représente les effets agrégés des réponses réflexes thermorégulatrices et non thermorégulatrices.

La nécessité d'augmenter le flux sanguin vers la peau pour aider à la régulation de la température a un impact important sur la capacité du système cardiovasculaire à réguler la pression artérielle. Pour cette raison, une réponse coordonnée de l'ensemble du système cardiovasculaire au stress thermique est nécessaire. Quels sont les ajustements cardiovasculaires qui permettent cette augmentation du débit et du volume cutané ? Pendant le travail dans des conditions froides ou thermoneutres, l'augmentation nécessaire du débit cardiaque est bien soutenue par l'augmentation de la fréquence cardiaque (FC), car les augmentations supplémentaires du volume systolique (SV) sont minimes au-delà des intensités d'exercice de 40 % du maximum. Dans la chaleur, la FC est plus élevée à toute intensité de travail donnée en compensation de la réduction du volume sanguin central (CBV) et de la SV. A des niveaux de travail plus élevés, la fréquence cardiaque maximale est atteinte, et cette tachycardie est donc incapable de maintenir le débit cardiaque nécessaire. La deuxième façon dont le corps fournit un SkBF élevé consiste à répartir le flux sanguin loin de zones telles que le foie, les reins et les intestins (Rowell 1983). Cette redirection du flux peut fournir 800 à 1,000 XNUMX ml supplémentaires de flux sanguin vers la peau et aide à compenser les effets néfastes de l'accumulation périphérique de sang.

Transpiration

La sueur thermorégulatrice chez l'homme est sécrétée par 2 à 4 millions de glandes sudoripares eccrines dispersées de manière non uniforme sur la surface du corps. Contrairement aux glandes sudoripares apocrines, qui ont tendance à être regroupées (sur le visage et les mains et dans les régions axiales et génitales) et qui sécrètent de la sueur dans les follicules pileux, les glandes eccrines sécrètent de la sueur directement à la surface de la peau. Cette sueur est inodore, incolore et relativement diluée, puisqu'il s'agit d'un ultrafiltrat de plasma. Ainsi, il a une chaleur latente de vaporisation élevée et convient parfaitement à son objectif de refroidissement.

À titre d'exemple de l'efficacité de ce système de refroidissement, un homme travaillant à un coût en oxygène de 2.3 l/min produit une chaleur métabolique nette (M-W) d'environ 640 W. Sans transpiration, la température corporelle augmenterait à un rythme d'environ 1°C toutes les 6 à 7 min. Avec une évaporation efficace d'environ 16 g de sueur par minute (un taux raisonnable), le taux de perte de chaleur peut correspondre au taux de production de chaleur et la température centrale du corps peut être maintenue à un état stable. C'est,

M–W±R±C–E = 0

Les glandes eccrines sont de structure simple, constituées d'une partie sécrétoire enroulée, d'un canal et d'un pore cutané. Le volume de sueur produit par chaque glande dépend à la fois de la structure et de la fonction de la glande, et le taux de transpiration total dépend à son tour du recrutement des glandes (densité active des glandes sudoripares) et de la production des glandes sudoripares. Le fait que certaines personnes transpirent plus que d'autres est principalement attribuable aux différences de taille des glandes sudoripares (Sato et Sato 1983). L'acclimatation à la chaleur est un autre déterminant majeur de la production de sueur. Avec le vieillissement, les taux de sudation plus faibles ne sont pas attribuables à moins de glandes eccrines activées, mais à une diminution de la production de sueur par glande (Kenney et Fowler 1988). Ce déclin est probablement lié à une combinaison d'altérations structurelles et fonctionnelles qui accompagnent le processus de vieillissement.

Comme les signaux vasomoteurs, les impulsions nerveuses vers les glandes sudoripares proviennent du POAH et descendent à travers le tronc cérébral. Les fibres qui innervent les glandes sont des fibres cholinergiques sympathiques, une combinaison rare dans le corps humain. Alors que l'acétylcholine est le principal neurotransmetteur, les transmetteurs adrénergiques (catécholamines) stimulent également les glandes eccrines.

À bien des égards, le contrôle de la transpiration est analogue au contrôle du flux sanguin cutané. Les deux ont des caractéristiques d'apparition similaires (seuil) et des relations linéaires avec l'augmentation Tc. Le dos et la poitrine ont tendance à avoir des débuts de transpiration plus précoces, et les pentes de la relation entre le taux de sudation local et Tc sont les plus raides pour ces sites. Comme SkBF, la transpiration est modifiée par des facteurs non thermiques tels que l'hypohydratation et l'hyperosmolalité. A noter également un phénomène appelé "hidromeiose", qui survient dans des environnements très humides ou sur des zones cutanées constamment recouvertes de vêtements mouillés. Ces zones de peau, en raison de leur état constamment humide, diminuent la production de sueur. Cela sert de mécanisme de protection contre la déshydratation continue, car la sueur qui reste sur la peau au lieu de s'évaporer n'a aucune fonction de refroidissement.

Si le taux de sudation est adéquat, le refroidissement par évaporation est finalement déterminé par le gradient de pression de vapeur d'eau entre la peau humide et l'air qui l'entoure. Ainsi, une humidité élevée et des vêtements lourds ou imperméables limitent le refroidissement par évaporation, tandis que l'air sec, le mouvement de l'air autour du corps et des vêtements poreux minimes facilitent l'évaporation. D'autre part, si le travail est lourd et la transpiration abondante, le refroidissement par évaporation peut également être limité par la capacité du corps à produire de la sueur (maximum environ 1 à 2 l/h).

Régulation de la température dans le froid

Une différence importante dans la façon dont les humains réagissent au froid par rapport à la chaleur est que le comportement joue un rôle beaucoup plus important dans la réponse thermorégulatrice au froid. Par exemple, porter des vêtements appropriés et adopter des postures qui minimisent la surface disponible pour la perte de chaleur (« se blottir ») sont beaucoup plus importants dans des conditions ambiantes froides que dans la chaleur. Une deuxième différence est le rôle plus important joué par les hormones lors du stress dû au froid, notamment l'augmentation de la sécrétion de catécholamines (norépinéphrine et épinéphrine) et d'hormones thyroïdiennes.

Vasoconstriction cutanée

Une stratégie efficace contre la perte de chaleur du corps par rayonnement et convection consiste à augmenter l'isolation efficace fournie par la coque. Chez l'homme, cela se fait en diminuant le flux sanguin vers la peau, c'est-à-dire par vasoconstriction cutanée. La constriction des vaisseaux cutanés est plus prononcée aux extrémités qu'au tronc. Comme la vasodilatation active, la vasoconstriction cutanée est également contrôlée par le système nerveux sympathique et est influencée par TcTsk et les températures locales.

L'effet du refroidissement de la peau sur la fréquence cardiaque et la réponse de la pression artérielle varie selon la zone du corps qui est refroidie et si le froid est suffisamment intense pour causer de la douleur. Par exemple, lorsque les mains sont immergées dans l'eau froide, la FC, la pression artérielle systolique (PAS) et la pression artérielle diastolique (PAD) augmentent toutes. Lorsque le visage est refroidi, SBP et DBP augmentent en raison de la réponse sympathique généralisée ; cependant, la fréquence cardiaque diminue en raison d'un réflexe parasympathique (LeBlanc 1975). Pour confondre davantage la complexité de la réponse globale au froid, il existe une large gamme de variabilité dans les réponses d'une personne à l'autre. Si le stress dû au froid est d'une ampleur suffisante pour diminuer la température centrale du corps, la FC peut augmenter (en raison de l'activation sympathique) ou diminuer (en raison de l'augmentation du volume sanguin central).

Un cas spécifique d'intérêt est appelé vasodilatation induite par le froid (CIVD). Lorsque les mains sont placées dans de l'eau froide, SkBF diminue initialement pour conserver la chaleur. Au fur et à mesure que la température des tissus baisse, SkBF augmente paradoxalement, diminue à nouveau et répète ce schéma cyclique. Il a été suggéré que la CIVD est bénéfique pour prévenir les lésions tissulaires causées par le gel, mais cela n'a pas été prouvé. Mécaniquement, la dilatation transitoire se produit probablement lorsque les effets directs du froid sont suffisamment graves pour diminuer la transmission nerveuse, ce qui annule de manière transitoire l'effet du froid sur les récepteurs sympathiques des vaisseaux sanguins (médiant l'effet constricteur).

Shivering

Au fur et à mesure que le refroidissement du corps progresse, la deuxième ligne de défense est le frisson. Le frisson est la contraction involontaire et aléatoire des fibres musculaires superficielles, qui ne limite pas la perte de chaleur mais augmente plutôt la production de chaleur. Étant donné que de telles contractions ne produisent aucun travail, de la chaleur est générée. Une personne au repos peut augmenter sa production de chaleur métabolique d'environ trois à quatre fois pendant des frissons intenses, et peut augmenter Tc de 0.5 ºC. Les signaux pour déclencher le frisson proviennent principalement de la peau et, en plus de la région POAH du cerveau, l'hypothalamus postérieur est également impliqué dans une large mesure.

Bien que de nombreux facteurs individuels contribuent aux frissons (et à la tolérance au froid en général), un facteur important est la graisse corporelle. Un homme avec très peu de graisse sous-cutanée (2 à 3 mm d'épaisseur) commence à frissonner après 40 min à 15 ºC et 20 min à 10 ºC, tandis qu'un homme qui a plus de graisse isolante (11 mm) peut ne pas frissonner du tout à 15 ºC et après 60 min à 10 ºC (LeBlanc 1975).

 

Noir

Lorsqu'une personne est exposée à des conditions environnementales chaudes, les mécanismes physiologiques de perte de chaleur sont activés afin de maintenir une température corporelle normale. Les flux de chaleur entre le corps et l'environnement dépendent de la différence de température entre :

  1. l'air ambiant et des objets comme les murs, les fenêtres, le ciel, etc.
  2. la température de surface de la personne

 

La température de surface de la personne est régulée par des mécanismes physiologiques, tels que les variations du flux sanguin vers la peau, et par l'évaporation de la sueur sécrétée par les glandes sudoripares. Aussi, la personne peut changer de vêtements pour varier l'échange de chaleur avec l'environnement. Plus les conditions environnementales sont chaudes, plus la différence entre les températures ambiantes et la température de la peau ou de la surface des vêtements est faible. Cela signifie que « l'échange de chaleur sèche » par convection et rayonnement est réduit dans des conditions chaudes par rapport à des conditions froides. À des températures ambiantes supérieures à la température de surface, la chaleur provient de l'environnement. Dans ce cas, cette chaleur supplémentaire ainsi que celle libérée par les processus métaboliques doivent être perdues par évaporation de la sueur pour le maintien de la température corporelle. Ainsi, l'évaporation de la sueur devient de plus en plus critique avec l'augmentation de la température ambiante. Compte tenu de l'importance de l'évaporation de la sueur, il n'est pas surprenant que la vitesse du vent et l'humidité de l'air (pression de vapeur d'eau) soient des facteurs environnementaux critiques dans des conditions chaudes. Si l'humidité est élevée, la sueur est toujours produite mais l'évaporation est réduite. La sueur qui ne peut pas s'évaporer n'a aucun effet rafraîchissant ; il s'égoutte et est gaspillé d'un point de vue thermorégulateur.

Le corps humain contient environ 60% d'eau, soit environ 35 à 40 l chez une personne adulte. Environ un tiers de l'eau du corps, le liquide extracellulaire, est distribué entre les cellules et dans le système vasculaire (le plasma sanguin). Les deux tiers restants de l'eau corporelle, le liquide intracellulaire, se trouvent à l'intérieur des cellules. La composition et le volume des compartiments hydriques corporels sont très précisément contrôlés par des mécanismes hormonaux et neuronaux. La sueur est sécrétée par les millions de glandes sudoripares à la surface de la peau lorsque le centre de thermorégulation est activé par une augmentation de la température corporelle. La sueur contient du sel (NaCl, chlorure de sodium) mais dans une moindre mesure que le liquide extracellulaire. Ainsi, l'eau et le sel sont perdus et doivent être remplacés après la transpiration.

Effets de la perte de sueur

Dans des conditions environnementales neutres et confortables, de petites quantités d'eau sont perdues par diffusion à travers la peau. Cependant, lors d'un travail intense et par temps chaud, de grandes quantités de sueur peuvent être produites par les glandes sudoripares actives, jusqu'à plus de 2 l/h pendant plusieurs heures. Même une perte de sueur de seulement 1 % du poids corporel (» 600 à 700 ml) a un effet mesurable sur la capacité à effectuer un travail. Cela se traduit par une augmentation de la fréquence cardiaque (FC) (la FC augmente d'environ cinq battements par minute pour chaque pourcentage de perte d'eau corporelle) et une augmentation de la température centrale du corps. Si le travail se poursuit, il y a une augmentation progressive de la température corporelle, qui peut atteindre une valeur d'environ 40°C ; à cette température, une maladie due à la chaleur peut en résulter. Cela est dû en partie à la perte de liquide du système vasculaire (figure 1). Une perte d'eau du plasma sanguin réduit la quantité de sang qui remplit les veines centrales et le cœur. Chaque battement cardiaque pompera donc un volume d'éjection systolique plus petit. En conséquence, le débit cardiaque (la quantité de sang qui est expulsée par le cœur par minute) a tendance à baisser et la fréquence cardiaque doit augmenter afin de maintenir la circulation et la pression artérielle.

Figure 1. Répartition calculée de l'eau dans le compartiment extracellulaire (ECW) et le compartiment intracellulaire (ICW) avant et après 2 h de déshydratation à l'effort à une température ambiante de 30 °C.

HEA050F1

Un système de contrôle physiologique appelé système réflexe des barorécepteurs maintient le débit cardiaque et la pression artérielle proches de la normale dans toutes les conditions. Les réflexes font intervenir des récepteurs, capteurs du cœur et du système artériel (aorte et artères carotides), qui surveillent le degré d'étirement du cœur et des vaisseaux par le sang qui les remplit. Les impulsions de ceux-ci voyagent à travers les nerfs jusqu'au système nerveux central, d'où les ajustements, en cas de déshydratation, provoquent une constriction des vaisseaux sanguins et une réduction du flux sanguin vers les organes splanchniques (foie, intestin, reins) et vers la peau. De cette manière, le flux sanguin disponible est redistribué pour favoriser la circulation vers les muscles qui travaillent et vers le cerveau (Rowell 1986).

Une déshydratation sévère peut entraîner un épuisement dû à la chaleur et un collapsus circulatoire ; dans ce cas, la personne ne peut pas maintenir la tension artérielle et s'évanouit en conséquence. Dans l'épuisement dû à la chaleur, les symptômes sont l'épuisement physique, souvent accompagné de maux de tête, d'étourdissements et de nausées. La principale cause d'épuisement par la chaleur est la contrainte circulatoire induite par la perte d'eau du système vasculaire. La diminution du volume sanguin entraîne des réflexes qui réduisent la circulation vers les intestins et la peau. La réduction du flux sanguin cutané aggrave la situation, car la perte de chaleur de la surface diminue, de sorte que la température centrale augmente encore. Le sujet peut s'évanouir en raison d'une chute de la pression artérielle et du faible débit sanguin qui en résulte vers le cerveau. La position allongée améliore l'apport sanguin au cœur et au cerveau, et après refroidissement et avoir bu de l'eau, la personne retrouve son bien-être presque immédiatement.

Si les processus à l'origine de l'épuisement dû à la chaleur « se déchaînent », cela se transforme en coup de chaleur. La réduction progressive de la circulation cutanée fait monter de plus en plus la température, ce qui entraîne une réduction, voire un arrêt de la transpiration et une élévation encore plus rapide de la température centrale, ce qui provoque un collapsus circulatoire pouvant entraîner la mort ou des dommages irréversibles à la peau. cerveau. Des changements dans le sang (tels qu'une osmolalité élevée, un pH bas, une hypoxie, une adhérence cellulaire des globules rouges, une coagulation intravasculaire) et des dommages au système nerveux sont observés chez les patients victimes d'un coup de chaleur. L'apport sanguin réduit à l'intestin pendant le stress thermique peut provoquer des lésions tissulaires et des substances (endotoxines) peuvent être libérées qui induisent de la fièvre en rapport avec un coup de chaleur (Hales et Richards 1987). Le coup de chaleur est une urgence aiguë qui met la vie en danger et dont il est question plus en détail dans la section sur les « troubles liés à la chaleur ».

Avec la perte d'eau, la transpiration produit une perte d'électrolytes, principalement de sodium (Na+) et chlorure (Cl-), mais aussi dans une moindre mesure du magnésium (Mg++), potasse (K+) et ainsi de suite (voir tableau 1). La sueur contient moins de sel que les compartiments des fluides corporels. Cela signifie qu'ils deviennent plus salés après la perte de sueur. L'augmentation de la salinité semble avoir un effet spécifique sur la circulation via des effets sur le muscle lisse vasculaire, qui contrôle le degré d'ouverture des vaisseaux. Cependant, plusieurs chercheurs ont montré qu'il interfère avec la capacité de transpirer, de telle sorte qu'il faut une température corporelle plus élevée pour stimuler les glandes sudoripares - la sensibilité des glandes sudoripares est réduite (Nielsen 1984). Si la perte sudorale n'est remplacée que par de l'eau, cela peut conduire à une situation où le corps contient moins de chlorure de sodium qu'à l'état normal (hypo-osmotique). Cela provoquera des crampes dues au dysfonctionnement des nerfs et des muscles, une condition connue autrefois sous le nom de « crampes du mineur » ou « crampes du chauffeur ». Elle peut être prévenue par l'ajout de sel à l'alimentation (boire de la bière était une mesure préventive suggérée au Royaume-Uni dans les années 1920 !).

Tableau 1. Concentration d'électrolytes dans le plasma sanguin et dans la sueur

Électrolytes et autres
substances

Concentration de plasma sanguin
rations (g par l)

Concentration de sueur
(g par litre)

Sodium (Na+)

3.5

0.2-1.5

Potassium (K+)

0.15

0.15

Calcium (Ca++)

0.1

de petites quantités

Magnésium (Mg++)

0.02

de petites quantités

Chlorure (Cl-)

3.5

0.2-1.5

Bicarbonate (HCO3-)

1.5

de petites quantités

Protéines

70

0

Graisses, glucose, petits ions

15-20

de petites quantités

Adapté de Vellar 1969.

La diminution de la circulation cutanée et de l'activité des glandes sudoripares affecte à la fois la thermorégulation et la perte de chaleur de telle sorte que la température centrale augmente plus que dans un état complètement hydraté.

Dans de nombreux métiers différents, les travailleurs sont exposés à un stress thermique externe - par exemple, les travailleurs des aciéries, des industries du verre, des papeteries, des boulangeries, des industries minières. Les ramoneurs et les pompiers sont également exposés à la chaleur extérieure. Les personnes qui travaillent dans des espaces confinés dans des véhicules, des navires et des avions peuvent également souffrir de la chaleur. Cependant, il faut noter que les personnes travaillant dans des combinaisons de protection ou effectuant des travaux pénibles dans des vêtements imperméables peuvent être victimes d'épuisement par la chaleur même dans des conditions de température ambiante modérées et fraîches. Les effets néfastes du stress thermique se produisent dans des conditions où la température centrale est élevée et la perte de sueur est élevée.

Réhydratation

Les effets de la déshydratation due à la perte de sueur peuvent être inversés en buvant suffisamment pour remplacer la sueur. Cela aura généralement lieu pendant la récupération après le travail et l'exercice. Cependant, lors de travaux prolongés dans des environnements chauds, les performances sont améliorées en buvant pendant l'activité. Le conseil commun est donc de boire quand on a soif.

Mais, il y a des problèmes très importants à cela. La première est que l'envie de boire n'est pas assez forte pour remplacer la perte d'eau qui se produit simultanément ; et d'autre part, le temps nécessaire pour combler un déficit hydrique important est très long, plus de 12 heures. Enfin, il existe une limite à la vitesse à laquelle l'eau peut passer de l'estomac (où elle est stockée) à l'intestin (intestin), où l'absorption a lieu. Ce taux est inférieur aux taux de sudation observés pendant l'exercice dans des conditions chaudes.

Il y a eu un grand nombre d'études sur diverses boissons pour restaurer l'eau corporelle, les électrolytes et les réserves de glucides des athlètes lors d'exercices prolongés. Les principales constatations sont les suivantes :

    • La quantité de liquide qui peut être utilisée, c'est-à-dire transportée de l'estomac vers l'intestin, est limitée par le "taux de vidange gastrique", qui a un maximum d'environ 1,000 XNUMX ml/h.
    • Si le liquide est « hyperosmotique » (contient des ions/molécules à des concentrations plus élevées que le sang), la vitesse est ralentie. D'autre part, les « fluides iso-osmotiques » (contenant de l'eau et des ions/molécules à la même concentration, osmolalité, que le sang) passent au même rythme que l'eau pure.
    • L'ajout de petites quantités de sel et de sucre augmente le taux d'absorption d'eau de l'intestin (Maughan 1991).

         

        Dans cet esprit, vous pouvez fabriquer votre propre « liquide de réhydratation » ou choisir parmi un grand nombre de produits commerciaux. Normalement, l'équilibre hydrique et électrolytique est rétabli en buvant pendant les repas. Les travailleurs ou les athlètes ayant de grandes pertes de sueur devraient être encouragés à boire plus que leur envie. La sueur contient environ 1 à 3 g de NaCl par litre. Cela signifie que des pertes sudorales supérieures à 5 litres par jour peuvent entraîner une carence en chlorure de sodium, à moins que l'alimentation ne soit complétée.

        Il est également conseillé aux travailleurs et aux athlètes de contrôler leur équilibre hydrique en se pesant régulièrement, par exemple le matin (à la même heure et dans les mêmes conditions) et d'essayer de maintenir un poids constant. Cependant, un changement de poids corporel ne reflète pas nécessairement le degré d'hypohydratation. L'eau est chimiquement liée au glycogène, le stock de glucides dans les muscles, et libérée lorsque le glycogène est utilisé pendant l'exercice. Des changements de poids allant jusqu'à environ 1 kg peuvent survenir, en fonction de la teneur en glycogène du corps. Le poids corporel "du matin au matin" montre également des changements dus aux "variations biologiques" de la teneur en eau - par exemple, chez les femmes en relation avec le cycle menstruel jusqu'à 1 à 2 kg d'eau peuvent être retenus pendant la phase prémenstruelle ("prémenstruel tension").

        Le contrôle de l'eau et des électrolytes

        Le volume des compartiments hydriques corporels, c'est-à-dire les volumes de liquide extracellulaire et intracellulaire, et leurs concentrations d'électrolytes sont maintenus très constants grâce à un équilibre régulé entre l'apport et la perte de liquide et de substances.

        L'eau provient de la consommation d'aliments et de liquides, et une partie est libérée par des processus métaboliques, notamment la combustion de graisses et de glucides provenant des aliments. La perte d'eau a lieu dans les poumons pendant la respiration, où l'air inspiré absorbe l'eau dans les poumons des surfaces humides des voies respiratoires avant d'être expiré. L'eau diffuse également à travers la peau en petite quantité dans des conditions confortables pendant le repos. Cependant, lors de la transpiration, l'eau peut être perdue à un rythme supérieur à 1 à 2 l/h pendant plusieurs heures. La teneur en eau du corps est contrôlée. L'augmentation de la perte d'eau par la transpiration est compensée par la consommation d'alcool et par une réduction de la formation d'urine, tandis que l'excès d'eau est excrété par une augmentation de la production d'urine.

        Ce contrôle à la fois de l'apport et de la production d'eau est exercé par le système nerveux autonome et par les hormones. La soif va augmenter la consommation d'eau, et la perte d'eau par les reins est régulée ; le volume et la composition électrolytique de l'urine sont sous contrôle. Les capteurs du mécanisme de contrôle se trouvent dans le cœur, répondant à la « plénitude » du système vasculaire. Si le remplissage du cœur est réduit, par exemple après une perte de sueur, les récepteurs vont signaler ce message aux centres cérébraux responsables de la sensation de soif, et aux zones qui induisent une libération d'hormone anti-diurétique (ADH) à partir de l'hypophyse postérieure. Cette hormone agit pour réduire le volume d'urine.

        De même, des mécanismes physiologiques contrôlent la composition électrolytique des fluides corporels via des processus dans les reins. La nourriture contient des nutriments, des minéraux, des vitamines et des électrolytes. Dans le contexte actuel, l'apport de chlorure de sodium est la question importante. L'apport alimentaire en sodium varie selon les habitudes alimentaires, entre 10 et 20 à 30 g par jour. C'est normalement beaucoup plus que nécessaire, donc l'excès est excrété par les reins, contrôlés par l'action de multiples mécanismes hormonaux (angiotensine, aldostérone, ANF, etc.) qui sont contrôlés par des stimuli provenant d'osmorécepteurs dans le cerveau et dans les reins. , répondant à l'osmolalité de principalement Na+ et Cl- dans le sang et dans le liquide des reins, respectivement.

        Différences interindividuelles et ethniques

        On peut s'attendre à des différences entre les hommes et les femmes ainsi qu'entre les personnes plus jeunes et plus âgées en réaction à la chaleur. Ils diffèrent par certaines caractéristiques susceptibles d'influencer le transfert de chaleur, telles que la surface, le rapport taille/poids, l'épaisseur des couches de graisse cutanée isolante, et par la capacité physique à produire du travail et de la chaleur (capacité aérobie » taux de consommation maximale d'oxygène). Les données disponibles suggèrent que la tolérance à la chaleur est réduite chez les personnes âgées. Ils commencent à transpirer plus tard que les jeunes, et les personnes âgées réagissent avec un flux sanguin plus élevé dans leur peau lors d'une exposition à la chaleur.

        En comparant les sexes, on a observé que les femmes tolèrent mieux la chaleur humide que les hommes. Dans cet environnement, l'évaporation de la sueur est réduite, de sorte que la surface/masse légèrement plus grande chez les femmes pourrait être à leur avantage. Cependant, la capacité aérobie est un facteur important à considérer lors de la comparaison d'individus exposés à la chaleur. Dans des conditions de laboratoire, les réponses physiologiques à la chaleur sont similaires, si des groupes de sujets ayant la même capacité de travail physique ("absorption maximale d'oxygène" - VO2 max) sont testés - par exemple, les hommes plus jeunes et plus âgés, ou les hommes contre les femmes (Pandolf et al. 1988). Dans ce cas, une certaine tâche de travail (exercice sur un vélo ergomètre) entraînera la même charge sur le système circulatoire, c'est-à-dire la même fréquence cardiaque et la même élévation de la température centrale, indépendamment de l'âge et du sexe.

        Les mêmes considérations sont valables pour la comparaison entre groupes ethniques. Lorsque les différences de taille et de capacité aérobie sont prises en compte, aucune différence significative due à la race ne peut être mise en évidence. Mais dans la vie quotidienne en général, les personnes âgées ont en moyenne un VO plus faible2 max que les personnes plus jeunes, et les femmes un VO plus faible2 max que les hommes du même groupe d'âge.

        Par conséquent, lors de l'exécution d'une tâche spécifique qui consiste en un certain rythme de travail absolu (mesuré, par exemple, en watts), la personne ayant une capacité aérobie inférieure aura une fréquence cardiaque et une température corporelle plus élevées et sera moins en mesure de faire face à l'effort supplémentaire. de la chaleur externe, qu'un avec un VO plus élevé2 max.

        Aux fins de la santé et de la sécurité au travail, un certain nombre d'indices de stress thermique ont été élaborés. Dans ceux-ci, la grande variation interindividuelle en réponse à la chaleur et au travail est prise en compte, ainsi que les environnements chauds spécifiques pour lesquels l'indice est construit. Ceux-ci sont traités ailleurs dans ce chapitre.

        Les personnes exposées à plusieurs reprises à la chaleur toléreront mieux la chaleur même après quelques jours. Ils s'acclimatent. Le taux de transpiration est augmenté et le refroidissement accru de la peau qui en résulte entraîne une baisse de la température centrale et de la fréquence cardiaque pendant le travail dans les mêmes conditions.

        Par conséquent, l'acclimatation artificielle du personnel susceptible d'être exposé à une chaleur extrême (pompiers, secouristes, militaires) sera probablement bénéfique pour réduire la fatigue.

        En résumé, plus une personne produit de chaleur, plus elle doit en dissiper. Dans un environnement chaud, l'évaporation de la sueur est le facteur limitant de la perte de chaleur. Les différences interindividuelles dans la capacité de sudation sont considérables. Alors que certaines personnes n'ont pas du tout de glandes sudoripares, dans la plupart des cas, avec un entraînement physique et une exposition répétée à la chaleur, la quantité de sueur produite lors d'un test de stress thermique standard est augmentée. Le stress thermique entraîne une augmentation de la fréquence cardiaque et de la température centrale. Une fréquence cardiaque maximale et/ou une température centrale d'environ 40 ºC fixent la limite physiologique absolue de la performance au travail dans un environnement chaud (Nielsen 1994).

         

        Noir

        Mercredi, Mars 16 2011 21: 39

        Troubles liés à la chaleur

        Une température ambiante élevée, une humidité élevée, un exercice intense ou une mauvaise dissipation de la chaleur peuvent provoquer divers troubles liés à la chaleur. Ils comprennent la syncope de chaleur, l'œdème de chaleur, les crampes de chaleur, l'épuisement par la chaleur et le coup de chaleur en tant que troubles systémiques, et les lésions cutanées en tant que troubles locaux.

        Troubles systémiques

        Les crampes de chaleur, l'épuisement dû à la chaleur et le coup de chaleur ont une importance clinique. Les mécanismes sous-jacents au développement de ces troubles systémiques sont l'insuffisance circulatoire, le déséquilibre hydrique et électrolytique et/ou l'hyperthermie (température corporelle élevée). Le plus grave de tous est le coup de chaleur, qui peut entraîner la mort s'il n'est pas traité rapidement et correctement.

        Deux populations distinctes sont à risque de développer des troubles liés à la chaleur, à l'exclusion des nourrissons. La première et la plus grande population est celle des personnes âgées, en particulier les pauvres et les personnes souffrant de maladies chroniques, telles que le diabète sucré, l'obésité, la malnutrition, l'insuffisance cardiaque congestive, l'alcoolisme chronique, la démence et la nécessité d'utiliser des médicaments qui interfèrent avec la thermorégulation. La deuxième population à risque de souffrir de troubles liés à la chaleur comprend les individus en bonne santé qui tentent un effort physique prolongé ou sont exposés à un stress thermique excessif. Les facteurs prédisposant les jeunes actifs aux troubles liés à la chaleur, autres que le dysfonctionnement congénital et acquis des glandes sudoripares, comprennent une mauvaise forme physique, un manque d'acclimatation, une faible efficacité au travail et un rapport réduit entre la surface cutanée et la masse corporelle.

        Syncope de chaleur

        La syncope est une perte de conscience transitoire résultant d'une réduction du débit sanguin cérébral, précédée fréquemment de pâleur, de troubles de la vision, d'étourdissements et de nausées. Il peut survenir chez les personnes souffrant de stress thermique. Le terme effondrement de la chaleur a été utilisé comme synonyme de syncope de chaleur. Les symptômes ont été attribués à une vasodilatation cutanée, à une accumulation posturale de sang avec pour conséquence une diminution du retour veineux vers le cœur et une réduction du débit cardiaque. Une déshydratation légère, qui se développe chez la plupart des personnes exposées à la chaleur, contribue à la probabilité de syncope due à la chaleur. Les personnes qui souffrent de maladies cardiovasculaires ou qui ne sont pas acclimatées sont prédisposées à l'effondrement dû à la chaleur. Les victimes reprennent généralement conscience rapidement après avoir été allongées sur le dos.

        Œdème de chaleur

        Un léger œdème dépendant, c'est-à-dire un gonflement des mains et des pieds, peut se développer chez des individus non acclimatés exposés à un environnement chaud. Il survient généralement chez les femmes et disparaît avec l'acclimatation. Il disparaît en quelques heures après que le patient a été couché dans un endroit plus frais.

        Crampes de chaleur

        Des crampes de chaleur peuvent survenir après une forte transpiration provoquée par un travail physique prolongé. Des spasmes douloureux se développent dans les membres et les muscles abdominaux soumis à un travail intensif et à la fatigue, tandis que la température corporelle n'augmente guère. Ces crampes sont causées par la déplétion en sel qui se produit lorsque la perte d'eau due à une transpiration abondante et prolongée est complétée par de l'eau pure sans sel supplémentaire et lorsque la concentration de sodium dans le sang est tombée en dessous d'un niveau critique. Les crampes de chaleur elles-mêmes sont une condition relativement inoffensive. Les attaques sont généralement observées chez des personnes physiquement aptes qui sont capables d'un effort physique soutenu, et étaient autrefois appelées « crampes du mineur » ou « crampes du coupeur de canne » parce qu'elles se produisaient souvent chez ces ouvriers.

        Le traitement des crampes de chaleur consiste en l'arrêt de l'activité, le repos dans un endroit frais et le remplacement des liquides et des électrolytes. L'exposition à la chaleur doit être évitée pendant au moins 24 à 48 heures.

        Épuisement par la chaleur

        L'épuisement par la chaleur est le trouble dû à la chaleur le plus fréquemment rencontré en clinique. Elle résulte d'une déshydratation sévère après qu'une énorme quantité de sueur ait été perdue. Il survient généralement chez les jeunes personnes par ailleurs en bonne santé qui entreprennent un effort physique prolongé (épuisement par la chaleur induit par l'effort), comme les coureurs de marathon, les joueurs de sports de plein air, les recrues militaires, les mineurs de charbon et les ouvriers du bâtiment. La caractéristique fondamentale de ce trouble est une déficience circulatoire due à une déplétion hydrique et/ou saline. Il peut être considéré comme un stade naissant du coup de chaleur et, s'il n'est pas traité, il peut éventuellement évoluer vers un coup de chaleur. Il a été classiquement divisé en deux types : l'épuisement thermique par épuisement hydrique et celui par épuisement salin ; mais de nombreux cas sont un mélange des deux types.

        L'épuisement dû à la chaleur par épuisement de l'eau se développe à la suite d'une transpiration abondante prolongée et d'une consommation d'eau insuffisante. La sueur contenant des ions sodium à une concentration allant de 30 à 100 milliéquivalents par litre, inférieure à celle du plasma, une forte perte de sueur entraîne une hypohydratation (diminution de la teneur en eau du corps) et une hypernatrémie (augmentation de la concentration de sodium dans le plasma). L'épuisement par la chaleur se caractérise par la soif, la faiblesse, la fatigue, les étourdissements, l'anxiété, l'oligurie (miction peu abondante), la tachycardie (rythme cardiaque rapide) et l'hyperthermie modérée (39 °C ou plus). La déshydratation entraîne également une diminution de l'activité sudoripare, une élévation de la température de la peau et une augmentation des taux de protéines plasmatiques et de sodium plasmatique ainsi que de la valeur de l'hématocrite (le rapport du volume des cellules sanguines au volume sanguin).

        Le traitement consiste à permettre à la victime de se reposer en position couchée avec les genoux levés, dans un environnement frais, en essuyant le corps avec une serviette ou une éponge froide et en remplaçant la perte de liquide par de la boisson ou, si l'ingestion orale est impossible, par une perfusion intraveineuse. Les quantités d'eau et de sel, la température corporelle et le poids corporel doivent être surveillés attentivement. L'ingestion d'eau ne doit pas être régulée en fonction de la sensation subjective de soif de la victime, en particulier lorsque la perte de liquide est reconstituée avec de l'eau pure, car la dilution du sang induit facilement la disparition de la soif et la diurèse de dilution, retardant ainsi le rétablissement de l'équilibre hydrique corporel. Ce phénomène d'ingestion insuffisante d'eau est appelé déshydratation volontaire. De plus, une alimentation en eau sans sel peut compliquer les troubles thermiques, comme décrit ci-dessous. Une déshydratation de plus de 3 % du poids corporel doit toujours être traitée par un remplacement de l'eau et des électrolytes.

        L'épuisement dû à la chaleur par épuisement du sel résulte d'une transpiration abondante prolongée et du remplacement de l'eau et d'un manque de sel. Sa survenue est favorisée par une acclimatation incomplète, des vomissements et des diarrhées, etc. Ce type d'épuisement par la chaleur se développe généralement quelques jours après le développement de l'épuisement de l'eau. Elle est plus fréquemment rencontrée chez les personnes âgées sédentaires exposées à la chaleur qui ont bu une grande quantité d'eau pour étancher leur soif. Maux de tête, étourdissements, faiblesse, fatigue, nausées, vomissements, diarrhée, anorexie, spasmes musculaires et confusion mentale sont des symptômes courants. Dans les examens sanguins, une diminution du volume plasmatique, une augmentation de l'hématocrite et des taux de protéines plasmatiques et une hypercalcémie (excès de calcium sanguin) sont notées.

        Une détection précoce et une prise en charge rapide sont essentielles, cette dernière consistant à laisser le patient se reposer en position couchée dans une pièce fraîche et à prévoir un renouvellement de l'eau et des électrolytes. L'osmolarité ou la gravité spécifique de l'urine doit être surveillée, tout comme les taux d'urée, de sodium et de chlorure dans le plasma, et la température corporelle, le poids corporel et la consommation d'eau et de sel doivent également être enregistrés. Si la maladie est traitée de manière adéquate, les victimes se sentent généralement bien en quelques heures et se rétablissent sans séquelles. Si ce n'est pas le cas, il peut facilement s'agir d'un coup de chaleur.

        Coup de chaleur

        Le coup de chaleur est une urgence médicale grave qui peut entraîner la mort. Il s'agit d'une affection clinique complexe dans laquelle une hyperthermie incontrôlable provoque des lésions tissulaires. Une telle élévation de la température corporelle est causée initialement par une congestion thermique sévère due à une charge thermique excessive, et l'hyperthermie qui en résulte induit un dysfonctionnement du système nerveux central, y compris une défaillance du mécanisme de thermorégulation normal, accélérant ainsi l'élévation de la température corporelle. Le coup de chaleur se produit essentiellement sous deux formes : le coup de chaleur classique et le coup de chaleur induit par l'effort. Le premier se développe chez des individus très jeunes, âgés, obèses ou inaptes entreprenant des activités normales lors d'une exposition prolongée à des températures environnementales élevées, tandis que le second survient particulièrement chez les jeunes adultes actifs lors d'efforts physiques. De plus, il existe une forme mixte de chaleur présentant des caractéristiques compatibles avec les deux formes ci-dessus.

        Les personnes âgées, en particulier celles qui ont une maladie chronique sous-jacente, comme les maladies cardiovasculaires, le diabète sucré et l'alcoolisme, et celles qui prennent certains médicaments, en particulier les psychotropes, courent un risque élevé de coup de chaleur classique. Lors de vagues de chaleur prolongées, par exemple, le taux de mortalité de la population de plus de 60 ans a été enregistré comme plus de dix fois supérieur à celui de la population de 60 ans et moins. Une mortalité tout aussi élevée dans la population âgée a également été signalée chez les musulmans lors du pèlerinage de La Mecque, où la forme mixte de coup de chaleur s'est avérée prévalente. Les facteurs prédisposant les personnes âgées au coup de chaleur, autres que les maladies chroniques mentionnées ci-dessus, comprennent une perception thermique réduite, des réponses vasomotrices et sudomotrices (réflexe de transpiration) lentes aux changements de charge thermique et une capacité réduite d'acclimatation à la chaleur.

        Les personnes qui travaillent ou font de l'exercice vigoureusement dans des environnements chauds et humides courent un risque élevé de maladie causée par la chaleur, qu'il s'agisse d'un épuisement dû à la chaleur ou d'un coup de chaleur. Les athlètes soumis à un stress physique élevé peuvent être victimes d'hyperthermie en produisant une chaleur métabolique à un rythme élevé, même lorsque l'environnement n'est pas très chaud, et ont souvent souffert de stress thermique en conséquence. Les non-athlètes relativement inaptes courent moins de risques à cet égard tant qu'ils réalisent leur propre capacité et limitent leurs efforts en conséquence. Cependant, lorsqu'ils pratiquent un sport pour le plaisir et qu'ils sont très motivés et enthousiastes, ils essaient souvent de s'exercer à une intensité supérieure à celle pour laquelle ils ont été entraînés et peuvent succomber à une maladie due à la chaleur (généralement un épuisement dû à la chaleur). Une mauvaise acclimatation, une hydratation insuffisante, une tenue vestimentaire inadaptée, une consommation d'alcool et des maladies cutanées entraînant une anhidrose (diminution ou absence de transpiration), notamment la chaleur épineuse (voir ci-dessous), aggravent les symptômes.

        Les enfants sont plus sensibles à l'épuisement par la chaleur ou aux coups de chaleur que les adultes. Ils produisent plus de chaleur métabolique par unité de masse et sont moins capables de dissiper la chaleur en raison d'une capacité relativement faible à produire de la sueur.

        Caractéristiques cliniques du coup de chaleur

        Le coup de chaleur est défini par trois critères :

        1. hyperthermie sévère avec une température centrale (profonde du corps) dépassant généralement 42 ºC
        2. troubles du système nerveux central
        3. peau chaude et sèche avec arrêt de la transpiration.

         

        Le diagnostic de coup de chaleur est facile à établir lorsque cette triade de critères est remplie. Cependant, il peut être manqué lorsque l'un de ces critères est absent, obscur ou négligé. Par exemple, à moins que la température centrale ne soit mesurée correctement et sans délai, une hyperthermie sévère peut ne pas être reconnue ; ou, à un stade très précoce du coup de chaleur induit par l'effort, la transpiration peut encore persister ou même être abondante et la peau peut être humide.

        L'apparition d'un coup de chaleur est généralement brutale et sans symptômes précurseurs, mais certains patients présentant un coup de chaleur imminent peuvent présenter des symptômes et des signes de troubles du système nerveux central. Ils comprennent les maux de tête, les nausées, les étourdissements, la faiblesse, la somnolence, la confusion, l'anxiété, la désorientation, l'apathie, l'agressivité et les comportements irrationnels, les tremblements, les contractions musculaires et les convulsions. Une fois le coup de chaleur survenu, des troubles du système nerveux central sont présents dans tous les cas. Le niveau de conscience est souvent déprimé, le coma profond étant le plus fréquent. Les convulsions surviennent dans la majorité des cas, en particulier chez les personnes en bonne forme physique. Les signes de dysfonctionnement cérébelleux sont importants et peuvent persister. Des pupilles pointues sont fréquemment observées. L'ataxie cérébelleuse (manque de coordination musculaire), l'hémiplégie (paralysie d'un côté du corps), l'aphasie et l'instabilité émotionnelle peuvent persister chez certains survivants.

        Des vomissements et de la diarrhée surviennent souvent. La tachypnée (respiration rapide) est généralement présente initialement et le pouls peut être faible et rapide. L'hypotension, l'une des complications les plus courantes, résulte d'une déshydratation marquée, d'une vasodilatation périphérique étendue et d'une éventuelle dépression du muscle cardiaque. Une insuffisance rénale aiguë peut être observée dans les cas graves, en particulier lors d'un coup de chaleur induit par l'effort.

        Les hémorragies surviennent dans tous les organes parenchymateux, dans la peau (où elles sont appelées pétéchies) et dans le tractus gastro-intestinal dans les cas graves. Les manifestations hémorragiques cliniques comprennent le méléna (selles sombres et goudronneuses), l'hématémèse (vomissements sanguins), l'hématurie (urine sanglante), l'hémoptysie (crachats de sang), l'épistaxis (saignement de nez), le purpura (taches violettes), l'ecchymose (marques noires et bleues) et hémorragie conjonctivale. La coagulation intravasculaire est fréquente. La diathèse hémorragique (tendance hémorragique) est généralement associée à une coagulation intravasculaire disséminée (CIVD). La DIC survient principalement dans les coups de chaleur induits par l'effort, où l'activité fibrinolytique (dissolution des caillots) du plasma est augmentée. D'autre part, une diminution du nombre de plaquettes, un allongement du temps de prothrombine, une déplétion des facteurs de coagulation et une augmentation du niveau des produits de dégradation de la fibrine (FDP) sont provoqués par l'hyperthermie du corps entier. Les patients présentant des signes de DIC et des saignements ont une température centrale plus élevée, une pression artérielle plus basse, un pH et une pO du sang artériel plus bas2, une incidence plus élevée d'oligurie ou d'anurie et de choc, et un taux de mortalité plus élevé.

        Le choc est également une complication fréquente. Elle est attribuable à une insuffisance circulatoire périphérique et est aggravée par la DIC, qui provoque la dissémination de caillots dans le système microcirculatoire.

        Traitement du coup de chaleur

        Le coup de chaleur est une urgence médicale qui nécessite un diagnostic rapide et un traitement rapide et agressif pour sauver la vie du patient. Une mesure correcte de la température centrale est obligatoire : la température rectale ou œsophagienne doit être mesurée à l'aide d'un thermomètre pouvant lire jusqu'à 45 °C. La mesure des températures buccales et axillaires doit être évitée car elles peuvent varier considérablement de la température centrale réelle.

        L'objectif des mesures de traitement est d'abaisser la température corporelle en réduisant la charge thermique et en favorisant la dissipation de la chaleur de la peau. Le traitement comprend le déplacement du patient dans un endroit sûr, frais, ombragé et bien ventilé, le retrait des vêtements inutiles et l'éventation. Le refroidissement du visage et de la tête peut favoriser un refroidissement bénéfique du cerveau.

        L'efficacité de certaines techniques de refroidissement a été remise en question. Il a été avancé que le fait de placer des compresses froides sur les principaux vaisseaux sanguins du cou, de l'aine et des aisselles et d'immerger le corps dans de l'eau froide ou de le recouvrir de serviettes glacées peut favoriser les frissons et la vasoconstriction cutanée, empêchant ainsi l'efficacité du refroidissement. Traditionnellement, l'immersion dans un bain d'eau glacée, associée à un massage vigoureux de la peau pour minimiser la vasoconstriction cutanée, a été recommandée comme traitement de choix, une fois que le patient est amené dans un établissement médical. Cette méthode de refroidissement présente plusieurs inconvénients : il y a les difficultés d'allaitement posées par la nécessité d'administrer de l'oxygène et des fluides et de surveiller en permanence la tension artérielle et l'électrocardiogramme, et il y a les problèmes hygiéniques de contamination du bain par les vomissures et la diarrhée des personnes comateuses. les patients. Une approche alternative consiste à pulvériser une brume fraîche sur le corps du patient tout en ventilant pour favoriser l'évaporation de la peau. Cette méthode de refroidissement peut réduire la température à cœur de 0.03 à 0.06 ºC/min.

        Des mesures pour prévenir les convulsions, les convulsions et les frissons doivent également être initiées immédiatement. La surveillance cardiaque continue et la détermination des taux d'électrolytes sériques et l'analyse des gaz sanguins artériels et veineux sont essentielles, et la perfusion intraveineuse de solutions d'électrolytes à une température relativement basse d'environ 10 °C, associée à une oxygénothérapie contrôlée, doit être commencée en temps opportun. L'intubation trachéale pour protéger les voies respiratoires, l'insertion d'un cathéter cardiaque pour estimer la pression veineuse centrale, la mise en place d'une sonde gastrique et l'insertion d'une sonde urinaire peuvent également être incluses parmi les mesures supplémentaires recommandées.

        Prévention des coups de chaleur

        Pour la prévention du coup de chaleur, une grande variété de facteurs humains doivent être pris en compte, tels que l'acclimatation, l'âge, la corpulence, l'état de santé général, la consommation d'eau et de sel, les vêtements, les particularités de la dévotion religieuse et l'ignorance ou la tendance à la négligence, réglementations destinées à promouvoir la santé publique.

        Préalablement à un effort physique dans un environnement chaud, les travailleurs, sportifs ou pèlerins doivent être informés de la charge de travail et du niveau de stress thermique qu'ils peuvent rencontrer, ainsi que des risques de coup de chaleur. Une période d'acclimatation est recommandée avant de risquer une activité physique vigoureuse et/ou une exposition sévère. Le niveau d'activité doit être adapté à la température ambiante et l'effort physique doit être évité ou au moins minimisé pendant les heures les plus chaudes de la journée. Pendant l'effort physique, l'accès gratuit à l'eau est obligatoire. Étant donné que les électrolytes sont perdus dans la sueur et que la possibilité d'ingestion volontaire d'eau peut être limitée, retardant ainsi la restitution de la déshydratation thermique, les électrolytes doivent également être remplacés en cas de transpiration abondante. Une tenue vestimentaire appropriée est également une mesure importante. Les vêtements composés de tissus à la fois absorbants et perméables à l'air et à la vapeur d'eau facilitent l'évacuation de la chaleur.

        Problèmes de Peau

        conteneurs est le trouble cutané le plus courant associé à la charge thermique. Cela se produit lorsque la diffusion de la sueur sur la surface de la peau est empêchée en raison de l'obstruction des canaux sudoripares. Le syndrome de rétention de la sueur survient lorsque l'anhidrose (incapacité à évacuer la sueur) est répandue sur la surface du corps et prédispose le patient au coup de chaleur.

        La miliaire est généralement induite par un effort physique dans un environnement chaud et humide; par les maladies fébriles ; par l'application de compresses humides, de bandages, de plâtres ou de pansements adhésifs ; et en portant des vêtements peu perméables. La miliaire peut être classée en trois types, selon la profondeur de la rétention de sueur : miliaire cristalline, miliaire rubra et miliaire profonde.

        La miliaire cristalline est causée par la rétention de sueur à l'intérieur ou juste en dessous de la couche cornée de la peau, où l'on peut voir de minuscules cloques claires et non inflammatoires. Ils apparaissent généralement dans les "récoltes" après un coup de soleil grave ou lors d'une maladie fébrile. Ce type de miliaire est par ailleurs asymptomatique, le moins pénible, et guérit spontanément en quelques jours, lorsque les vésicules éclatent pour laisser des squames.

        La miliaria rubra survient lorsqu'une charge thermique intense provoque une transpiration prolongée et abondante. C'est le type de miliaire le plus courant, dans lequel la sueur s'accumule dans l'épiderme. Des papules rouges, des vésicules ou des pustules se forment, accompagnées de sensations de brûlure et de démangeaisons (chaleur épineuse). Le conduit sudoral est bouché au niveau de la partie terminale. La production du bouchon est attribuable à l'action des bactéries aérobies résidentes, notamment les cocci, qui se multiplient fortement dans la couche cornée lorsqu'elle est hydratée par la sueur. Ils sécrètent une toxine qui endommage les cellules épithéliales cornées du canal sudoripare et provoque une réaction inflammatoire, précipitant un plâtre dans la lumière du canal sudoripare. L'infiltration par les leucocytes crée une impaction qui obstrue complètement le passage de la sueur pendant plusieurs semaines.

        Dans la miliaire profonde, la sueur est retenue dans le derme et produit des papules plates et inflammatoires, des nodules et des abcès, avec moins de démangeaisons que dans la miliaire rouge. La présence de ce type de miliaire est généralement confinée aux tropiques. Il peut se développer dans une séquence progressive à partir de la miliaria rubra après des épisodes répétés de transpiration abondante, la réaction inflammatoire s'étendant vers le bas à partir des couches supérieures de la peau.

        Asthénie anhidrotique tropicale. Le terme est devenu monnaie courante pendant la Seconde Guerre mondiale, lorsque les troupes déployées sur des théâtres tropicaux ont souffert d'éruptions cutanées et d'intolérance à la chaleur. C'est une modalité du syndrome de rétention de la sueur rencontrée dans les environnements tropicaux chauds et humides. Elle se caractérise par une anhidrose et des éruptions cutanées de type miliaire, accompagnées de symptômes de congestion due à la chaleur, tels que palpitations, pulsations rapides, hyperthermie, maux de tête, faiblesse et incapacité progressive à rapide à tolérer une activité physique à la chaleur. Elle est généralement précédée d'une miliaria rubra généralisée.

        Traitement. Le traitement initial et essentiel de la miliaire et du syndrome de rétention de sueur consiste à transférer la personne atteinte dans un environnement frais. Des douches fraîches et un séchage doux de la peau ainsi que l'application d'une lotion à la calamine peuvent atténuer la détresse du patient. L'application de bactériostatiques chimiques est efficace pour empêcher l'expansion de la microflore et est préférable à l'utilisation d'antibiotiques, qui peuvent conduire ces micro-organismes à acquérir une résistance.

        Les impactions dans le canal sudoripare disparaissent après environ 3 semaines à la suite du renouvellement épidermique.

         

        Noir

        Mercredi, Mars 16 2011 21: 41

        Prévention du stress thermique

        Bien que les êtres humains possèdent une capacité considérable à compenser le stress thermique naturel, de nombreux environnements professionnels et/ou activités physiques exposent les travailleurs à des charges thermiques si excessives qu'elles menacent leur santé et leur productivité. Dans cet article, une variété de techniques sont décrites qui peuvent être utilisées pour minimiser l'incidence des troubles liés à la chaleur et réduire la gravité des cas lorsqu'ils se produisent. Les interventions se répartissent en cinq catégories : maximiser la tolérance à la chaleur chez les personnes exposées, assurer le remplacement rapide des fluides et des électrolytes perdus, modifier les pratiques de travail pour réduire la charge thermique d'effort, contrôler techniquement les conditions climatiques et utiliser des vêtements de protection.

        Les facteurs extérieurs au chantier pouvant affecter la tolérance thermique ne doivent pas être ignorés dans l'évaluation de l'étendue de l'exposition et par conséquent dans l'élaboration de stratégies de prévention. Par exemple, la charge physiologique totale et la susceptibilité potentielle aux troubles liés à la chaleur seront beaucoup plus élevées si le stress thermique se poursuit pendant les heures de repos par le biais d'un deuxième emploi, d'activités de loisirs intenses ou de la vie dans des locaux constamment chauds. De plus, l'état nutritionnel et l'hydratation peuvent refléter les habitudes alimentaires et de boisson, qui peuvent également changer avec la saison ou les observances religieuses.

        Maximiser la tolérance individuelle à la chaleur

        Les candidats aux métiers chauds doivent être généralement en bonne santé et posséder des qualités physiques adaptées au travail à effectuer. L'obésité et les maladies cardiovasculaires sont des conditions qui ajoutent aux risques, et les personnes ayant des antécédents de maladies inexpliquées ou répétitives liées à la chaleur ne devraient pas être affectées à des tâches impliquant un stress thermique sévère. Diverses caractéristiques physiques et physiologiques susceptibles d'affecter la tolérance à la chaleur sont décrites ci-dessous et se répartissent en deux catégories générales : les caractéristiques inhérentes indépendantes de la volonté de l'individu, telles que la taille, le sexe, l'origine ethnique et l'âge ; et les caractéristiques acquises, qui sont au moins en partie soumises à un contrôle et comprennent la forme physique, l'acclimatation à la chaleur, l'obésité, les conditions médicales et le stress auto-induit.

        Les travailleurs devraient être informés de la nature du stress thermique et de ses effets néfastes ainsi que des mesures de protection prévues sur le lieu de travail. Il faut leur apprendre que la tolérance à la chaleur dépend dans une large mesure du fait de boire suffisamment d'eau et d'avoir une alimentation équilibrée. De plus, les travailleurs devraient être informés des signes et symptômes des troubles liés à la chaleur, qui comprennent les étourdissements, les évanouissements, l'essoufflement, les palpitations et la soif extrême. Ils devraient également apprendre les bases des premiers secours et savoir où appeler à l'aide lorsqu'ils reconnaissent ces signes en eux-mêmes ou chez les autres.

        La direction devrait mettre en place un système de signalement des incidents liés à la chaleur au travail. La survenue de troubles liés à la chaleur chez plus d'une personne - ou à plusieurs reprises chez une seule personne - est souvent un avertissement de problèmes graves imminents et indique la nécessité d'une évaluation immédiate de l'environnement de travail et d'un examen de l'adéquation des mesures préventives.

        Caractéristiques humaines affectant l'adaptation

        Dimensions du corps. Les enfants et les adultes de très petite taille sont confrontés à deux inconvénients potentiels pour travailler dans des environnements chauds. Tout d'abord, le travail imposé de l'extérieur représente une charge relative plus importante pour un corps à faible masse musculaire, induisant une élévation plus importante de la température centrale du corps et une apparition plus rapide de la fatigue. De plus, le rapport surface/masse plus élevé des personnes de petite taille peut être un inconvénient dans des conditions extrêmement chaudes. Ensemble, ces facteurs peuvent expliquer pourquoi les hommes pesant moins de 50 kg présentaient un risque accru de malaise dû à la chaleur dans les activités minières profondes.

        Le genre. Les premières études de laboratoire sur les femmes semblaient montrer qu'elles étaient relativement intolérantes au travail dans la chaleur, par rapport aux hommes. Cependant, nous reconnaissons maintenant que presque toutes les différences peuvent être expliquées en termes de taille corporelle et de niveaux acquis de forme physique et d'acclimatation à la chaleur. Cependant, il existe des différences mineures entre les sexes dans les mécanismes de dissipation de la chaleur : des taux de sudation maximaux plus élevés chez les hommes peuvent améliorer la tolérance aux environnements extrêmement chauds et secs, tandis que les femmes sont mieux à même de supprimer la transpiration excessive et donc de conserver l'eau corporelle et donc la chaleur dans les environnements chauds et humides. . Bien que le cycle menstruel soit associé à un changement de la température corporelle basale et modifie légèrement les réponses thermorégulatrices chez les femmes, ces ajustements physiologiques sont trop subtils pour influencer la tolérance à la chaleur et l'efficacité thermorégulatrice dans des situations de travail réelles.

        Lorsque l'on tient compte du physique et de la forme physique individuels, les hommes et les femmes sont essentiellement les mêmes dans leurs réponses au stress thermique et dans leur capacité à s'acclimater au travail dans des conditions chaudes. Pour cette raison, la sélection des travailleurs pour les emplois à chaud devrait être basée sur la santé et la capacité physique individuelles, et non sur le sexe. Les individus très petits ou sédentaires des deux sexes montreront une faible tolérance au travail en chaleur.

        L'effet de la grossesse sur la tolérance à la chaleur des femmes n'est pas clair, mais des niveaux hormonaux modifiés et les demandes circulatoires accrues du fœtus sur la mère peuvent augmenter sa susceptibilité à l'évanouissement. L'hyperthermie maternelle sévère (surchauffe) due à la maladie semble augmenter l'incidence des malformations fœtales, mais il n'y a aucune preuve d'un effet similaire du stress thermique professionnel.

        Ethnicité Bien que divers groupes ethniques soient originaires de climats différents, il existe peu de preuves de différences inhérentes ou génétiques en réponse au stress thermique. Tous les humains semblent fonctionner comme des animaux tropicaux ; leur capacité à vivre et à travailler dans une gamme de conditions thermiques reflète l'adaptation par un comportement complexe et le développement de la technologie. Les différences ethniques apparentes en réponse au stress thermique sont probablement liées à la taille corporelle, à l'histoire de vie individuelle et à l'état nutritionnel plutôt qu'à des traits inhérents.

        Âge. Les populations industrielles montrent généralement un déclin progressif de la tolérance à la chaleur après l'âge de 50 ans. Il existe certaines preuves d'une réduction obligatoire, associée à l'âge, de la vasodilatation cutanée (élargissement de la cavité des vaisseaux sanguins de la peau) et du taux de sudation maximal, mais la plupart des Le changement peut être attribué à des modifications du mode de vie qui réduisent l'activité physique et augmentent l'accumulation de graisse corporelle. L'âge ne semble pas altérer la tolérance à la chaleur ou la capacité à s'acclimater si l'individu maintient un niveau élevé de conditionnement aérobie. Cependant, les populations vieillissantes sont sujettes à une incidence croissante de maladies cardiovasculaires ou d'autres pathologies qui peuvent altérer la tolérance individuelle à la chaleur.

        Forme physique. Capacité aérobie maximale (VO2 max) est probablement le déterminant unique le plus important de la capacité d'un individu à effectuer un travail physique soutenu dans des conditions de chaleur. Comme indiqué ci-dessus, les premières découvertes de différences de groupe dans la tolérance à la chaleur qui étaient attribuées au sexe, à la race ou à l'âge sont maintenant considérées comme des manifestations de la capacité aérobie et de l'acclimatation à la chaleur.

        L'induction et le maintien d'une capacité de travail élevée nécessitent des défis répétitifs du système de transport de l'oxygène du corps par des exercices vigoureux pendant au moins 30 à 40 min, 3 à 4 jours par semaine. Dans certains cas, l'activité au travail peut fournir l'entraînement physique nécessaire, mais la plupart des emplois industriels sont moins pénibles et nécessitent une supplémentation par le biais d'un programme d'exercices réguliers pour une forme physique optimale.

        La perte de capacité aérobie (désentraînement) est relativement lente, de sorte que les week-ends ou les vacances de 1 à 2 semaines n'entraînent que des changements minimes. Les baisses graves de la capacité aérobie sont plus susceptibles de se produire au fil des semaines ou des mois lorsqu'une blessure, une maladie chronique ou un autre stress amène l'individu à modifier son mode de vie.

        Acclimatation à la chaleur. L'acclimatation au travail dans la chaleur peut accroître considérablement la tolérance humaine à un tel stress, de sorte qu'une tâche initialement au-delà des capacités de la personne non acclimatée peut devenir un travail plus facile après une période d'adaptation progressive. Les personnes ayant une bonne forme physique affichent généralement une acclimatation partielle à la chaleur et sont capables de terminer le processus plus rapidement et avec moins de stress que les personnes sédentaires. La saison peut également affecter le temps qui doit être accordé pour l'acclimatation; les travailleurs recrutés en été peuvent déjà être en partie acclimatés à la chaleur, tandis que les embauches en hiver nécessiteront une période d'adaptation plus longue.

        Dans la plupart des situations, l'acclimatation peut être induite par une introduction progressive du travailleur à la tâche brûlante. Par exemple, la nouvelle recrue peut être affectée à des travaux à chaud uniquement le matin ou pour des périodes de temps progressivement croissantes au cours des premiers jours. Une telle acclimatation sur le tas devrait avoir lieu sous la surveillance étroite d'un personnel expérimenté; le nouveau travailleur devrait avoir l'autorisation permanente de se retirer dans des conditions plus fraîches chaque fois que des symptômes d'intolérance se manifestent. Des conditions extrêmes peuvent justifier un protocole formel d'exposition progressive à la chaleur, comme celui utilisé pour les travailleurs des mines d'or sud-africaines.

        Le maintien d'une acclimatation complète à la chaleur nécessite une exposition au travail dans la chaleur trois à quatre fois par semaine; une fréquence plus faible ou une exposition passive à la chaleur ont un effet beaucoup plus faible et peuvent permettre une diminution progressive de la tolérance à la chaleur. Cependant, les week-ends de congé n'ont aucun effet mesurable sur l'acclimatation. L'arrêt de l'exposition pendant 2 à 3 semaines entraînera une perte de la majeure partie de l'acclimatation, bien qu'une partie soit conservée chez les personnes exposées au temps chaud et/ou à l'exercice aérobique régulier.

        Obésité. Une teneur élevée en graisse corporelle a peu d'effet direct sur la thermorégulation, car la dissipation de la chaleur au niveau de la peau implique des capillaires et des glandes sudoripares qui se trouvent plus près de la surface de la peau que la couche de graisse sous-cutanée de la peau. Cependant, les personnes obèses sont handicapées par leur surpoids car chaque mouvement demande un effort musculaire plus important et génère donc plus de chaleur que chez une personne maigre. De plus, l'obésité reflète souvent un mode de vie inactif avec une capacité aérobie réduite et une absence d'acclimatation à la chaleur.

        Conditions médicales et autres stress. La tolérance à la chaleur d'un travailleur un jour donné peut être altérée par diverses conditions. Les exemples incluent une maladie fébrile (température corporelle supérieure à la normale), une immunisation récente ou une gastro-entérite associée à une perturbation de l'équilibre hydrique et électrolytique. Les affections cutanées telles que les coups de soleil et les éruptions cutanées peuvent limiter la capacité à sécréter de la sueur. De plus, la sensibilité aux maladies causées par la chaleur peut être augmentée par des médicaments sur ordonnance, notamment des sympathomimétiques, des anticholinergiques, des diurétiques, des phénothiazines, des antidépresseurs cycliques et des inhibiteurs de la monoamine-oxydase.

        L'alcool est un problème courant et grave chez ceux qui travaillent dans la chaleur. L'alcool altère non seulement la consommation de nourriture et d'eau, mais agit également comme un diurétique (augmentation de la miction) et perturbe le jugement. Les effets néfastes de l'alcool se prolongent plusieurs heures après le moment de la consommation. Les alcooliques qui souffrent d'un coup de chaleur ont un taux de mortalité beaucoup plus élevé que les patients non alcooliques.

        Remplacement oral de l'eau et des électrolytes

        Hydratation. L'évaporation de la sueur est la principale voie de dissipation de la chaleur corporelle et devient le seul mécanisme de refroidissement possible lorsque la température de l'air dépasse la température corporelle. Les besoins en eau ne peuvent pas être réduits par la formation, mais uniquement en abaissant la charge thermique du travailleur. La perte d'eau humaine et la réhydratation ont été largement étudiées ces dernières années, et plus d'informations sont maintenant disponibles.

        Un être humain pesant 70 kg peut transpirer à un rythme de 1.5 à 2.0 l/h indéfiniment, et il est possible pour un travailleur de perdre plusieurs litres ou jusqu'à 10 % de son poids corporel au cours d'une journée dans un environnement extrêmement chaud. Une telle perte serait incapacitante à moins qu'au moins une partie de l'eau ne soit remplacée pendant le quart de travail. Cependant, étant donné que l'absorption d'eau par l'intestin culmine à environ 1.5 l/h pendant le travail, des taux de sudation plus élevés produiront une déshydratation cumulative tout au long de la journée.

        Boire pour étancher la soif n'est pas suffisant pour garder une personne bien hydratée. La plupart des gens ne prennent conscience de la soif qu'après avoir perdu 1 à 2 l d'eau corporelle, et les personnes très motivées pour effectuer un travail acharné peuvent subir des pertes de 3 à 4 l avant que la soif bruyante ne les oblige à s'arrêter et à boire. Paradoxalement, la déshydratation réduit la capacité à absorber l'eau de l'intestin. Par conséquent, les travailleurs des métiers chauds doivent être sensibilisés à l'importance de boire suffisamment d'eau pendant le travail et de continuer à se réhydrater généreusement pendant les heures de repos. Il faut aussi leur apprendre la valeur de la « préhydratation » - consommer une grande quantité d'eau immédiatement avant le début d'un stress thermique intense - car la chaleur et l'exercice empêchent le corps d'éliminer l'excès d'eau dans l'urine.

        La direction doit fournir un accès facile à l'eau ou à d'autres boissons appropriées qui favorisent la réhydratation. Tout obstacle physique ou procédural à la consommation d'alcool favorisera la déshydratation «volontaire» qui prédispose aux coups de chaleur. Les détails suivants sont essentiels à tout programme de maintien de l'hydratation :

        • De l'eau salubre et salubre doit être située à quelques pas de chaque travailleur ou apportée au travailleur toutes les heures, plus fréquemment dans les conditions les plus stressantes.
        • Des gobelets hygiéniques doivent être fournis, car il est presque impossible de se réhydrater à partir d'une fontaine à eau.
        • Les contenants d'eau doivent être ombragés ou refroidis à 15 à 20 ºC (les boissons glacées ne sont pas idéales car elles ont tendance à inhiber la consommation).

         

        Des arômes peuvent être utilisés pour améliorer l'acceptation de l'eau. Cependant, les boissons appréciées parce qu'elles « coupent » la soif ne sont pas recommandées, car elles inhibent la consommation avant que la réhydratation ne soit terminée. Pour cette raison, il est préférable de proposer de l'eau ou des boissons diluées et aromatisées et d'éviter la carbonatation, la caféine et les boissons fortement concentrées en sucre ou en sel.

        Nutrition. Bien que la sueur soit hypotonique (teneur en sel inférieure) par rapport au sérum sanguin, des taux de sudation élevés impliquent une perte continue de chlorure de sodium et de petites quantités de potassium, qui doivent être remplacées quotidiennement. De plus, le travail à la chaleur accélère le renouvellement des oligo-éléments dont le magnésium et le zinc. Tous ces éléments essentiels devraient normalement être obtenus à partir des aliments, de sorte que les travailleurs des métiers chauds devraient être encouragés à manger des repas bien équilibrés et à éviter de remplacer les barres chocolatées ou les collations, qui manquent d'éléments nutritionnels importants. Certains régimes alimentaires dans les pays industrialisés comprennent des niveaux élevés de chlorure de sodium, et les travailleurs qui suivent de tels régimes sont peu susceptibles de développer des déficits en sel ; mais d'autres régimes plus traditionnels peuvent ne pas contenir suffisamment de sel. Dans certaines conditions, il peut être nécessaire que l'employeur fournisse des collations salées ou d'autres aliments complémentaires pendant le quart de travail.

        Les pays industrialisés constatent une disponibilité accrue de « boissons pour sportifs » ou « désaltérants » qui contiennent du chlorure de sodium, du potassium et des glucides. L'élément vital de toute boisson est l'eau, mais les boissons électrolytiques peuvent être utiles chez les personnes qui ont déjà développé une déshydratation importante (perte d'eau) combinée à une déplétion électrolytique (perte de sel). Ces boissons sont généralement riches en sel et doivent être mélangées avec des volumes d'eau égaux ou supérieurs avant consommation. Un mélange beaucoup plus économique pour la réhydratation orale peut être réalisé selon la recette suivante : à un litre d'eau potable, ajouter 40 g de sucre (saccharose) et 6 g de sel (chlorure de sodium). Les travailleurs ne devraient pas recevoir de comprimés de sel, car ils sont facilement abusés et les surdoses entraînent des problèmes gastro-intestinaux, une augmentation de la production d'urine et une plus grande sensibilité aux maladies causées par la chaleur.

        Pratiques de travail modifiées

        L'objectif commun de la modification des pratiques de travail est de réduire l'exposition moyenne au stress thermique dans le temps et de la ramener dans des limites acceptables. Cela peut être accompli en réduisant la charge de travail physique imposée à un travailleur individuel ou en prévoyant des pauses appropriées pour la récupération thermique. En pratique, la production maximale de chaleur métabolique moyenne dans le temps est effectivement limitée à environ 350 W (5 kcal/min) car un travail plus dur induit une fatigue physique et un besoin de pauses proportionnelles.

        Les niveaux d'effort individuels peuvent être abaissés en réduisant le travail externe tel que le levage et en limitant la locomotion requise et la tension musculaire statique telle que celle associée à une posture inconfortable. Ces objectifs peuvent être atteints en optimisant la conception des tâches selon des principes ergonomiques, en fournissant des aides mécaniques ou en répartissant l'effort physique entre plusieurs travailleurs.

        La forme la plus simple de modification d'horaire consiste à permettre l'auto-rythme individuel. Les travailleurs industriels exécutant une tâche familière dans un climat doux s'arpenteront à un rythme qui produit une température rectale d'environ 38°C ; l'imposition d'un stress thermique les amène à ralentir volontairement le rythme de travail ou à prendre des pauses. Cette capacité à ajuster volontairement le rythme de travail dépend probablement de la prise de conscience du stress cardiovasculaire et de la fatigue. Les êtres humains ne peuvent pas détecter consciemment les élévations de la température corporelle centrale; ils s'appuient plutôt sur la température de la peau et l'humidité de la peau pour évaluer l'inconfort thermique.

        Une approche alternative à la modification des horaires est l'adoption de cycles travail-repos prescrits, où la direction spécifie la durée de chaque période de travail, la durée des pauses et le nombre de répétitions prévues. La récupération thermique prend beaucoup plus de temps que la période nécessaire pour abaisser la fréquence respiratoire et la fréquence cardiaque induite par le travail : L'abaissement de la température centrale aux niveaux de repos nécessite 30 à 40 minutes dans un environnement frais et sec, et prend plus de temps si la personne doit se reposer dans des conditions chaudes ou tout en portant des vêtements de protection. Si un niveau de production constant est requis, des équipes de travailleurs en alternance doivent être affectées séquentiellement à un travail à chaud suivi d'une récupération, cette dernière impliquant soit du repos, soit des tâches sédentaires effectuées dans un endroit frais.

        Climate Control

        Si le coût n'était pas un problème, tous les problèmes de stress thermique pourraient être résolus par l'application de techniques d'ingénierie pour convertir des environnements de travail hostiles en environnements hospitaliers. Une grande variété de techniques peuvent être utilisées en fonction des conditions spécifiques du lieu de travail et des ressources disponibles. Traditionnellement, les industries chaudes peuvent être divisées en deux catégories : dans les procédés à chaud et à sec, tels que la fonte des métaux et la production de verre, les travailleurs sont exposés à de l'air très chaud combiné à une forte charge de chaleur rayonnante, mais ces procédés ajoutent peu d'humidité à l'air. En revanche, les industries chaudes et humides telles que les usines de textile, la production de papier et l'exploitation minière impliquent moins de chauffage extrême mais créent des humidités très élevées en raison des processus humides et de la vapeur qui s'échappe.

        Les techniques les plus économiques de contrôle de l'environnement impliquent généralement la réduction du transfert de chaleur de la source à l'environnement. L'air chaud peut être évacué à l'extérieur de la zone de travail et remplacé par de l'air frais. Les surfaces chaudes peuvent être recouvertes d'isolant ou recevoir des revêtements réfléchissants pour réduire les émissions de chaleur, tout en conservant la chaleur nécessaire au processus industriel. Une deuxième ligne de défense est une ventilation à grande échelle de la zone de travail pour fournir un fort flux d'air extérieur. L'option la plus coûteuse est la climatisation pour refroidir et sécher l'atmosphère sur le lieu de travail. Bien que l'abaissement de la température de l'air n'affecte pas la transmission de la chaleur rayonnante, il aide à réduire la température des murs et des autres surfaces qui peuvent être des sources secondaires de chauffage convectif et radiatif.

        Lorsque le contrôle global de l'environnement s'avère peu pratique ou non économique, il peut être possible d'améliorer les conditions thermiques dans les zones de travail locales. Des enceintes climatisées peuvent être fournies dans l'espace de travail plus grand, ou un poste de travail spécifique peut être fourni avec un flux d'air frais ("refroidissement ponctuel" ou "douche à air"). Un écran réfléchissant local ou même portatif peut être interposé entre le travailleur et une source de chaleur rayonnante. Alternativement, les techniques d'ingénierie modernes peuvent permettre la construction de systèmes à distance pour contrôler les processus chauds afin que les travailleurs n'aient pas à être régulièrement exposés à des environnements thermiques très stressants.

        Lorsque le lieu de travail est ventilé avec de l'air extérieur ou que la capacité de climatisation est limitée, les conditions thermiques reflètent les changements climatiques, et des augmentations soudaines de la température et de l'humidité de l'air extérieur peuvent élever le stress thermique à des niveaux qui dépassent la tolérance à la chaleur des travailleurs. Par exemple, une vague de chaleur printanière peut précipiter une épidémie de maladies causées par la chaleur chez les travailleurs qui ne sont pas encore acclimatés à la chaleur comme ils le seraient en été. La direction devrait donc mettre en place un système de prévision des changements liés aux conditions météorologiques dans le stress thermique afin que des précautions puissent être prises en temps opportun.

        Vêtements de protection

        Le travail dans des conditions thermiques extrêmes peut nécessiter une protection thermique personnelle sous la forme de vêtements spécialisés. La protection passive est assurée par des vêtements isolants et réfléchissants ; l'isolation seule peut protéger la peau des transitoires thermiques. Des tabliers réfléchissants peuvent être utilisés pour protéger le personnel qui travaille face à une source rayonnante limitée. Les pompiers qui doivent faire face à des feux de combustibles extrêmement chauds portent des combinaisons appelées « bunkers », qui combinent une forte isolation contre l'air chaud avec une surface aluminisée pour réfléchir la chaleur rayonnante.

        Une autre forme de protection passive est le gilet de glace, qui est chargé de neige fondue ou de paquets de glace (ou de neige carbonique) et est porté par-dessus un maillot de corps pour éviter un refroidissement inconfortable de la peau. Le changement de phase de la fonte des glaces absorbe une partie de la charge thermique métabolique et environnementale de la zone couverte, mais la glace doit être remplacée à intervalles réguliers ; plus la charge calorifique est élevée, plus la glace doit être remplacée fréquemment. Les gilets anti-glace se sont avérés très utiles dans les mines profondes, les salles des machines des navires et d'autres environnements très chauds et humides où l'accès aux congélateurs peut être organisé.

        La protection thermique active est assurée par des vêtements refroidis par air ou par liquide qui couvrent tout le corps ou une partie de celui-ci, généralement le torse et parfois la tête.

        Refroidissement par air. Les systèmes les plus simples sont ventilés avec l'air ambiant ambiant ou avec de l'air comprimé refroidi par détente ou passage dans un dispositif vortex. De grands volumes d'air sont nécessaires; le débit de ventilation minimum pour une combinaison étanche est d'environ 450 l/min. Le refroidissement de l'air peut théoriquement avoir lieu par convection (changement de température) ou par évaporation de la sueur (changement de phase). Cependant, l'efficacité de la convection est limitée par la faible chaleur spécifique de l'air et la difficulté à la délivrer à basse température dans un environnement chaud. La plupart des vêtements refroidis par air fonctionnent donc par refroidissement par évaporation. Le travailleur subit un stress thermique modéré et une déshydratation concomitante, mais est capable de se thermoréguler grâce au contrôle naturel du taux de sudation. Le refroidissement par air améliore également le confort par sa tendance à assécher les sous-vêtements. Les inconvénients comprennent (1) la nécessité de connecter le sujet à la source d'air, (2) l'encombrement des vêtements de distribution d'air et (3) la difficulté de fournir de l'air aux membres.

        Refroidissement liquide. Ces systèmes font circuler un mélange eau-antigel à travers un réseau de canaux ou de petits tubes, puis renvoient le liquide réchauffé vers un dissipateur thermique qui élimine la chaleur ajoutée lors du passage sur le corps. Les débits de circulation de liquide sont généralement de l'ordre de 1 l/min. Le dissipateur thermique peut dissiper de l'énergie thermique dans l'environnement par évaporation, fusion, réfrigération ou processus thermoélectriques. Les vêtements refroidis par liquide offrent un potentiel de refroidissement bien supérieur à celui des systèmes à air. Une combinaison à couverture complète associée à un dissipateur de chaleur adéquat peut éliminer toute la chaleur métabolique et maintenir le confort thermique sans avoir besoin de transpirer ; un tel système est utilisé par les astronautes travaillant à l'extérieur de leur vaisseau spatial. Cependant, un mécanisme de refroidissement aussi puissant nécessite un certain type de système de contrôle du confort qui implique généralement le réglage manuel d'une vanne qui détourne une partie du liquide en circulation au-delà du dissipateur thermique. Les systèmes refroidis par liquide peuvent être configurés comme un sac à dos pour fournir un refroidissement continu pendant le travail.

        Tout dispositif de refroidissement qui ajoute du poids et de l'encombrement au corps humain, bien sûr, peut interférer avec le travail à accomplir. Par exemple, le poids d'un gilet de glace augmente considérablement le coût métabolique de la locomotion et est donc particulièrement utile pour les travaux physiques légers tels que la surveillance dans des compartiments chauds. Les systèmes qui attachent le travailleur à un dissipateur de chaleur ne sont pas pratiques pour de nombreux types de travail. Le refroidissement intermittent peut être utile lorsque les travailleurs doivent porter des vêtements de protection lourds (tels que des combinaisons de protection chimique) et ne peuvent pas porter de dissipateur thermique ou être attachés pendant qu'ils travaillent. Retirer la combinaison pour chaque repos prend du temps et implique une exposition toxique possible ; dans ces conditions, il est plus simple de faire porter aux travailleurs un vêtement rafraîchissant qui n'est attaché à un dissipateur thermique que pendant le repos, permettant une récupération thermique dans des conditions autrement inacceptables.

         

        Noir

        Mercredi, Mars 16 2011 21: 45

        La base physique du travail dans la chaleur

        Echanges thermiques

        Le corps humain échange de la chaleur avec son environnement par différentes voies : conduction à travers les surfaces en contact avec lui, convection et évaporation avec l'air ambiant, rayonnement avec les surfaces voisines.

        Conduction

        La conduction est la transmission de chaleur entre deux solides en contact. De tels échanges s'observent entre la peau et les vêtements, les chaussures, les points de pression (siège, poignées), les outils, etc. En pratique, dans le calcul mathématique du bilan thermique, ce flux de chaleur par conduction est approximé indirectement comme une quantité égale au flux de chaleur par convection et rayonnement qui aurait lieu si ces surfaces n'étaient pas en contact avec d'autres matériaux.

        Convection

        La convection est le transfert de chaleur entre la peau et l'air qui l'entoure. Si la température de la peau, tsk, en degrés Celsius (°C), est supérieure à la température de l'air (ta), l'air en contact avec la peau s'échauffe et par conséquent s'élève. Une circulation d'air, appelée convection naturelle, s'établit ainsi à la surface du corps. Cet échange devient plus important si l'air ambiant passe sur la peau à une certaine vitesse : la convection devient forcée. Le flux de chaleur échangé par convection, C, en unités de watts par mètre carré (W/m2), peut être estimée par :

        C = hc FCLC (tsk - ta)

        De hc est le coefficient de convection (W/°C m2), qui est fonction de la différence entre tsk ainsi que ta dans le cas de la convection naturelle, et de la vitesse de l'air Va (en m/s) en convection forcée ; FCLC est le facteur par lequel les vêtements réduisent l'échange de chaleur par convection.

        Radiation

        Tout corps émet un rayonnement électromagnétique dont l'intensité est fonction de la quatrième puissance de sa température absolue T (en degrés Kelvin—K). La peau, dont la température peut être comprise entre 30 et 35°C (303 et 308K), émet un tel rayonnement, qui se situe dans la zone infrarouge. De plus, il reçoit le rayonnement émis par les surfaces voisines. Le flux thermique échangé par rayonnement, R (en W/m2), entre le corps et son environnement peut être décrit par l'expression suivante :

        où:

        s est la constante universelle de rayonnement (5.67 × 10-8 W/m2 K4)

        e est l'émissivité de la peau, qui, pour le rayonnement infrarouge, est égale à 0.97 et indépendante de la longueur d'onde, et pour le rayonnement solaire est d'environ 0.5 pour la peau d'un sujet Blanc et 0.85 pour la peau d'un sujet Noir

        AR/AD est la fraction de la surface corporelle prenant part aux échanges, qui est de l'ordre de 0.66, 0.70 ou 0.77 selon que le sujet est accroupi, assis ou debout

        FCLR est le facteur par lequel les vêtements réduisent l'échange de chaleur par rayonnement

        Tsk (en K) est la température moyenne de la peau

        Tr (en K) est la température radiante moyenne du milieu, c'est-à-dire la température uniforme d'une sphère noire mate de grand diamètre qui entourerait le sujet et échangerait avec lui la même quantité de chaleur que le milieu réel.

        Cette expression peut être remplacée par une équation simplifiée du même type que celle des échanges par convection :

        R = hr (AR/AD) FCLR (tsk - Tr)

        De hr est le coefficient d'échange par rayonnement (W/°C m2).

        Évaporation

        Toute surface mouillée porte une couche d'air saturée de vapeur d'eau. Si l'atmosphère elle-même n'est pas saturée, la vapeur diffuse de cette couche vers l'atmosphère. La couche tend alors à se régénérer en puisant la chaleur d'évaporation (0.674 Watt heure par gramme d'eau) à la surface humide, qui se refroidit. Si la peau est entièrement recouverte de sueur, l'évaporation est maximale (Emax) et ne dépend que des conditions ambiantes, selon l'expression suivante :

        Emax =he FPCL (Psk, s - Pa)

        où:

        he est le coefficient d'échange par évaporation (W/m2kPa)

        Psk, s est la pression saturante de vapeur d'eau à la température de la peau (exprimée en kPa)

        Pa est la pression partielle ambiante de vapeur d'eau (exprimée en kPa)

        FPCL est le facteur de réduction des échanges par évaporation due aux vêtements.

        Isolation thermique des vêtements

        Un facteur de correction intervient dans le calcul des flux de chaleur par convection, rayonnement et évaporation pour tenir compte des vêtements. Dans le cas des vêtements en coton, les deux facteurs de réduction FCLC ainsi que FCLR peut être déterminé par :

        Fcl = 1/(1+(hc+hr)Icl)

        où:

        hc est le coefficient d'échange par convection

        hr est le coefficient d'échange par rayonnement

        Icl est l'isolation thermique effective (m2/W) de vêtements.

        En ce qui concerne la réduction du transfert de chaleur par évaporation, le facteur de correction FPCL est donné par l'expression suivante :

        FPCL = 1 / (1+2.22hc Icl)

        L'isolation thermique des vêtements Icl est exprimé en m2/W ou en clo. Une isolation de 1 clo correspond à 0.155 m2/W et est assuré, par exemple, par une tenue de ville normale (chemise, cravate, pantalon, veste, etc.).

        La norme ISO 9920 (1994) donne l'isolation thermique apportée par différentes combinaisons de vêtements. Dans le cas de vêtements de protection spéciaux qui réfléchissent la chaleur ou limitent la perméabilité à la vapeur dans des conditions d'exposition à la chaleur, ou qui absorbent et isolent dans des conditions de stress dû au froid, des facteurs de correction individuels doivent être utilisés. A ce jour, cependant, le problème reste mal compris et les prédictions mathématiques restent très approximatives.

        Évaluation des paramètres de base de la situation de travail

        Comme on l'a vu plus haut, les échanges thermiques par convection, rayonnement et évaporation sont fonction de quatre paramètres climatiques : la température de l'air ta en °C, l'humidité de l'air exprimée par sa pression partielle de vapeur Pa en kPa, la température radiante moyenne tr en °C, et la vitesse de l'air Va en m/s. Les appareils et méthodes de mesure de ces paramètres physiques de l'environnement font l'objet de la norme ISO 7726 (1985) qui décrit les différents types de capteurs à utiliser, précise leur domaine de mesure et leur précision, et recommande certaines procédures de mesure. Cette section résume une partie des données de cette norme, avec une référence particulière aux conditions d'utilisation des appareils et appareils les plus courants.

        Température de l'air

        La température de l'air (ta) doit être mesuré indépendamment de tout rayonnement thermique ; la précision de la mesure doit être de ± 0.2 °C dans la plage de 10 à 30 °C et de ± 0.5 °C en dehors de cette plage.

        Il existe de nombreux types de thermomètres sur le marché. Les thermomètres à mercure sont les plus courants. Leur avantage est la précision, à condition qu'ils aient été correctement calibrés à l'origine. Leurs principaux inconvénients sont leur long temps de réponse et le manque de capacité d'enregistrement automatique. Les thermomètres électroniques, en revanche, ont généralement un temps de réponse très court (5 s à 1 min) mais peuvent avoir des problèmes d'étalonnage.

        Quel que soit le type de thermomètre, le capteur doit être protégé contre les radiations. Ceci est généralement assuré par un cylindre creux en aluminium brillant entourant le capteur. Cette protection est assurée par le psychromètre, dont il sera question dans la section suivante.

        Pression partielle de vapeur d'eau

        L'humidité de l'air peut être caractérisée de quatre manières différentes :

        1. le température du point de rosée : la température à laquelle l'air doit être refroidi pour se saturer en humidité (td, °C)

        2. le pression partielle de vapeur d'eau : la fraction de la pression atmosphérique due à la vapeur d'eau (Pa,kPa)

        3. l'humidité relative (DR), qui est donné par l'expression :

        RH = 100·Pa/PS, ta

        où PS, ta est la pression de vapeur saturante associée à la température de l'air

        4. le température humide (tw), qui est la température la plus basse atteinte par un manchon humide protégé contre les rayonnements et ventilé à plus de 2 m/s par l'air ambiant.

        Toutes ces valeurs sont liées mathématiquement.

        La pression de vapeur d'eau saturante PSt à n'importe quelle température t est donné par:

        tandis que la pression partielle de vapeur d'eau est reliée à la température par :

        Pa = PS, deux - (ta - Tw)/15

        De PS, deux est la pression de vapeur saturante à la température de bulbe humide.

        Le diagramme psychrométrique (figure 1) permet de combiner toutes ces valeurs. Il comporte:

        Figure 1. Diagramme psychrométrique.

        HEA010F1

        • dans l' y axe, l'échelle de pression partielle de vapeur d'eau Pa, exprimé en kPa
        • dans l' x l'axe, l'échelle de la température de l'air
        • les courbes d'humidité relative constante
        • les lignes droites obliques de température de bulbe humide constante.
        • Les paramètres d'humidité les plus utilisés en pratique sont :
        • l'humidité relative, mesurée au moyen d'hygromètres ou d'appareils électroniques plus spécialisés
        • la température de bulbe humide, mesurée au moyen du psychromètre; on en déduit la pression partielle de vapeur d'eau, qui est le paramètre le plus utilisé dans l'analyse du bilan thermique

         

        La plage de mesure et la précision recommandées sont de 0.5 à 6 kPa et ±0.15 kPa. Pour la mesure de la température de bulbe humide, la plage s'étend de 0 à 36°C, avec une précision identique à celle de la température de l'air. En ce qui concerne les hygromètres pour mesurer l'humidité relative, la gamme s'étend de 0 à 100 %, avec une précision de ± 5 %.

        Température radiante moyenne

        La température radiante moyenne (tr) a été défini précédemment ; il peut être déterminé de trois manières différentes :

        1. à partir de la température mesurée par le thermomètre à sphère noire

        2. à partir des températures radiantes planes mesurées selon trois axes perpendiculaires

        3. par calcul, en intégrant les effets des différentes sources de rayonnement.

        Seule la première technique sera passée en revue ici.

        Le thermomètre à sphère noire est constitué d'une sonde thermique dont l'élément sensible est placé au centre d'une sphère complètement fermée, réalisée en un métal bon conducteur de la chaleur (cuivre) et peinte en noir mat de manière à avoir un coefficient d'absorption dans la zone infrarouge proche de 1.0. La sphère est positionnée dans le poste de travail et soumise à des échanges par convection et rayonnement. La température du globe (tg) dépend alors de la température radiante moyenne, de la température de l'air et de la vitesse de l'air.

        Pour un globe noir standard de 15 cm de diamètre, la température moyenne de rayonnement peut être calculée à partir de la température du globe sur la base de l'expression suivante :

        En pratique, il faut insister sur la nécessité de maintenir l'émissivité du globe proche de 1.0 en le repeignant soigneusement en noir mat.

        La principale limitation de ce type de globe est son long temps de réponse (de l'ordre de 20 à 30 min, selon le type de globe utilisé et les conditions ambiantes). La mesure n'est valable que si les conditions de rayonnement sont constantes pendant cette période de temps, ce qui n'est pas toujours le cas en milieu industriel ; la mesure est alors imprécise. Ces temps de réponse s'appliquent à des globes de 15 cm de diamètre, utilisant des thermomètres à mercure ordinaires. Ils sont plus courts si l'on utilise des capteurs de moindre capacité thermique ou si le diamètre du globe est réduit. L'équation ci-dessus doit donc être modifiée pour tenir compte de cette différence de diamètre.

        L'indice WBGT utilise directement la température du globe noir. Il est alors indispensable d'utiliser un globe de 15 cm de diamètre. Par contre, d'autres indices utilisent la température radiante moyenne. Un globe plus petit peut alors être sélectionné pour réduire le temps de réponse, à condition de modifier l'équation ci-dessus pour en tenir compte. La norme ISO 7726 (1985) permet une précision de ±2ºC dans la mesure de tr entre 10 et 40 ºC et ± 5 ºC en dehors de cette plage.

        Vitesse de l'air

        La vitesse de l'air doit être mesurée sans tenir compte de la direction du flux d'air. Sinon, la mesure doit être effectuée selon trois axes perpendiculaires (x, y ainsi que z) et la vitesse globale calculée par sommation vectorielle :

        La gamme de mesures préconisée par la norme ISO 7726 s'étend de 0.05 à 2 m/s La précision requise est de 5 %. Il doit être mesuré en tant que valeur moyenne sur 1 ou 3 minutes.

        Il existe deux catégories d'appareils de mesure de la vitesse de l'air : les anémomètres à palettes et les anémomètres thermiques.

        Anémomètres à palette

        La mesure s'effectue en comptant le nombre de tours effectués par les aubes pendant un certain laps de temps. De cette manière, la vitesse moyenne pendant cette période de temps est obtenue de manière discontinue. Ces anémomètres présentent deux inconvénients principaux :

        1. Ils sont très directionnels et doivent être orientés strictement dans le sens du flux d'air. Lorsque celle-ci est vague ou inconnue, les mesures doivent être prises dans trois directions à angle droit.
        2. La plage de mesure s'étend d'environ 0.3 m/s à 10 m/s. Cette limitation aux faibles vitesses est importante lorsqu'il s'agit par exemple d'analyser une situation de confort thermique où il est généralement recommandé de ne pas dépasser une vitesse de 0.25 m/s. Bien que la plage de mesure puisse s'étendre au-delà de 10 m/s, elle ne descend guère en dessous de 0.3 voire 0.5 m/s, ce qui limite fortement les possibilités d'utilisation dans des environnements proches du confort, où les vitesses maximales autorisées sont de 0.5 voire 0.25 m/ s.

        Anémomètres à fil chaud

        Ces appareils sont en effet complémentaires des anémomètres à palettes en ce sens que leur plage dynamique s'étend essentiellement de 0 à 1 m/s. Ce sont des appareils donnant une estimation instantanée de la vitesse en un point de l'espace : il faut donc utiliser des valeurs moyennes dans le temps et dans l'espace. Ces appareils sont aussi souvent très directionnels, et les remarques ci-dessus s'appliquent également. Enfin, la mesure n'est correcte qu'à partir du moment où la température de l'appareil a atteint celle de l'environnement à évaluer.

         

        Noir

        Le stress thermique se produit lorsque l'environnement d'une personne (température de l'air, température radiante, humidité et vitesse de l'air), les vêtements et l'activité interagissent pour produire une tendance à l'augmentation de la température corporelle. Le système de thermorégulation du corps réagit alors pour augmenter la perte de chaleur. Cette réponse peut être puissante et efficace, mais elle peut également produire une pression sur le corps qui conduit à un inconfort et éventuellement à une maladie due à la chaleur et même à la mort. Il est donc important d'évaluer les environnements chauds pour assurer la santé et la sécurité des travailleurs.

        Les indices de stress thermique fournissent des outils pour évaluer les environnements chauds et prédire la contrainte thermique probable sur le corps. Les valeurs limites basées sur les indices de contrainte thermique indiqueront quand cette contrainte est susceptible de devenir inacceptable.

        Les mécanismes du stress thermique sont généralement compris et les pratiques de travail pour les environnements chauds sont bien établies. Il s'agit notamment de la connaissance des signes avant-coureurs du stress thermique, des programmes d'acclimatation et du remplacement de l'eau. Cependant, il y a encore de nombreuses victimes et ces leçons semblent devoir être réapprises.

        En 1964, Leithead et Lind ont décrit une enquête approfondie et ont conclu que les troubles liés à la chaleur surviennent pour une ou plusieurs des trois raisons suivantes :

        1. l'existence de facteurs tels que la déshydratation ou le manque d'acclimatation
        2. la mauvaise appréciation des dangers de la chaleur, soit de la part de l'autorité de tutelle, soit des personnes à risque
        3. circonstances accidentelles ou imprévisibles entraînant une exposition à un stress thermique très élevé.

         

        Ils ont conclu que de nombreux décès peuvent être attribués à la négligence et au manque de considération et que même lorsque des troubles surviennent, beaucoup peut être fait si toutes les conditions requises pour un traitement correcteur correct et rapide sont réunies.

        Indices de stress thermique

        Un indice de stress thermique est un nombre unique qui intègre les effets des six paramètres de base dans tout environnement thermique humain de sorte que sa valeur varie avec la contrainte thermique subie par la personne exposée à un environnement chaud. La valeur de l'indice (mesurée ou calculée) peut être utilisée dans la conception ou dans la pratique du travail pour établir des limites de sécurité. De nombreuses recherches ont été consacrées à la détermination de l'indice de stress thermique définitif, et des discussions sont en cours pour déterminer lequel est le meilleur. Par exemple, Goldman (1988) présente 32 indices de stress thermique, et il y en a probablement au moins le double dans le monde. De nombreux indices ne prennent pas en compte les six paramètres de base, bien que tous doivent les prendre en considération dans l'application. L'utilisation d'indices dépendra des contextes individuels, d'où la production d'un si grand nombre. Certains indices sont théoriquement inadéquats mais peuvent être justifiés pour des applications spécifiques basées sur l'expérience dans une industrie particulière.

        Kerslake (1972) note que « Il est peut-être évident que la manière dont les facteurs environnementaux doivent être combinés doit dépendre des propriétés du sujet qui y est exposé, mais aucun des indices de stress thermique actuellement utilisés ne tient formellement compte de cela. ”. L'essor récent de la normalisation (par exemple, ISO 7933 (1989b) et ISO 7243 (1989a)) a conduit à des pressions pour adopter des indices similaires dans le monde entier. Il sera toutefois nécessaire d'acquérir de l'expérience dans l'utilisation de tout nouvel indice.

        La plupart des indices de stress thermique considèrent, directement ou indirectement, que la principale sollicitation du corps est due à la transpiration. Par exemple, plus la transpiration est nécessaire pour maintenir l'équilibre thermique et la température interne du corps, plus la pression exercée sur le corps est grande. Pour qu'un indice de stress thermique représente l'environnement thermique humain et prédise la contrainte thermique, un mécanisme est nécessaire pour estimer la capacité d'une personne qui transpire à perdre de la chaleur dans l'environnement chaud.

        Un indice lié à l'évaporation de la sueur dans l'environnement est utile lorsque les personnes maintiennent la température interne du corps essentiellement par la transpiration. On dit généralement que ces conditions sont dans le zone prescriptive (OMS 1969). Par conséquent, la température corporelle profonde reste relativement constante tandis que la fréquence cardiaque et le taux de sudation augmentent avec le stress thermique. À la limite supérieure de la zone prescriptive (ULPZ), la thermorégulation est insuffisante pour maintenir l'équilibre thermique et la température corporelle augmente. C'est ce qu'on appelle le zone écologique (OMS 1969). Dans cette zone, le stockage de chaleur est lié à l'augmentation de la température interne du corps et peut être utilisé comme indice pour déterminer les durées d'exposition admissibles (par exemple, sur la base d'une limite de sécurité prévue pour la température « à cœur » de 38 °C ; voir la figure 1).

        Figure 1. Répartition calculée de l'eau dans le compartiment extracellulaire (ECW) et le compartiment intracellulaire (ICW) avant et après 2 h de déshydratation à l'effort à une température ambiante de 30 °C.

        HEA080F1

        Les indices de stress thermique peuvent être commodément classés comme rationnel, empirique or . Les indices rationnels sont basés sur des calculs impliquant l'équation du bilan thermique; les indices empiriques sont basés sur l'établissement d'équations à partir des réponses physiologiques de sujets humains (par exemple, la perte de sueur) ; et les indices directs sont basés sur la mesure (généralement la température) des instruments utilisés pour simuler la réponse du corps humain. Les indices de stress thermique les plus influents et les plus largement utilisés sont décrits ci-dessous.

        Indices rationnels

        L'indice de stress thermique (HSI)

        L'indice de stress thermique est le rapport d'évaporation nécessaire pour maintenir l'équilibre thermique (Ereq) à l'évaporation maximale qui pourrait être atteinte dans l'environnement (Emax), exprimé en pourcentage (Belding et Hatch 1955). Les équations sont fournies dans le tableau 1.

         


        Tableau 1. Équations utilisées dans le calcul de l'indice de stress thermique (HSI) et des temps d'exposition admissibles (AET)

         

         

         

         

        Vêtu

        Sans vêtements

        (1) Perte de rayonnement (R)

         

        en

        4.4

        7.3

        (2) Perte par convection (C)

         

        en

        4.6

        7.6

         

        (3) Perte par évaporation maximale ()

         

        (limite supérieure de 390 )

         

        en

        7.0

        11.7

         

        (4) Perte par évaporation requise ()

         

         

         

         

        (5) Indice de stress thermique (HSI)

         

         

         

         

        (6) Temps d'exposition admissible (AET)

         

         

         

        où: M = puissance métabolique ; = température de l'air ; = température radiante ; = pression de vapeur partielle ;  v = vitesse de l'air 


                                 

         

        Les HSI car un indice est donc lié à l'effort, essentiellement en termes de transpiration corporelle, pour des valeurs comprises entre 0 et 100. A HSI = 100, l'évaporation requise est le maximum pouvant être atteint, et représente donc la limite supérieure de la zone prescriptive. Pour HSI> 100, il y a stockage de chaleur corporelle et les temps d'exposition admissibles sont calculés sur la base d'une augmentation de 1.8 ºC de la température centrale (stockage de chaleur de 264 kJ). Pour HSI0 il y a une légère fatigue due au froid, par exemple, lorsque les travailleurs se remettent d'une fatigue due à la chaleur (voir tableau 2).

        Tableau 2. Interprétation des valeurs de l'indice de stress thermique (HSI)

        HSI

        Effet d'une exposition de huit heures

        -20

        Légère déformation au froid (par exemple, récupération après une exposition à la chaleur).

        0

        Aucune contrainte thermique

        10-30

        Sollicitation thermique légère à modérée. Peu d'effet sur le travail physique mais effet possible sur le travail qualifié

        40-60

        Forte contrainte thermique, impliquant une menace pour la santé à moins d'être en bonne forme physique. Acclimatation requise

        70-90

        Sollicitation thermique très sévère. Le personnel doit être sélectionné par examen médical. Veiller à un apport suffisant en eau et en sel

        100

        Contrainte maximale tolérée quotidiennement par les jeunes hommes acclimatés en forme

        Plus 100

        Temps d'exposition limité par l'élévation de la température corporelle profonde

        Une limite supérieure de 390 W/m2 est affecté à Emax (débit sudoral de 1 l/h, considéré comme le débit sudoral maximal maintenu pendant 8 h). Des hypothèses simples sont faites sur les effets des vêtements (chemise à manches longues et pantalon) et la température de la peau est supposée constante à 35 °C.

        L'indice de contrainte thermique (ITS)

        Givoni (1963, 1976) a fourni l'indice de contrainte thermique, qui était une version améliorée de l'indice de contrainte thermique. Une amélioration importante est la reconnaissance que toute la sueur ne s'évapore pas. (Voir « I. Indice de contrainte thermique » dans Étude de cas : Indices de chaleur.)

        Taux de sudation requis

        Un autre développement théorique et pratique du HSI et de l'ITS était le taux de sudation requis (SWreq) indice (Vogt et al. 1981). Cet indice calculait la transpiration nécessaire au bilan thermique à partir d'une équation de bilan thermique améliorée mais, surtout, fournissait également une méthode pratique d'interprétation des calculs en comparant ce qui est nécessaire avec ce qui est physiologiquement possible et acceptable chez l'homme.

        Des discussions approfondies et des évaluations en laboratoire et industrielles (CEC 1988) de cet indice ont conduit à son acceptation en tant que norme internationale ISO 7933 (1989b). Les différences entre les réponses observées et prévues des travailleurs ont conduit à l'inclusion de notes de mise en garde concernant les méthodes d'évaluation de la déshydratation et du transfert de chaleur par évaporation à travers les vêtements lors de son adoption en tant que norme européenne proposée (prEN-12515). (Voir « II. Taux de sudation requis » dans Étude de cas : Indices de chaleur.)

        Interprétation de SWreq

        Les valeurs de référence, en termes de ce qui est acceptable ou de ce que les personnes peuvent réaliser, sont utilisées pour fournir une interprétation pratique des valeurs calculées (voir tableau 3).

        Tableau 3. Valeurs de référence pour les critères de contrainte thermique et de déformation (ISO 7933, 1989b)

        Critères

        Sujets non acclimatés

        Sujets acclimatés

         

        danger

        danger

        Humidité maximale de la peau

        wmax

        0.85

        0.85

        1.0

        1.0

        Taux de sudation maximal

        Repos (M 65 Wm-2 )

        SWmax Wm-2 gh-1

        100

        150

        200

        300

         

        260

        390

        520

        780

        Travail (M≥65 Wm-2 )

        SWmax Wm-2 gh-1

        200

        250

        300

        400

         

        520

        650

        780

        1,040

        Stockage de chaleur maximal

        Qmax

        Whm-2

        50

        60

        50

        60

        Perte d'eau maximale

        Dmax

        Whm-2 g

        1,000

        1,250

        1,500

        2,000

         

        2,600

        3,250

        3,900

        5,200

         

        Tout d'abord, une prédiction de l'humidité de la peau (Wp), taux d'évaporation (Ep) et le taux de sudation (SWp) sont faits. Essentiellement, si ce qui est calculé comme requis peut être atteint, alors ce sont des valeurs prédites (par exemple, SWp = SOreq). Si elles ne peuvent pas être atteintes, les valeurs maximales peuvent être prises (par exemple, SWp=SOmax). Plus de détails sont donnés dans un organigramme décisionnel (voir figure 2).

        Figure 2. Organigramme décisionnel pour  (taux de transpiration requis).

        HEA080F2

        Si le taux de transpiration requis peut être atteint par des personnes et qu'il ne causera pas de perte d'eau inacceptable, il n'y a alors aucune limite due à l'exposition à la chaleur sur un quart de travail de 8 heures. Sinon, les expositions limitées dans la durée (DLE) sont calculés à partir des éléments suivants :

        Quand Ep = Ereq ainsi que SWp = Dmax/8, puis DLE = 480 minutes et SWreq peut être utilisé comme indice de stress thermique. Si les conditions ci-dessus ne sont pas satisfaites, alors :

        DLE1 = 60Qmax/( Ereq -Ep)

        DLE2 = 60Dmax/SWp

        DLE est le plus bas de DLE1 et DLE2. Des détails plus complets sont donnés dans l'ISO 7933 (1989b).

        Autres indices rationnels

        Les SWreq index et ISO 7933 (1989) fournissent la méthode rationnelle la plus sophistiquée basée sur l'équation du bilan thermique, et ce sont des avancées majeures. Plus de développements avec cette approche peuvent être faits; cependant, une approche alternative consiste à utiliser un modèle thermique. Essentiellement, la nouvelle température effective (ET*) et la température effective standard (SET) fournissent des indices basés sur le modèle à deux nœuds de la thermorégulation humaine (Nishi et Gagge 1977). Givoni et Goldman (1972, 1973) fournissent également des modèles de prédiction empiriques pour l'évaluation du stress thermique.

        Indices empiriques

        Température effective et température effective corrigée

        L'indice de température effective (Houghton et Yaglou 1923) a été créé à l'origine pour fournir une méthode permettant de déterminer les effets relatifs de la température et de l'humidité de l'air sur le confort. Trois sujets ont jugé laquelle des deux chambres climatiques était la plus chaude en marchant entre les deux. En utilisant différentes combinaisons de température et d'humidité de l'air (et plus tard d'autres paramètres), des lignes de confort égal ont été déterminées. Des impressions immédiates ont été faites de sorte que la réponse transitoire a été enregistrée. Cela a eu pour effet de suraccentuer l'effet de l'humidité à basse température et de le sous-estimer à haute température (par rapport aux réponses à l'état d'équilibre). Bien qu'à l'origine un indice de confort, l'utilisation de la température du globe noir pour remplacer la température du bulbe sec dans les nomogrammes ET a fourni la température effective corrigée (CET) (Bedford 1940). Les recherches rapportées par Macpherson (1960) ont suggéré que le CET prédisait les effets physiologiques de l'augmentation de la température radiante moyenne. ET et CET sont maintenant rarement utilisés comme indices de confort mais ont été utilisés comme indices de stress thermique. Bedford (1940) a proposé le CET comme indice de chaleur, avec des limites supérieures de 34 ºC pour « l'efficacité raisonnable » et de 38.6 ºC pour la tolérance. Une enquête plus approfondie, cependant, a montré que l'ET présentait de sérieux inconvénients pour une utilisation en tant qu'indice de stress thermique, ce qui a conduit à l'indice de taux de sudation prévu sur quatre heures (P4SR).

        Taux de transpiration prévu sur quatre heures

        L'indice Predicted Four Hour Sweat Rate (P4SR) a été établi à Londres par McArdle et al. (1947) et évalué à Singapour en 7 ans de travaux résumés par Macpherson (1960). C'est la quantité de sueur sécrétée par de jeunes hommes en forme et acclimatés exposés à l'environnement pendant 4 heures tout en chargeant des armes à feu avec des munitions lors d'un engagement naval. Le nombre unique (valeur d'indice) qui résume les effets des six paramètres de base est une quantité de sueur provenant d'une population spécifique, mais il doit être utilisé comme valeur d'indice et non comme une indication d'une quantité de sueur dans un groupe individuel de intérêt.

        Il a été reconnu qu'en dehors de la zone prescriptive (par exemple, P4SR>5 l) le taux de sudation n'était pas un bon indicateur de tension. Les nomogrammes P4SR (figure 3) ont été ajustés pour tenter d'en tenir compte. Le P4SR semble avoir été utile dans les conditions pour lesquelles il a été dérivé ; cependant, les effets des vêtements sont trop simplifiés et il est plus utile comme indice de stockage de chaleur. McArdle et al. (1947) ont proposé un P4SR de 4.5 l pour une limite où aucune incapacité d'aucun jeune homme en forme et acclimaté ne s'est produite.

        Figure 3. Nomogramme pour la prédiction du « taux de sudation prévu sur 4 heures » (P4SR).

        HEA080F3

        Prédiction de la fréquence cardiaque sous forme d'indice

        Fuller et Brouha (1966) ont proposé un indice simple basé sur la prédiction de la fréquence cardiaque (FC) en battements par minute. La relation telle que formulée à l'origine avec le taux métabolique en BTU/h et la pression de vapeur partielle en mmHg a fourni une prédiction simple de la fréquence cardiaque à partir de (T + p), d'où le T + p indice.

        Givoni et Goldman (1973) fournissent également des équations pour changer la fréquence cardiaque avec le temps et aussi des corrections pour le degré d'acclimatation des sujets, qui sont données dans Étude de cas" Indices de chaleur sous "IV. Rythme cardiaque".

        Une méthode de travail et de récupération de la fréquence cardiaque est décrite par NIOSH (1986) (d'après Brouha 1960 et Fuller et Smith 1980, 1981). La température corporelle et le pouls sont mesurés pendant la récupération après un cycle de travail ou à des moments précis de la journée de travail. À la fin d'un cycle de travail, le travailleur s'assoit sur un tabouret, la température buccale est prise et les trois taux de pouls suivants sont enregistrés :

        P1— pouls compté de 30 secondes à 1 minute

        P2— pouls compté de 1.5 à 2 minutes

        P3— pouls compté de 2.5 à 3 minutes

        Le critère ultime en termes de contrainte thermique est une température buccale de 37.5 ºC.

        If P3≤90 bpm et P3-P1 = 10 bpm, cela indique que le niveau de travail est élevé mais qu'il y a peu d'augmentation de la température corporelle. Si P3>90 bpm et P3-P110 bpm, le stress (chaleur + travail) est trop élevé et il faut agir pour reconcevoir le travail.

        Vogt et al. (1981) et ISO 9886 (1992) proposent un modèle (tableau 4) utilisant la fréquence cardiaque pour évaluer les ambiances thermiques :

        Tableau 4. Modèle utilisant la fréquence cardiaque pour évaluer le stress thermique

        Fréquence cardiaque totale

        Niveau d'activité

        HR0

        Repos (neutralité thermique)

        HR0 + RHM

        Activités principales

        HR0 + RHS

        Effort statique

        HR0 + RHt

        Déformation thermique

        HR0 + RHN

        Émotion (psychologique)

        HR0 + RHe

        Résiduel

        Basé sur Vogt et al. (1981) et ISO 9886 (1992).

        La composante de déformation thermique (indice de contrainte thermique possible) peut être calculée à partir de :

        HRt = HRr-HR0

        De HRr est la fréquence cardiaque après la récupération et HR0 est la fréquence cardiaque au repos dans un environnement thermiquement neutre.

        Indices de stress thermique direct

        L'indice de température du bulbe humide

        L'indice Wet Bulb Globe Temperature (WBGT) est de loin le plus utilisé dans le monde. Il a été développé dans une enquête de la marine américaine sur les victimes de la chaleur pendant l'entraînement (Yaglou et Minard 1957) comme une approximation de la température effective corrigée (CET) plus encombrante, modifiée pour tenir compte de l'absorption solaire des vêtements militaires verts.

        Les valeurs limites WBGT ont été utilisées pour indiquer quand les recrues militaires pouvaient s'entraîner. Il a été constaté que les victimes de la chaleur et le temps perdu en raison de l'arrêt de l'entraînement dans la chaleur étaient tous deux réduits en utilisant l'indice WBGT au lieu de la seule température de l'air. L'indice WBGT a été adopté par NIOSH (1972), ACGIH (1990) et ISO 7243 (1989a) et est toujours proposé aujourd'hui. L'ISO 7243 (1989a), basée sur l'indice WBGT, fournit une méthode facilement utilisable en milieu chaud pour fournir un diagnostic « rapide ». La spécification des instruments de mesure est donnée dans la norme, ainsi que les valeurs limites WBGT pour les personnes acclimatées ou non acclimatées (voir tableau 5). Par exemple, pour une personne au repos acclimatée à 0.6 clo, la valeur limite est de 33°C WBGT. Les limites fournies dans ISO 7243 (1989a) et NIOSH 1972 sont presque identiques. Le calcul de l'indice WBGT est donné dans la section V de l'annexe ci-jointe. Étude de cas : Indices de chaleur.

        Tableau 5. Valeurs de référence WBGT de la norme ISO 7243 (1989a)

        Taux métabolique M (Wm-2 )

        Valeur de référence du WBGT

         

        Personne acclimatée à
        chaleur (°C)

        Personne non acclimatée
        chaleur (°C)

        0. Repos M≤65

        33

         

        32

         

        1. 65M≤130

        30

         

        29

         

        2. 130M≤200

        28

         

        26

         
         

        Aucun mouvement d'air sensible

        Mouvement d'air sensible

        Aucun mouvement d'air sensible

        Mouvement d'air sensible

        3. 200M260

        25

        26

        22

        23

        4. M>260

        23

        25

        18

        20

        Remarque : Les valeurs indiquées ont été établies en tenant compte d'une température rectale maximale de 38°C pour les personnes concernées.

        La simplicité de l'indice et son utilisation par des organismes influents ont conduit à son acceptation généralisée. Comme tous les indices directs, il a des limites lorsqu'il est utilisé pour simuler la réponse humaine et doit être utilisé avec prudence dans les applications pratiques. Il est possible d'acheter des instruments portables qui déterminent l'indice WBGT (par exemple, Olesen 1985).

        Limite physiologique d'exposition à la chaleur (PHEL)

        Dasler (1974, 1977) fournit des valeurs limites WBGT basées sur une prédiction de dépassement de deux limites physiologiques (à partir de données expérimentales) de déformation non autorisée. Les limites sont données par :

        PHEL=(17.25 × 108-12.97M× 106+18.61 M2 × 103) ×WBGT-5.36

        Cet indice utilise donc l'indice direct WBGT dans la zone environnementale (voir Figure 4), où le stockage de chaleur peut se produire.

        Indice de température du globe humide (WGT)

        La température d'un globe noir humide de taille appropriée peut être utilisée comme indice de stress thermique. Le principe est qu'elle est affectée à la fois par le transfert de chaleur sèche et par évaporation, comme l'est un homme qui transpire, et la température peut alors être utilisée, avec l'expérience, comme indice de stress thermique. Olesen (1985) décrit WGT comme la température d'un globe noir de 2.5 pouces (63.5 mm) de diamètre recouvert d'un tissu noir humide. La température est lue lorsque l'équilibre est atteint après environ 10 à 15 minutes d'exposition. Le NIOSH (1986) décrit le Botsball (Botsford 1971) comme l'instrument le plus simple et le plus facile à lire. Il s'agit d'une sphère de cuivre de 3 pouces (76.2 mm) recouverte d'un tissu noir maintenu à 100% d'humidité à partir d'un réservoir d'eau auto-alimenté. L'élément sensible d'un thermomètre est situé au centre de la sphère, et la température est lue sur un cadran (code couleur).

        Une équation simple reliant WGT à WBGT est :

         

        WBGT = GTG + 2 ºC

        pour des conditions de chaleur rayonnante et d'humidité modérées (NIOSH 1986), mais bien sûr cette relation ne peut pas tenir sur une large gamme de conditions.

        L'indice d'Oxford

        Lind (1957) a proposé un indice simple et direct utilisé pour l'exposition à la chaleur limitée par le stockage et basé sur une somme pondérée de la température du bulbe humide aspiré (Twb) et température de bulbe sec (Tdb):

        WD = 0.85 Twb + 0.15 Tdb

        Les temps d'exposition admissibles pour les équipes de sauvetage minier étaient basés sur cet indice. Il est largement applicable mais n'est pas approprié là où il y a un rayonnement thermique important.

        Pratiques de travail pour les environnements chauds

        NIOSH (1986) fournit une description complète des pratiques de travail pour les environnements chauds, y compris les pratiques médicales préventives. Une proposition de surveillance médicale des personnes exposées à des environnements chauds ou froids est fournie dans l'ISO CD 12894 (1993). Il ne faut jamais oublier qu'il s'agit d'un droit humain fondamental, qui a été affirmé par la loi de 1985 Déclaration d'Helsinki, que, lorsque cela est possible, les personnes peuvent se retirer de tout environnement extrême sans avoir besoin d'explication. En cas d'exposition, des pratiques de travail définies amélioreront considérablement la sécurité.

        C'est un principe raisonnable en ergonomie environnementale et en hygiène industrielle que, dans la mesure du possible, le facteur de stress environnemental doit être réduit à la source. Le NIOSH (1986) divise les méthodes de contrôle en cinq types. Ceux-ci sont présentés dans le tableau 6.

        Tableau 6. Pratiques de travail pour les environnements chauds

        A. Contrôles techniques

        Exemple

        1. Réduire la source de chaleur

        Éloignez-vous des travailleurs ou réduisez la température. Pas toujours praticable.

        2. Contrôle de la chaleur par convection

        Modifier la température de l'air et les mouvements d'air. Les refroidisseurs ponctuels peuvent être utiles.

        3. Contrôle de la chaleur rayonnante

        Réduisez les températures de surface ou placez un écran réfléchissant entre la source radiante et les travailleurs. Modifier l'émissivité de la surface. Utilisez des portes qui ne s'ouvrent que lorsque l'accès est requis.

        4. Contrôle de la chaleur par évaporation

        Augmenter le mouvement de l'air, diminuer la pression de vapeur d'eau. Utilisez des ventilateurs ou la climatisation. Mouiller les vêtements et souffler de l'air sur la personne.

        B. Pratiques de travail et d'hygiène
        et contrôles administratifs

        Exemple

        1. Limiter le temps d'exposition et/ou
        la réactivité

        Effectuez des travaux à des moments plus frais de la journée et de l'année. Prévoyez des zones fraîches pour le repos et la récupération. Personnel supplémentaire, liberté des travailleurs d'interrompre le travail, augmentation de la consommation d'eau.

        2. Réduire la charge thermique métabolique

        Mécanisation. Travail de refonte. Réduire le temps de travail. Augmenter les effectifs.

        3. Améliorer le temps de tolérance

        Programme d'acclimatation à la chaleur. Gardez les travailleurs en bonne forme physique. Assurez-vous que la perte d'eau est compensée et maintenez l'équilibre électrolytique si nécessaire.

        4. Formation en santé et sécurité

        Superviseurs formés à la reconnaissance des signes de malaise dû à la chaleur et aux premiers soins. Instruction de base à tout le personnel sur les précautions individuelles, l'utilisation d'équipements de protection et les effets de facteurs non professionnels (par exemple l'alcool). Utilisation d'un système de « copain ». Des plans d'urgence pour le traitement doivent être en place.

        5. Dépistage des intolérances à la chaleur

        Antécédents de maladie de chaleur antérieure. Physiquement inapte.

        C. Programme d'alerte chaleur

        Exemple

        1. Au printemps, établissez une alerte de chaleur
        comité (médecin du travail
        ou infirmière, hygiéniste industrielle,
        ingénieur sécurité, exploitation
        ingénieur, cadre supérieur)

        Organiser un stage de formation. Notes de service aux superviseurs pour vérifier les fontaines à eau, etc. Vérifier les installations, les pratiques, l'état de préparation, etc.

        2. Déclarer une alerte de chaleur en prévision
        période de canicule

        Reportez les tâches non urgentes. Augmentez les travailleurs, augmentez le repos. Rappelez aux travailleurs de boire. Améliorer les pratiques de travail.

        D. Refroidissement corporel auxiliaire et vêtements de protection

        Utiliser s'il n'est pas possible de modifier le travailleur, le travail ou l'environnement et que le stress thermique est toujours au-delà des limites. Les personnes doivent être parfaitement acclimatées à la chaleur et bien formées à l'utilisation et à la pratique du port des vêtements de protection. Des exemples sont les vêtements refroidis à l'eau, les vêtements refroidis à l'air, les gilets de glace et les survêtements mouillés.

        E. Dégradation des performances

        Il ne faut pas oublier que le port de vêtements protecteurs offrant une protection contre les agents toxiques augmentera le stress dû à la chaleur. Tous les vêtements interfèrent avec les activités et peuvent réduire les performances (par exemple, réduire la capacité à recevoir des informations sensorielles, ce qui altère l'ouïe et la vision, par exemple).

        Source : NIOSH 1986.

        Il y a eu beaucoup de recherches militaires sur les vêtements de protection dits NBC (nucléaire, biologique, chimique). Dans les environnements chauds, il n'est pas possible d'enlever les vêtements et les pratiques de travail sont très importantes. Un problème similaire se pose pour les travailleurs des centrales nucléaires. Les méthodes de refroidissement rapide des travailleurs afin qu'ils puissent à nouveau travailler consistent à éponger la surface extérieure des vêtements avec de l'eau et à souffler de l'air sec dessus. D'autres techniques comprennent des dispositifs de refroidissement actifs et des procédés pour refroidir des zones locales du corps. Le transfert de la technologie des vêtements militaires aux situations industrielles est une nouvelle innovation, mais on en sait beaucoup et des pratiques de travail appropriées peuvent réduire considérablement les risques.

         

        Tableau 7. Équations utilisées dans le calcul de l'indice et méthode d'évaluation de la norme ISO 7933 (1989b)

        pour la convection naturelle

        or  , pour une approximation ou lorsque les valeurs sont au-delà des limites pour lesquelles l'équation a été dérivée.

        ____________________________________________________________________________________

        Tableau 8. Description des termes utilisés dans l'ISO 7933 (1989b)

        Symbole

        Long

        Unités

        fraction de la surface de la peau impliquée dans l'échange de chaleur par rayonnement

        ND

        C

        échange de chaleur sur la peau par convection  

        Wm-2

        perte de chaleur respiratoire par convection

        Wm-2

        E

        flux de chaleur par évaporation à la surface de la peau

        Wm-2

        taux d'évaporation maximal qui peut être atteint avec la peau complètement humide

        Wm-2

        évaporation requise pour l'équilibre thermique

        Wm-2

        perte de chaleur respiratoire par évaporation

        Wm-2

        émissivité cutanée (0.97)

        ND

        facteur de réduction pour l'échange de chaleur sensible dû aux vêtements

        ND

        facteur de réduction pour l'échange de chaleur latente

        ND

        rapport entre la surface habillée et la surface non habillée du sujet

        ND

        coefficient de transfert de chaleur convectif

        coefficient de transfert de chaleur par évaporation

        coefficient de transfert de chaleur radiatif

        isolation thermique sèche de base des vêtements

        K

        échange de chaleur sur la peau par conduction

        Wm-2

        M

        pouvoir métabolique

        Wm-2

        pression de vapeur partielle

        kPa

        pression de vapeur saturante à la température de la peau

        kPa

        R

        échange de chaleur sur la peau par rayonnement

        Wm-2

        résistance totale à l'évaporation de la couche limite d'air et des vêtements

        efficacité d'évaporation au taux de sudation requis

        ND

        taux de transpiration requis pour l'équilibre thermique

        Wm-2

        constante de Stefan-Boltzman, 

        température de l'air

        température radiante moyenne

        température moyenne de la peau

        vitesse de l'air pour un sujet immobile

        vitesse relative de l'air

        W

        puissance mécanique

        Wm-2

        moiteur de la peau

        ND

        humidité de la peau requise

        ND

        ND = adimensionnel.

        Pratiques de travail pour les environnements chauds

        NIOSH (1986) fournit une description complète des pratiques de travail pour les environnements chauds, y compris les pratiques médicales préventives. Une proposition de surveillance médicale des personnes exposées à des environnements chauds ou froids est fournie dans l'ISO CD 12894 (1993). Il ne faut jamais oublier qu'il s'agit d'un droit humain fondamental, qui a été affirmé par la loi de 1985Déclaration d'Helsinki, que, lorsque cela est possible, les personnes peuvent se retirer de tout environnement extrême sans avoir besoin d'explication. En cas d'exposition, des pratiques de travail définies amélioreront considérablement la sécurité.

        C'est un principe raisonnable en ergonomie environnementale et en hygiène industrielle que, dans la mesure du possible, le facteur de stress environnemental doit être réduit à la source. Le NIOSH (1986) divise les méthodes de contrôle en cinq types. Ceux-ci sont présentés dans le tableau 7. Il y a eu beaucoup de recherches militaires sur les vêtements de protection dits NBC (nucléaire, biologique, chimique). Dans les environnements chauds, il n'est pas possible d'enlever les vêtements et les pratiques de travail sont très importantes. Un problème similaire se pose pour les travailleurs des centrales nucléaires. Les méthodes de refroidissement rapide des travailleurs afin qu'ils puissent à nouveau travailler consistent à éponger la surface extérieure des vêtements avec de l'eau et à souffler de l'air sec dessus. D'autres techniques comprennent des dispositifs de refroidissement actifs et des procédés pour refroidir des zones locales du corps. Le transfert de la technologie des vêtements militaires aux situations industrielles est une nouvelle innovation, mais on en sait beaucoup et des pratiques de travail appropriées peuvent réduire considérablement les risques.

        Évaluation d'un environnement chaud à l'aide des normes ISO

        L'exemple hypothétique suivant montre comment les normes ISO peuvent être utilisées dans l'évaluation des environnements chauds (Parsons 1993) :

        Les travailleurs d'une aciérie effectuent un travail en quatre phases. Ils enfilent des vêtements et effectuent des travaux légers pendant 1 heure dans un environnement chaud et radiant. Ils se reposent pendant 1 heure, puis effectuent le même travail léger pendant une heure à l'abri de la chaleur rayonnante. Ils effectuent ensuite un travail impliquant un niveau d'activité physique modéré dans un environnement chaud et radiant pendant 30 minutes.

        L'ISO 7243 fournit une méthode simple de surveillance de l'environnement à l'aide de l'indice WBGT. Si les niveaux de WBGT calculés sont inférieurs aux valeurs de référence de WBGT indiquées dans la norme, aucune autre action n'est requise. Si les niveaux dépassent les valeurs de référence (tableau 6), la pression exercée sur les travailleurs doit être réduite. Ceci peut être réalisé par des contrôles techniques et des pratiques de travail. Une action complémentaire ou alternative consiste à réaliser une évaluation analytique selon la norme ISO 7933.

        Les valeurs WBGT du travail sont présentées dans le tableau 9 et ont été mesurées selon les spécifications données dans les normes ISO 7243 et ISO 7726. Les facteurs environnementaux et personnels relatifs aux quatre phases du travail sont présentés dans le tableau 10.

        Tableau 9. Valeurs WBGT (°C) pour quatre phases de travail

        Phase de travail (minutes)

        WBGT = WBGTank + 2 WBGTabd + WGBThd

        Référence WBGT

        0-60

        25

        30

        60-90

        23

        33

        90-150

        23

        30

        150-180

        30

        28

         

        Tableau 10. Données de base pour l'évaluation analytique selon la norme ISO 7933

        Phase de travail (minutes)

        ta (° C)

        tr (° C)

        Pa (Kpa)

        v

        (Mme-1 )

        clo

        (clo)

        Agis

        (Wm-2 )

        0-60

        30

        50

        3

        0.15

        0.6

        100

        60-90

        30

        30

        3

        0.05

        0.6

        58

        90-150

        30

        30

        3

        0.20

        0.6

        100

        150-180

        30

        60

        3

        0.30

        1.0

        150

         

        On constate que pour une partie du travail les valeurs WBGT dépassent celles des valeurs de référence. Il est conclu qu'une analyse plus détaillée est nécessaire.

        La méthode d'évaluation analytique présentée dans la norme ISO 7933 a été réalisée à l'aide des données présentées dans le tableau 10 et du programme informatique répertorié dans l'annexe de la norme. Les résultats pour les travailleurs acclimatés en termes de niveau d'alarme sont présentés dans le tableau 11.

        Tableau 11. Évaluation analytique à l'aide de la norme ISO 7933

        Phase de travail
        (minutes)

        Valeurs prédites

        Durée
        limité
        exposition
        (minutes)

        Raison pour
        limite

         

        tsk (° C)

        O (ND)

        SO (gh-1 )

         

        0-60

        35.5

        0.93

        553

        423

        La perte d'eau

        60-90

        34.6

        0.30

        83

        480

        Pas de limite

        90-150

        34.6

        0.57

        213

        480

        Pas de limite

        150-180

        35.7

        1.00

        566

        45

        Température corporelle

        En Conclusion:

        -

        0.82

        382

        480

        Pas de limite

         

        Une évaluation globale prédit donc que des travailleurs non acclimatés aptes au travail pourraient effectuer un poste de 8 heures sans subir de contraintes physiologiques (thermiques) inacceptables. Si une plus grande précision est requise ou si des travailleurs individuels doivent être évalués, l'ISO 8996 et l'ISO 9920 fourniront des informations détaillées sur la production métabolique de chaleur et l'isolation des vêtements. L'ISO 9886 décrit des méthodes de mesure de la contrainte physiologique exercée sur les travailleurs et peut être utilisée pour concevoir et évaluer des environnements pour des effectifs spécifiques. La température moyenne de la peau, la température interne du corps, la fréquence cardiaque et la perte de masse seront intéressantes dans cet exemple. L'ISO CD 12894 fournit des lignes directrices sur la supervision médicale d'une enquête.

         

        Noir

        Afin de survivre et de travailler dans des conditions plus froides ou plus chaudes, un climat chaud à la surface de la peau doit être fourni au moyen de vêtements ainsi que d'un chauffage ou d'un refroidissement artificiel. Une compréhension des mécanismes d'échange de chaleur à travers les vêtements est nécessaire pour concevoir les ensembles vestimentaires les plus efficaces pour le travail à des températures extrêmes.

        Mécanismes de transfert de chaleur des vêtements

        La nature de l'isolation des vêtements

        Le transfert de chaleur à travers les vêtements, ou à l'inverse l'isolation des vêtements, dépend en grande partie de l'air emprisonné dans et sur les vêtements. Les vêtements sont constitués, en première approximation, de tout type de matériau offrant une adhérence aux couches d'air. Cette affirmation est approximative car certaines propriétés des matériaux sont toujours pertinentes. Celles-ci concernent la construction mécanique des tissus (par exemple, la résistance au vent et la capacité des fibres à supporter des tissus épais), et les propriétés intrinsèques des fibres (par exemple, l'absorption et la réflexion du rayonnement thermique, l'absorption de la vapeur d'eau, l'évacuation de la transpiration ). Pour des conditions environnementales pas trop extrêmes, les mérites des différents types de fibres sont souvent surestimés.

        Couches d'air et mouvement de l'air

        L'idée que c'est l'air, et en particulier l'air immobile, qui fournit l'isolation, suggère que des couches d'air épaisses sont bénéfiques pour l'isolation. C'est vrai, mais l'épaisseur des couches d'air est physiquement limitée. Les couches d'air se forment par adhésion de molécules de gaz à n'importe quelle surface, par cohésion d'une seconde couche de molécules à la première, etc. Cependant, les forces de liaison entre les couches suivantes sont de moins en moins importantes, avec pour conséquence que les molécules externes sont déplacées par des mouvements d'air externes même minuscules. Dans un air calme, les couches d'air peuvent avoir une épaisseur allant jusqu'à 12 mm, mais avec un mouvement d'air vigoureux, comme dans une tempête, l'épaisseur diminue à moins de 1 mm. En général, il existe une relation racine carrée entre l'épaisseur et le mouvement de l'air (voir "Formules et définitions"). La fonction exacte dépend de la taille et de la forme de la surface.

        Conduction thermique de l'air immobile et en mouvement

        L'air immobile agit comme une couche isolante avec une conductivité constante, quelle que soit la forme du matériau. La perturbation des couches d'air entraîne une perte d'épaisseur effective; cela comprend les perturbations non seulement dues au vent, mais également dues aux mouvements du porteur du vêtement - déplacement du corps (un composant du vent) et mouvements des parties du corps. La convection naturelle ajoute à cet effet. Pour un graphique montrant l'effet de la vitesse de l'air sur la capacité isolante d'une couche d'air, voir la figure 1.

        Figure 1. Effet de la vitesse de l'air sur la capacité isolante d'une couche d'air.

        HEA020F1

        Transfert de chaleur par rayonnement

        Le rayonnement est un autre mécanisme important de transfert de chaleur. Chaque surface émet de la chaleur et absorbe la chaleur émise par d'autres surfaces. Le flux de chaleur rayonnante est approximativement proportionnel à la différence de température entre les deux surfaces d'échange. Une couche de vêtements entre les surfaces interférera avec le transfert de chaleur radiative en interceptant le flux d'énergie ; le vêtement atteindra une température qui est à peu près la moyenne des températures des deux surfaces, coupant la différence de température entre elles en deux, et donc le flux radiant est diminué d'un facteur deux. Lorsque le nombre de couches d'interception augmente, le taux de transfert de chaleur diminue.

        Les couches multiples sont ainsi efficaces pour réduire le transfert de chaleur rayonnante. Dans les molletons et les molletons de fibres, le rayonnement est intercepté par des fibres distribuées plutôt que par une couche de tissu. La densité du matériau fibreux (ou plutôt la surface totale du matériau fibreux par volume de tissu) est un paramètre critique pour le transfert de rayonnement à l'intérieur de tels voiles de fibres. Les fibres fines offrent plus de surface pour un poids donné que les fibres grossières.

        Isolation en tissu

        En raison des conductivités de l'air enfermé et du transfert de rayonnement, la conductivité du tissu est effectivement une constante pour les tissus de différentes épaisseurs et reliures. L'isolation thermique est donc proportionnelle à l'épaisseur.

        Résistance à la vapeur de l'air et des tissus

        Les couches d'air créent également une résistance à la diffusion de la sueur évaporée de la peau humide vers l'environnement. Cette résistance est à peu près proportionnelle à l'épaisseur de l'ensemble vestimentaire. Pour les tissus, la résistance à la vapeur dépend de l'air enfermé et de la densité de la construction. Dans les vrais tissus, haute densité et grande épaisseur ne font jamais bon ménage. En raison de cette limitation, il est possible d'estimer l'équivalent en air des tissus qui ne contiennent pas de films ou de revêtements (voir figure 8). Les tissus enduits ou les tissus laminés sur des films peuvent avoir une résistance à la vapeur imprévisible, qui doit être déterminée par des mesures.

        Figure 2. Relation entre l'épaisseur et la résistance à la vapeur (deq) pour les tissus sans revêtements.

        HEA020F2

        Des couches de tissu et d'air aux vêtements

        Plusieurs couches de tissu

        Certaines conclusions importantes des mécanismes de transfert de chaleur sont que les vêtements hautement isolants sont nécessairement épais, qu'une isolation élevée peut être obtenue par des ensembles de vêtements à plusieurs couches minces, qu'une coupe ample offre plus d'isolation qu'une coupe serrée et que l'isolation a une limite inférieure , fixé par la couche d'air qui adhère à la peau.

        Dans les vêtements pour temps froid, il est souvent difficile d'obtenir de l'épaisseur en utilisant uniquement des tissus fins. Une solution consiste à créer des tissus épais, en montant deux tissus à coque fine sur un molleton. Le but du bâton est de créer la couche d'air et de garder l'air à l'intérieur aussi immobile que possible. Les tissus épais présentent également un inconvénient : plus les couches sont reliées, plus le vêtement devient rigide, ce qui limite les mouvements.

        Variété de vêtements

        L'isolation d'un ensemble vestimentaire dépend en grande partie de la conception du vêtement. Les paramètres de conception qui affectent l'isolation sont le nombre de couches, les ouvertures, l'ajustement, la distribution de l'isolation sur le corps et la peau exposée. Certaines propriétés des matériaux telles que la perméabilité à l'air, la réflectivité et les revêtements sont également importantes. De plus, le vent et l'activité modifient l'isolation. Est-il possible de donner une description adéquate des vêtements dans le but de prédire le confort et la tolérance du porteur ? Diverses tentatives ont été faites, basées sur différentes techniques. La plupart des estimations de l'isolation d'un ensemble complet ont été faites pour des conditions statiques (pas de mouvement, pas de vent) sur des ensembles intérieurs, car les données disponibles ont été obtenues à partir de mannequins thermiques (McCullough, Jones et Huck 1985). Les mesures sur des sujets humains sont laborieuses et les résultats varient considérablement. Depuis le milieu des années 1980, des mannequins mobiles fiables ont été développés et utilisés (Olesen et al. 1982 ; Nielsen, Olesen et Fanger 1985). En outre, des techniques de mesure améliorées ont permis des expériences humaines plus précises. Un problème qui n'a pas encore été complètement résolu est l'inclusion appropriée de l'évaporation de la sueur dans l'évaluation. Les mannequins qui transpirent sont rares et aucun d'entre eux n'a une distribution réaliste du taux de transpiration sur le corps. Les humains transpirent de manière réaliste, mais de manière incohérente.

        Définition de l'isolation des vêtements

        Isolation des vêtements (Icl en unités de m2K/W) pour des conditions de régime permanent, sans sources de rayonnement ni condensation dans les vêtements, est défini dans « Formules et définitions ». Souvent I est exprimé dans l'unité clo (pas une unité internationale standard). Un clo équivaut à 0.155 m2K/W. L'utilisation de l'unité clo signifie implicitement qu'elle se rapporte à l'ensemble du corps et inclut donc le transfert de chaleur par les parties exposées du corps.

        I est modifié par le mouvement et le vent, comme expliqué précédemment, et après correction le résultat est appelé isolation résultante. C'est un terme fréquemment utilisé mais pas généralement accepté.

        Répartition des vêtements sur le corps

        Le transfert de chaleur total du corps comprend la chaleur qui est transférée par la peau exposée (généralement la tête et les mains) et la chaleur qui traverse les vêtements. Isolation intrinsèque (voir "Formules et définitions") est calculé sur la surface totale de la peau, pas seulement sur la partie couverte. La peau exposée transfère plus de chaleur que la peau couverte et a donc une profonde influence sur l'isolation intrinsèque. Cet effet est renforcé par l'augmentation de la vitesse du vent. La figure 3 montre comment l'isolation intrinsèque diminue successivement en raison de la courbure des formes du corps (couches externes moins efficaces que l'intérieur), des parties du corps exposées (voie supplémentaire de transfert de chaleur) et de l'augmentation de la vitesse du vent (moins d'isolation, en particulier pour la peau exposée) (Lotens 1989). Pour les ensembles épais, la réduction de l'isolation est dramatique.

        Figure 3. Isolation intrinsèque, car elle est influencée par la courbure du corps, la peau nue et la vitesse du vent.

        HEA020F3

        Épaisseur et couverture typiques de l'ensemble

        Apparemment, l'épaisseur de l'isolant et la couverture de la peau sont des déterminants importants de la perte de chaleur. Dans la vraie vie, les deux sont corrélés dans le sens où les vêtements d'hiver sont non seulement plus épais, mais couvrent également une plus grande proportion du corps que les vêtements d'été. La figure 4 montre comment ces effets se traduisent ensemble par une relation presque linéaire entre l'épaisseur du vêtement (exprimée en volume de matériau isolant par unité de surface de vêtement) et l'isolation (Lotens 1989). La limite inférieure est fixée par l'isolation de l'air adjacent et la limite supérieure par l'utilisabilité du vêtement. Une distribution uniforme peut fournir la meilleure isolation par temps froid, mais il n'est pas pratique d'avoir beaucoup de poids et de volume sur les membres. L'accent est donc souvent mis sur le tronc, et la sensibilité de la peau locale au froid est adaptée à cette pratique. Les membres jouent un rôle important dans le contrôle de l'équilibre thermique humain, et une isolation élevée des membres limite l'efficacité de cette régulation.

        Figure 4. Isolation totale résultant de l'épaisseur et de la répartition des vêtements sur le corps.

        HEA020F4

        Aération des vêtements

        Les couches d'air emprisonnées dans l'ensemble vestimentaire sont soumises au mouvement et au vent, mais à un degré différent de celui de la couche d'air adjacente. Le vent crée une ventilation dans les vêtements, à la fois lorsque l'air pénètre dans le tissu et en passant à travers les ouvertures, tandis que le mouvement augmente la circulation interne. Havenith, Heus et Lotens (1990) ont constaté qu'à l'intérieur des vêtements, le mouvement est un facteur plus important que dans la couche d'air adjacente. Cette conclusion dépend cependant de la perméabilité à l'air du tissu. Pour les tissus très perméables à l'air, la ventilation par le vent est importante. Lotens (1993) a montré que la ventilation peut être exprimée en fonction de la vitesse effective du vent et de la perméabilité à l'air.

        Estimations de l'isolation des vêtements et de la résistance à la vapeur

        Estimations physiques de l'isolation des vêtements

        L'épaisseur d'un ensemble vestimentaire donne une première estimation de l'isolation. La conductivité typique d'un ensemble est de 0.08 W/mK. A une épaisseur moyenne de 20 mm, cela se traduit par une Icl de 0.25m2K/W, soit 1.6 clo. Cependant, les pièces amples, comme les pantalons ou les manches, ont une conductivité beaucoup plus élevée, plus de l'ordre de 0.15, alors que les couches de vêtements serrées ont une conductivité de 0.04, le fameux 4 clo par pouce rapporté par Burton et Edholm (1955 ).

        Estimations à partir de tableaux

        D'autres méthodes utilisent des valeurs de table pour les articles vestimentaires. Ces éléments ont été préalablement mesurés sur un mannequin. Un ensemble sous enquête doit être séparé en ses composants, et ceux-ci doivent être recherchés dans le tableau. Faire un choix incorrect du vêtement tabulé le plus similaire peut entraîner des erreurs. Afin d'obtenir l'isolation intrinsèque de l'ensemble, les valeurs d'isolation individuelles doivent être mises dans une équation de sommation (McCullough, Jones et Huck 1985).

        Facteur de surface des vêtements

        Pour calculer l'isolation totale, fcl doit être estimé (voir "Formules et définitions"). Une estimation expérimentale pratique consiste à mesurer la surface des vêtements, à apporter des corrections pour les parties qui se chevauchent et à diviser par la surface totale de la peau (DuBois et DuBois 1916). D'autres estimations tirées de diverses études montrent que fcl augmente linéairement avec l'isolation intrinsèque.

        Estimation de la résistance à la vapeur

        Pour un ensemble vestimentaire, la résistance à la vapeur est la somme de la résistance des couches d'air et des couches de vêtements. Habituellement, le nombre de couches varie sur le corps et la meilleure estimation est la moyenne pondérée en fonction de la surface, y compris la peau exposée.

        Résistance relative à la vapeur

        La résistance à l'évaporation est moins fréquemment utilisée que I, car peu de mesures de Ccl (ou Pcl) sont disponibles. Woodcock (1962) a évité ce problème en définissant l'indice de perméabilité à la vapeur d'eau im comme le rapport de I ainsi que R, rapportée au même rapport pour une seule couche d'air (ce dernier rapport est quasi constant et connu sous le nom de constante psychrométrique S, 0.0165 K/Pa, 2.34 Km3/g ou 2.2 K/torr); im= I/(RS). Valeurs typiques pour im pour les vêtements non enduits, déterminés sur des mannequins, sont de 0.3 à 0.4 (McCullough, Jones et Tamura 1989). Valeurs pour im pour les composites de tissu et leur air adjacent peuvent être mesurés relativement simplement sur un appareil à plaque chauffante humide, mais la valeur dépend en fait du débit d'air sur l'appareil et de la réflectivité de l'armoire dans laquelle il est monté. Extrapolation du rapport de R ainsi que I pour les humains habillés, des mesures sur les tissus aux ensembles vestimentaires (DIN 7943-2 1992) est parfois tentée. C'est une question techniquement compliquée. Une des raisons est que R n'est proportionnel qu'à la partie convective de I, de sorte que des corrections soigneuses doivent être faites pour le transfert de chaleur radiatif. Une autre raison est que l'air emprisonné entre les composites de tissus et les ensembles de vêtements peut être différent. En fait, la diffusion de vapeur et le transfert de chaleur peuvent être mieux traités séparément.

        Estimations par modèles articulés

        Des modèles plus sophistiqués sont disponibles pour calculer l'isolation et la résistance à la vapeur d'eau que les méthodes expliquées ci-dessus. Ces modèles calculent l'isolation locale sur la base de lois physiques pour un certain nombre de parties du corps et les intègrent à l'isolation intrinsèque pour l'ensemble de la forme humaine. A cet effet, la forme humaine est approximée par des cylindres (figure ). Le modèle de McCullough, Jones et Tamura (1989) nécessite des données vestimentaires pour toutes les couches de l'ensemble, spécifiées par segment corporel. Le modèle CLOMAN de Lotens et Havenith (1991) nécessite moins de valeurs d'entrée. Ces modèles ont une précision similaire, qui est meilleure que toutes les autres méthodes mentionnées, à l'exception de la détermination expérimentale. Malheureusement et inévitablement, les modèles sont plus complexes que ce qui serait souhaitable dans une norme largement acceptée.

        Figure 5. Articulation de forme humaine en cylindres.

        HEA020F5

        Effet de l'activité et du vent

        Lotens et Havenith (1991) proposent également des modifications, basées sur les données de la littérature, de l'isolation et de la résistance à la vapeur dues à l'activité et au vent. L'isolation est plus faible en position assise qu'en position debout, et cet effet est plus important pour les vêtements très isolants. Cependant, le mouvement diminue l'isolation plus que la posture, selon la vigueur des mouvements. Pendant la marche, les bras et les jambes bougent, et la réduction est plus importante que pendant le cyclisme, lorsque seules les jambes bougent. Dans ce cas également, la réduction est plus importante pour les ensembles de vêtements épais. Le vent diminue le plus l'isolation pour les vêtements légers et moins pour les vêtements lourds. Cet effet peut être lié à la perméabilité à l'air du tissu de la coque, qui est généralement inférieure pour les vêtements pour temps froid.

        La figure 8 montre certains effets typiques du vent et du mouvement sur la résistance à la vapeur des vêtements de pluie. Il n'y a pas d'accord définitif dans la littérature sur l'ampleur du mouvement ou des effets du vent. L'importance de ce sujet est soulignée par le fait que certaines normes, telles que l'ISO 7730 (1994), exigent l'isolation résultante comme entrée lorsqu'elle est appliquée aux personnes actives ou aux personnes exposées à un mouvement d'air important. Cette exigence est souvent négligée.

        Figure 6. Diminution de la résistance à la vapeur avec le vent et la marche pour divers vêtements de pluie.

        HEA020F6

        Gestion de l'humidité

        Effets de l'absorption d'humidité

        Lorsque les tissus peuvent absorber la vapeur d'eau, comme le font la plupart des fibres naturelles, les vêtements fonctionnent comme un tampon pour la vapeur. Cela modifie le transfert de chaleur lors des transitoires d'un environnement à un autre. Lorsqu'une personne portant des vêtements non absorbants passe d'un environnement sec à un environnement humide, l'évaporation de la sueur diminue brusquement. Dans les vêtements hygroscopiques, le tissu absorbe la vapeur et le changement d'évaporation n'est que progressif. En même temps, le processus d'absorption libère de la chaleur dans le tissu, augmentant sa température. Cela réduit le transfert de chaleur sèche de la peau. En première approximation, les deux effets s'annulent, laissant le transfert de chaleur total inchangé. La différence avec les vêtements non hygroscopiques est le changement plus progressif de l'évaporation de la peau, avec moins de risque d'accumulation de sueur.

        Capacité d'absorption de vapeur

        La capacité d'absorption du tissu dépend du type de fibre et de la masse du tissu. La masse absorbée est à peu près proportionnelle à l'humidité relative, mais elle est supérieure à 90 %. La capacité d'absorption (appelée reconquérir) est exprimée comme la quantité de vapeur d'eau absorbée dans 100 g de fibres sèches à une humidité relative de 65 %. Les tissus peuvent être classés comme suit :

          • faible absorption—acrylique, polyester (1 à 2 g pour 100 g)
          • absorption intermédiaire—nylon, coton, acétate (6 à 9 g pour 100 g)
          • haute absorption—soie, lin, chanvre, rayonne, jute, laine (11 à 15 g pour 100 g).

               

              Absorption d'eau

              La rétention d'eau dans les tissus, souvent confondue avec l'absorption de vapeur, obéit à des règles différentes. L'eau libre est faiblement liée au tissu et se répand bien latéralement le long des capillaires. C'est ce qu'on appelle la mèche. Le transfert de liquide d'une couche à l'autre n'a lieu que pour les tissus humides et sous pression. Les vêtements peuvent être mouillés par la sueur non évaporée (superflue) qui est absorbée par la peau. La teneur en liquide du tissu peut être élevée et son évaporation ultérieure constituer une menace pour le bilan thermique. Cela se produit généralement pendant le repos après un travail acharné et est connu sous le nom de après refroidissement. La capacité des tissus à retenir les liquides est davantage liée à la construction du tissu qu'à la capacité d'absorption des fibres et, à des fins pratiques, elle est généralement suffisante pour absorber toute la sueur superflue.

              Condensation

              Les vêtements peuvent être mouillés par la condensation de la sueur évaporée sur une couche particulière. La condensation se produit si l'humidité est supérieure à ce que la température locale permet. Par temps froid ce sera souvent le cas à l'intérieur du tissu extérieur, par grand froid même dans les couches plus profondes. Là où la condensation a lieu, l'humidité s'accumule, mais la température augmente, comme c'est le cas lors de l'absorption. La différence entre la condensation et l'absorption, cependant, est que l'absorption est un processus temporaire, alors que la condensation peut se poursuivre pendant de longues périodes. Le transfert de chaleur latente pendant la condensation peut contribuer de manière très significative à la perte de chaleur, ce qui peut être souhaitable ou non. L'accumulation d'humidité est surtout un inconvénient, en raison de l'inconfort et du risque de refroidissement ultérieur. En cas de condensation abondante, le liquide peut être transporté vers la peau pour s'évaporer à nouveau. Ce cycle fonctionne comme un caloduc et peut réduire fortement l'isolation du sous-vêtement.

              Simulation dynamique

              Depuis le début des années 1900, de nombreuses normes et indices ont été développés pour classer les vêtements et les climats. Presque sans exception, ceux-ci ont traité d'états stables - des conditions dans lesquelles le climat et le travail ont été maintenus suffisamment longtemps pour qu'une personne développe une température corporelle constante. Ce type de travail est devenu rare, en raison de l'amélioration de la santé au travail et des conditions de travail. L'accent a été mis sur l'exposition de courte durée à des circonstances difficiles, souvent liées à la gestion des calamités dans les vêtements de protection.

              Il existe donc un besoin de simulations dynamiques impliquant le transfert de chaleur des vêtements et la contrainte thermique du porteur (Gagge, Fobelets et Berglund 1986). De telles simulations peuvent être réalisées au moyen de modèles informatiques dynamiques qui s'exécutent à travers un scénario spécifié. Parmi les modèles les plus sophistiqués à ce jour en matière de vêtements, THDYN (Lotens 1993) permet une large gamme de spécifications vestimentaires et a été mis à jour pour inclure les caractéristiques individuelles de la personne simulée (figure 9). Plus de modèles peuvent être attendus. Cependant, une évaluation expérimentale approfondie est nécessaire, et l'exécution de tels modèles est le travail d'experts plutôt que d'un profane intelligent. Les modèles dynamiques basés sur la physique des transferts de chaleur et de masse incluent tous les mécanismes de transfert de chaleur et leurs interactions - absorption de vapeur, chaleur provenant de sources rayonnantes, condensation, ventilation, accumulation d'humidité, etc. - pour une large gamme d'ensembles vestimentaires, y compris civils, vêtements de travail et de protection.

              Figure 7. Description générale d'un modèle thermique dynamique.

              HEA020F7

               

              Noir

              Page 3 de 7

              " AVIS DE NON-RESPONSABILITÉ : L'OIT n'assume aucune responsabilité pour le contenu présenté sur ce portail Web qui est présenté dans une langue autre que l'anglais, qui est la langue utilisée pour la production initiale et l'examen par les pairs du contenu original. Certaines statistiques n'ont pas été mises à jour depuis la production de la 4ème édition de l'Encyclopédie (1998)."

              Table des matières